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Introduction

CR submanifolds of a Kaehlerian manifold have been defined by A. Bejancu
[1] in 1978 and are now being studied by various authors. See [1], [2], [4], [5],
[9], [10], [11] and [12]. The purpose of the present paper is to study CR
submanifolds of a complex projective space.

In §1 we first state generalities on submanifolds of Kaehlerian manifolds.
We then define CR submanifolds and prove Theorem 1.1 which gives a
necessary and sufficient condition for a submanifold of a Kaehlerian manifold
to be a CR submanifold.

§2 is devoted to the study of a CR submanifold of a complex projective
space with semi-flat normal connection.

In §3 we prove an integral formula which has been essentially given in [7],
and in §4 we treat with the cases of CR submanifolds with parallel mean
curvature vector.

Finally in §5 we consider CR submanifolds of a complex projective space
with flat normal connection and parallel mean curvature vector.

1. Submanifolds of Kaehlerian manifolds

Let M be a complex m-dimensional (real 2 m-dimensional) Kaehlerian
manifold with almost complex structure /. We denote by g the Hermitian
metric tensor field of M. Let M be a real ^-dimensional Riemannian manifold
isometrically immersed in M. We denote by the same g the Riemannian metric
tensor field induced on M from that of M. The operator of covariant
differentiation with respect to the Levi-Civita connection in M (resp. M) will
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be denoted by V (resp. V). Then the Gauss and Weingarten formulas are
given respectively by

^xγ= VXY+ B(X9Y), ~VXV= -AVX+ DXV

for any vector fields X, Y tangent to M and any vector field V normal to M,
where D denotes the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle T{M)^ of M from that of M.
A and B are both called the second fundamental tensors of M and they are
related by

g(B(X9Y),V)=g(AvX,Y).

For the second fundamental tensor A we define its covariant derivative VXA
along X by

{VxA)yY = VX{ΛVY) ~ ADχVY - AVVX Y.

The mean curvature vector μ of M is defined to be μ — (Tr B)/n, where Tr B is
the trace of B. If B = 0 (or A = 0) identically, then M is said to be totally
geodesic, and if μ — 0, then M is said to be minimal. A normal vector field V
on M is said to be parallel if DXV — 0 for any vector field X tangent to M.

For any vector field X tangent to M we put

(1.1) JX=PX+FX,

where PX is the tangential part, and FX the normal part of JX. Then P is an
endomorphism on the tangent bundle Γ(M), and F is a normal bundle valued
1-form on the tangent bundle T(M). Similarly, for any vector field V normal
to M, we put

(1.2) JV=tV + fV,

where tV is the tangential part, and JV the normal part of JV. For any vector
field Y tangent to AT, from (1.1) we have g(JX, Y) = g(PX, Y) which shows
that g(PX, Y) is skew symmetric. Similarly, for any vector field U normal to
M, from (1.2) we have g{JV, U) = g(/F, U) which shows that g(/F, U) is
skew symmetric. We also have, from (1.1) and (1.2),

(1.3) g(FX,V) + g(X,tV) = 0,

which gives the relation between F and t.
Now applying / to (1.1) and using (1.1), (1.2), we find

(1.4) P2=-I-tF, FP+fF=0.

Applying/ to (1.2) and using (1.1), (1.2) give

(1.5) Λ + ί/=0, f2=-I-Ft.
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Definition. A submanifold M of a Kaehlerian manifold M is called a CR
submanifold of M if there exists a differentiate distribution <$: JC -> ̂  C
7^(M) on M satisfying the following conditions:

(i) <Φ is holomorphic, i.e., / ^ = % for each * G M, and
(ii) the complementary orthogonal distribution Φ"1": JC -> ̂  C ^(Λf) is

anti-invariant, i.e., Jfy£ C Γx( Af ) ± for each x E M.
If dim Φ^ = 0 (resp. dim % - 0), then the CR submanifold is a holomor-

phic submanifold (resp. anti-invariant submanifold) of M. If in a CR submani-
fold dim ̂  = codimension M, then the CR submanifold is what we call a
generic submanifold of M (see [9], [10]).

