EXTERNAL CURVATURES AND INTERNAL TORSION OF A RIEMANNIAN SUBMANIFOLD

JOSEPH GRIFONE \& JEAN-MARIE MORVAN

0. Introduction

The geometrical idea of this work is quite natural. Following the construction of the torsion of a submanifold given by Otsuki [16], and using the principal normal spaces introduced by Allendorfer, we define the "external curvatures" of a submanifold to be entities which, in a certain sense, measure the distance between the submanifold and osculator spaces. Roughly speaking, the second external curvature (or external torsion), for example, measures the rate of which the E_{1}-sections leave E_{1} after parallel displacement; E_{1} is the first principal normal space, i.e., the space spanned by the image of the second fundamental form (cf. for example [17], [4]).

The study of the case where $\operatorname{dim} E_{1}>1$ leads us to introduce the notion of internal torsion $\theta^{(M)}$. In analogy with the external torsion, $\boldsymbol{\theta}^{(M)}$ describes the rate of parallel displacement of E_{1}-section which stay in E_{1}.

Using these quantities, we give a description of the submanifolds of a space form in the case where $\operatorname{dim} E_{1}$ is constant and $\leqslant 2$.

1. Preliminaries

Note. When we want to indicate that the dimension of a manifold M is n, we write M^{n}.

Let $\left(M^{n}, g\right)$ and ($\left.\tilde{M}^{n+p}, \tilde{g}\right)$ be two Riemannian manifolds, and $f: M \rightarrow \tilde{M}$ be an isometric immersion. We use the following notation: $T M$ and $T \tilde{M}$ are the tangent spaces of M and \tilde{M}, ∇ and $\tilde{\nabla}$ are the Levi-Civita connexions on M and \tilde{M}, R and \tilde{R} are the curvature tensor of M and $\tilde{M}, T^{\perp} M$ is the normal bundle, ∇^{\perp} is the Riemannian connexion induced by $\tilde{\nabla}$ on $T^{\perp} M, \sigma$ is the second fundamental form of M and K the associated tensor defined by

$$
g(K(X, \xi), Y)=\tilde{g}(\sigma(X, Y), \xi)
$$

where $X, Y \in T M$, and $\xi \in T^{\perp} M$.

We have

$$
\begin{aligned}
\tilde{\nabla}_{X} Y & =\nabla_{X} Y+\sigma(X, Y), \quad \forall X, Y \in T M \\
\tilde{\nabla}_{X} \xi & =\nabla_{X}^{\perp} \xi-K(X, \xi), \quad \forall X \in T M, \forall \xi \in T^{\perp} M
\end{aligned}
$$

and the following Gauss-Codazzi and Codazzi-Ricci equations:

$$
\begin{align*}
\tilde{R}(X, Y) Z= & R(X, Y) Z+K(X, \sigma(Y, Z))-K(Y, \sigma(X, Z)) \\
& +\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)-\left(\bar{\nabla}_{Y} \sigma\right)(X, Z), \tag{1}\\
\tilde{R}(X, Y) \xi= & R^{\perp}(X, Y) \xi+\sigma(X, K(Y, \xi))-\sigma(Y, K(X, \xi)) \\
& -\left(\bar{\nabla}_{X} K\right)(Y, \xi)+\left(\bar{\nabla}_{Y} K\right)(X, \xi)
\end{align*}
$$

$\forall X, Y, Z \in T M, \forall \xi \in T^{\perp} M$, where R^{\perp} is the curvature tensor on $T^{\perp} M$, and

$$
\begin{aligned}
& \left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right), \\
& \left(\bar{\nabla}_{X} K\right)(Y, \xi)=\nabla_{X}(K(Y, \xi))-K\left(\nabla_{X} Y, \xi\right)-K\left(Y, \nabla_{X}^{\perp} \xi\right) .
\end{aligned}
$$

By $[A]$ we denote the vector space spanned by the subspace A of a vector space.

2. External curvatures and internal torsion of a Riemannian submanifold

Let $f=M^{n} \rightarrow \tilde{M}^{n+p}$ be an isometric immersion.
Lemma 1. Let \mathscr{D} be a distribution on $T^{\perp} M$. If $\xi \in \mathscr{D}$ and $X \in T_{m} M$, then $\mathrm{pr}_{\mathscr{D}^{\perp}} \nabla_{X}^{\perp} \xi$ depends only on ξ_{m}.

The proof is obvious.
This lemma allows us to give the following definitions.
Definition 1 (cf. [17] for instance). Let $m \in M$; we define ($\left.E_{0}\right)_{m}=T_{m} M$ and

$$
\left(E_{1}\right)_{m}=\left[\operatorname{Im} \sigma_{m}\right]
$$

(i.e., the space spanned by the image of σ_{m}). If $\operatorname{dim} E_{1}$ is constant on a neighborhood of m, we define

$$
\begin{gathered}
L_{2}: T_{m} M \times\left(E_{1}\right)_{m} \rightarrow T_{m}^{\perp} M \\
(X, \xi) \mapsto \operatorname{pr}_{E_{1}^{\perp}} \nabla_{X}^{\perp} \xi
\end{gathered}
$$

and $\left(E_{2}\right)_{m}=\left[\operatorname{Im} L_{2}\right]$. By induction if $\operatorname{dim}\left(E_{i-1}\right)_{m}$ is constant on a neighborhood of m, we define

$$
\begin{gathered}
L_{i}: T_{m} M \times\left(E_{i-1}\right)_{m} \rightarrow T_{m}^{\perp} M \\
\left.\quad(X, \xi) \mapsto \operatorname{pr}_{\substack{\oplus \\
j<i}} E_{j}\right)^{\perp} \nabla \stackrel{\perp}{X} \xi,
\end{gathered}
$$

and $\left(E_{i}\right)_{m}=\left[\operatorname{Im} L_{i}\right]$, and call E_{i} the i th principal normal space.

Definition 2. A submanifold M of \tilde{M} is said to be E_{j}-nicely curved if E_{i} is a subbundle of $T^{\perp} M, \forall i \leqslant j$.

