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Introduction

Tight submanifolds of Euclidean space R" were originally looked at by
Chern and Lashof [1] as submanifolds minimizing the total absolute Lipschitz-
Killing curvature. However, unlike other problems of minimizing integrals in
mathematics, this one leads not to differential equations, but to a geometry
based on certain notions of convexity. This in turn led to the elimination of
differentiability hypotheses and the emergence of a kind of differential geome-
try without differentiability assumptions.

Lucio Rodriguez [10, p. 236] has presented three main results on the
classification of surfaces with boundary, the first two of which involve the
two-piece property and the third tightness. It is the principal aim of the present
work to show that the first two results are true with the differentiability
hypothesis removed. That the third result is not true without the differentiabil-
ity hypothesis we show by a counterexample. We also show that a theorem of
Kuiper [7, p. 275] on tight embeddings of spheres can be generalized to
immersions, thus giving a complete generalization of a theorem of Chern and
Lashof [1, p. 307] with all differentiability assumptions removed.

We next give some definitions. Let M be a compact manifold without
boundary, and /: M -> Rn a topological immersion, that is, a continuous map
such that for every point p E M there is a neighborhood Up in M such that /
restricted to Up is one-to-one. The following definitions of tightness have been
given.

( l )/ i s smooth and has minimal total absolute Lipschitz-Killing curvature
among all smooth immersions of M in all Euclidean spaces Rn.

(2)/is smooth, and for almost every unit vector v G Rn the function v /on
M has the least number of critical points among all Morse functions on M.

(3) For every unit vector υ E Rn and every real number c, the inclusion
M(v, c) — {x E M: v - f(x) < c) C M induces an injection H#(M(v, c)) ->
HJ^M) on the homology Λ-modules (in §4 we show that this condition
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depends on the coefficient ring so that the remarks below hold only for
suitable R).

(4) M(v, c) is connected for all v and c (the two-piece property, TPP).
Conditions (1) and (2) are equivalent [5,p. 149]. For surfaces and smooth/

all four conditions are equivalent, the latter two having the advantage of being
formulated without differentiability assumptions (consult [6, p. 219] for the
equivalence of (2) and (4) in this context). Conditions (3) and (4) are equiva-
lent for surfaces without boundary, as we show in §4, while not for higher
dimensional M, as shown by an example of Kuiper [6, p. 221] which shows also
that condition (4) does not imply (1) or (2) for smooth/. Each of conditions
(1), (2), and (3) implies (4); condition (3) (for smooth/) implies (1) and (2).

Conditions (3) and (4) may be applied to manifolds with boundary, though
they are no longer equivalent even for surfaces, as we show below (Theorem 6
of §4). With Rodriguez we adopt the following.

Definition. A topological immersion of a compact manifold with or without
boundary into Rn is tight if condition (3) holds.

We now list some of the main results obtained in this work. Although we
state the first two theorems as they would appear in Rodriguez without
differentiability assumptions, the results we present in §3 provide a more
complete and general description of these matters. Specifically, the improve-
ment is two-fold: we treat in detail the case wherein/(M) is planar, and show
that some of the assertions (including the second theorem) are true for more
general subsets of S2. In what follows, the convex hull of a subset A of Rn,
denoted by KA, is the intersection of all convex sets which contain A.

Theorem. // M is a manifold with boundary topologically equivalent to S2

with p disjoint discs removed, then for any topological immersion f.M^R3 with
the two-piece property we have

( a ) / | a M consists of planar convex curves,
(b)fis an embedding into dκf(M) orf(M) is planar.

Theorem. If f: M -* Rn is a topological immersion with the two-piece prop-
erty where M is as above, thenf(M) is not substantial for n > 4.

The main theorem of §2 represents a generalization of results obtained by
Kuiper [7, p. 275] and by Chern and Lashof [1, p. 307].

Theorem. ///: Sk -> Rn is a topological immersion such that f~\H) is
(k — \)-connected for each open half-space H, then f is an embedding, andf(Sk)
is the boundary of a(k + \)-dimensional convex set.

The principal result of §4 is the following characterization of tight topologi-
cal immersions of compact connected surfaces with boundary.
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Theorem. If M is a compact connected surface with nonvoid boundary, and f
is a topological immersion, then f is tight if and only if f has the two-piece
property andf(M) C κf(dM).

Using this theorem, we generalize the results of Kuiper [7] on tight bands,
and construct an example which shows that the smoothness assumption in the
third theorem of Rodriguez [10, p. 236] cannot be dropped.

The author would like to thank Professor William Pohl for introducing him
to the subject matter and for providing the patience and guidance so necessary
for the completion of this work.

1. Preliminary definitions and results

We begin with some basic terminology and notation. If m and n are integers
such that m < «, then (m, n)— {i E Z: m < i < n} where Z is the set of
integers. If Y is a subset of a topological space, then the complement of Y, the
interior of Y, and the boundary of Y will be denoted by Yc, Y°, and 9Y,
respectively; the closure of Y will be denoted by Y or Cl Y. A subset of a finite
dimensional vector space V is said to be a k-plane if it is a translate of a
fc-dimensional subspace of V. A λ -plane is said to be a hyperplane if k = dim V
— 1. If H is a component of V\ h where h is a hyperplane, we say that H is an
open half-space of V. The phrase "A bounds H" will always refer to a
hyperplane h and an open half-space H related as above. Finally, Rn is the
^-dimensional number space, and Sn~ι — {x E Rn: \ x \— 1} is the (n — 1)-
dimensional sphere.

Definition 1. If A C Rn, then a hyperplane h in Rn is said to be a support
hyperplane of A, or is said to support A, provided that h Π A φ 0 and A C H
where h bounds H. More generally, a /c-plane Q which is contained in a
(k + l)-plane P is said to support a set 5 in ? if 5 Π β ^ 0 and B is
contained in the closure of one of the components of P\Q.

Proposition 2. If A is a subset of Rn which is contained in a k-plane F, and if
h is a support hyperplane of A such that F\h Φ 0 , then F Π h is a (k — \)-plane
which supports A in F.

Proof. We prove the assertion under the assumption that 0 E A Π h\ the
general result can then be obtained through the use of translations. There is a
linear functional χ: Rn -* R such that h = kerχ and A C χ ' ^ - o c O ] ) . Note
that

(I) χ\FΦ0 (since F\hΦ 0),

(3)i4C(χ|F)-1((-oo,OD,
(4) A Π ker(χ | F ) φ 0 (since 0 E A Π A).
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Now (1) and (2) imply that F Π A is a (k - l)-plane, and (3) and (4) imply

that F Π A supports A in F.

Proposition 3. Let A be a subset of Rn which is contained in a k-plane F, and

suppose that Q is a (k — X)-plane contained in F which supports A in F. Then

there is a support hyperplane A of A such that A Π F = Q.

Proof. If it happens that 0 E Q Π A9 then A = Q + F1- meets the require-

ments where F± = {x E Rn: x - y = 0 for all y E F). In the general case we

apply a suitable translation and refer to the above special case.

Definition 4. A sequence A,, ,hp of hyperplanes is said to be a support

sequence of a subset A of Λn if

(1) hx supports A9

(2) A, supports ΛJ-_1 Π ΓΊA, Π A for each i E (2, /?>,

(3) A, Π Πhx φ ht_x Π Πhx for each i E (2, /?>.

Defintion 5. Consider a set Γ and a function/: T ̂  Rn.Tis defined to be

the only top°-set off. A subset 5Όf T is said to be a topx-set off if S =f'\h)

where A is a support hyperplane of f(T). Assuming that we have defined for all

i E (1, k) what is meant by a topl-set of a function with values in Rn, we

define a top*+1-set of/: T -> # n to be a top^set of/|5 where S is a top^-set of

/. A top^-set is said to be proper if it is not a top^^-set of/; a top*-set of f is a

top^-set of / for some k > 0. Finally, if Γ C /^π and /: T ̂ > Rn is the inclusion

map, then top*-sets of/are also called top*-sets of T.

Proposition 6. // S is a proper topk-set of a map f: T -> R" where k > 0, then

there is a support sequence A1? ,hk off(T) and a sequence of open half-spaces

Hx, -,Hksuch that

(1) A, bounds HJor each i E (1, k),

(2)f(T)CHl9

(3) Af._! Π Π A! Π /(Γ) C HJor each i E (2, k)9

(4)S=r\hλΠ'"Πhk)9

Proof. If S is a proper top1-set of /, it is true that S=f~\hx) and

f(T) C Hx where Aj is a support hyperplane of f(T) which bounds Hx. Since S

is proper, f~\Hx)φ 0 . Therefore the assertion is true for k—\. Now

suppose the result is valid for some k > 1, and let S be a proper top^+1-set

of/.

According to the definitions, there is a top^-set S' of / such that S is a

top^set of f\s,, and there is a support hyperplane A of f(S') such that

S =(/|5')" 1(A). It is clear that S' is a proper top^-set of / so that by the

induction hypothesis we can find relative to S' sequences hl9- -9hk and

HX9- ,Hk as in the statement of the proposition. Since S is proper and
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S = (f\s>Y\h) = S' nf-ι(h)=f-\hx Π ΠhkΠ A), it follows that A Φ

hk. Therefore A Π A^ is an (n — 2)-plane which supports/(5") in hk (Proposi-

tion 2).

Applying a rigid motion if necessary, we assume that hk = {zn — 0}, Hk —

{z" > 0 } , hkΓ)h = {zn~ι =zn = 0}, and f(S') C {z"~ι ^ 0 and z" = 0};

furthermore, we define P: Rn -> R2 by P(z\ ,z") = (z"~\ zn). Picking

x e Πf=1 f'KHi) and bearing in mind the above assumption, we see that

there is a line / and an open half-plane Lin R2 such that / passes through the

origin, / has a positive slope, / bounds L, P(f(x)) E L, and P(f(S')) C L.

