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EXTERNAL CURVATURES AND INTERNAL
TORSION OF A RIEMANNIAN SUBMANIFOLD

JOSEPH GRIFONE & JEAN-MARIE MORVAN

0. Introduction

The geometrical idea of this work is quite natural. Following the construc-

tion of the torsion of a submanifold given by Otsuki [16], and using the

principal normal spaces introduced by Allendorfer, we define the "external

curvatures" of a submanifold to be entities which, in a certain sense, measure

the distance between the submanifold and osculator spaces. Roughly speaking,

the second external curvature (or external torsion), for example, measures the

rate of which the 2^-sections leave Ex after parallel displacement; Ex is the first

principal normal space, i.e., the space spanned by the image of the second

fundamental form (cf. for example [17], [4]).

The study of the case where dim Ex > 1 leads us to introduce the notion of

internal torsion Θ(M\ In analogy with the external torsion, 0 ( Λ / ) describes the

rate of parallel displacement of £,-section which stay in Ev

Using these quantities, we give a description of the submanifolds of a space

form in the case where dim Eλ is constant and < 2.

1. Preliminaries

Note. When we want to indicate that the dimension of a manifold M is n9

we write M".

Let ( M π , g) and (Mn+P

9 g) be two Riemannian manifolds, and f:M-*M

be an isometric immersion. We use the following notation: TM and TM are

the tangent spaces of M and M, V and V are the Levi-Civita connexions on

M and M, R and R are the curvature tensor of M and M, Γ"1 M is the normal

bundle, V ~L is the Riemannian connexion induced by V on Tx M, σ is the

second fundamental form of M and K the associated tensor defined by

where X,Y G TM, and ξ G T1- M.
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We have

V,7= VxY+σ(X, Y),

Vxξ=Vxξ-K(X,ξ), \/XGTM,\/ξGT± M

and the following Gauss-Codazzi and Codazzi-Ricci equations:

R(X, Y)Z = R(X, Y)Z + K(X, σ(Y, Z)) - K(Y, σ(X, Z))

+ (v*σ)(y,Z)-(vyσ)(X,Z),

R(X, Y)ξ = R±(X, Y)ξ + o(X, K(Y, ξ)) ~ o(Y, K(X, £))
U

VZ, Y,ZG TM, Vξ e Γ x M, where Rx is the curvature tensor on r x M, and

(V xσ)(Y, Z) = Vi-(σ(y, Z)) - σ(v x Y, Z) - c(Y, V , Z ) ,

By [̂ 4] we denote the vector space spanned by the subspace A of a vector
space.

2. External curvatures and internal torsion of a
Riemannian submanif old

Let/ = M" -> MΛ + / 7 be an isometric immersion.
Lemma 1. Let ty be a distribution on Γ x M. If ζ G ̂  W l G Γ m M ,

V ̂ ξ depends only on ξm.
The proof is obvious.

This lemma allows us to give the following definitions.
Definition 1 (cf. [17] for instance). Let m G M; we define {E0)m- TmM and

(i.e., the space spanned by the image of σm). If dim £Ί is constant on a
neighborhood of m, we define

and (^ίm = [ I m L2\- By induction if dim(£'z_1)m is constant on a neighbor-
hood of m, we define

Li:TmMX{Ei_λ)m^T^M

(X, ξ)»pτ(9Ej)χV±

xξ,

and (Ei)m = [Im LJ, and call ^ the /th principal normal space.
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Definition 2. A submanifold M of M is said to be ^-nicely curved if Ei is a

subbundle of Γ 1 M, Vz <j.

Definition3. Let m E M.lί (Eι)m,...,(Ei)m are defined, we call the norm

of the bilinear map Lj (with Lx — σ), i.e.,

(*ΓL=

thejth-external curvature (or^th-Frenet curvature) at m.

The principal normal space gives a decomposition of the normal space

Γ x M. In order to study submanifolds such that dim Eλ > 1 we introduce a

decomposition of £V Let Fx = {η <ΞEX\ L2(X, η) = 0VXG TM}, and give

the map

Θ: TMXFX -» £ ,

We define

F 2 = [ I m θ ] and (0<">)w = Sup
xeτmM,\\x\\ = \

If (Fλ) - {0}, we say that θ^ = -oo.

Definition 4. 0 ( Λ / ) is called the internal torsion of M.

Remarks on these definitions.

2. A point m<ΞMn such that (k\M))m,- s ί Λ ^ ) , , , are defined and nonzero

will be said to be ^-regular.

3. If M is a curve, then k\M) coincides with the /th Frenet curvature of the

curve. In this case, Θ(M) is finite only if the curve is plane, and Θ(M) = 0.

4. Clearly, if dim Ex — 1 at every point, then Θ(M) — 0 or -oo.

5. It can be more interesting (cf. [5]) to take the tensorial norm of the maps

Ltfto define k\M\

Using the work of Burstin, Mayer, Allendoerfer (cf. M. Spivak [17, Vol. IV,

Chap. 7, p. 241]), we can immediately deduce the following result.

Theorem 1. Let Mn be a connected, simply connected submanif old of a space

form Mn+P{c) {of constant curvature c). Suppose that the principal normal space

Eλ Ep of M satisfy the following conditions'.