Definition 3. Let $m \in M$. If $\left(E_{1}\right)_{m}, \ldots,\left(E_{i}\right)_{m}$ are defined, we call the norm of the bilinear map $L_{j}\left(\right.$ with $\left.L_{1}=\sigma\right)$, i.e.,

$$
\left(k_{j}^{(M)}\right)_{m}=\operatorname{Sup}_{\substack{X \in T_{m} M,\|X\|=1 \\ \xi \in\left(E_{j-1}\right)_{m}\|\xi\|=1}}\left\|L_{j}(X, \xi)\right\|
$$

the j th-external curvature (or j th-Frenet curvature) at m.
The principal normal space gives a decomposition of the normal space $T^{\perp} M$. In order to study submanifolds such that $\operatorname{dim} E_{1}>1$ we introduce a decomposition of E_{1}. Let $F_{1}=\left\{\eta \in E_{1} \mid L_{2}(X, \eta)=0 \forall X \in T M\right\}$, and give the map

$$
\begin{gathered}
\Theta: T M \times F_{1} \rightarrow E_{1} \\
(X, \eta)_{\mapsto} \operatorname{pr}_{F_{1}^{\perp}} \nabla_{X}^{\perp} \eta .
\end{gathered}
$$

We define

$$
F_{2}=[\operatorname{Im} \Theta] \text { and }\left(\theta^{(M)}\right)_{m}=\operatorname{Sup}_{\substack{X \in T_{m} M,\|X\|=1 \\ \eta \in\left(F_{1}\right)_{m},\|\eta\|=1}}\|\Theta(X, \eta)\| .
$$

If $\left(F_{1}\right)_{m}=\{0\}$, we say that $\theta_{m}^{(M)}=-\infty$.
Definition 4. $\boldsymbol{\theta}^{(M)}$ is called the internal torsion of M.
Remarks on these definitions.

1. $\left(E_{i}\right)_{m}=0 \Leftrightarrow\left(k_{i}^{(M)}\right)_{m}=0$.
2. A point $m \in M^{n}$ such that $\left(k_{1}^{(M)}\right)_{m}, \cdots,\left(k_{s}^{(M)}\right)_{m}$ are defined and nonzero will be said to be s-regular.
3. If M is a curve, then $k_{i}^{(M)}$ coincides with the i th Frenet curvature of the curve. In this case, $\theta^{(M)}$ is finite only if the curve is plane, and $\theta^{(M)}=0$.
4. Clearly, if $\operatorname{dim} E_{1}=1$ at every point, then $\theta^{(M)}=0$ or $-\infty$.
5. It can be more interesting (cf. [5]) to take the tensorial norm of the maps L_{i} to define $k_{i}^{(M)}$.

Using the work of Burstin, Mayer, Allendoerfer (cf. M. Spivak [17, Vol. IV, Chap. 7, p. 241]), we can immediately deduce the following result.

Theorem 1. Let M^{n} be a connected, simply connected submanifold of a space form $\tilde{M}^{n+p}(c)$ (of constant curvature c). Suppose that the principal normal space $E_{1} \cdots E_{p}$ of M satisfy the following conditions:
M^{n} is E_{p} niced-curved, $\operatorname{dim} E_{1} \oplus \cdots \oplus \operatorname{dim} E_{p}=r=$ const., $k_{p+1}^{(M)} \equiv 0$.
Then M^{n} is a submanifold of $\tilde{M}^{n+p}(c)$ with substantial codimension r (i.e., there exists a totally geodesic submanifold of dimension $n+r$ in $\tilde{M}^{n+p}(c)$ which contains M^{n}).

Examples.

(a) The unit sphere S^{n} in the euclidean space \mathbf{E}^{n+p}. We have $\operatorname{dim} E_{1}=$ $1, k_{\mathrm{l}}^{\left(S^{n}\right)}=1, \operatorname{dim} E_{j}=0$ for $j>1$.
(b) A cylinder, i.e., a submanifold M^{n} in \mathbf{E}^{n+p} such that $M^{n}=C \times \mathbf{E}^{n-1}$, where C is a curve. The second fundamental form of M^{n} has the following expression:

$$
\sigma(X, Y)=\alpha\langle X, T\rangle\langle Y, T\rangle \xi_{1}
$$

where T is the unit vector tangent to the curve $C,|\alpha|$ is the curvature of C, and ξ_{1} is the first principal normal vector of C. We have

$$
\begin{aligned}
& \nabla{ }_{X}^{\perp} \xi_{1}=k_{2}^{(C)}\langle X, T\rangle \xi_{2} \\
& \nabla{ }_{X}^{\stackrel{1}{2}} \xi_{i-1}=k_{i}^{(C)}\langle X, T\rangle \xi_{i}-k_{i-2}^{(C)}\langle X, T\rangle \xi_{i-2} \\
& \nabla{ }_{X}^{\perp} \xi_{i}=-k_{i-1}^{(C)}\langle X, T\rangle \xi_{i-1}
\end{aligned}
$$

where $k_{j}^{(C)}, 1 \leqslant j \leqslant i$, are the Frenet curvatures of C in \mathbf{E}^{n+p} when these curvatures are defined. We can deduce that if $k_{i-1}^{(C)} \neq 0$ on an open set U, and $k_{i}^{(C)}=0$ on U, then

$$
\begin{array}{lll}
\operatorname{dim} E_{j}=1 & \text { if } & 1 \leqslant j \leqslant i \\
\operatorname{dim} E_{j}=0 & \text { if } & j>1 \\
k_{j}^{\left(M^{n}\right)}=k_{j}^{(C)} & \text { if } & 1 \leqslant j \leqslant p
\end{array}
$$

(c) The product of two curves $C_{1}, C_{2}: M^{2}=C_{1} \times C_{2}$, where C_{1} and C_{2} are two closed curves in \mathbf{E}^{3}, the torsion of which is never zero (cf. [18]). In this case, $\operatorname{dim} E_{1}=2, \operatorname{dim} E_{2}=2$. This is an example of a compact submanifold of Euclidean space such that $\operatorname{dim} E_{2} \neq 0$ at each point.
(d) A nonextrinsic sphere M^{n} of a Hermitian symmetric space of compact type, [3], is an example of submanifold such that $\operatorname{dim} E_{1}=1, \operatorname{dim} E_{2}=n$.
(e) In [10] N. Kuiper proved that any substantial tight compact submanifold M in Euclidean space satisfies $\left(E_{1}^{\perp}\right)_{m}=0 \forall m \in M$.