Straightforward arguments reveal that hk+λ — P~ι(l) is a hyperplane, Hk+X =

P ( L ) is an open half-space, and hk+x bounds Hk+ι.

To finish the proof we show that the sequences hx, -,hk+ι andi^ ,- ,Hk+x

meet all the requirements. First, we observe that (3) holds since the inclusion

P(f(S')) C L implies that hk Π Dhx Γif(T)=f(Sί) C P '^L) = Hk+X.

Second, as a consequence of the equality h Π hk — hk+x Π ^ , we see that (4)

holds: S=f~\h ΠhkD H/^) = / " 1 ( A Λ + 1 Π ^ ί l Π*!) . Since 5" =7̂

0 and 5=5^5', (4) implies that ΛΛ+1 Π Πhx Π / ( Γ ) ̂  0 and ΛΛ+1

Π Γ\hx =£ hk Π Π^! which, along with (3), imply that hl9-
 m,hk+x is a

support sequence of f(T). Finally, by the above paragraph hk+x bounds Hk+X

and x G nfj"/ f-XHi). Thus (1) and (5) hold, q.e.d.

The following statement follows in a straightforward way from Proposition

6(4). If S is a top*-set of a function/: T -> /Γ, then S=f~\f(S)). This fact

will be used tacitly several times in what follows.

Proposition 7. The following assertions hold for any function f: T ^ Rn:

(a) //£ is a topk-set off, thenf(S) is a topk-set off(T).

(b) IfB is a topk-set off(T\ thenf~\B) is a topk-set off.

Proof. As both results are clear for top°-sets, we can disregard that case. In

what follows /: f(T) -> Rn is the inclusion map.

If S is a top1-set of/, then S = f~\h) where h is a support hyperplane of

f(T). Since /(S) = h Π/(Γ) = Γ^λ) and since A supports /(Γ), f(S) is a

top1-set of f(T). Now suppose the assertion is true for some k > 1, and let S be

a top*+1-set of/. By definition S = (/I^Γ^A) where 5" is a top^-set of/, and

h is a support hyperplane of f(S'). Clearly, /(£) = h Π/(5') = OUO"1^)

where B' = f(S'). Since £ ' is a top*-set of /(Γ) and h supports /(S') = /(^')?

/(S) is a top*+1-set of f(T). This proves (a).

If B is a top!-set of/(Γ), then # = i~\h) - h Π /(Γ) where Λ is a support

hyperplane of f(T). Since f~\B)= f"\h\ f~\B) is a top!-set of /. Now

assume the result is true for some k > 1, and let B be a top*+1-set of/(Γ). By

definition 2? = ( I ' I ^ Γ ^ A ) where 5 ' is a top*-set of/(Γ), and A is a support

hyperplane of £'. Observe that B = hΠB\ and Z " 1 ^ ) = (f\sΎ\h) w h e r e
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S' =f-\B'). Since S' is a toρ*-set of/and h supports/(S") = B\f'\B) is a

t o p ^ !-set of/. This proves (b). q.e.d.

It should be noted that S is not necessarily a top*-set of / if f(S) is a

toρ*-set of f(T). To see this we need only consider a constant map on a

two-point space.

We now consider two standard notions concerning convexity in Rn. If

A C Rn, the convex hull of A, denoted by KA, is the intersection of all convex

subsets of Rn which contain A. An element x of Rn is said to be a convex

combination of elements of A if there exists a positive integer /:; α,, ,α^G

(0,1]; and α,, ,ΛΛ EΛ such that JC = Σ f ^ α ^ and Σf= 1α z = 1. We will

need the following three facts.

Fact 1. Let A C Rn. Then KA is the set of convex combinations of members

of A [9, p. 12].

Fact 2. Let Abe a compact subset ofRn. Then KA is compact [9, p. 158].

Fact 3. Let A be a closed convex subset of Rn, and let x E dA. Then there is

a support hyperplane of A which contains x [9, p. 100].

Definition 8. If A C Rn and/ G (0, n ), then A is said to be an Ejset if it is

contained in a/-plane while it is contained in no (/ — l)-plane. An £M-set is

said to be substantial. If/: T -> Rn is any function and S C Γ, then S is said to

be an EJ-set (substantial set) of /if f(S) is an EJ-set (substantial).

Theorem 9. If A is a compact subset of Rn which is contained in a k-plane F9

then dFκA — U KB where B ranges over all Ej-top1-sets of A where 0 < / < k.

Proof. As the assertion is clear if A is not substantial in i7, we can disregard

that case.

Let x E KB where B is an Z^-top^set of A with 0 < / < k. Choose a support

hyperplane h of A such that B = h Π A, and observe that F\h Φ 0—for

otherwise B = A so that B is not an ϋ^-set. By Proposition 2 the (k — l)-plane

Q — FCλh supports A, and hence KA, in F. Since B — Q Π A, we see that

* E κ£ = κ(β n ^ C β Π d C dFκA. As Λ: was arbitrary, UKB C dFκA.

Next, let ^ be an arbitrary element of dFκA. By Facts 2 and 3 there is a

(A: — l)-plane Q contained in F which supports KA in F and contains y. It

follows from Proposition 3 that there is a support hyperplane h of KA such that

β = h Π F.

We claim that h Γ\ KA — κ(h Π A). Applying a rigid motion if necessary, we

can assume that h = {zn — 0} and KA C {zn > 0}. Since h Π KA is a convex

set containing h Π A, κ(h Π A) C h Π KA. In order to prove the reverse

inclusion, we choose x E h Π KA arbitrarily. By Fact 1 there exist a λ, , ay E A

and α l f ,αy E (0,1] such that Σ/= 1 αf = 1 and Σ/= 1 α fl, = x. But JC G h so

that x" = Σ/= 1 ata" = 0. As al9- ,αy > 0 and a"9- ,α" ^ 0, we can conclude
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Xthat a\ - = a] = 0. Consequently, ax, -9aj, E. h Π A. Therefore

κ(h DA) by Fact 1. Since x was arbitrary, the inclusion h Π KA C κ(h Π A)

and the claim have been proven.

We can now state that y G κ(h Π A). But h Π A is a top^set of Λ contained

in g, a (k — l)-plane. Thus 7 G U KB. Since^ was arbitrary, dFκA C U KB.

Definition 10. If X is a topological space, and if /: X -» Λ" is a function,

then / is said to have the two-piece property (TPP for short) if f'\H) is

connected for each open half-space H in Rn. If X is a subset of Rn with the

relative topology and if / is the inclusion map, then we say that Xhas the TPP

if/does.

Proposition 11. If X is topological space, andf: X -» R" is a function with the

TPP, then X is connected.

Proof. Pick z £f(X) and choose open half-spaces Hx and H2 such that

z EHXΠH2 and Rn = Hx U # 2 . Then /^(/f^ Γ)f-\H2) is nonempty and

X = f'\Hλ) Uf-\H2). Since/^(i/,) a n d / ' 1 ^ ) are connected, Xis con-

nected.

Proposition 12. Lei k and n be integers such that 1 < k < n, and let i:

Rk -> Rn be the map defined by i(x\- ,xk) = (x\- ,JCΛ,O, ,0). Then a

function f:X-*Rk has the TPP if and only if i ° /: X -> Λw Λ^ the TPP where

X is a topological space.

Proof. Assume that / has the TPP and let H be an arbitrary open

half-space in Rn. Observe that if i~ι(H) is not an open half-space in Rk, then

i~ι(H) = 0 or i~λ(H) — Rk. It follows from Proposition 11 and our assump-

tion about / that (i o f)~\H) = f"\i~\H)) is connected. Thus i ° / has the

TPP.

Next assume that / ° / has the TPP, and let K be an arbitrary open

half-space in Rk. It is clear that there is an open half-space H in Rn such that

Γ\H) = K. Then f~\K) =f-\Γι(H)) = (i ° fY\H) is connected. There-

fore/has the TPP.

Proposition 13. // X is a topological space, and f: X -> Rn is a continuous

map with the TPP, thenf(X) has the TPP.

Proof. Let /: f(X) -> Rn be the inclusion map. If H is an arbitrary open

half-space in Rn, then we have Γ\H) = f(X) Π H = f{f~\H)). But the

latter set is connected, as / is a continuous map with the TPP. Therefore / has

the TPP. q.e.d.

The converse of Proposition 13 is false as the following example shows. Let

X = {p9 qj have the discrete topology, and let f(p) = f(q) G R". Then f(X)

has the TPP while/does not.
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Proposition 14. Suppose that f: X -> Rn is a continuous map where X is a

compact Hausdorff space. Then f has the TPP if and only iff~\H) is connected

for each open half-space H in Rn.

Proof. Assume that/has the TPP, and let H be any open half-space in Rn.

If f~\H) is not connected, there are disjoint nonempty relatively closed

subsets Λ and B of f'\H) such that f'\H) = A U B. Since f~\H) is closed,

A and B are closed in X. Therefore by the normality of X there are disjoint

open sets V and W such that A C V and B C W. By the continuity of / and the

compactness of X we can find an open half-space K such that H C K and

f~\K) C V U W. Hence f~\K) is not connected. This contradiction proves

that f~x(H) is connected.

To prove the converse we choose any open half-space H in Rn. Since f~x(H)

is connected if f~ι(H) — 0 , w e can assume that f~\H) contains an element

x. Pick a sequence {Hk} of open half-spaces with the following properties: x E

f~\Hk) for each k,HkCH for each k9 and d(dHk, dH) - 0. Then Γif~\Hk)
φ 0 and f~\H) = Of~\Hk) so that / - ! ( # ) is connected. Since # was
arbitrary,/has the TPP.