Mn is Ep niced-curved, dim Eλ ® θdim Ep = r = const., k^\ = 0.

Then Mn is a submanif old of Mn+P(c) with substantial codimension r (i.e., there

exists a totally geodesic submanifold of dimension n + r in Mn+P(c) which

contains Mn).
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Examples.

(a) The unit sphere Sn in the euclidean space En+P. We have dim Eλ —

l,k\SH)= 1, dim E} = 0 for j> 1.

(b) A cylinder, i.e., a submanifold Mn in En+P such that Mn = C X E n ~ \

where C is a curve. The second fundamental form of Mn has the following

expression:

where T is the unit vector tangent to the curve C, | α | is the curvature of C,

and ξx is the first principal normal vector of C. We have

where λ:jC), 1 <y < /, are the Frenet curvatures of C in En+P when these

curvatures are defined. We can deduce that if k\9λ Φ 0 on an open set ί/, and

k\C) = 0 on U, then

dim Ej = 1 if 1 < y < /,

dim E • = 0 if j > 1,

k(M») = k(C) i f ι < t

(c) The product of two curves CUC2: M2 — C, X C2, where Cλ and C2 are

two closed curves in E 3, the torsion of which is never zero (cf. [18]). In this

case, dim £, = 2, dim E2 — 2. This is an example of a compact submanifold of

Euclidean space such that dim E2Φ0 at each point.

(d) A nonextrinsic sphere Mn of a Hermitian symmetric space of compact

type, [3], is an example of submanifold such that dim Eλ = 1, dim E2 — n.

(e) In [10] N. Kuiper proved that any substantial tight compact submanifold

M in Euclidean space satisfies (Ef)m = 0 Vm E M.

3. Submanifolds in spaces of constant curvature such that dim Eλ < 1

Let us consider a submanifold of a Riemannian manifold. Generally, if we

suppose that its first principal normal space has dimension 1, we cannot

deduce any strong restriction on the second principal normal space (see

Example (c), §2). However, we shall show that, if the ambient space has

constant curvature, and dim Ex = \, then the submanifold is cylindrical (in the

sense of B. Y. Chen [2]), and dim Et — 1 or 0. This will allow us to give a

classification of submanifolds such that dim Ex < 1.
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We shall prove the two following theorems.

Theorem 2. Let Mn+P(c) be a (n + p)-dimensional manifold of constant

curvature c, and f: Mn =» Mn+P(c) be an isometric immersion of a connected

Riemannian manifold in Mn+P(c). Suppose that the first principal normal space

Eλ of M satisfy the condition:

dim Eχ < 1 at every point.

Then there exists a dense open set Mf of M such that M' — Mx U M2 with

Mλ Π M2 — 0 , where Mχ and M2 are two open sets such that:

(a) The connected components of Mλ are submanifolds with substantial codi-

mension 1 in Mn+P(c).

(b) M2 is foliated by hypersurfaces which are totally geodesic in Mn+P(c).

Theorem 3. Let Mn+P(c) be a (n + p)~dimensional manifold of constant

curvature c, and f: Mn -> Mn+P(c) be an isometric immersion of a Riemannian

manifold in Mn+P(c). Suppose that

(a) M is connected, complete, and Es-nicely curved, s > 1,

(β) dim Eλ — 1 at every point,

(γ) k(

2

M) ¥= 0 at every point (i.e., each point is biregular),

(δ) 3i E {1, ,s) such that k\M) = const.φ 0.

Then:

( l ) c = 0,

(2) M is flat,

(3) M = C X Mx, where Mx is totally geodesic in Mn+P(c) and C is a curve of

Mn+P(c) such that k{jM) - A:jC), j - 1, -,p, k)C) being the classical Frenet

curvatures of C in Mn+P(c).

Remark. If Mn+P(c) = En+P, and Mn satisfies only (a), (β), (γ), using a

theorem of O'Neill [15] we can conclude that M = C X E w ~\ where C is a

curve in En+p

In order to prove this theorem, we need the following propositions.

Proposition 1. Let f: M" -» Mn+P(c) be an isometric immersion of a con-

nected manifold in a space Mn+P(c) of constant curvature c. Suppose that the

first principal normal space Eλ of Mλ has dimension 1 at every point of Mλ, and

that the second external curvature kψ^ of Mx is null everywhere. Then Mλ is a

submanifold of substantial codimension equal to 1 in Mn+P(c).

Proof of Proposition 1. Use Theorem 1.

Proposition 2. Let f: M2 -• Mn+P(c) be an isometric immersion of a con-

nected n-dimensional (n > 2) manifold in a space Mn+P(c) of constant curvature

c. Suppose that the first principal normal space Eλ ofM2 has dimension 1 at every

point of M2, and that every point of M2 is biregular. Then for every s-regular

(2^s <p)m G M2 there exists a unique, except for the sign, unit vector system
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{|,, ,ζs} orthogonal to M2, and defined on a neighborhood of m, and s — 1
nonnull linear forms τ2, ,τs, which are closed, proportional, and defined on a
neighborhood of m, such that:

τ,|| = *,<"'>, and \fXGTmM2,

,-, = rs(X)ξ, - τs_λ(X)ξs_2, fors<p -

To prove this proposition we need the following.
Lemma 2. Let h: R" X R" ^ R be a symmetric bilinear form, and L:

R" -> R^ a linear application. If L ψ 0, h Φ 0 and
h(Y9 Z) L(X) - h(X, Z) L(Y) = 0 V I J , Z G Rw,

ίΛ̂ « rg Λ = rg L — 1 α«d Ker Λ = Ker L.
The proof of Lemma 2 is obvious.
iVoo/ c>/ Proposition 2. Since the curvature of Mn+P is a constant c, the

normal component of R{X,Y)Z is null V I , 7 , Z G Γ M 2 . Consequently,
(1) => ("v Λ-σχy, Z) = ("v yσXZ, Z). Since dim £Ί = 1, we can write σ(X, Y)
— h(X, Y)ξx, where ξx is unique except for the sign. (1) <=>

-(v y A)(Jf, z ) ^ + *(y, z ) v # {,

The projection of (Γ) on ^ gives

*(y, z) L(Λ') - A(x9 z) L(y) = o, vx, γ,ze TM9

where L(Λ') = V ^ ,
Since dim £, = 1, A^O; since m is ^-regular with s > 2, L ^ 0. Then

applying Lemma 2 we obtain rg A = rg L = 1 at m and consequently on a
neighborhood of m. Let L(A") = τ2(X)ξ2> where ξ2 is a unit vector field of
I m L o n a neighborhood of m.

Since the curvature of Mn+P is a constant c, (2) gives ^(X, 7 ) ^ = 0. Then
the normal componant of R(X, Y)ξ} is null:

(2)' * x ( x , y ) ^ = σ(jf, Λ:(y, €0) - σ(y, Λ:(jf, €0).

The projection of (2r) on ξ2 gives dτ2 — 0.
Now assume that m is ^-regular, s> 3. The projection of (2') on ξx gives

[ ( ) ^ * € j = o.
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Let M(X) = pr^(V^£ 2 ) . M φ 0 because s ^ 3. (2') gives

(2") τ2(Y)M(X) - τ2(X)M(Y) = 0 VIJGΓM 2 .

Since τ 2 2 θ and M 2 O , we deduce that Kerτ2 = KerM. Hence rgM = 1,

and there exist a unit vector ξ3 and a linear form τ3 such that M{X) — τ3(X)ξ3.

Moreover by (2") we have

r2(Y)r3(X) - τ2(X)τ3(Y) = 0,

i.e., τ2 Λ τ3 = 0. Finally, v j ^ 2 = τ3(X)ξ} - τ2(X)ξ,.

We proceed in such a way, studying the projection of R(X, Y)ξi on ξi+, and

ξ,+2, 1 < / < s. Now we can evaluate the external curvatures of M2:

)m= Sup Sup l lpr^V^ηl l

= Sup Wτ2(X)ξί\\ =

\\X\\ = \

and, sinceEι = [|,], E2 = [£2], -,.£:, = [£J, ,

( / , W ) w = Sup Sup |pr

m
\\X\\ = \

= Sup l lT.ί^H = ||τ, II m.
X<ΞTmM2

HΛΊI = 1

Proposition 3. Le/ /: M2" -> Mn+P(c) be an isometric immersion of an

n-dimensional manifold M2 in an (n + p)-dimensional manifold of constant

curvature c> (n> 2), such that dim Eλ = 1. / / / : ^ 2 ) ^ O α / ^ϋ^ry /wzwί 0/ M 2 ,

/Λe« M2 is foliated by totally geodesic (n — \)-submanifolds ofMn+p.

Proof of Proposition 3. Since every point of M2 is 2-regular, the form

τ2 = II v 1 ij II is defined (except for the sign) on M2. Let T2 be the vector field

{φ 0 for A:̂ M) 7̂  0) associated with τ2 in the duality defined by the metric, and

l e t Γ = Γ 2 / | | Γ 2 | | .

(10 - h(Y9 Z)(T9 X)= h(X, Z)(T, Y).

Thus h(X, Y) = β(X, Γ><7, T) with β = h(T,T)Φ0. Consequently, the

relative nullity index is constant ( = « - l ) o n M 2 . Hence applying a result of

[1] we conclude that M2 is foliated by totally geodesic (n — l)-dimensional

submanifoldsofM"+/?.

We shall now prove Theorem 2 and Theorem 3.

Proof of Theorem 2. Let m G M. One of the following three possibilities

can happen.
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A. 3UX, an open neighborhood of ra, such that dim Eλ\Uχ= 0. In this case,

£/, is totally geodesic, and of course, foliated by hypersurfaces which are totally

geodesic in Mn+P(c).

B. 3U2, an open neighborhood of ra, such that dim EX\U2= 1 and k^j}2 = 0.

In this case, using Proposition 1 we can conclude that locally the substantial

codimension of U2 is one.

C. Ξ[/3, an open neighborhood of ra, such that dim EX\U3= 1 and kψ^ Φ 0.

Then using Proposition 2 we can conclude that U3 is foliated by hypersurfaces

which are totally geodesic in Mn+P(c).

Finally, it is clear that there exists a dense open set M' of M on which one of

these three possibilities happens. Hence Theorem 2 is proved.