3. Submanifolds in spaces of constant curvature such that dim $E_{1} \leqslant 1$

Let us consider a submanifold of a Riemannian manifold. Generally, if we suppose that its first principal normal space has dimension 1 , we cannot deduce any strong restriction on the second principal normal space (see Example (c), §2). However, we shall show that, if the ambient space has constant curvature, and $\operatorname{dim} E_{1}=1$, then the submanifold is cylindrical (in the sense of B. Y. Chen [2]), and $\operatorname{dim} E_{i}=1$ or 0 . This will allow us to give a classification of submanifolds such that $\operatorname{dim} E_{1} \leqslant 1$.

We shall prove the two following theorems.
Theorem 2. Let $\tilde{M}^{n+p}(c)$ be $a(n+p)$-dimensional manifold of constant curvature c, and $f: M^{n} \leftrightharpoons \tilde{M}^{n+p}(c)$ be an isometric immersion of a connected Riemannian manifold in $\tilde{M}^{n+p}(c)$. Suppose that the first principal normal space E_{1} of M satisfy the condition:

$$
\operatorname{dim} E_{1} \leqslant 1 \text { at every point } .
$$

Then there exists a dense open set M^{\prime} of M such that $M^{\prime}=M_{1} \cup M_{2}$ with $M_{1} \cap M_{2}=\varnothing$, where M_{1} and M_{2} are two open sets such that:
(a) The connected components of M_{1} are submanifolds with substantial codimension 1 in $\tilde{M}^{n+p}(c)$.
(b) M_{2} is foliated by hypersurfaces which are totally geodesic in $\tilde{M}^{n+p}(c)$.

Theorem 3. Let $\tilde{M}^{n+p}(c)$ be $a(n+p)$-dimensional manifold of constant curvature c, and $f: M^{n} \rightarrow \tilde{M}^{n+p}(c)$ be an isometric immersion of a Riemannian manifold in $\tilde{M}^{n+p}(c)$. Suppose that
(α) M is connected, complete, and E_{s}-nicely curved, $s \geqslant 1$,
(β) $\operatorname{dim} E_{1}=1$ at every point,
($\gamma) k_{2}^{(M)} \neq 0$ at every point (i.e., each point is biregular),
($\delta) \exists i \in\{1, \cdots, s\}$ such that $k_{i}^{(M)}=$ const. $\neq 0$.
Then:
(1) $c=0$,
(2) M is flat,
(3) $M=C \times M_{1}$, where M_{1} is totally geodesic in $\tilde{M}^{n+p}(c)$ and C is a curve of $\tilde{M}^{n+p}(c)$ such that $k_{j}^{(M)}=k_{j}^{(C)}, j=1, \cdots, p, k_{j}^{(C)}$ being the classical Frenet curvatures of C in $\tilde{M}^{n+p}(c)$.

Remark. If $\tilde{M}^{n+p}(c)=\mathbf{E}^{n+p}$, and M^{n} satisfies only $(\alpha),(\beta),(\gamma)$, using a theorem of O'Neill [15] we can conclude that $M=C \times \mathbf{E}^{n-1}$, where C is a curve in \mathbf{E}^{n+p}.

In order to prove this theorem, we need the following propositions.
Proposition 1. Let $f: M_{1}^{n} \rightarrow \tilde{M}^{n+p}(c)$ be an isometric immersion of a connected manifold in a space $\tilde{M}^{n+p}(c)$ of constant curvature c. Suppose that the first principal normal space E_{1} of M_{1} has dimension 1 at every point of M_{1}, and that the second external curvature $k_{2}^{\left(M_{1}\right)}$ of M_{1} is null everywhere. Then M_{1} is a submanifold of substantial codimension equal to 1 in $\tilde{M}^{n+p}(c)$.

Proof of Proposition 1. Use Theorem 1.
Proposition 2. Let $f: M_{2}^{n} \rightarrow \tilde{M}^{n+p}(c)$ be an isometric immersion of a connected n-dimensional $(n \geqslant 2)$ manifold in a space $\tilde{M}^{n+p}(c)$ of constant curvature c. Suppose that the first principal normal space E_{1} of M_{2} has dimension 1 at every point of M_{2}, and that every point of M_{2} is biregular. Then for every s-regular $(2 \leqslant s \leqslant p) m \in M_{2}$ there exists a unique, except for the sign, unit vector system
$\left\{\xi_{1}, \cdots, \xi_{s}\right\}$ orthogonal to M_{2}, and defined on a neighborhood of m, and $s-1$ nonnull linear forms $\tau_{2}, \cdots, \tau_{s}$, which are closed, proportional, and defined on a neighborhood of m, such that:

$$
\begin{aligned}
& \quad\left\|\tau_{i}\right\|=k_{i}^{\left(M_{2}\right)}, \text { and } \quad \forall X \in T_{m} M_{2}, \\
& \nabla{ }_{X}^{\perp} \xi_{1}=\tau_{2}(X) \xi_{2}, \\
& \nabla{ }_{X}^{\perp} \xi_{2}=\tau_{3}(X) \xi_{3}-\tau_{2}(X) \xi_{1}, \\
& \cdot \\
& \nabla{ }_{X}^{\perp} \xi_{s-1}=\tau_{s}(X) \xi_{s}-\tau_{s-1}(X) \xi_{s-2}, \quad \text { for } s \leqslant p-1, \\
& \nabla{ }_{X}^{\perp} \xi_{p}=-\tau_{p}(X) \xi_{p-1} .
\end{aligned}
$$

To prove this proposition we need the following.
Lemma 2. Let $h: \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a symmetric bilinear form, and L: $\mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ a linear application. If $L \neq 0, h \neq 0$ and
$h(Y, Z) L(X)-h(X, Z) L(Y)=0 \quad \forall X, Y, Z \in \mathbf{R}^{n}$, then $\operatorname{rg} h=\operatorname{rg} L=1$ and $\operatorname{Ker} h=\operatorname{Ker} L$.