Proposition 15. // X is a topological space, andf: X -» Rn is a function with

the TPP, then X\Z is connected for each top*-set Z of f {Note: f is not

necessarily continuous).

Proof. As the assertion is clear for top°-sets, we can assume that Z is a

proper top^-set of/for some k ^ 1. Let hλ,- - ,hk and Hλ,- ,Hk be sequences

as in Proposition 6. Because Πf=1 f'XHj) ¥= 0 , we need only show X\Z =

uf= ,/-'(#,).
To this end let x G X\Z, and let p be the smallest integer in the set

{i G_<1,Λ>: x &f-\hx Π ••• ΠA,.)}. I f / > = 1, then JC ef~\H}% since
C //j. If/?> 1, t h e n * <Ξf~ι(hι Π ••• Π A ^ ) . Thus x Sf'\Hp)9 since hp_λ

Π Πhλ nf(X) C Ήp. We conclude that X\Z C Uf=1 f ' 1 ^ ) . The re-

verse inclusion is clear.

Proposition 16. Suppose that Y is a topλ-set of a continuous map f: X -> Rn

with the TPP where X is a compact Hausdorff space. Then f\γ has the TPP.

Proof. In the light of Proposition 12 we can assume that n> 2. If A is a

support hyperplane of f(X) such that Y = f~\h)9 then Y = f~\Ή) where H

is that open half-space bounded by A which does not meet/( X). Therefore Y is

a compact Hausdorff space which is, by Proposition 14, connected. Let

Suppose that / does not have the TPP. Then by Proposition 14 there is an

open half-space K bounded by a hyperplane k such that f~\K) = Yx U Y2

where Yj and Y2 are nonempty disjoint relatively closed sets. Since X is normal
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Siϊίdf~\K) is closed in X, there exist disjoint open sets Vx and F2 containing
Yx and y2, respectively. Also, since Y is connected, k cannot be parallel to h\
therefore h Π kisa(n — 2)-plane.

Applying a rigid motion if necessary, we can assume that h = [zn = 0},
knh = {zn~ι =zn = 0}, f(X)C {z"<0}, and KΠh = {zn-χ<0, zn =
0}. Define P: R" -+ R2 by P(z\- ,zw) = (zn~\ zn\ and for each positive
integer y, let L} be the upper of the two half-planes which are bounded by the
line Ij through the origin with slope j~K It follows that hj — P~\lj) is a
hyperplane which bounds the open half-space Hj — P~\Lj).

We claim that f~\Hq) C Vx U F2 for some q. To prove this we assume the
contrary and choose Xj Ef~\Hj)\(Vx

 u ^2) f°Γ each7. Since X is compact,
we can find a subnet {jt^} which converges to some element x0 G X. It is clear
that x0 ί K, U K2. However, using the compactness of P(f(X)) and the fact
that P(f(Xjλ)) -> P(f(xo))> we see that /(XQ)"" 1 < 0 and /(xo)

M = ° τ h u s

x0Ef-\K)nY = f-\K)CVιUV2. This contradiction establishes the
claim.

With q as abov^it is clear that YxC.f-\Hq) Π Vl9 Y2 df-\_Hq) Π F2, and
/ - ! ( ^ ) = [Γ\Hq) Π FJ U [f-\Hq) Π F2]. Therefore/" 1 ^) is not con-
nected—which violates Proposition 14. We conclude that/has the TPP.

Corollary 17. // Y is a top*-set of a continuous map f: X -> Rn with the TPP

where X is a compact Hausdorff space, then f \ γ has the TPP.

Proof. The result follows from Proposition 16 by a routine induction
argument.

Definition 18. If /: S -> T is a function and a G S, then a is said to be a
simple point of f'ύf-\f{{<x})) = {a}.

Defintion 19. Let X and Y be topological spaces, and let /: X -> Y be a
continuous map. Then / is said to be a topological immersion if for each x G X
there is a neighborhood N oΐ x such that / maps iV homeomorphically onto
f(N) where/(iV) has the relative topology.

Proposition 20. ///: X ~+ Rn is a topological immersion where X is a compact

Hausdorff space, then the following assertions hold:

(a)/"1({α}) is finite for each a G Rn.

(b) The set of simple points off is open.

Proof. Suppose f~\{a}) is infinite for some a G Rn. Then there is an
infinite sequence of distinct members of f~ι({a}). Since X is compact, there is a
convergent subnet which converges to a point x in X. But then x has no
neighborhood Fsuch that f\vis injective. This contradiction establishes (a).

Suppose x0 is a simple point, and {xβ} is a net of nonsimple points which
converges to x0. Clearly we can assume {xβ} is contained in a neighborhood F
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of JC0 such that/1κis injective. For each β pickj^ G f~\{f(Xβ)})^V. Since
compact, we can find a convergent subnet {yβχ} with limit y0 in X. Clearly
y0 £ V so that x0 ¥= y0. Yet f(x0) = f(y0) since f(yβχ) = f(xβλ) for each λ.
Therefore x0 is not a simple point of /. Hence a simple point cannot be the
limit of a net of nonsimple points. This establishes (b).

Definition 21. If/: T -> Λw is a function, and S is a subset of Γ, then S is
said to be a convex set of f if f(S) is a convex subset of Rn. If a top*-set of/is
not convex, we say that it is essential.

Theorem 22. ///: X -» JRW W α topological immersion with the TPP where X
is a compact Hausdorff space, then convex top*-sets of/consist of simple points.

Proof. Since top*-sets are connected (Proposition 11 and Corollary 17) and
since £°-top*-sets are finite (Proposition 20 (a)), the result holds for £0-top*-
sets.

Now suppose that 0 < k < n and that the result is true for all j such that
0 </ < k. Let Z be a convex £*-top*-set of /, and let F be the /:-plane
containing/(Z).

We know by Theorem 9 and the convexity of /(Z) that ΘF/(Z) = UKB
where B ranges over the JE-Mop ŝets of /(Z) with 0 <y < k. Moreover the
convexity of/(Z) implies that each B is convex; therefore dFf(Z) = U B. By
the induction hypothesis and Proposition 7, f~ι(B) consists of simple points
for each B so ihatf~ι(dFf(Z)) consists of simple points.

In order to prove that Z consists of simple points it is enough to show that
f\z is an injection. To simplify matters we assume, applying a rigid motion if
necessary, that F = {xk+ι = = xn = 0}, and we let / denote f\z consid-
ered as a map into Rk. Observe that/is a topological immersion with the TPP
(Proposition 12 and Corollary 17) and that/(Z) is a substantial convex subset
of Rk. Furthermore, since f~\df{Z)) =f~ι(dFf(Z)X f-\df(Z)) consists of
simple points of/. By Proposition 20(b) the set of simple points of/is open in
Z; thus the image N under / of the set of nonsimple points is a compact set
which does not meet 3/(Z). This implies that KN is a compact set contained in

Suppose that TV Φ 0 . We can then choose z0 G TV, a hyperplane Λ, and an
open half-space H bounded by h such that h supports KN, h Π KN = {z0}, and
H Π KN = 0 . This choice can be made as follows: pick y E Nc, let z 0 be a
point in N such that d(z0, y) is maximal, and let h be the tangent hyperplane
at z 0 of the sphere with radius d(z 0 , y) centered at y. By Proposition 20 and
the fact that z 0 E TV, f~ι({z0}) is a finite set with members xl9- ",xp where
p>2.

Now let Ul9"-,Up by mutually disjoint open sets containing xl9-—,x9

respectively, and choose an open ball B centered at z 0 such that B C / ( Z ) and
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f'\B) C Uf=1 Ut. As B Π H is connected and £ Π # Π iV = 0J~\B Π tf)
C £/̂  for some #. Clearly xl9- -9xq-l9 xq+X9- ,^_are not cluster points of

f'\H). It follows from the normality of Z ihaif'ι(H) C F U JF where Fand
W are disjoint open sets containing C\zf~\H) and {*,: / 7̂  <?}, respectively.
Therefore f~ι(H) is not connected. This violation of Proposition 14 proves
that N = 0 . Thus/is injective so that/ | z is also. This completes the proof.

Definition 23. Consider a compact two-dimensional manifold with
boundary M, a topological immersion /: M -* R2, and a line / in R2 parame-
trized by 0(0 = x + tz. Then Γ Cf~\l) is said to be an l-arc of f with respect
to θ if there is a continuous map χ: [a, b] -> M such that χ([β, Z?]) = Γ,
{α, 6} = χ'^ΘM), and θ \[aM = / o χ . The interior of Γ, denoted by INTΓ,is
Γ\3M.

Proposition 24. // M, /, /, β«J 0 are as in Definition 23, and Λz w /Λe Λ1 /̂ of
l-arcs of f with respect to θ9 then the following assertions hold:

(\)f~\l)\dM = UINTΓ wλeπ? Γ ranges over Λ7.
(2) IfTl9 Γ2 G A oπrfINT^ Π INTΓ2 φ 0,then Tλ = Γ2.

Proo/. Let 7 E/"1(/)\3M be arbitrary, and pick an open neighborhood B
of y such that B C INTM and such that f\B maps 5 homeomorphically onto
/(B). By Invariance of Domain, f(B) is an open subset of R2. Therefore, if
θ(s0) = f(y)9 there exist real numbers a and /? such that a < so< β and
θ((a9β)) Cf(B); moreover (f\BT

x ° (θ\(atβ)): (a, β) -+ INTM is a continu-
ous map which takes s0 into j> and yields θ\iaβ) when composed with/. Thus
the collection E of continuous maps γ: (c, e) -> INTM such that 50 E (c, e),
Y( SΌ) = ^' and/o γ = θ \{ce) is nonempty.