Proof of Theorem 3. We can suppose that M is simply connected. The

general result is obtained by passing to the universal covering of M. The proof

consists in building a parallel vector field on M. Then we apply the

De Rham decomposition theorem (cf. [9]). We need the following lemmas.

Lemma 3. k\M) = | η(Γ) | ifi ^ 2.

This is a consequence of Proposition 2.

Lemma 4. Let ω be the form associated to T in the duality defined by the

metric. Then d(βω) = 0.

Proof of Lemma 4. Since Mn+P is of constant curvature, the normal

componant of R(X, Y)T is null VX, Y G TM.

Projecting this equality on £,, we obtain d(β ω) — 0.

Lemma 5. // there exists i E [1 •••/?] such that k\M) = const.Φ 0, then

Proof of Lemma 5. If/ = 1, then k\M>> = Sup||σ(JSf, 7)11 =\h(T, T) | = | β \.

Thus β = const. Hence X(β) = 0, \fX ± T

If i > 2, since ω = η./||η.| |, by Lemma 4 we have έ/(j8η /||τ;.||) = 0. | |η. | | =

k\M) = const. => t/()β η.) = 0 =* ί/jS Λ η, = 0 since ί/ η. = 0, (by Proposition 2) =>

Lemma 6. If there exists i G [1 •••/?] swcλ rΛα/ /:JΛ / ) = const. Φ 0, /Λe« Γ is

parallel.

Proof of Lemma 6. From (2) we deduce

(2'") ( v ^ ) ( Γ , € I ) = (vΓΛΓ)(Jf,ί1).

Let I 1 Γ J G Γ M . Since ϋ:(y, ξ,) = β(Y, Γ)Γ, \/Y<ΞTM9 we have

î (X, ίO = 0. Hence (2'") ~ ^(iβ)!7 + βv XT= β(X, V Γ Γ>Γ. Since Λ̂  ± Γ,

Z(j8) = 0. Therefore βvxT=β(X,vτT)T. Since /? ̂  0 and V x T ± T,

we deduce V xT=0iϊX ± T9 and V γ T = 0. Consequently Γ is parallel.
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Now we return to the proof of Theorem 3. Since Mn+p is of constant
curvature c,

R(X, Y)Z = c{(X, Z)Y - (7, Z)X)

= R(X, Y)Z ~ K(X, β(Y9 T)(Z9 T)ξx)

+ K(Y9β(X,T)(Z9T)ξx)

= R(X9Y)Z.

Hence the curvature of M is c, and M possesses a parallel field. It follows that

c = 0 so that M and Mn+P are flat.

On the other hand, the distributions Δ, and Δ 2 defined by T and Tx are

parallel and differentiable. Hence M is the product of C X M, where C and M,

are maximal integral submanifolds of Δ, and Δ 2 . It is easy to see that Mx is

totally geodesic in Mn+P.

Now we can estimate the Frenet curvatures of C in Mn+P\

- K(T, ξx) = τ2(T)ξ2 -βT9 kφ = | τ 2 (Γ) | =

Therefore k\C) = k\M"\ Vi e [1 •••/?].

4. Submanifolds such that dim Ex = 2

Let us now consider a submanifold M of a space of constant curvature, such

that dim Ex — 2. We shall show that it is possible to describe M with the

external curvatures and the internal torsion. We shall prove the following

theorems.

Theorem 4. Let f: Mn H> Mn+P(c) be an isometric immersion of an n-

dimensional manifold Mn in the space form Mn+P(c\ n^3,p^2. Suppose that

dim Ex — 2 at every point m E M.

Then M contains a dense open set M' such that

M' = M,UM2UM3, (Mi ΠMj= 0, / Φj),

where MX,M2, M3 are three open sets such that:

(a) The connected componants of Mx are submanifolds of Mn+P(c) which have

a substantial codimension equal to 2,



360 JOSEPH GRIFONE & JEAN-MARIE MORVAN

(b) M2 is foliated by hypersurfaces of substantial codimension equal to 2 in

M"+P(c),

(c) M3 is foliated by (n — 2)-dimensional totally geodesic submanifolds of

Mn+P(c).

Theorem 5. Let f: Mn -» Mn+P(c) be an isometric immersion of an n-

dimensional manifold Mn in the space form Mn+P(c), n > 3,p > 2, such that

(i) dim Ex—2at every point m E M,

(ii) every point of M is s-regular, s > 2,

(iϋ) the internal torsion 0 ( Λ / ) is constant.

Then each of the following holds:

(A) // the internal torsion Θ(M) = 0, and 3/ G {2, , J } such that kjM) -

const, φ 0 and M is complete, connected, then M — C X Mx, where C is a curve,

and Mx a submanifold with substantial codimension 1. Moreover, if c — 0, we

have A:jC) = k^M\ V/ > 2; if c Ψ 0, then Mx is an open set of an "n-sphere".

(B) // the internal torsion Θ(M) = const φ 0, βwJ 3i G {2, , J } ŵcΛ ίΛα/

fcW = const 7̂  0, then M is foliated by (n — \)-dimensional submanifolds M2

with substantial codimension 2. In particular, if c φ 0, then M2 is included in an

"n-sphere".

(C) // the internal torsion Θ(M) = -oo, then M is foliated by (n — 2)-

dimensional submanifolds which are totally geodesic in Mn+P.