The proof of Lemma 2 is obvious.
Proof of Proposition 2. Since the curvature of \tilde{M}^{n+p} is a constant c, the normal component of $\tilde{R}^{\prime}(X, Y) Z$ is null $\forall X, Y, Z \in T M_{2}$. Consequently, $(1) \Rightarrow\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=\left(\bar{\nabla}_{Y} \sigma\right)(X, Z)$. Since $\operatorname{dim} E_{1}=1$, we can write $\sigma(X, Y)$ $=h(X, Y) \xi_{1}$, where ξ_{1} is unique except for the sign. (1) \Leftrightarrow

$$
\begin{align*}
\left(\nabla_{X} h\right)(Y, Z) \xi_{1}-\left(\nabla_{Y} h\right)(X, Z) \xi_{1} & +h(Y, Z) \nabla_{X}^{\perp} \xi_{1} \\
& -h(X, Z) \nabla_{Y}^{\perp} \xi_{1}=0 . \tag{1}
\end{align*}
$$

The projection of (1^{\prime}) on ξ_{1} gives

$$
h(Y, Z) L(X)-h(X, Z) L(Y)=0, \quad \forall X, Y, Z \in T M,
$$

where $L(X)=\nabla_{X}^{\perp} \xi_{1}$.
Since $\operatorname{dim} E_{1}=1, h \neq 0$; since m is s-regular with $s \geqslant 2, L \neq 0$. Then applying Lemma 2 we obtain $\operatorname{rg} h=\operatorname{rg} L=1$ at m and consequently on a neighborhood of m. Let $L(X)=\tau_{2}(X) \xi_{2}$, where ξ_{2} is a unit vector field of Im L on a neighborhood of m.

Since the curvature of \tilde{M}^{n+p} is a constant c, (2) gives $\tilde{R}(X, Y) \xi_{1}=0$. Then the normal componant of $\tilde{R}(X, Y) \xi_{1}$ is null:

$$
\begin{equation*}
R^{\perp}(X, Y) \xi_{1}=\sigma\left(X, K\left(Y, \xi_{1}\right)\right)-\sigma\left(Y, K\left(X, \xi_{1}\right)\right) . \tag{2}
\end{equation*}
$$

The projection of (2^{\prime}) on ξ_{2} gives $d \tau_{2}=0$.
Now assume that m is s-regular, $s \geqslant 3$. The projection of (2^{\prime}) on ξ_{1} gives

$$
\mathrm{pr}_{\xi_{1}}\left[\tau_{2}(Y) \nabla \stackrel{\perp}{X} \xi_{2}-\tau_{2}(X) \nabla \stackrel{\perp}{Y} \xi_{2}\right]=0 .
$$

Let $M(X)=\operatorname{pr}_{\xi_{1}^{+}}\left(\nabla{ }_{X}^{\perp} \xi_{2}\right) . M \neq 0$ because $s \geqslant 3$. (2') gives

$$
\tau_{2}(Y) M(X)-\tau_{2}(X) M(Y)=0 \quad \forall X, Y \in T M_{2}
$$

Since $\tau_{2} \not \equiv 0$ and $M \neq 0$, we deduce that $\operatorname{Ker} \tau_{2}=\operatorname{Ker} M$. Hence $\operatorname{rg} M=1$, and there exist a unit vector ξ_{3} and a linear form τ_{3} such that $M(X)=\tau_{3}(X) \xi_{3}$. Moreover by ($2^{\prime \prime}$) we have

$$
\tau_{2}(Y) \tau_{3}(X)-\tau_{2}(X) \tau_{3}(Y)=0
$$

i.e., $\tau_{2} \wedge \tau_{3}=0$. Finally, $\nabla{ }_{X}^{\perp} \xi_{2}=\tau_{3}(X) \xi_{3}-\tau_{2}(X) \xi_{1}$.

We proceed in such a way, studying the projection of $\tilde{R}(X, Y) \xi_{i}$ on ξ_{i+1} and $\xi_{i+2}, 1 \leqslant i \leqslant s$. Now we can evaluate the external curvatures of M_{2} :

$$
\begin{aligned}
\left(k_{2}^{\left(M_{2}\right)}\right)_{m} & =\operatorname{Sup}_{\substack{\eta \in E_{1_{m}} \\
\|\eta\|=1}} \operatorname{Sup}_{\substack{X \in T_{m} M_{2} \\
\|X\|=1}}\left\|\mathrm{pr}_{E_{1 m}^{\perp}} \nabla \frac{1}{X} \eta\right\| \\
& =\operatorname{Sup}_{\substack{X \in T_{m} M_{2} \\
\|X\|=1}}\left\|\tau_{2}(X) \xi_{2}\right\|=\left\|\tau_{2}\right\|_{m},
\end{aligned}
$$

and, since $E_{1}=\left[\xi_{1}\right], E_{2}=\left[\xi_{2}\right], \cdots, E_{i}=\left[\xi_{i}\right], \cdots$,

$$
\begin{aligned}
\left(k_{i}^{(M)}\right)_{m} & =\operatorname{Sup}_{\substack{\eta \in\left(E_{i-1}\right)_{m} \\
\|\eta\|=1}} \operatorname{Sup}_{\substack{X \in T_{m} M_{2} \\
\|X\|=1}}\left\|\operatorname{pr}_{\underset{j<i}{ }\left(E_{j}\right)_{m}^{\perp}} \nabla \stackrel{\perp}{X} \eta\right\| \\
& =\operatorname{Sup}_{\substack{X \in T_{m} M_{2} \\
\|X\|=1}}\left\|\tau_{i}(X) \xi_{i}\right\|=\left\|\tau_{i}\right\|_{m} .
\end{aligned}
$$

Proposition 3. Let $f: M_{2}^{n} \rightarrow \tilde{M}^{n+p}(c)$ be an isometric immersion of an n-dimensional manifold M_{2} in an $(n+p)$-dimensional manifold of constant curvature $c,(n \geqslant 2)$, such that $\operatorname{dim} E_{1}=1$. If $k_{2}^{\left(M_{2}\right)} \neq 0$ at every point of M_{2}, then M_{2} is foliated by totally geodesic $(n-1)$-submanifolds of \tilde{M}^{n+p}.