If γ} and γ2 are members of E, we write y} < γ2 if γ2 is an extension of yγ.
Clearly " < " is a partial order on E. Now let L be a nonempty linearly ordered
subset of £, and observe that the union of the domains of the members of L is
an open interval (c, e) which is bounded by the compactness of M. For
s E (c, e) let γo(s) = γ(s) where γ is any member of L with s in its domain. It
follows that γ0: (c, e) -> INTM is a well-defined member of £ and an upper
bound of L. By Zorn's Lemma we can find a maximal element χ 0 : (0, ft) ->
INTM of £.

Next, choose two sequences {/„} and {un} contained in (a, b) such that
tn-+ a and «„ -> ft. By the compactness of M we might just as well assume that
there are points/? and q in M which are the limits of {χo(^)} and {χo(un)},
respectively. Extend χ 0 to a map χ: [a, b] -> M by setting χ(α) =/? and
χ(6) = q. We see that θ(a) = Iim0(/M) = lim/(χ(/J) =/(/>) =/(χ(fl)) and,
similarly, that 0(6) =/(χ(6)). Therefore/ o x = θ \[aM.
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In order to show that χ is continuous we need only show that χ is
continuous at a and b. We concentrate on the first case, the argument in the
second case being similar. Begin by definingp = po, -,pk as the members of
f~\{f{p)}) (see Proposition 20(a)) and letting NQ9— 9Nk be disjoint open
neighborhoods of pθ9 -9pk9 respectively, such that / maps No homeomorphi-
cally onto/(JV0). Choose c E {a, b) such that χ([a, c]) C Uf=0Λ^, This selec-
tion is possible by the following argument. If there were no such c, we could
produce, using the compactness of M, a sequence {cn} in (a, b) which
converges to a and is such that {χ(cn)} is a sequence converging to a point r
not in Uf=0Λ;.. Then f(r) = lim/(χ(cj) = lim0(cj - θ(a) = f(χ(a)) =
/(/?). Therefore rEf~\{f(p)})\{pl9-—9pk}—an impossibility. Since χ is
continuous on (0, c], χ((α, c]) C Nj for somey. But lim tn = a, and lim X ( ί n )
= p so that χ([έi, c]) C No. Noting that (/l^)" 1 ° (θ \[OtC]) = x |[βfC], we con-
clude that x is continuous at a.

We next assert that χ(<z), χ(b) E 3M. The argument is as follows. If
χ(a) EINTM, we can find an open neighborhood D CINTM of χ(a) such
that/maps D homeomorphically onto/(D). Since f(D) is open in R2

9 there
exists e ERι such that e < a and 0((e, α]) C f(D). Define x^ O, Z?) -^INTM
by χ,(j) = χ(s) if 5 E [a, b) and X l ( j ) - (f\Dy\θ(s)) if J E (e, a). Clearly
X! is a member of E which properly extends χ 0. Since this is a violation of the
maximality of χ0, we conclude that χ(a) E 3M. Similarly, χ(b) E 3M.

We can now conclude that χ([α, b]) is a /-arc of / with respect to θ with
y — χ(s0) in its interior. This establishes (1).

Let T} and Γ2 be /-arcs of/with respect to θ such that INTΓj Π INTΓ2 φ 0 ,
and let χx\[a, b]-* M and χ 2 :[c, e]-^M be parametrizations, as per the
definition of /-arcs, of 1̂  and Γ2, respectively. By assumption there is a pair
O0, /0) in (a, b) X (c, e) such that x ^ ^ ) = χ 2(/ 0) Note that β(j0) =
/(Xi(*o)) =/(X2('o)) = «(ίo) Therefore J 0 = t0.

We claim that a = c. Supposing that a < c, we pick δ so that s0 < δ <
MIN{6, e}, and let F= {s: s E (c, δ) and X l ( j ) = χ 2 θ ) } . Since s0 E F,
F τ ^ 0 ; furthermore it is clear that F is closed in (c, δ). We wish to show that
F is open in (c, δ). To this end let s E F be arbitrary, and pick an open
neighborhood G of X I ( J ) = χ 2 θ ) such that/maps G homeomorphically onto
f(G). Choose ε > 0 such that c < ^ - ε < 5 + ε < δ and X l ( ( j — ε, J + ε)) U
χ2((s - ε, j + ε)) C G. For ί E (j - ε, 5 + ε) we have / | σ ( X l ( ί ) ) = β{t) =
/IG(XI(O) and, since/|c is injective, χx(t) = χ2(t). Therefore (s - ε, s + ε) C
F. We conclude that F is open in (c, δ) so that F=(c9δ). It follows that
Xi(c) — Xi(c)' ^ u t this i s impossible since our assumption that a < c implies
that χx(c) E INTM and χ2(c) E 9M. This contradiction implies that a > c.
Similarly c > a. Hence a = c.
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In the same way it can be shown that b = e. If we let H = {s: s e (a, b) and
XiO) = X2O)}> w e conclude by the argument above that H = (a, b). It
follows that XJ = χ 2 so that Tx = Γ2. This completes the proof.

2. Spheres

In this section we consider topological immersions of spheres of various
dimensions into R". Theorem 6 will be useful in the next section, and Theorem
4 is a generalization of results obtained by Chern and Lashof [1, p. 307] and
Kuiper [7, p. 275].

Definition 1. Let k be a nonnegative integer, and X a topological space.
Then X is said to be k-connected if X is pathwise connected and, if k > 0, the
first k homotopy groups of Xare trivial (πλ(X) = = πk(X) = 0).

Proposition 2. IfXis a compact subset ofR", Y is a top*-set of X, and U is a
neighborhood of Y in X, then there is an open half-space H of Rn such that
YCHΠXCU.

Proof. Kuiper and Pohl [8, p. 180].
Proposition 3. Suppose that X is a compact Hausdorff space, andf: X -> Rn

is a topological immersion such that f~\H) is k-connected for each open
half-space H. If Y is an EJ-top*-set off, then

(1) Y is convex ifj < k + 1,
(2) dQκf(Y) Cf(Y) ifj = k + 2 where Q is the j-plane containing f(Y).
Proof. We proceed by induction on j . Since / has the TPP, it is clear that

the assertion is true for/ = 0,1. Assume that the result is true for all i such that
1 < i <j < n, and let Y be an £Moρ*-set of /with j < k + 2.

If Q is the>plane containing/(y), we have the equation dQκf(Y) = U KZ
where Z ranges over the ^-top^sets of f(Y) with 0 < / <j (Theorem 9 of §1).
The inequality j — 1 < k + 1, the induction hypothesis, and Proposition 7 of
§1 now imply that S = dQκf(Y) C/(7). If j = k + 2, this is all we need to
show. Therefore assume thaty < k + 2 (and note that/" ι(S) is a homeomorph
of SJ-ι by Theorem 22 of §1).

We suppose that f(Y) φ κf(Y). Letting el9- -,en be the standard basis of
Rn and applying a rigid motion if necessary, we assume that Q —
span{e,, ,e;} and that 0 6 /c/(7)\/(7). Moreover letting P =
span{^+1, -,£„} and noting that/(y) Π P = 0, we can choose a neighbor-
hood U in f(X) oif(Y) such that U Π P = 0. By Proposition 2 there is an
open half-space H such that f(Y) CHΠ f(X) C U. Since H Π f(X) C Pc

and S is not contractible in Pc, S is not contractible in H Π f(X). It follows
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that f~\S) is not contractible in f~ι(H) since any homotopy F: f~\S) X

[0,1] -+f~\H) determines a homotopy G:SX[09\]^ H Π f(X) defined by

G(y, t) =f(F(f-\y\ t)). But this violates ^x(f~\H)) = 0.

Theorem 4. ///: Sk -> Rn is a topological immersion such that f~\H) is
(k — \)-connected for each open half-space H, then f is an embedding, andf(Sk)
is the boundary of a convex Ek+ι-set.

Proof. Since Sk is not homeomorphic to a convex set, we can conclude by
Theorem 22 of §1 that f(Sk) is not convex. Thus there is at least one essential
top*-set of f(Sk). Let Y be an essential £y-top*-set of f(Sk) where j is
minimal, and note thaty > (k — 1)+ 1 = A: by Proposition 3.

Letting Q be they-plane containing 7, we observe that dQκY = U B where B
ranges over the E '-top1 -sets of Y with 0 < / <j (Theorem 9 of §1 and our
choice of j). Since f~\dQκY) consists of simple points by Proposition 7 and
Theorem 22 of §\J~\dQκY) is a homeomorph of SJ~ι so thaty - K k. But
we have seen that j - 1 ̂  k. Therefore j - 1 = k and f~\dQκY) = Sk. It
follows that/is an embedding and f(Sk) — dQκY.

Remark. The hypothesis of Theorem 4 is equivalent to the TPP if k = 1 or
2. As this is clear in the first case, we focus our attention on a topological
immersion /: S2 -» Rn with the TPP. If H is an open half-space, f~\H) is
pathwise connected because/is a continuous map with the TPP; furthermore,
since S2\f~\H) is connected (Proposition 14 of §1), f~\H) is simply
connected [12, p. 292]. Thus the inverse image of any open half-space is
1-connected. That the hypothesis of Theorem 4 implies the TPP is immediate.

An arc is a nonempty connected open subset of S\ If a, b, and c are distinct
points of iS1, the arc "from a to c through b" is denoted by abc\ removing b
from abc yields two arcs denoted by ab and be.

Definition 5. Let g: Sι -> R2 be an arbitrary function, and / a line in R2.
Then u E Sι is said to be an l-crossing point of g if for each arc zuw centered at
u there is a pair (yu y2) E zu X uw such that yx and y2 are mapped into
different open half-planes bounded by /.