Suppose that M is a CR submanifold of ΛΓ, and denote by /, ^ the
projection operators on 6ίlχ9 ̂  respectively. Then we have

/ + / - L = / , /2 = /, /-L2 = / ± , / / ± = / - L / = 0.

From (1.1) we have

/J-P/ = 0, /7 = 0, P/ = P,

which together with the second equation of (1.4) implies

(1.6) FP = 0.

Thus we have

(1.7) / F = 0 .

From (1.3) and (1.7) we obtain

(1.8) / / = 0 ,

and, in consequence of the first equation of (1.5),

(1.9) Pt = 0.

Thus from the first equation of (1.4) it follows that

(1.10) P 3 + P = 0,

which shows that P is an /-structure on M. Similarly, from the second equation
of (1.5) we have

(1.11) /3+/=0,

which shows that/is an/-structure in the normal bundle T(M ) x (see [8]).
Conversely, for a submanifold M of a Kaehlerian manifold M, assume that

we have (1.6), i.e., FP = 0, then we have (1.7), (1.8), (1.9), (1.10) and (1.11). We
now put

(1.12) l=-P2, / X = / - Λ

Then we can easily verify that

/ + / x = / , I2 = l, /±2 = / x , / / x = / x / = 0,
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which mean that / and Λ are complementary projection operators and conse-

quently define complementry orthogonal distributions D̂ and ^ respectively.

From the first equation of (1.12) we have

Pl = P.

This equation can be written as

Pl±=0.

But g(PX9Y) is skew-symmetric, and gi^ X, Y) is symmetric, and conse-

quently the above equation gives

1±P = O,

and hence

1±PI = O.

From the first equation of (1.12) we have

F/ = 0.

The above equations show that the distribution ^ is invariant, and distribution
βi)± is anti-invariant. Thus we have

Theorem 1.1. In order for a submanifold M of a Kaehlerian manifold M to be

a CR submanifold, it is necessary and sufficient that FP — 0.

Theorem 1.2. Let M be a CR submanifold of a Kaehlerian manifold M. Then

P is an f-structure in Af, and f is an f-structure in the normal bundle of M.

We next study the properties of the second fundamental tensor of a CR

submanifold M of a Kaehlerian manifold M.

From the Gauss and Weingarten formulas we have

tB(X9 Y) +fB(X, Y) = (VXP)Y ~ AFYX + B(X, PY) + (vxF)Y,

where we have put

(VXP)Y = VX(PY) ~ P^x Y, (VXF)Y = DX(FY) - FVX Y.

Comparing the tangential and normal parts of the both sides of this equation,

we obtain

(1.13) (vxP)Y = AFYX+tB(X,Y),

(1.14) (vxF)Y= -B(X,PY)+fB(X,Y).

Similarly, we have

(1.15) (vxt)V = AfyX-PAvX,

(1.16) (vxf)V=-FAvX-B(X,tV),

where we have put

(vxt)V= Vx{tV) - tDxV, (vxf)V=Dx{fV) -fDxV.
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Moreover, the second fundamental tensor A of a CR submanifold M satisfies

(1.17) AFXY = AFγX for any JT, y E <Φ£ .

In the sequel, we assume that M is a CR submanifold of a complex

projective space CPm of complex dimension m and with constant holomorphic

sectional curvature 4. Then we have respectively the equations of Gauss and

Codazzi as follows:

R(X9 Y)Z =.g(Y, Z)X - g(X, Z)Y + g(PY, Z)PX - g{PXy Z)PY

(1.18) + 2g(X, PY)PZ + ABiYtZ)X-AB{XtZ)Y,

(VXA)VY-{VYA)VX

( 1 1 9 ) = g(FX,V)PY - g(FY,V)PX - 2g(X, PY)tV9

where R denotes the Riemannian curvature tensor of M.

We now define the curvature tensor R± of the normal bundle of M by

R±(X9Y)V = DxDγV - DγDxV- D[x Y]V.