Proof of Proposition 3. Since every point of M_{2} is 2-regular, the form $\tau_{2}=\left\|\nabla^{\perp} \xi_{1}\right\|$ is defined (except for the sign) on M_{2}. Let T_{2} be the vector field ($\neq 0$ for $k_{2}^{(M)} \neq 0$) associated with τ_{2} in the duality defined by the metric, and let $T=T_{2} /\left\|T_{2}\right\|$.

$$
\Leftrightarrow h(Y, Z)\langle T, X\rangle=h(X, Z)\langle T, Y\rangle .
$$

Thus $h(X, Y)=\beta\langle X, T\rangle\langle Y, T\rangle$ with $\beta=h(T, T) \neq 0$. Consequently, the relative nullity index is constant $(=n-1)$ on M_{2}. Hence applying a result of [1] we conclude that M_{2} is foliated by totally geodesic ($n-1$)-dimensional submanifolds of \tilde{M}^{n+p}.

We shall now prove Theorem 2 and Theorem 3.
Proof of Theorem 2. Let $m \in M$. One of the following three possibilities can happen.
A. $\exists U_{1}$, an open neighborhood of m, such that $\left.\operatorname{dim} E_{1}\right|_{U_{1}} \equiv 0$. In this case, U_{1} is totally geodesic, and of course, foliated by hypersurfaces which are totally geodesic in $\tilde{\boldsymbol{M}}^{n+p}(c)$.
B. $\exists U_{2}$, an open neighborhood of m, such that $\left.\operatorname{dim} E_{1}\right|_{U_{2}}=1$ and $k_{2 \mid U_{2}}^{(M)} \equiv 0$. In this case, using Proposition 1 we can conclude that locally the substantial codimension of U_{2} is one.
C. $\exists U_{3}$, an open neighborhood of m, such that $\left.\operatorname{dim} E_{1}\right|_{U_{3}}=1$ and $k_{2}^{(M)} \neq 0$. Then using Proposition 2 we can conclude that U_{3} is foliated by hypersurfaces which are totally geodesic in $\tilde{M}^{n+p}(c)$.

Finally, it is clear that there exists a dense open set M^{\prime} of M on which one of these three possibilities happens. Hence Theorem 2 is proved.

Proof of Theorem 3. We can suppose that M is simply connected. The general result is obtained by passing to the universal covering of M. The proof consists in building a parallel vector field on M. Then we apply the De Rham decomposition theorem (cf. [9]). We need the following lemmas.

Lemma 3. $k_{i}^{(M)}=\left|\tau_{i}(T)\right|$ if $i \geqslant 2$.
This is a consequence of Proposition 2.
Lemma 4. Let ω be the form associated to T in the duality defined by the metric. Then $d(\beta \omega)=0$.

Proof of Lemma 4. Since \tilde{M}^{n+p} is of constant curvature, the normal componant of $\tilde{R}(X, Y) T$ is null $\forall X, Y \in T M$.

$$
(1) \Leftrightarrow\left(\nabla_{X} \sigma\right)(Y, T)=\left(\nabla_{Y} \sigma\right)(X, T) .
$$

Projecting this equality on ξ_{1}, we obtain $d(\beta \omega)=0$.
Lemma 5. If there exists $i \in[1 \cdots p]$ such that $k_{i}^{(M)}=$ const. $\neq 0$, then $X(\beta)=0, \forall X \perp T$.

Proof of Lemma 5. If $i=1$, then $k_{1}^{(M)}=\operatorname{Sup}\|\sigma(X, Y)\|=|h(T, T)|=|\beta|$. Thus $\beta=$ const. Hence $X(\beta)=0, \forall X \perp T$.

If $i \geqslant 2$, since $\omega=\tau_{i} /\left\|\tau_{i}\right\|$, by Lemma 4 we have $d\left(\beta \tau_{i} /\left\|\tau_{i}\right\|\right)=0$. $\left\|\tau_{i}\right\|=$ $k_{i}^{(M)}=$ const. $\Rightarrow d\left(\beta \tau_{i}\right)=0 \Rightarrow d \beta \wedge \tau_{i}=0$ since $d \tau_{i}=0$, (by Proposition 2) \Rightarrow $X(\beta)=0, \forall X \perp T$.

Lemma 6. If there exists $i \in[1 \cdots p]$ such that $k_{i}^{(M)}=$ const. $\neq 0$, then T is parallel.

Proof of Lemma 6. From (2) we deduce

$$
\left(\nabla_{X} K\right)\left(T, \xi_{1}\right)=\left(\nabla_{T} K\right)\left(X, \xi_{1}\right)
$$

Let $X \perp T, X \in T M$. Since $K\left(Y, \xi_{1}\right)=\beta\langle Y, T\rangle T, \forall Y \in T M$, we have $K\left(X, \xi_{1}\right)=0$. Hence ($2^{\prime \prime \prime}$) $\Leftrightarrow X(\beta) T+\beta \nabla_{X} T=\beta\left\langle X, \nabla_{T} T\right\rangle T$. Since $X \perp T$, $X(\beta)=0$. Therefore $\beta \nabla_{X} T=\beta\left\langle X, \nabla_{T} T\right\rangle T$. Since $\beta \neq 0$ and $\nabla_{X} T \perp T$, we deduce $\nabla_{X} T=0$ if $X \perp T$, and $\nabla_{T}^{\perp} T=0$. Consequently T is parallel.

Now we return to the proof of Theorem 3. Since \tilde{M}^{n+p} is of constant curvature c,

$$
\begin{aligned}
\tilde{R}(X, Y) Z= & c\{\langle X, Z\rangle Y-\langle Y, Z\rangle X\} \\
= & R(X, Y) Z-K\left(X, \beta\langle Y, T\rangle\langle Z, T\rangle \xi_{1}\right) \\
& \quad+K\left(Y, \beta\langle X, T\rangle\langle Z, T\rangle \xi_{1}\right) \\
= & R(X, Y) Z
\end{aligned}
$$

Hence the curvature of M is c, and M possesses a parallel field. It follows that $c=0$ so that M and \tilde{M}^{n+p} are flat.

On the other hand, the distributions Δ_{1} and Δ_{2} defined by T and T^{\perp} are parallel and differentiable. Hence M is the product of $C \times M_{1}$ where C and M_{1} are maximal integral submanifolds of Δ_{1} and Δ_{2}. It is easy to see that M_{1} is totally geodesic in \tilde{M}^{n+p}.