Theorem 6. // g: S 1 -» i£2 w α topological immersion such that there are at

most three l-crossing points of g for each line I in R2, then g is an embedding, and

g(Sι) bounds a convex body.

Proof. We begin by noting that if / is a line in R2 such that g(Sι) Π /
contains a segment, then g~\l) contains an arc. The argument is as follows.
Pick an open segment s contained in g(Sλ) Π /, and cover Sι with closed arcs
Al9- - -,An such that g \A, is injective for each i E (1, n). Since Π"=ι(s\g(Ai))
= s\g(Sι) = 0, there is a minimal k such that n f ^ s x g ^ ) ) = 0. If
/: > 1, we use the minimality of k to find an open segment s0 C Πk~ι\s\g(Ai))
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and to conclude that s0 C g(Ak). In this case (g \Ak)~\s0) is the arc we seek. If

k = 1, then s C g(Ax), and (g\Aι)~ι(s) is an arc contained in g~\l). Next, we

simplify our language by calling a line / cleanly cutting if g(Sι) Π / contains no

segment. From the above observation, the local injectiveness of g, and the

second countability of S\ it follows that there are at most countably many

lines which are not cleanly cutting.

Suppose that w E Sι is not a /-crossing point of g where / is cleanly cutting,

and choose an arc awb which violates the /-crossing condition. As g is an

immersion and / is cleanly cutting, we can find p E aw Π g~\l)c and q E wb
n g~\I)c- Our assumption on awb implies that g(aw) and g(q) are contained

in the same closed half-plane bounded by /; likewise g(wb) and g(p) are on

the same side of /. Hence awb is mapped into one of the closed half-planes

bounded by /.

Now consider a cleanly cutting line / and an arc A which is free of /-crossing

points. We claim that A is mapped into one of the closed half-planes bounded

by /. To see this we appeal to the above paragraph and choose for each w E A

an arc A(w) which is contained in A, contains w, and is mapped into one of the

closed half-planes bounded by /. If two of these arcs intersect, they are mapped

into the same closed half-plane bounded by /, since their intersection is an arc

(or arcs) and / is cleanly cutting. The claim now follows from the fact that

{A(w): w E A} is an open cover of A.

Let L be an arbitrary open half-plane, and assume that g~λ(L) has more

than one component, two of which are xyz and abc. Clearly x, z, a,c E g~\dL).

By the remark at the end of the first paragraph we can find an open half-plane

U bounded by a cleanly cutting line /' such that U C L and y,b E g~\L'). It

follows from the above claim that there are /'-crossing points of g in xy, yz, ab9

and be. But this is impossible by hypothesis. Therefore g~\L) is connected,

and since L was arbitrary, g has the TPP. We now apply Theorem 4 to

complete the proof.

3. The surfaces Sk

The three theorems presented in this section give a satisfactory characteriza-

tion of the TPP topological immersions of Sk (see Definition 1) into Rn for all

k and n. Moreover, Theorems 6 and 7 are generalizations of results obtained

by Rodriguez [10, p. 236] concerning these surfaces under differentiability

assumptions.

All homology considered in this section is over Z with H# denoting reduced

homology. The symbol = is used to indicate that two groups are isomorphic.
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Finally we state a theorem [13, p. 47] which is of fundamental importance in

what follows.

Schoenflies' theorem. // /: Sι -» R2 is an embedding, then there is a

homeomorphism F: R2 -* R2 which is such thatf — F\s\.

Definition 1. Sk is the space obtained from S2 by removing a collection Ω^

of k open circular discs with disjoint closures.

We remark that Sk is a compact connected surface with boundary which is

topologically independent of the collection Ω .̂

Proposition 2. ///: Sk -> S2 is a topological immersion such that f\dH is an

embedding for each i / G ί l ^ , then f is an embedding.

Proof. Choose H E Qk arbitrarily, and let Nε= [x E Sk: d(x9 dH) < ε}

for each ε > 0. We claim t h a t / I ^ is an injection for sufficiently small ε. If we

assume the contrary, we can find two sequences {xn} and {yn} in Sk which

approach dH in such a way that f(xn) = f(yn) and xn φ yn for each n. By the

compactness of Sk we might just as well assume that {xn} converges; further-

more we can find a convergent subsequence {ynk} of {yn}. Denoting these

limits by JC0 and j>0, we see that both are contained in dH. If x0 — yθ9 we

quickly arrive at a violation of the local injectiveness off. If Λ:0 φy0, we get a

violation of the injectiveness of f\dH since f(x0) — limkf(xnk) = limkf(ynk)

= f(y0). This proves the claim. Now let NH = Nε where ε is so small t h a t / ^ is

injective and Nε\dH is connected.

For each H E Qk let CH be the component of S2\f(dH) which does not

meet f(NH). It follows from Schoenflies' theorem that there exists, for each

H E Ω ,̂ a homeomorphism gH: S2 -» S2 which extends f\dH in such a way

that gH(H) = CH. If we define G: S2 -* S2 by G(x) = / ( x ) for x E Sk and

G(x) = gH(x) for x E H, we see that G is a continuous map. In fact, G is a

topological immersion. In proving this we can concentrate on points in dSk,

since it is clear that G | 5 2 X 8 ^ is an immersion. Let H E Ω^ and x E dH be

chosen arbitrarily, and pick a closed neighborhood B of x in S2 so that

B Γ) Sk C NH and UxS^ C if. It follows that G \B is an injection and hence a

homeomorphism onto (7(2?). We conclude that G is a topological immersion;

furthermore G is an open map by Invariance of Domain. Therefore G is onto

as G(S2) is both open and closed.

Now let z E S2, and let x,, ,xm be an enumeration of G~\{z}) (see

Proposition 20 of §1). Choose mutually disjoint open neighborhoods I/,, , Um

of JC,, ,xm, respectively, such that G maps L̂  homeomorphically onto G(L^)

for each /. We claim that there is an open neighborhood V of z such that

F C ί l G ( φ and G~\V) C U Iζ . If we cannot find such a neighborhood, we

can find a sequence {wn} contained in S ί 2 \(U Ut) such that limG(wπ) = z.
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Since S2 is compact, there is a convergent subsequence of {wn} whose limit is
clearly a member of G"1({z})\( U φ . This contradiction establishes the claim.
Letting Vt = (G \vχ\V) for each i E (1, m>, we see that G'\V) = U Vt and
that G maps Vt homeomorphically onto V for each /. Since z was arbitrary, we
conclude that G: S2 -» S2 is a covering space of S2. Since id: S 2 -> S 2 is also a
covering space of S2, the simple connectivity of S2 implies that G is a
homeomorphism [3, p. 23]. Therefore/ = G \Sk is an injection.

Proposition 3. Suppose that A and B are closed subsets of S2 such that
Hg(S2\A) = 0, S2 ¥= A U B, and A Π B is either empty or a singleton. Then
H*(S2\(AUB))^H*(S2\B).

Proof. Since A Π B is either empty or a singleton, (S2\A) U (S2\B) is
either S2 or S2 minus a point. Also (S2\A) Π (S2\B) = S 2 \(^ U 5) is
nonempty as,4 U B Φ S2. Let Γ = (S2\A) U (S2\B).

Using the information in the above paragraph, we conclude that the reduced
Mayer-Vietoris sequence is applicable to the triad (Γ; S2\A, S2\B) and
yields the exact sequence 0 = HX{T) -> Hg(S2\(A U B)) -> Hg(S2\A) Θ
H#(S2\B) -> //o*!77) = ° Therefore H£(S2\(A U 5)) = H*(S2\A) Θ
H*(S2\B). As H*(S2\A) = 0, the result follows.

Theorem 4. ///: S^ -> Λ 2 w α topological immersion with the TPP, then the
following assertions hold:

(I) f is an embedding.
(2)f\dff is a convex curve for each H E Ω^.

(3) There is an enumeration Hl9 '9Hk of ίlk such that f(Sk) =

\( Uf=2INT/(3fli)) wAerβ INT/(3^ ) is the bounded component of

Proof. Let / be an arbitrary line in R2, and Aι the set of /-arcs of / with
respect to some parametrization of / (see Definition 23 and Proposition 24 of
§1). We begin the proof by establishing four claims concerning / and ΛΛ

Claim 1. 7/Λ7 = 0 , then the following assertions hold:

/

(b) H£(INTSk\ U Γ e Λ , Γ) = 0 if A' is a finite proper subset ofAr

(c) A [is finite.
Proof. We introduce the following notation. If Λ C Λ/? we set N(A) =

INT5,\ U Γ e Λ Γ a n d Γ ( Λ ) = U Γ e Λ / χ Λ .
It is a fact that a manifold with boundary and its interior have the same

number of components (which are in fact the path components). In the present
context we apply this fact to f~\l)c and its interior iV(Λ,). Since / is a
topological immersion and Λ, = 0, the inverse images of both open half-planes
bounded by / are nonempty. As/has the TPP, these sets are the components of
f-\l)c. Thus (a) holds.
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We begin the proof of (b) by noting that, since Λ' is finite, iV(Λ') is an open
subset of S2 so that its components are open in S2. Let A' and B' be the
components of N(A') which contain the two components A and B of N(A(). If
C" is another component of N(A'), then C'\T(A') = 0 so that C C Γ(Λ')
This, however, is impossible since f~\l) contains no open set. If A' Ψ B\ it
follows that A = A'\T(A') and B = B'\T(A'). Now choose Γo G Λ7\Λ' and
observe that INTΓ0 C Af or INTΓ0 C Br. Since A' and 5 ' are open sets, we can
find (z, w) G (4 ' X A') U ( £ ' X B') such that z and w are mapped into
different open half-planes bounded by /. But then (z, w) E(AXA)L) (B X
B), which is an impossibility. Thus A' = 2?' and iV(̂ 4') is connected. This
proves (b).