Then we have the equation of Ricci:

g(R±(X9 Y)U, V) + g([AV9 Aυ]X9 Y)

(1.20)

= g(FY9 U)g(FX9 V) - g(FX9 U)g(FΎ9 V) + 2g(X9 PY)g(fU9 V)9

where [Av, Aυ] = AvAυ — AVAV. If R1^ vanishes identically, then the normal

connection of M is said to be/to.

For a CR submanifold M we have the following decomposition of the

tangent space TX(M) at each point x E M;

Similarly, we have

where %x is the orthogonal complement of F^ in TX{M)^. Then J%x =

f%x = %x.
We take an orthonormal frame {eλ, -,e2m} of Msuch that, restricted to M,

el9—-,enaiG tangent to M. Then el9- -9en form an orthonormal frame of M.

We can take e}9- —,en in such a way that el9— -9en_p form an orthonormal

frame of 6ύx, and e +l9- —,en form an orthonormal frame of ̂  , where

p = d i m 6 ^ , and n — p — d i m 6 ^ . Moreover, we take {en+l9 ,e2m) in such

a way that en+l9-—9en+p form an orthonormal frame of Ffy^, and
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en+p+\>'"9e2m f ° r m a n orthonormal frame of 9LX. Unless otherwise stated, we
shall use the conventions that the ranges of indices are respectively:

/, j , k = l,- , n , r , s , t = l , - ' , n — p ;

a, ft, c -n -p + 1,••-,«; x, y, z - n + 1, -,n + p;

\9μ9v
 = n+p+l9' ' ,2m.

2. Semi-flat normal connection

Let M be a real ^-dimensional CR submanifold of a complex projective

space CPm. If the curvature tensor Λ of the normal bundle of M satisfies

(2.1) R±(X,Y)V=2g(X,PY)fV

for any vector fields X, Y tangent to M and any vector field V normal to Λf,

then the normal connection of M is said to be semi-flat (see [11]). If V/ = 0,

then the /-structure /is said to be parallel.

Lemma 2.1. Let M be a CR submanifold of CPm with semi-flat normal

connection. If the f-structure f is parallel, then

(2.2) Afv = 0

for any vector field V normal to M, that is,Aλ — 0 where A λ = Aeχ.

Proof. Since the /-structure / is parallel, (1.16) gives

(2.3) AvtU = AutV

for any vector fields £/, V normal to M. On the other hand, the Ricci equation

and (2.1) imply that

(2.4) g([AV9 Aυ\X, Y) = g(FY, U)g(FX, V) -^g(FX, U)g(FY, U).

Using (1.14) we obtain

0 = g((vxf)fV9FY) = -8(f2V,(vxF)Y)

= g(Af2VX,PY)+g(AfvX,Y),

from which it follows that

(2.5) g(AfyX, AfvX) = -g(Af2VX, PAfvX).

Moreover, from (2.4) we have

(2.6) AfvAfiv = Af2VAfv.

From (2.5) and (2.6) we see that Tr A2

fv = 0 and hence Afv — 0 for any vector

field V normal to M.
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Lemma 2.2. Let M be a CR submanifold of CPm with semi-flat normal

connection and parallel f-structure f. If PAV — AVP for any vecor field V normal

to M, then

giAyX, AVY) = g(X, Y)g(tU, tV) - g(FX, U)g(FY, V)

(2-7) -Σg(ΛυtV,e,)g{ΛFeX,Y).
i

Proof. From the assumption we have g(AυPX, tV) — 0, which implies

g((vγA)υPX, tV) + g(Aυ(vγP)X, tV) + g(AυPX, (vYt)V) = 0.

Thus from (1.13), (1.15) and (2.2) we find

g{(vPXA)υPX, tV) + g(AυtB(PY, X), tV) - g(PAυX, P2AVY) = 0,

from which it follows that

g((VPYA)UPX, tV) - 2 g(AυtV, eJgίAnX, PY) + g(PAvX9 AVY) = 0.
I

From this and the Codazzi equation we have

g(PX, PY)g(tU, tV) - Σg(AutV, ei)g{AFePX, PY)
i

+g{P2AuX,AyY) = 0.