Now we can estimate the Frenet curvatures of C in \tilde{M}^{n+p} :

$$
\begin{aligned}
\tilde{\nabla}_{T} T & =\nabla_{T} T+\beta \xi_{1}=\beta \xi_{1}, \quad k_{1}^{(C)}=|\beta|=k_{1}^{(M)} ; \\
\tilde{\nabla}_{T} \xi_{1} & =\nabla_{T}^{\perp} \xi_{1}-K\left(T, \xi_{1}\right)=\tau_{2}(T) \xi_{2}-\beta T, \quad k_{2}^{(C)}=\left|\tau_{2}(T)\right|=k_{2}^{\left(M^{n}\right)} ; \\
\tilde{\nabla}_{T} \xi_{i} & =\nabla_{T}^{\perp} \xi_{i}-K\left(T, \xi_{i}\right)=\tau_{i+1}(T) \xi_{i+1}-\tau_{i}(T) \xi_{i-1}, \\
k_{i+1}^{(C)} & =\left|\tau_{i+1}(T)\right|=k_{i+1}^{(M)} .
\end{aligned}
$$

Therefore $k_{i}^{(C)}=k_{i}^{\left(M^{n}\right)}, \forall i \in[1 \cdots p]$.

4. Submanifolds such that $\operatorname{dim} E_{1}=2$

Let us now consider a submanifold M of a space of constant curvature, such that $\operatorname{dim} E_{1}=2$. We shall show that it is possible to describe M with the external curvatures and the internal torsion. We shall prove the following theorems.

Theorem 4. Let $f: M^{n} \mapsto \tilde{M}^{n+p}(c)$ be an isometric immersion of an n dimensional manifold M^{n} in the space form $\tilde{M}^{n+p}(c), n \geqslant 3, p \geqslant 2$. Suppose that $\operatorname{dim} E_{1}=2$ at every point $m \in M$.
Then M contains a dense open set M^{\prime} such that

$$
M^{\prime}=M_{1} \cup M_{2} \cup M_{3}, \quad\left(M_{i} \cap M_{j}=\varnothing, i \neq j\right)
$$

where M_{1}, M_{2}, M_{3} are three open sets such that:
(a) The connected componants of M_{1} are submanifolds of $\tilde{M}^{n+p}(c)$ which have a substantial codimension equal to 2 ,
(b) M_{2} is foliated by hypersurfaces of substantial codimension equal to 2 in $\tilde{M}^{n+p}(c)$,
(c) M_{3} is foliated by $(n-2)$-dimensional totally geodesic submanifolds of $\tilde{M}^{n+p}(c)$.

Theorem 5. Let $f: M^{n} \rightarrow \tilde{M}^{n+p}(c)$ be an isometric immersion of an n dimensional manifold M^{n} in the space form $\tilde{M}^{n+p}(c), n \geqslant 3, p \geqslant 2$, such that
(i) $\operatorname{dim} E_{1}=2$ at every point $m \in M$,
(ii) every point of M is s-regular, $s \geqslant 2$,
(iii) the internal torsion $\theta^{(M)}$ is constant.

Then each of the following holds:
(A) If the internal torsion $\theta^{(M)}=0$, and $\exists i \in\{2, \cdots, s\}$ such that $k_{i}^{(M)}=$ const. $\neq 0$ and M is complete, connected, then $M=C \times M_{1}$, where C is a curve, and M_{1} a submanifold with substantial codimension 1 . Moreover, if $c=0$, we have $k_{j}^{(C)}=k_{j}^{(M)}, \forall j \geqslant 2$; if $c \neq 0$, then M_{1} is an open set of an " n-sphere".
(B) If the internal torsion $\boldsymbol{\theta}^{(M)}=\mathrm{const} \neq 0$, and $\exists i \in\{2, \cdots, s\}$ such that $k_{i}^{(M)}=$ const $\neq 0$, then M is foliated by $(n-1)$-dimensional submanifolds M_{2} with substantial codimension 2. In particular, if $c \neq 0$, then M_{2} is included in an " n-sphere".
(C) If the internal torsion $\boldsymbol{\theta}^{(M)}=-\infty$, then M is foliated by $(n-2)$ dimensional submanifolds which are totally geodesic in \tilde{M}^{n+p}.

In order to prove these theorems, we need to study the biregular submanifolds such that $\operatorname{dim} E_{1}=2$. This will be done in $\S \S 4.1,4.2,4.3$. The proof of the theorems are in $\S \S 4.4$ and 4.5 .

4.1. Biregular submanifolds such that $\operatorname{dim} E_{1}=2$

Proposition 4. Let $f: M^{n} \rightarrow \tilde{M}^{n+p}(c)$ be an isometric immersion of an $n-$ dimensional manifold M^{n} in an $(n+p)$-dimensional $(n \geqslant 3, p \geqslant 2)$ manifold $\tilde{M}^{n+p}(c)$ of constant curvature c such that $\operatorname{dim} E_{1}=2$ at every point and such that every point is 2 -regular. Then each of the following holds:
(i) If $\theta^{(M)} \neq-\infty$ at every point of M, there exists a global, except for the sign, frame (ξ, η) of E_{1} such that $L_{\xi} \neq 0$ and $L_{\eta}=0$, where $L_{\xi}(x)=\operatorname{pr}_{E_{1}^{\perp}} \nabla{ }_{x}^{\perp} \xi$. Moreover, $\operatorname{dim} E_{2}=1$ at every point of M.
(ii) If $\boldsymbol{\theta}^{(M)}=-\infty$ at every point, then the index of relative nullity of M is $n-2$ at every point of M. Moreover, $\operatorname{dim} E_{2} \leqslant 2$.

Proof of Proposition 4. (i) Since $k_{2}^{(M)} \neq 0$ at every point $m \in M$, then $\operatorname{dim} F_{1_{m}}<\operatorname{dim} E_{1_{m}}$ at every point (F_{1} is defined in §2). Since $\operatorname{dim} E_{1}=$ 2, $\operatorname{dim} F_{1_{m}}<2$.