In order to prove these theorems, we need to study the biregular submani-

folds such that dim Eλ = 2. This will be done in §§4.1, 4.2, 4.3. The proof of

the theorems are in §§4.4 and 4.5.

4.1. Biregular submanifolds such that dim Ex — 2

Proposition 4. Let f: Mn -» Mn+P(c) be an isometric immersion of an n-

dimensional manifold Mn in an (n + p)-dimensional (n ^ 3, p > 2) manifold

Mn+P(c) of constant curvature c such that dim Eλ — 2 at every point and such

that every point is 2-regular. Then each of the following holds:

(i) // 0 ( Λ / ) φ -oo at every point of M, there exists a global, except for the

sign, frame (ξ, η) of Ex such that LζΦ 0 andLη — 0, where Lζ(x) — pr£± V^£.

Moreover, dim E2— 1 at every point of M.

(ii) // 0 ( Λ / ) = -oo at every point, then the index of relative nullity of M is

n — 2 at every point ofM. Moreover, dim E2 < 2.

Proof of Proposition 4. (i) Since k^M) Φ 0 at every point m E M, then

dim Fλ < dim Ex at every point (Fx is defined in §2). Since dim Ex —
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On the other hand, since Θ^M) Φ -oo at every point m, dim Flm > 0 at every
point m. Consequently dim Fλ = 1, and Fx is a subbundle of Γ"1 M, with fibers
of dimension 1.

Let η be the global section (except for the sign), which spans Fx. We have
Lξ = 0 at every point m. If ξ is a section of £Ί such that (η, ξ)= 0 and
II £ || = 1, it is clear that L^φ 0 at every point.

(ii) Let v be the index of relative nullity of M. (v(m) = dimiVw, where
Λ r

w ={JfGΓ m M/σ(Jf ,y)=Ό, V7GΓM}). We have v(m) < n - 2 for
every m E M. In fact, if p(w) = «, w is a flat point; this is impossible for
(k2M))m Φ0.lfp(m) = n-\, then d i m ^ ) , ^ = 1, which is excluded.

In order to show that v{m) = n — 2, and that dim E2 ^ 2, we need the
following two lemmas.

Lemma 7. Let m E M such that there exists an orthonormal frame (ξ, η) o/
(Eι)m such that L^ and Lη are not proportional. Then v(m) — n — 2 {and
dim(£ 2 ) m <2).

Lemma 8. L^ Θ{M) = -oo α/ et>ery /wwί o/ M. ΓΛe«, /or every m E Af,
et>e/j neighborhood of m and every orthonormal frame (ζ,η) of Ex on U9 there
exists a neighborhood V C U such that L^ and Lη are not proportional on V.

Combining these two lemmas we obtain
(*) Mm E M, Vί/, neighborhood of m, 3v, open, V C U, such

that ^ | j ,= Λ - 2.

Now assume that there exists m E M such that v(m) < n — 2. Since Ϊ> is
upper semicontinuous, there exists a neighborhood 1/ of m such that J> 1̂  < n
— 2. But this is impossible because of (*). Thus vm — n — 2 at every point
x<ΞM.

Proof of Lemmas 1 and 8. The proof of Lemma 7 results from the following
algebraic lemma.

Lemma. Let L, M: Rn -> Rp be two linear maps. If there exist α, /?: R" -> R
H0ί simultaneously null such that

a(X)L(X) + β(X)M(X) = 0 V I G R " ,

L and M are proportional or rg L < 1 α«d rg M < 1.
Let rg L = A:, and let v,, , t^ be a basis of R^ such that

where ω,, , ωΛ are independent linear forms.
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(a) If 3/ > k such that πι φ 0, there exists Xo such that τr/(ΛΓ0) Φ 0. Thus
β^X^π^Xo) = 0. Consequently βι(X0) = 0 and therefore aj(X0) Φ 0, from
which it follows that L(X0) = 0. But the set of the Xo such that πj(X0) ΦOis
dense, and L continuous, so L — 0. (In particular L and M are proportional.)

(b) Suppose LΦ0 and M Φ 0. By the argument of (a) we see that rg L —
rg M. If rg L — 1, the lemma is proved.

Suppose rg L = k > 1, and let, for example,

We have

+ β(X)[vι(X)υι + • • • +vk(X)υk] = 0.

Let ΛΌ be an element of Ker ωk. Then β(X0)πk(X0) = 0. If β(X0) = 0, we
haveα(AΌ) ΦQ. Thus

so that Xo ε KerL; therefore rg L < 1 which is excluded. Hence β(X0) ¥= 0

Then Ker ωΛ C Ker mk so that

Thus

We deduce

α(AΓ)ω,(Z) + ^ ( Z ) X | W ( Z ) = 0,

a(X)ωk(X) + β(X)\kωk(X) = 0.

By choosing an A^ such that W^XQ) = 1 and ω2(X0) = 1, we obtain

a(X0) + λ2β{X0) = 0,

from which it follows that λ, = λ2 since α(Xo) and β(X0) are not both zero.
In the same way one can prove that λ2 = λ3, etc. So L is proportional to M.
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Lemma 9. Let A and k be two nonnull and nonproportional bilinear symmetric

forms onW (n > 3), and L, M two linear maps from R" into Rp such that

(**) A(7, Z) L(X) + k(Y, Z) M(X) = *( JSf, Z) M(Y) + Jfc(y, Z) M(7),

VΛΓ, Y,ZE Rn.