On the other hand, we obtain

g(PX, PY)g(tU, tV) = g(X, Y)g(tU, tV) - g(FX, FY)g(tU, tV),

, et)g(AFeX, Y) + g(AυtV, AFγX),

g(P2AυX, AVY) = -g{AυX, AVY) - g(AyX, AFYtV).

Moreover, from (2.4) we see that

g{AvtV, AFγX) - g{AvX, AFYtV) = g(tU, tV)g(FX, FY)

-g(FX,U)g(FY,V).

From these equations we have

g(X, Y)g(tU, tV) - g(FX, U)g(FY, V)

-lg{ΛυtV, e,)g{AFtX, Y) - g(AvX, AVY) = 0,
i

which proves (2.7).

A parallel section U of the normal bundle of M is called an isoperimetric

section if Tr Aυ — constant Φ 0, and a minimal section if Tr Aυ — 0.
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Lemma 2.3. Let M be a CR submanifold of CPm. For any isoperimetric or

minimal section U of the normal bundle of M, we have

(2-8) 2 ( ^ 4 ) ^ = 0.
j

Proof. For any vector field X tangent to M, we have

u {{vxA)uej, ej) + g(FeJt U)g{PX, βj)
j J

-g(FX, U)g(PeJ9 βj) - 2g(ej9 PX)g(tU, βj

= 0,

because of the Codazzi equation.

Lemma 2.4. Let M be a CR submanifold of CPm with semi-flat normal

connection and parallel f-structure f. If the mean curvature vector of M is

parallel, and PAV — AVP for any vector field V normal to Λf, then the square of

the length of the second fundamental tensor is constant.

Proof. Due to (2.2) and (2.7) the square of the length of the second

fundamental tensor is given by

= (n - l)/> + Σ s{Axtex, tey)TτAy,
x, y

where Ax — A€χ. On the other hand, for any vector field V G F^ , we have

DXV G F^ because of v / = 0. From (1.14) we also have, for any V E 91,

DXV G 91. Therefore, since R± (X, Y)V = 0 for any V G Fty1-, we can take

an orthonormal frame {ex} of F^ such that Dex = 0 for each x (see [3, p.

99]). Then we see that Vx(tex) — —PAXX. Since the mean curvature vector of

M is parallel and PAV — AVP, from the Codazzi equation and (2.3) we find

) = Σ g({VuχA)ytex, x)ΊxAy.
x,y

On the other hand, using PAV — AVP and (1.13) we have

Σg((\?peιA)χPei9 tv) = 0, ^g({yPeιΛ)χPei9 PX) = 0
i i

for any vector field V normal to M and any vector field X tangent to M.

Consequently, we obtain
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for each x. Since the mean curvature vector of M is parallel, (2.8) implies

0 =

for each x, and hence ΣxTτAl = constant.

3. Integral formulas

For any vector field X of a Riemannian manifold M, we generally have (see

[7])

div(V;r*) - d i v ( ( d i v ; φ θ

(3.1) = S(X, X) + i | L(X)g\2 - I VX\2 - (div^Γ)2,

where S denotes the Ricci tensor of M, L(X)g the Lie derivative of g with
respect to X, and | Y \ the length with respect to g of Y on M.

Let M be an ^-dimensional CR submanifold of CPm with semi-flat normal
connection and parallel/-structure/. Suppose that ί/is a parallel section of the
normal bundle of M. Then from equation of Ricci and (2.2) we have fU=0
and hence U E Ffy1-. We also have VxtU = -PAUX, and hence

since P is skew-symmetric, and ̂  is symmetric. Then we have, from (3.1),

(3.2) div(vtυtU) = S(tU9 tU) + \\ L(tU)g\2 - I VtU\2.