Next suppose that Λ7 is an infinite set. If there is a member Γ of Aι both of
whose endpoints lie on some component of 35^, we arrive at a contradiction of
(b) by setting Λ' = {Γ}. If we can find no such /-arc, there must be distinct
members Tx and Γ2 of Λ7 which have their endpoints on the same two
components of dSk. In this case we obtain a contradiction of (b) by setting
Λ' = {Γj, Γ2}, and thus establish (c).

Claim 2. // Tx G Λ7 and C is a component of dSk such that Tx Π C is a
singleton, then there exists Γ2 G A7 such that Γ2 Π C Φ 0 and Tx ¥=T2.

Proof. Let Hx be the member of Ω̂  such that C = dHl9 and note that H{

and ^ are closed cells so that flo

#(52\Γ1) = 0 and Hf(S2\Hx) = 0 [3, p. 78].
Therefore, since Tx Π H1 is a singleton, we can conclude by Proposition 3 that
H*(S2\A) = 0 where A = Γ, U ^ j .

Assume that the claim is false. Letting H range over Ω̂  and Γ over Λ7, we
set B - (Uff^HϊΉ) U (UΓ_^ΓiΓ), a closed subset of S2 by claim l(c). It is
clear from our assumption that A Π B is the singleton consisting of the
endpoint of Γ, not on dH} and that B Π //, = 0 . Thus Hg(S2\(A U £)) =
H*(S2\B) and H*(S2\B) = H*(S2\(B U flj)) by Proposition 3. Combin-
ing this information with Claim 1 gives Z = Hg(S2\(A U 5)) = H£(S2\(B
U i/j)) = 0. This contradiction establishes Claim 2.

Claim 3. No three distinct l-arcs can meet a given component of dSk.
Proof. Suppose that there are three distinct /-arcs Γ,, Γ[, and Γ" which

meet a component Cx oίdSk. It follows from Claim l(b) that there is a
component C2 of dSk such that Cx Φ C2 and C2 Π Tx ψ 0 . We extend to a
sequence Γ1? , Tn of /-arcs and a sequence C l 5 , Cw +j of components of 35^
such that the C/s are distinct, Γf joins C, to Ci+ι for each i G (1, n>, and « is
maximal with respect to these properties. Observe that Γ(, Γ", Γ l 9 ,Γn are
distinct.

It follows from Claim 2 that there is an /-arc Γπ + 1, distinct from Γw, which
joins Cn+X to a component Cn+2 of 3 ^ . Since n is maximal, Cn+2 = C for
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some p E (1, n + 1) so that ΪNΊSk\ U ^ 1 Γ, is not connected by a Jordan
curve theorem argument. But this is a violation of Claim l(b) since Γπ+1 φ Y[
or ΓM+1 Φ T{'. Thus Claim 3 is proved.

Claim 4. // C is a component of dSk, and u is an l-crossingpoint of f\c (see
Definition 5 o/§2), then there exists Γ E Λ ι such that u E Γ.

Proof. Let N be an arbitrary neighborhood of u in Sk, and choose an arc
zuw C N Π C which is centered at w. Since w is an /-crossing point, there is a
pair (y{9 y2) E zu X MW such that JΊ and j>2

 a r e mapped into different open
half-planes bounded by /. It is easy to see that there is a path χ: [0,1] -> Sk

such that χ(0)=^, , χ(l)=j>2>
 a n d x((°>*)) i s contained in iV Π INTS*;

moreover it is clear that /© χ((0,1)) Π / is nonempty. Therefore N meets
U Γ e Λ / Γ by Proposition 24 of §1. Since N was arbitrary, u is in the closure of
U Γ e Λ / Γ, a closed set by Claim l(c). Thus Claim 4 is proved.

Now suppose that C is a component of dSk for which there are three distinct
/-crossing points of f\c for some line /. Each of these points must, by Claim 4,
lie on an /-arc; furthermore two of them lie on the same /-arc by Claim 3. We
are led therefore to a violation of Claim l(b). This contradiction ensures that
there are at most two /-crossing points of f\c for any component C of dSk and
any line /. Therefore parts (1) and (2) of the theorem follow from Theorem 6 of
§2 and Proposition 2.

Next let Rl = iί2 U {*} be the one-point compactification of R2. Since/is
an injection and Sk\dSk is connected, there is for each H E Qk a component
AH of Rl\f(dH) which does not meet/(Sk\dSk); furthermore it follows from
Schoenflies' theorem that there is for each H E ίlk a homeomorphic extension
gH: H^AHoί f\dH. We define g: S2 -> Rl by g(x) = / ( * ) if x E Sk and
g(x) = gH(x) if x E H. Observing that g is a topological immersion, we
conclude that g is a homeomorphism by an argument given in the proof of
Proposition 2. As a result, Rl = f(Sk) U AHχ U UΛ^ is a disjoint union
where Hλ9 —,Hk is an enumeration of Ω̂  such that * EAH]. It follows
that AHι = EXT/(3^), Λ^ = INT/(3#, ) if / E (2, Jfc>, and /(5Λ) =
INT/(a# 1)(Uf=2 INT/(3^ )). Thus (3) is proved.

Fact. Suppose that X is a compact subset of Rn. If Y is an Ek-top*-set of X

with containing k-plane P and Z is an Ej-top*-set of X with containing j-plane Q,

then ZCYin case P Π INTρ/cZ φ 0 [8,/?. 182].

Proposition 5. Let X be a compact subset of Rn, Y an Ek-top*-set of X, and
Z an Ej-top*-set of X. If P is the k-plane containing 7, and Q is the j-plane
containing Z, then the following assertions hold:

(1) P Φ Q in the event that Y φ Z.
(2)κYΠκZCdQκZifk<j.
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(3) KY Π KZ C dPκY Π dQκZ ifk =j and YΦZ.

Proof. If 7 = X, it is clear that Y = P Π X If 7 ^ X, there is, by

Proposition 6 of §1, a support sequence hl9-—9hs of X such that Y=hs

Π ΠΛ, Π X Since 7 C P, 7 = P n / i ί ( Ί Π A, Π X But this means

that P C A5 Π ΠAj for otherwise 7 is contained in a plane P Π A5

Π ΠA! of dimension less than /c. Therefore Y = P Π X, and similarly

Z = g Π X These equations imply (1).

To prove (2) we note that if KY Π KZ meets INTρ/cZ, then Z C 7 by the

Fact cited above. This, however, implies that Z is contained in the fc-plane P,

which is impossible by the condition k <j. Thus (2) holds.

If (3) fails to hold, Z C 7 or 7 C Z by the Fact. As 7 and Z are both

£*-top*-sets of X, this leads to the equality P = Q. This violation of (1)

establishes (3).

Theorem 6. If A is a nonempty closed subset of S2 such that S2\A has

finitely many components, and if f: A -> Rn is a topological immersion with the

TPP, then the following assertions are valid:

(1) //n ^ 4, f(A) is not substantial.

(2) Ifn = 3 andf(A) is substantial, then f{A) C dκf(A).

Proof. If 7is an essential £2-top*-set of/, and P is the 2-plane containing

/(7), then we set γ(7) =/-1(3/,κ/(7)). It follows from Theorem 9, Proposi-

tion 7, and Theorem 22 of §1 that dpκf(Y) C/(7) and that γ(7) consists of

simple points. Thus, since dPκf(Y) is a homeomorph of Sι, γ(7) is topologi-

cally a circle. Because A\Y is connected (Proposition 15 of §1) and γ(7) C 7,

Λ \ 7 is contained in one of the components of S2\y(Y). Thus, if C(Y) is the

other component, C(Y) Π A C 7. Furthermore C(7) contains a component of

S2\A; if not, we conclude serially that C(7) C Λ (recall S2\A C 5 2 \γ(7)),

C(7) C 7, and 7 is not essential.

We claim that there are at most finitely many essential JE
2-top*-sets of/. To

prove this we consider two distinct essential £'2-top*-sets Yλ and 72 of/. It is a

consequence of Proposition 5(3) that y(Yx) Π C(Y2) = 0 so that C(72) C

C(7,) or C(72) Π C( 7,) = 0 . Since the former leads to a violation of Proposi-

tion 5(1), we conclude that C(Y2) Π C(Yλ) = 0 and, as a result, that C(Yi)

and C(Y2) contain different components of S2\A. The claim now follows

from the fact that S2\A has finitely many components.

We consider next an £3-top*-set Z of /. The contention here is that

f(A) C dQκf(Z) where Q is the 3-plane containing/(Z). To prove this we will

need the following equation (Theorem 9 of §1):

(1) dQκf(Z)=UκB,

where B ranges over the £J-top'-sets of /(Z) with 0 <y < 3.
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If there are no essential E2-top1 -sets of/(Z), we conclude from equation (1)
that dQκf(Z) = UB C/(Z). Also it follows from Proposition 7 and Theorem
22 of §1 that f~\dQκf(Z)) consists of simple points. Therefore/~ι(dQκf(Z)) is
a homeomorph of S2 so that this set actually is S2. Thus the claim holds in the
case under consideration.

If there are essential E2-top1 -sets of /(Z), they are finite in number by
Proposition 7 of §1 and the finite nature of the set of essential £2-top*-sets of
/. Choose an enumeration Bv- ,Bk of the essential E2-top1 -sets of/(Z), and
let Yt= f~l(Bt) for each / G (1, k). From equation (1) we obtain the equality
dQκf(Z) = K U INTPi K ^ U UINT^ κBk where

(a) Pt is the 2-plane containing 2?z for each / E (1, k),
(b) K = 8βκ/(Z)\ Uf=1 INTΛ κBi9

(c) K C /(Z) a n d / " 1 ^ ) consists of simple points,
( d ) / " 1 ^ ) , C{Yλ\- - X{Yk) are disjoint sets,
(e) K, TNΎPι κBl9- J N T ^ κBk are disjoint sets.