Then

(1) KerA (Ί Ker A: = KerL Π KerM,

(2) dim(Ker A Π Ker A:) = n - 2,

(3) dim[Im L U l m M ] < 2 .

The fact that Ker h Π Ker /: = Ker L Π Ker M is a straightforward exercise.

On the other hand, dimKer(A Π Ker k) < « — 2 because Λ and A: are

nonproportional and nonnull. We prove that dim(Ker h Π Ker k)> n — 2.

Suppose that dim(KerΛ Π Ker k) < n - 3, and let i 7 = (KerΛ Π Ker A:)± ,

dim F>3. For Xo G F, let G, = {Y G F | A(y, JT0) = 0} and G2 = {YEF\

k(Y, JTo) = 0}.Wehave

dimG! Π G2> dim F—2>1.

Therefore there exists Zo E F such that h(X0, Z o) = 0 and k(X0, Z o ) = 0.

Thus VX0 G F, 3Z 0 G F such that h(Y, Z0)L(X0) 4- ik(y, Z 0 )M(Jί 0 ) = 0,

V7GR". Since Z o £ KerA Π KerA:, there exists Yo G Rπ such that a =

A(70, Zo) and β = k(Y0, Zo) are not simultaneously null (a and /? depend on

Xo). Hence VA^ G F, 3OLXQ, βXo G R not both zero such that

axL(Xo)+βXoM(Xo) = 0.

Going back to the problem, if L = L \F and M = M\F, then L and M are

proportional or rg L < 1 and rg M = 1. Since F = (KerL Π KerM)" 1 , L and

M are proportional or r g L < 1 and rgAf < 1. Hence these two cases are

excluded respectively by the hypothesis and the assumption that dim(Ker A Π

For the proof of the last part (3), see [14].

Proof of Lemma 8. Let (ξ, η) be an orthonormal frame of F 1 on U. Then

(L€)η = 0 and (L η ) m = 0 is impossible for {kψ))m φ 0.

Suppose that (L^)m Φ 0 and (L η ) m = 0. Let JΓ C t/be a neighborhood of m

on which L^w φ 0. On W there exists a point /? such that (Lη)p Φ 0 (for if

Lη,^ = 0, then θ£Mn) Φ -oo). If there exists a neighborhood PF of/? such that

L^ = aLη on »Γ', then L ί w = 0 where £' = (-£ + «^)(1 + α 2 ) " 1 / 2 But this is

impossible because θjjMn) = -oo. Therefore VWneighborhood of /?, there exists

p' G ^ such that at p\ L^ΦO and Lη φ 0, and Lξ, L^ are not proportional.

Since L^ and Lη are continuous, there exists a neighborhood V oίp' such that

these properties are satisfied.

Finally, if (Lξ)m Φ 0 and (Lη)mΦ 0, we can take/? = m.
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4.2. The case Θ(M) Φ -oo and a Frenet frame over Tx M

Proposition 5. Let Mn+P be an (n + p)-dimensional (n > 3, p ^ 2) manifold

of constant curvature, and Mn be an n-dimensional isometric submanifold of

Mn+P such that

(i) dim Eλ—2at every point,

(ii) every point of M is s-regular (s ̂  2),

(iii) 0 ( Λ / ) =£ -oo at every point.

Let (£, η) be the orthonormal frame of Ex {defined in Proposition 4), and

σ = (Λ®£ + λ:®η) be the second fundamental form of Mn. Then each of the

following holds'.

(1) There exist s nonnull and nonproportional scalar forms τ2, ,τ5, θ on M

everywhere such that

(2) There exist s — \ normal orthonormal global (except for the sign) sections

ξ2, •• ,|,such that

E2 = [ξ2],--,[Es]=ξs,

(3) h(X, Y) = β(X, T)(Y, T) where β = h(T, T), and T is the global (ex-

cept for the sign) vector field on M, which is associated to τ 2 / | | τ21| in the duality

defined by the metric.

(4) dθ = β[k(X, T)(Y, T)-k(Y, T)(X, T)].

(5) The distribution on M9 defined by T1', is involutive.

Proof. We know that ξ and η satisfy L ξ ¥= 0 and Lη — 0. Using the

Gauss-Codazzi equation

and projecting on Ef , we find

h(Y, Z)L^(X) - h(XZ)L^Y) = 0.

Therefore by Lemma 2 we deduce that rg h = rg L ξ = 1, so that there exist a

scalar 1-form τ2 and a vector field ξ2

 s u c n t n a t

h(X,Y) = h(T,T)(X,T)(Y,T),
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where T is the vector field associated to τ 2 / | | τ2 II in the duality defined by the
metric.

On the other hand, since dim Eλ = dim[Imσ] = 2 and (£, η) = 0, we can

find a scalar form θ such that

Consequently, we have

from which we deduce that E2 = [ξ2].

By Gauss-Codazzi equations we have that R(X, Y)η = 0 VZ, Y E TM, so

that

(2) R±(X9Y)η- σ(X9 K(Y, η)) + σ(Y9 K(X9 η)) = 0.