On the other hand, since $\theta_{m}^{(M)} \neq-\infty$ at every point $m, \operatorname{dim} F_{1_{m}}>0$ at every point m. Consequently $\operatorname{dim} F_{1} \equiv 1$, and F_{1} is a subbundle of $T^{\perp} M$, with fibers of dimension 1 .

Let η be the global section (except for the sign), which spans F_{1}. We have $L_{\xi}=0$ at every point m. If ξ is a section of E_{1} such that $\langle\eta, \xi\rangle=0$ and $\|\xi\|=1$, it is clear that $L_{\xi} \neq 0$ at every point.
(ii) Let ν be the index of relative nullity of $M .\left(\nu(m)=\operatorname{dim} N_{m}\right.$, where $\left.N_{m}=\left\{X \in T_{m} M / \sigma(X, Y)=0, \forall Y \in T M\right\}\right)$. We have $\nu(m) \leqslant n-2$ for every $m \in M$. In fact, if $\nu(m)=n, m$ is a flat point; this is impossible for $\left(k_{2}^{(M)}\right)_{m} \neq 0$. If $\nu(m)=n-1$, then $\operatorname{dim}\left(E_{1}\right)_{m}=1$, which is excluded.

In order to show that $\nu(m)=n-2$, and that $\operatorname{dim} E_{2} \leqslant 2$, we need the following two lemmas.

Lemma 7. Let $m \in M$ such that there exists an orthonormal frame (ξ, η) of $\left(E_{1}\right)_{m}$ such that L_{ξ} and L_{η} are not proportional. Then $\nu(m)=n-2$ (and $\operatorname{dim}\left(E_{2}\right)_{m} \leqslant 2$).

Lemma 8. Let $\theta^{(M)}=-\infty$ at every point of M. Then, for every $m \in M$, every neighborhood of m and every orthonormal frame (ξ, η) of E_{1} on U, there exists a neighborhood $V \subset U$ such that L_{ξ} and L_{η} are not proportional on V.

Combining these two lemmas we obtain
$\forall m \in M, \forall U$, neighborhood of $m, \exists v$, open, $V \subset U$, such that $\left.\nu\right|_{V}=n-2$.

Now assume that there exists $m \in M$ such that $\nu(m)<n-2$. Since ν is upper semicontinuous, there exists a neighborhood U of m such that $\left.\nu\right|_{U}<n$ -2 . But this is impossible because of (*). Thus $\nu_{m}=n-2$ at every point $x \in M$.

Proof of Lemmas 7 and 8. The proof of Lemma 7 results from the following algebraic lemma.

Lemma. Let L, M: $\mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ be two linear maps. If there exist $\alpha, \beta: \mathbf{R}^{n} \rightarrow \mathbf{R}$ not simultaneously null such that

$$
\alpha(X) L(X)+\beta(X) M(X)=0 \quad \forall X \in \mathbf{R}^{n},
$$

Then L and M are proportional or $\mathrm{rg} L \leqslant 1$ and $\mathrm{rg} M \leqslant 1$.
Proof. Let $\operatorname{rg} L=k$, and let v_{1}, \cdots, v_{p} be a basis of \mathbf{R}^{p} such that

$$
\begin{aligned}
L(X) & =\omega_{1}(X) v_{1}+\cdots+\omega_{k}(X) v_{k} \\
M(X) & =\pi_{1}(X) v_{1}+\cdots+\pi_{p}(X) v_{p}
\end{aligned}
$$

where $\omega_{1}, \cdots, \omega_{k}$ are independent linear forms.
(a) If $\exists l>k$ such that $\pi_{l} \neq 0$, there exists X_{0} such that $\pi_{l}\left(X_{0}\right) \neq 0$. Thus $\beta_{l}\left(X_{0}\right) \pi_{l}\left(X_{0}\right)=0$. Consequently $\beta_{l}\left(X_{0}\right)=0$ and therefore $\alpha_{l}\left(X_{0}\right) \neq 0$, from which it follows that $L\left(X_{0}\right)=0$. But the set of the X_{0} such that $\pi_{l}\left(X_{0}\right) \neq 0$ is dense, and L continuous, so $L=0$. (In particular L and M are proportional.)
(b) Suppose $L \neq 0$ and $M \neq 0$. By the argument of (a) we see that $\operatorname{rg} L=$ $\operatorname{rg} M$. If $\operatorname{rg} L=1$, the lemma is proved.

Suppose $\operatorname{rg} L=k>1$, and let, for example,

$$
\begin{aligned}
L(X) & =\omega_{1}(X) v_{1}+\cdots+\omega_{k}(X) v_{k} \\
M(X) & =\pi_{1}(X) v_{1}+\cdots+\pi_{k}(X) v_{k}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \alpha(X)\left[\omega_{1}(X) v_{1}+\cdots+\omega_{k}(X) v_{k}\right] \\
& +\beta(X)\left[\pi_{1}(X) v_{1}+\cdots+\pi_{k}(X) v_{k}\right]=0 .
\end{aligned}
$$

Let X_{0} be an element of Ker ω_{k}. Then $\beta\left(X_{0}\right) \pi_{k}\left(X_{0}\right)=0$. If $\beta\left(X_{0}\right)=0$, we have $\alpha\left(X_{0}\right) \neq 0$. Thus

$$
\omega_{1}\left(X_{0}\right) v_{1}+\cdots+\omega_{k-1}\left(X_{0}\right) v_{k-1}=0
$$

so that $X_{0} \in \operatorname{Ker} L$; therefore $\operatorname{rg} L \leqslant 1$ which is excluded. Hence $\beta\left(X_{0}\right) \neq 0$ and $\pi_{k}\left(X_{0}\right)=0$.