The last three statements are consequences of Proposition 7 of §1, Theorem 22
of §1, the results of the second paragraph, and Proposition 5. Next we employ
Schoenflies' theorem to choose for each / E (1, k) a homeomorphic extension
g,: κBt -^C(y ) of/"1 restricted to dP κBr Finally we define g: dQκf(Z) -> S2

as follows: g(x) =f~\x) if x £ K, and g(x) = gt(x) if Λ: E INTp/c^. Using
the properties listed above, we see that g is a continuous injection and, since
dQκf(Z) is topologically S2, a surjection. To complete the proof of the claim
we let x be any member of A. If x E Uf=1 3̂ , then f(x) E Uf=1 5,. so that
f(x) E 3ρ/c/(Z). In the event that x E A\ Uf=1 y;, we choose z E dQκf(Z)
such that g(z) = c. We see that z G K, for otherwise x = g(z)E^4Π
(Uf=1 C(Yt)) C Uf=1 3̂ , which is contrary to the assumption. Therefore x =
f~~ι(z), and consequently/(x) = z E dQκf(Z). Since Λ: was arbitrary, the claim
has been established.

We now note that assertion (2) follows from the above claim with Z = A.
Furthermore to prove assertion (1) we can assume that there are no £3-top*-sets
of /. We complete the proof of the theorem by deriving a contradiction from
the assumption that f(A) is substantial in Rn where n > 4. Let k be the
smallest integer in (4, n) for which there is an £/c-top*-set of D of f(A\ and
let Q be the λ -plane containing D. By Theorem 9 of §1 dQκD = U KB where B
ranges over the iϊ^-top^sets of D with 0 <y* < 2. As we have seen that there are
finitely many essential J?2-top*-sets of/, we conclude from Proposition 7 of §1
that there are finitely many essential E2-top1 -sets of Bl9— -,BS of D. Since
dQκD is a homeomorph of Sk~\ G = dQκD\ Us

i=ικB is topologically the
result of removing finitely many closed 2-cells from a sphere of dimension at
least three and, as such, is a nonempty open subset of dQκD. Moreover
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G Cf(A) and f~\G) consists of simple points. It now follows readily that an
open subset of R3 can be embedded in S2. This however is impossible by
Invariance of Dimension [2, p. 60].

Theorem 7. Iff:Sk^R3 is a topological immersion with the TPP such that
f(Sk) is substantial, then

(1) f is an embedding,
(2) for each H E ΩΛ, f\dH is a convex curve whose image is contained in a

support plane PH off(Sk),
(3)f(Sk) = 9κf(Sk)\ U INT/(3#) where H ranges over Qk, and INT/(3JΪ)

is the bounded component in PH ofPH\f(dH).

Proof. Since Sk and /: Sk -» R3 satisfy the hypothesis of Theorem 6, the
arguments employed in the proof of that theorem apply here. We gather
together in the following list some of the pertinent notation and results from
that argument.

(a) There are finitely many essential £2-top*-sets (which, since n = 3, are
top1-sets) Y,, , Ys of /, and these are mapped into the 2-planes Pl9 ,PS.

(b) For each / E (1, j>, y(Yi)=f'\dPκf(Yi)) and C(Y ) is that component
of S2\y(Yi) such that C(I^) ΠSkCYi.

(c) K = dκf(sk)\ u;= 1 iNτP|κ/(y,) c f(sk).
(d) S2=f-\K) U C(YX) U UC(YS) and the union is disjoint.

As consequences, we have the following two results:
(e) For each H E Ω ,̂ there exists i ' 6 ( l , j ) such that H C C(Yt).

(f) For each / G (1, J>, ^ = C ( ^ ) \ U ^ where /ί ranges over those
members of Ω̂  which are contained in C(Y().

Statement (e) is immediate from (d). As for (f), suppose that x E Yi\C(Yi).
Appealing to (b)-(d), we conclude successively that x E Yi\y(Yi)9 f(x) E
INTΛιc/(i;.), x Gf~\K)> x E C(Yj) for somey φ i, and/(x) E INTP/c/(Y,).
But the second and fifth conclusions together constitute a violation of Proposi-
tion 5(3). Thus there can be no member of Yi\C(Yi) so that Yt C C ( ^ ) .
Statement (f) is now obvious.

We now wish to enlarge each Yi and extend each f\γ in such a way
that Theorem 4 applies. To this end we regard C{Yt) as lying in R2, and
we employ Schoenflies' theorem to obtain a homeomorphism Gy: EXTγ(l^ )
-+ EXT 3P κ/(Yi) which extends /|γ(y.) (EXT refers to the unbounded compo-
nent of the complement of a simple closed plane curve). Now take a large
circle L in Pt which contains κf(Yt) in its interior, let / = G~ι(L), and note
that C(Yt) is contained in the interior of /. Finally, define a map Ft:
(ΪNT7\C(^)) U y, -> P; by Fy(x) = /(*) i f x G ^ and f)(x) = G,(x) other-
wise. It is clear that Fi is a topological immersion, and it follows readily from
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statement (f) that the domain of Ft is topologically Sn for some n. Furthermore
F( has the TPP. The proof is as follows. Let A = ΪNT7\C(y;), and note that
Fi(A)is topologically an annulus whose boundary curves are convex. Therefore
Ft(A) has the TPP and, since Fi maps A homeomorphically onto Ft{A\ Ft \A\
A -> i> has the TPP. Now let M be an arbitrary open half-plane of Pi9 and
make the following three observations:

(A) F~\M) = (f\Ύχ\M) U (F, \AY\M).
(B)γ(^) Πf-\M) Φ 0 if (f\γχ\M) Φ 0.

(C) γ(y,) n f-\M) c (f\Yχ\M) n (Ft \Ay\M).
Since/| γ and Ft \A have the TPP, the sets on the righthand side of equation (A)
are connected; moreover, if (f\Yχ\M) Φ 0, their intersection is nonempty
by (B) and (C). We conclude that Fr\M) is connected and, since M was
arbitrary, that Ft has the TPP.

Next let H be an arbitrary member of ΩΛ, and let PH = Pt where / is such
that H C C(yj) (see statement (e)). Since dH is a boundary component of the
domain of Fi9 we can apply Theorem 4 to the results of the above paragraph to
conclude that f\dH = Ft \dH is an injective convex curve whose image is con-
tained in PH, a support plane of f(Sk). As H was arbitrary, assertion (2) holds;
furthermore assertion (1) holds by Proposition 2 and Theorem 6(2).

It remains to show assertion (3). For each H G Ω̂  we choose, employing
Schoenflies' theorem once again, a homeomorphismχ^: H -> INT/(3/f) which
extends f\dH. Since f(Sk) C dκf(Sk) by Theorem 6(2), we can define a map-
ping F: S2 -* dκf(Sk) by F(x) = f(x) if x E Sk, and f(x) = χH(jc) ii x E H.
Clearly F is continuous; moreover since f(Sk) is substantial, F(Sk\dSk) Π
INT/(3//) = 0 for each H E ΩΛ. This implies that F is an immersion and
hence a homeomorphism (see the proof of Proposition 2). The result now
follows.

4. Tightness

In this section we introduce the notion of tightness for functions mapping a
topological space into a Euclidean space. It is the content of Theorems 3 and 4
that the TPP and tightness (with respect to a suitable coefficient ring) are
equivalent for continuous maps defined on compact connected surfaces without
boundary, and Theorem 6 provides a useful characterization of tight topologi-
cal immersions defined on compact connected surfaces with nonvoid boundary.
The latter result is then used to prove Theorem 7, which generalizes the work
of Kuiper on tight bands [7], and to construct a counter-example which
demonstrates that the third theorem of Rodrίquez [10, p. 236] fails to hold
without differentiability assumptions.
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Definition 1. If Xis a topological space,/: X -> Rn is a function, and ̂ 4 is a
ring with identity, then/is said to beA-tight if the inclusion map /: f~ι(H) -» M
induces an injection i+: Hk{f~\H)\ A) -* Hk(M; A) for each nonnegative
integer k and each open half-space H. If the above condition is satisfied at the
kth homology level, we say that/is A-k-tight.

In what follows A will be an integral domain. Recall that the characteristic of
A (char(A)) is the nonnegative generator of the kernel of the homomorphism
n -> ne where e is the identity of A.

Proposition 2. // M is a compact connected nonorientable surface without

boundary, and chβiτ(A) φ 2, then no topological immersion mapping M into Rn is

A-tight.

Proof. Assume that f:M^Rn is an A -tight topological immersion. We
first observe that the ̂ 4-0-tightness of/implies, since M is connected, that /has
the TPP. Now choose a support hyperplane h of f(M) such that h Π f(M) is a
singleton, and let H be that open half-space bounded by h which contains
f(M) in its closure. It follows from Theorem 22 of §1 that f~\H) = M\p for
some/? G M. Since char(Λ) ^ 2 and H2(M; A) ^ {x e A:2x = 0} [2, p. 260],
H2(M; A) = 0 so that the homology sequence of the pair (M, f~\H)) gives

the exact sequence 0 -> # 2(M, /"'(if); Λ) -> Hλ{f'\H)\ A) '^Hλ(M; A).

Therefore A = # 2 (M, M\/?; 4) = H2(M9 f~\H)\ A) = ker /*. This however

is a violation of the ̂ 4-1-tightness of/. Thus no 4̂ -tight topological immersion

f:M-*Rn can exist.

Theorem 3. Suppose that A is a field of characteristic 2. // M is a compact

connected surface without boundary, and f: M -» Rn is a continuous map, then f

has the TPP if and only iff is A-tight.