On the other hand, due to (1.18) and (2.2), the Ricci tensor S of M is given by

S(tU9 tU) - (n - l)g(tU, tU) + 2 Tr Axg(AxtU, tU)
X

(3.3) -ΣsUltu.tu).
X

Moreover, we have

(3.4) \vtU\2 = TτAl-Σg{A2

xtU,tU).
X

From (3.2), (3.3) and (3.4) it follows that

div(v,atU) = (n - \)g(tU, tϋ) + 2 ΎiAχg(AxtU, tU)
X

( 3 5 )
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We now take an orthonormal frame {ex} such that Dex = 0 for each JC. Then
(3.5) implies

divί 2 Vtejeλ = (n - \)p + 2 TrAxg(Axtey9 tey)
x x,y

( 3 6 ) -

By (2.2) it is easy to show that the right-hand side of (3.6) is independent of the
choice of an orthonormal frame of TX(M)^. We notice that \L(tU)g\2 =

Theorem 3.1. Let M be a compact orientable n-dimensional CR submanifold
of CPm with semi-flat normal connection and parallel f-structure f \ Then

/ [(« - l)/> - Σ T r ^ + 2 TTAχg(Axtey, tey)\*\
M[ x χ,y J

(3.7)

Theorem 3.2. Let M be a compact orientable n-dimensional minimal CR
submanifold of CPm with semi-flat normal connection and parallel f-structure f.
Then

(3.8) f \ x ]
M \ 2JM

4. Parallel mean curvature vector
Let M be an H-dimensional CR submanifold of CPm with semi-flat normal

connection and parallel /-structure /, and suppose that the mean curvature
vector of M is parallel. In the following we compute the Laplacian of the
second fundamental tensor of M (see [6], [11]).

Using (2.2) and (2.8), by a straightforward computation we obtain

g(v2A,A)= 2 g{veyeA)χej,Axej
x,i,j

= (n - 3)2 ΊτA2

x - 2(TrΛj 2 + 6 2 [Tr(AxP)2 - Tr A2

XP
2]

X X X

(4.1) + 3 2 [g(Axtey, Axtey) - g(Axtex, Aytey)\
x,y

~\ Σ g([Ax, Ay]e,,[Ax, Ay]e,)
x,y,i

2 [3g(Axteχ9 tey)ΎτAy - ( T r Λ ^ )
x,y
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where we have taken {ex} such that Dex — 0 for each x, and used the fact that
(VXA)VY = 0 for any V E %x. On the other hand, from (2.4) we have

(4.2) Σ g{[Ax, Ay]ei9 [Ax, Ay]e) = 2p(p - 1),

(4.3) 2 [g(Axtey, Axtey) - g(Axtex, Aytey)] =p(p - 1).

From (4.1), (4.2) and (4.3) it follows that

(4.4) + 2 [H{Axtex, tey)ΎxAy - {ΎiAxAyf + {ΎTAy)(ΎτA2

xAy)}.

Thus by (3.6) and (4.4) we obtain

, A) - 2(n - p)p + \ 2 | [P, Ax] \2 + 3div( 2 Vltχtex)

(4 5) = Σ (TrΛ A ) — ny, ^ Al

x,y x

- 2 (ΊτAx){ΊτA*A
x,j>

We now assume that PAV — AVP. Then Vtetex — —PAxtex = 0. Moreover,
from Lemma 2.4 we see that g(vA, vA) — —g(v2A, A). Thus (4.5) reduces to

-2(n-p)p=l
x,y x

(4.6) -h Σ(TΓ^Λ ) 2 — Σ ( T r ^ J ^ r ^ ^ ) H- (Λ — 1)^.
x x,y

Now using (2.7) we have

— \n — 1)2^ Tr^4j + 2̂

- Σ (ΊτAx)(ΎτA2

yAx) = - Σi^AΫ + 2 TrAχg(Axtey, tey).
x,y x χ,y

Substituting these equations into (4.6) we find

g(vA,vA)-2(n-p)p

(4.7) = - ^ ΎτA2

x + Σ ΎτAxg(Axtey, tey) + (n - \)p.
x χ,y
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Again from (2.7) we see that the right-hand side of (4.7) vanishes, and

consequently we obtain

Lemma 4.1. Let M be an n-dimensional CR submanifold of CPm with

semi-flat normal connection, parallel f-structure f and parallel mean curvature

vector. If PA v = ΛVP for any vector field V normal to M, then we have

g(VA,vA) = 2(n ~p)p.