Projecting (2) on Ef gives θ Λ τ2 = 0.

In the same way, we have

(3) R(X,Y)ξ = 0, VX,Y<ETM.

Projecting (3) on ζ2 we find d τ2 = 0.

Finally

*£>= Sup llprEχV^IL
X<ΞTmM, | |X|| = 1

We conclude by induction. Since J τ2 = 0, Γ"1 is involutive. Thus

| | f l | | m = Sup H p r £ l V i η l l m .
XeΓ^M, ||ΛΊI = 1

Since η is the only section of Fx, we deduce immediately that 11^11=^

Finally projecting on η the equation R( X, Y) ξ = 0 yields readily

, 7) = β[(Y9 T)k(X9 T) - (X, T)k(Y9 T)].

4.3. The case where Ξi such that k\M) — const, and Θ(M) — const.

Proposition 6. With the same hypotheses as in Proposition 5, if3i G (2, ,s}

such that kjM) = const.φ 0, Θ(M) = const.φ -oo, ίΛ^

(3°) θ<M)k(x, Y) = θ(M)k(τ, τχx9 τχγ9

(4°) v Γ Γ-0.
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Proof. (1°) We have ki = || T, || = const, and d τ, = 0. If π = τ 2 / | | τ21|, V* G

[2 s], then dπ = 0 since TΓ = η/Hη| | . Thus 0 = Θ(M) π (cf. Proposition 5

(1)), and consequently d θ = 0, because 0 ( Λ / ) = const.

(2°) is a consequence of Proposition 5 (4).

(3°) The Gauss-Codazzi equations give (v xσ)(X, Z) = (vγσ)(X9 Z). Pro-

jecting this equation on £ and η we obtain

(i) (Vxh)(Y, Z) - (Vγh)(X, Z) - k(X9 Z)Θ(Y) + k(Y, Z)Θ(X) = 0,

(ii) (Vxk)(Y, Z) - (Vγk)(X, Z) = 0.

Since h = βπ ® π, from (i) it follows that

m(X9Z)(Y9T)=m(Y9Z)(X9T),

where

m(X9 Y) = β(VxT9 Z)-θMk(X9 Z).

Hence

m(X9Y) = m(T9T)(X9T)(Y9T)9

i.e.,

β(vX9 τ9 y>- θ(M)k(x9 Y) = -θ^M)k(τ, τ)(x, τχγ9

(4°) is an immediate consequence of (3°) with X = T.

4.4. Proof of Theorem 4

We shall use Propositions 4 and 5.

Let Mx be the interior of the set of the points m G M such that (k{

2

M))m = 0.

Let M2 be the interior of the set of the points m G M such that (k(

2

M))m φ 0

and ^ M ) Φ -oo. Let M3 be the interior of the set of the points m G M such

that (A:^>)m ^ 0 and θ™ = -oo. We shall study Λf„ M 2 and M3.

Since dim £, = 2, Λf, is an open set, the connected components of which are

submanifolds with substantial codimension 2 (cf. Theorem 1). In order to

study M 2, we shall use Proposition 5. Since on M2 the distribution 77-1 is

involutive, M2 is foliated by hypersurfaces M2 such that σ(X, Y) — k(X, Y) TJ,

\fX, Y G TM2. If σ 2 denotes the second fundamental form of M2 in Mn+P, we

have

02(X, Y) = k(X, Y) η + (V x 7, T)T.

Thus dim is^2 = 2. Consequently, we can find two open sets Λ^ and N2 such

that iVj U Λ̂ 2 is dense in M 2, and iV, and Λ̂ 2 satisfy

dim £^2 | ^ = 1, dim Ep \Nl = 2.
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On Nl9 dim E2

2 <_l9 and it is clear that dim E™2 — 0 on a dense open set of
Nλ. On N29 dim £f2 = 0 since Lη = 0.

Using Theorem 1 we conclude that M2 contains a dense open set M2 which
is foliated by hypersurfaces with substantial codimension 2 in Mn+P.

In order to study Af3, we shall use Proposition 4. On M3, the index of
relative nullity is equal to n — 2. Using a well-known theorem (cf. [1] for
instance), we conclude that M3 is foliated by totally geodesic submanifolds of
dimension n — 2.

Theorem 4 is proved.

4.5. Proof of Theorem 5

(A) Let Θ(M) = 0.

(1°) From Proposition 6 (3), we obtain β(v XT,Y)= 0,VX,Y <Ξ TM.
Since β Φ 0, Γ is parallel. If M is complete, connected, and simply connected,
from De Rham theorem, we have M = C X M,, where C and Mj are maximal
integral submanifolds of T and Γ"1 at a point p G M. The general result is
obtained by passing to the universal covering of M.

(2°) We have dim E\M^ = 1 and ik̂ «> = 0. In fact, let σ"> be the second

fundamental form associated with the restriction of the immersion to M,. We
have TM= TMX® T. Hence VZ, Y G ΓM,, σM>(I, 7) = σ(I, 7) + (
V x Γ, Γ>Γ = fc(X, 7) η. Consequently, dim E{Mi) < 1. If, at a point m G M,
km(X, Y) = 0 V I J G Γw Γj, then dimKer &m = « - 1, and therefore
km(X, Y) — γ(ΛΓ, T)(Y9 Γ>, which implies that hm and fcm are proportional;
this is excluded. Hence dim E[Mχ) — 1.