Proof. Suppose that / has the TPP. Choose any open half-space H such
that φ Φf~x(H) φ M and observe that, since f~\H) is noncompact and
connected (TPP), H2(f~\H); A) = 0. Therefore the homology sequence of the
pair (Af, f~\H)) yields the exact sequence

0 - H2(M; A) ̂ H2(M, f'\H)\ A) J-*HX{Γ\H)\ A) '-*HX(M; A).

Since/"*(//) = M\f~\H0) where Ho is the open half-space opposite H, since
f~x(H0) is connected (Proposition 14 of §1), and since {x E A: 2x = 0} =
A (char(Λ) = 2), it follows that H2(M; A) s A = H2(M, f~\H)\ A), [2, p.
260]. But then k, as a linear injection between one dimensional vector spaces, is
a surjection so that 0 = im(y') = ker(ί#). We conclude that/is ^4-1-tight.

If H is an open half-space such that f~\H) Φ 0, the homology sequence of

thepair(M, /^(i/)) gives the exact sequence H0(f~\ H); A) l-^H0(M; A) -> 0
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where both vector spaces are one-dimensional (TPP). Therefore, if /„, is to be

surjective, ker(i^) must be zero. Hence/is Λ-O-tight. Finally/is ^4-«-tight for

alln>2 since Hn{f~λ{H)\ A) = 0 whenever H is an open half-space such that

f'\H)ΦM.

Next suppose that / is A -tight. If H is an open half-space such that

f~\H) φ 0 , we have the exact sequence H0(f\H); A) '^H0(M'9 A) -> 0.

Since/is ^4-0-tight, we conclude that /* is an isomorphism. The connectedness

of f~\H) now follows from the fact that M is connected. Therefore / has the

TPP.

Theorem 4. Suppose that A is Z or any field. If M is a compact connected

orientable surface without boundary, and f: M -> Rn is a continuous map, then f

has the TPP if and only iff is A-tight.

Proof. If A is a field, the proof is the same as that given above. We assume

therefore that A — Z.

Suppose that / has the TPP, and let H be any open half-space such that

0 φf~λ{H)ΦM. As above, we obtain the relationships H2(M) = Z =

H2(M,f-\H)) and an exact sequence 0 -> H2(M) -> H2(M, f'\H))J-*

Hx(f-\H)) ^Hλ{M). It follows that kerί i j = im(j)=H2(M, /- ι(i/))/ker(j)

and, since ker(y) = Z, that kerO'J is a torsion group. Therefore kerO'J = 0

[2, p. 261], and we conclude that /is Z-l-tight.

Consider next an open half-space H such that f~\H)Φ0. Since

H0(f~\H))/kGΐ(iχ) = H0(M) (from the homology sequence of the pair) and

H0(M) = Z = H0(f-\H)) (TPP), it follows that kerOJ = 0. Therefore / is

Z-0-tight. The remainder of the proof is as in the proof of Theorem 3.

Proposition 5. // M is an n-dimensional manifold with nonvoid boundary,

then the following statements are true:

(a) // C is a closed connected subset of M which meets 3M, then

Hk{M, M\C; A) = 0 for all k^ n.

(b) Hn(M, M\p; A)=A ifp G M\dM.

Proof. Let M be the ̂ -dimensional manifold without boundary which is

obtained from M by attaching a collar: M = (M X (0)) U (3Λf X [0,1)). In

addition, let M' = M X (0), C = C X (0), and C = C U [(C Π ΘM) X [0,1)].

The two sets whose union constitutes C are closed in M' and 9M X [0,1),

respectively. Since the latter sets are closed in M, C is also closed in M. If

p G C Π 3M, the connected set (/?) X [0,1) meets C ; therefore it follows that

C is a connected set. Finally C is not compact because it contains the closed,

noncompact set (p) X [0,1) wherep E C Π 3M.



398 WILLIAM STANLEY LASTUFKA

Now consider the map H: M X [0,1] -> M which is defined by H((p, s), t)
= (p,(\ - t)s). Observing that Ht(M\C) C M\C for each t G [0,1], Ho: M
-> M is the identity map, HX(M) C W, HX(M\C) C M'\C, and Hx \M.: Mf

-> M is the inclusion map, we conclude that (AT, M'\C) is a deformation
retract of (M, M\C). Therefore #*(M, M\C; Λ) s fl*(Λf', M ' \ C ; A) =
Hk(M, M\C; A). This proves part (a), [2, p. 260].

If p G M\dM, then Ht(M\p) C M\/? for each t G [0,1] and Hx(M\p) C
M'\/?. Thus, as above, Hn(M, M\p; A) s ifw(M, M\j^; ^) =yί.

Theorem 6. Suppose that A is Z or any field. If M is a compact connected

surface with nonvoid boundary, andf: M -» Rn is a topological immersion, then f

isA-tight if and only iff has the TPP andf(M) C κf(dM).

Proof. Assume that / is A -tight. Since / has the TPP (as in previous
arguments) we concentrate on showing that/(M) C κf(dM). To this end we
assume the contrary, and choose an open half-space H which meets/(M) and
misses /c/(3M). By the Krein-Milman theorem [11, p. 70] H contains an
extreme point of κf(M) so that by Straszewicz's theorem [9, p. 167] H contains
an extreme point x of κf(M) which constitutes the intersection of κf(M) with
one of its support hyperplanes. It follows that x Ef(M) and (Theorem 22 of
§1) that there is an open half-space K such t h a t / " 1 ^ ) = M\p where/? is the
unique point in M satisfying/(/?) = x. As p G M\dM9 H2(M, f~x(K); A) =
H2(M, M\p; A) =A by Proposition 5(b); moreover, applying Proposition
5(a) to M (with C = M) yields H2(M; A) = 0. It follows from the homology
sequence of the pair (M, f~{(K)) that i,: Hx{f~\K)\ A) -> Hλ(M\ A) is not
an injection. This contradiction forces the conclusion that/(M) C κf(dM).

To begin the proof of the converse we let H be an arbitrary open half-space,
and Ho the open half-space which is opposite H. If f~\H0) = 0, then
f~\H) = M and_y. Hλ{f'\H)\ A) -*_HX{M\ A) is an injection. If, on the
other hand, f~\H0)τL 0, then f~\H0) is a closed connected (TPP and
Proposition 14 of §1) set which meets 3M(/(M) C κ/(3M)). Therefore
H2(M, f~\H)\ A) = H2(M, M\f-\H0)\ A) = 0 by Proposition 5(a). It now
follows from the homology sequence of the pair (M, f~\H)) that
V Hx{f~x{H)\ A) -> HX(M\ A) is an injection. Since H was arbitrary, / is
A-l -tight.

Since Hn{f\H)\ A) = 0 = # r t(M; Λ) for all open half-spaces H and all
n ^ 2 (Proposition 5(a)), / is Λl-H-tight for all n> 2. Finally, since / has the
TPP, /is Λ-0-tight (see the proof of Theorem 4).

Theorem 7. Suppose that A is Z or any field, and let Sk be as in §3. //

/: Sk -> R3 is an A-tight topological immersion such thatf(Sk) is substantial, then

(a)/is an embedding,
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(b) for each H E ΩΛ, f\dH is a convex curve whose image is contained in a

support plane PH off(Sk),

(c)f(Sk) = dκf(dSk)\ U INTf(dH) where H ranges over Ωk and INΎf(dH)

is the bounded component in PH ofPH\f(dH).

Proof. It follows from Theorem 6 that / has the TPP and that f(Sk) C

κf(dSk). Since this inclusion implies that κf(Sk) = κf(dSk)9 the result follows

from Theorem 7 of §3. q.e.d.

Finally we construct an example which shows that the following theorem of

Rodriguez [10, p. 236] is not true if the smoothness assumption on / is

dropped.

Theorem. If A is a field and f: M -> Rn is a smooth A-tight immersion of a

compact connected surface with nonvoid boundary, then f(M) is not substantial

for n > 4.

Consider the following triangulation (with vertices vl9-—9v7) of the two-

dimensional torus.

Removing the star of vΊ (that is, vΊ together with the interiors of those triangles

and edges which contain vΊ) leaves us with a compact connected surface M

with nonvoid boundary. We define/: M -> RΊ as follows. If vi9 vj9 and vk are

the vertices of a triangle of the given triangulation which is contained in M,

then / is to map that triangle linearly onto κ{ei9 ej9 ek) in such a way that

f(Vj) = ei9 f(Vj) = ej9 a n d f ( v k ) — ek ( e l 9 - - 9 e 7 i s t h e s t a n d a r d b a s i s o f R 7 ) .
Clearly/is well-defined continuous and injective.

We claim that / has the TPP. Checking the above diagram reveals that the

segment joining any two of the points el9-—9e6 lies in/(M). Now suppose that

x and y are contained in f(M) Π H where H is an open half-space in RΊ. At
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least one vertex et of the image triangle containing x must lie in H. In a like

manner, we choose a vertex ey relative to y. Clearly the path consisting of the

(possibly degenerate) segments xe^ e^p and e}y lies entirely i n / ( M ) Π H. It

follows that f"\H) is connected and, consequently, that / has the TPP.

Moreover, since f(M) C κ{el9- ,e6} C /c/(3M), / is ^4-tight (A a field) by

Theorem 6. Lastly/(M) is substantial in the 5-plane containing el9 -,e6 just

because/(M) contains these points.

As a final note, we suggest that the reader interested in tight and (Might

polyhedral embeddings M -> Rn of surfaces (with and without boundary)

consult [4], where necessary and sufficient conditions, relating n and the Euler

characteristics of various M, are given for the existence of substantial em-

beddings of this type.
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