Example. Let Sm(r) denote an m-dimensional sphere with radius r. We

consider a Riemannian fibre bundle π: Sn+k(l) -» CP(n+k~l)/2. Then we can

see that π(Smι(rx) X XSm"(rky) is a generic submanifold of CP(n+k~l)/2

with parallel mean curvature vector, where Σf=1 r2 — 1, Σ?=1 m( = n + 1 and

w,, -,mk are odd numbers. Moreover, if η = (mj{n + 1))1/2 (/ = 1, ,λ;),

then wίS^ Ci) x *' * χSmk(rk)) is minimal (see [10]).

We need the following

Theorem A [11]. Let M be a complete n-dimensional CR submanifold of CPm

with semi-flat normal connection and n — p >• 4. // the f-structure f is parallel,

and g(VA, VA) = 2(n — p)p, then M is a totally geodesic holomorphic submani-

fold CPn/2 of CPm, or M is a generic submanifold of CP(n+p)/2 in CPm and is

k

π(Smir{) X XSm'(rk))9 Σ ™>> = n + 1,

ι = l

where ml9- —9mk are odd numbers, andp — k ~ 1.

Remark. In Theorem A, if PAV — AVP, then we can prove the result

without the assumption n — p > 4 (see Lemma 2.2 of [11]).

From Lemma 4.1 and Theorem A we have

Theorem 4.1. Let M be a complete n-dimensional CR submanifold of CPm

with semi-flat normal connection, parallel f-structure f and parallel mean curva-

ture vector. If PAV — AVP for any vector field V normal to M, then M is a totally

geodesic holomorphic submanifold CPn/2 of CPm, or M is a generic submanifold

k k

X XSM*(rJ), 2 > , = " + L Σ Ί2 =
ι = l

where mλ,- ,mk are odd numbers andp — k — 1.

Theorem 4.2. Let M be a compact orientable n-dimensional minimal CR

submanifold of CPm with semi-flat normal connection and parallel f-structure f. If

the square of the length of the second fundamental tensor of M is (n — \)p, then
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M is a generic submanifold of CP(n+p)/2 in CPm and is

where m1?

 m

9mk are odd numbers andp — k — 1.

Proof. Since ΣxΊτA2

x = (n - 1)/?, (3.8) implies that PAV = AVP for any

vector field V normal to M. On the other hand, by the assumption, M is not

totally geodesic. Thus our assertion follows from Theorem 4.1.

Since the scalar curvature r of M is given by

we have

Theorem 4.3. Let M be a compact orientable n-dimensional minimal CR

submanifold of CPm with semi-flat normal connection and parallel f-structure f \ If

r = (n + 2)0 - p\ then M is a generic submanifold of CP(n+p)/2 in CPm and

is

π(S""(ri)X---XS""(rk)), 2 m, = » + 1,
z = l

r, = ( m , / ( / i + l ) ) 1 / 2 (i = 1 , . . . , * ) ,

where m{9 ,mk are odd numbers, andp — k — 1.

5. Flat normal connection

In this section we assume that M is an ^-dimensional CR submanifold of

CPm with flat normal connection. Then the Ricci equation implies

(5.1) g([AfU9 Aa]PX, X) = 2g(PX, PX)g(fU, fU)

for any vector field X tangent to M and any vector field U normal to M. Thus

we have

(5.2) TvAfυAυP - ΎxAυAfυP = 2(/i -p)g(/U, fU).

If PAV — AVP for any vector field V normal to M, then we have ΎτAfυAυP

— ΊrAυAfυP, and hence (5.2) implies that n = p, that is, P = 0, and M is an
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anti-invariant submanifold of CPm, o r / = 0, that is, M is a generic submani-

fold of CPm. Therefore from Theorem 3 of [12] and Theorem 4.1 we have

Theorem 5.1. Let M be a compact orientable n-dimensional CR submanifold

of CPm with flat normal connection and parallel mean curvature vector. If

PΛV — AVP for any vector field V normal to M, then M is

inCPninCPm,orMis

k k

π(Sm>(rλ) X XSm'(rk))9 Σ ™>? = n + 1, 2 Ί 2 = h
i=\ ί=l

where mλ,- -,mk are odd numbers, andp — k — 1, 2m — n + p.
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