Let v±Mι be the normal connexion on Mv Then V I G ΓM, we have
VχM'η = k(X, T)T = 0 since X ± T, and thus (k{

2

Mύ)m = 0, Vm G M t.
(3°) On the other hand, since Γis parallel, / ^ ( ^ T)T = O , V I G ΓM. From

Gauss-Codazzi equations we have

R(X9 T)T = K(X, σ(Γ, T)) - K(T, σ(X9 T)).

If c is the curvature of Mn+P

9 then

c((X, 7 > - <X, Γ><7, Γ » = Λ(Γ, Γ)[/c(X, 7) - k(T9 T)(X9 Γ><7, Γ>].

If c Φ 0, we have A:W(Γ, Γ) ^ 0, Vm G M, since the equality does not hold

for every X, Y. Thus

) ( X Y )

Consequently, if c φ 0, the submanifold Mx is totally umbilical and is con-

tained in an "hypersphere".
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If c = 0, we have k(T, T) = 0. In fact, if at a point m G M, km(T, T)m Φ 0,

then km(X9 Y) = km(T, T)m(X9 T)(Y, T) which is impossible because Λm is

not proportional to km.

Computing the Frenet curvatures of C, we find:

σ(T,T) = σ(T,T) = βξ^k\c> = β,

9 ξ) = τ2(τ) ξ2-βτ*kp=\ τ2(r) I -

r i , = V ^ ξ, = τi+ι(T) {i+1 - T / (Γ) {,_,

Hence

kP = k\M\ V ι G [ 2 -. s ] .

(B) Let 0 ( Λ / ) = const. ̂  0. From Proposition 6(3), we have

Let M2 be a maximal integral submanifold of the distribution Tx , and σMl

en we ha

Γ, T)T

the second fundamental form associated to M2. Then we have

Thus dim E\M^ < 1.

On the other hand, v Γ ^ O at every point. In fact, if (V T)m = 0 at

m E: M, km is proportional to Λm, and dimί.E^^ = 1. Consequently,

dim £,<" ' )= 1.

Finally, let V"1"^2 be the normal connexion on M2 induced by V"1. If

x G ΓM 2 , then

J^v + k(x,τ)τ- o(x,τ) - (vxτ,τ)τ

= 0,

since Z ± T. Consequently k(

2

Ml) = 0.

Now we shall study the case where M = Rn+P(c), c Φ 0. We shall need the

following lemmas.
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Lemma 10. With the notations of Proposition 6, VZ G TM we have

c{(X,T)T-X) =-

369

Proof of Lemma 10. From Gauss-Codazzi equations, we have

R(X, Y)T=R{X,Y)T- K(X, σ(y, T)) + K(Y, σ(X, T)),

= R(X,T)T-k(T,T)-β

Let us compute R(X,T) T. From the proof of Proposition 6 (3) (ii) we have

Replacing k by its expression (Proposition 3.3) gives

(R(X, Y) T, Z>+ d(k(T, T) π)(X, Y)(Z, T)

+k(T, T)(Y, T)(Z, VXT)- k{T, T)(Z, VYT)= 0.

Thus we deduce

From (**) and V τ T = 0 it follows that

Since the curvature of M"+p is constant (= c), we have

c{(X,T)T-X}=yVxT,

with

Lemma 11. / / c ^ O , the direction η is quasiumbilical.
Proof of Lemma 11. At first we recall that a directiion v E TM± is

quasiumbilical if 3/i and Ξ/2 G C°°(M) such that
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where U G TM. Let Y± T. From Lemma 10 it follows that -cY=yVγT.
Since c ^ O , we deduce that γ Φ 0 at every point of M. Consequently,
V x T - c/y{(X9 T)T - X). Thus from Proposition 6 (3) we deduce

k(X, Y) = /,<*, Γ><7, Γ) + /2<X, T)

with

) - - ^ - f = β c

Hence η is quasiumbilical.
We can now proceed to prove (B). To this end, let M2 be a maximal integral

submanifold of Γ, and σMl the second fundamental form associated to M2.
Then

σM*(X9 Y) = k(X, Y) η + <V x 7, T)T.

Since c -φ 0, we deduce

, 7) =/2<Jf, Γ>η + ̂ (X, T)T.

Thus σ M 2 ( ^ ^ ) = (X9T)(f2η + c/γΓ), which shows that M2 is totally
umbilical and contained in (n — l)-dimensional hypersphere. Hence Mn is
foliated by (n — l)-dimensional hyperspheres, when c ^ O , and (B) is proved.

(C) Let Θ(M) — -oo. In this case, we know that the index of relative nullity
of M is equal to (n — 2) at every point m of M. Consequently, M is foliated by
totally geometric submanifolds of dimension n — 2.

Hence Theorem 5 is completely proved.
Remarks. Some of the results in this paper are summarized in [6], [7], [8].

The topological properties of the principal normal spaces are exposed in [13]
and summarized in [11] and [12]. The existence of immersions with prescribed
external curvatures has been studied in [5]. These papers are a part of the
second author's thesis [14].
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