Then Ker $\omega_{k} \subset \operatorname{Ker} \pi_{k}$ so that

$$
\pi_{k}=\lambda_{k} \omega_{k} \quad\left(\lambda_{k} \in \mathbf{R}\right)
$$

Thus

$$
\begin{aligned}
L(X) & =\omega_{1}(X) v_{1}+\cdots+\omega_{k}(X) v_{k} \\
M(X) & =\lambda_{1} \omega_{1}(X) v_{1}+\cdots+\lambda_{k} \omega_{k}(X) v_{k} .
\end{aligned}
$$

We deduce

$$
\begin{gathered}
\alpha(X) \omega_{1}(X)+\beta(X) \lambda_{1} \omega(X)=0 \\
\alpha(X) \omega_{k}(X)+\beta(X) \lambda_{k} \omega_{k}(X)=0 .
\end{gathered}
$$

By choosing an X_{0} such that $\omega_{1}\left(X_{0}\right)=1$ and $\omega_{2}\left(X_{0}\right)=1$, we obtain

$$
\begin{aligned}
& \alpha\left(X_{0}\right)+\lambda_{1} \beta\left(X_{0}\right)=0, \\
& \alpha\left(X_{0}\right)+\lambda_{2} \beta\left(X_{0}\right)=0,
\end{aligned}
$$

from which it follows that $\lambda_{1}=\lambda_{2}$ since $\alpha\left(X_{0}\right)$ and $\beta\left(X_{0}\right)$ are not both zero.
In the same way one can prove that $\lambda_{2}=\lambda_{3}$, etc. So L is proportional to M.

Lemma 9. Let h and k be two nonnull and nonproportional bilinear symmetric forms on $\mathbf{R}^{n}(n \geqslant 3)$, and L, M two linear maps from \mathbf{R}^{n} into \mathbf{R}^{p} such that
$(* *) h(Y, Z) L(X)+k(Y, Z) M(X)=h(X, Z) M(Y)+k(Y, Z) M(Y)$, $\forall X, Y, Z \in \mathbf{R}^{n}$.
Then
(1) $\operatorname{Ker} h \cap \operatorname{Ker} k=\operatorname{Ker} L \cap \operatorname{Ker} M$,
(2) $\operatorname{dim}(\operatorname{Ker} h \cap \operatorname{Ker} k)=n-2$,
(3) $\operatorname{dim}[\operatorname{Im} L \cup \operatorname{Im} M] \leqslant 2$.

The fact that $\operatorname{Ker} h \cap \operatorname{Ker} k=\operatorname{Ker} L \cap \operatorname{Ker} M$ is a straightforward exercise.
On the other hand, $\operatorname{dim} \operatorname{Ker}(h \cap \operatorname{Ker} k) \leqslant n-2$ because h and k are nonproportional and nonnull. We prove that $\operatorname{dim}(\operatorname{Ker} h \cap \operatorname{Ker} k) \geqslant n-2$.

Suppose that $\operatorname{dim}(\operatorname{Ker} h \cap \operatorname{Ker} k) \leqslant n-3$, and let $F=(\operatorname{Ker} h \cap \operatorname{Ker} k)^{\perp}$, $\operatorname{dim} F \geqslant 3$. For $X_{0} \in F$, let $G_{1}=\left\{Y \in F \mid h\left(Y, X_{0}\right)=0\right\}$ and $G_{2}=\{Y \in F \mid$ $\left.k\left(Y, X_{0}\right)=0\right\}$. We have

$$
\operatorname{dim} G_{1} \cap G_{2} \geqslant \operatorname{dim} F-2 \geqslant 1 .
$$

Therefore there exists $Z_{0} \in F$ such that $h\left(X_{0}, Z_{0}\right)=0$ and $k\left(X_{0}, Z_{0}\right)=0$. Thus $\forall X_{0} \in F, \exists Z_{0} \in F$ such that $h\left(Y, Z_{0}\right) L\left(X_{0}\right)+k\left(Y, Z_{0}\right) M\left(X_{0}\right)=0$, $\forall Y \in \mathbf{R}^{n}$. Since $Z_{0} \notin \operatorname{Ker} h \cap \operatorname{Ker} k$, there exists $Y_{0} \in \mathbf{R}^{n}$ such that $\alpha=$ $h\left(Y_{0}, Z_{0}\right)$ and $\beta=k\left(Y_{0}, Z_{0}\right)$ are not simultaneously null (α and β depend on $\left.X_{0}\right)$. Hence $\forall X_{0} \in F, \exists \alpha_{X_{0}}, \beta_{X_{0}} \in \mathbf{R}$ not both zero such that

$$
\alpha_{X_{0}} L\left(X_{0}\right)+\beta_{X_{0}} M\left(X_{0}\right)=0
$$

Going back to the problem, if $\bar{L}=\left.L\right|_{F}$ and $\bar{M}=\left.M\right|_{F}$, then \bar{L} and \bar{M} are proportional or $\operatorname{rg} \bar{L} \leqslant 1$ and $\operatorname{rg} \bar{M}=1$. Since $F=(\operatorname{Ker} L \cap \operatorname{Ker} M)^{\perp}, L$ and M are proportional or $\operatorname{rg} L \leqslant 1$ and $\operatorname{rg} M \leqslant 1$. Hence these two cases are excluded respectively by the hypothesis and the assumption that $\operatorname{dim}(\operatorname{Ker} h \cap$ Ker $k)<n-2$.

For the proof of the last part (3), see [14].
Proof of Lemma 8. Let (ξ, η) be an orthonormal frame of E_{1} on U. Then $\left(L_{\xi}\right)_{\eta}=0$ and $\left(L_{\eta}\right)_{m}=0$ is impossible for $\left(k_{2}^{(M)}\right)_{m} \neq 0$.

Suppose that $\left(L_{\xi}\right)_{m} \neq 0$ and $\left(L_{\eta}\right)_{m}=0$. Let $W \subset U$ be a neighborhood of m on which $L_{\xi \mid W} \neq 0$. On W there exists a point p such that $\left(L_{\eta}\right)_{p} \neq 0$ (for if $L_{\eta \mid W}=0$, then $\left.\theta_{p}^{\left(M^{n}\right)} \neq-\infty\right)$. If there exists a neighborhood W^{\prime} of p such that $L_{\xi}=\alpha L_{\eta}$ on W^{\prime}, then $L_{\xi^{\prime} \mid W}=0$ where $\xi^{\prime}=(-\xi+\alpha \eta)\left(1+\alpha^{2}\right)^{-1 / 2}$. But this is impossible because $\theta_{p}^{\left(M^{n}\right)}=-\infty$. Therefore $\forall W$ neighborhood of p, there exists $p^{\prime} \in W^{\prime}$ such that at $p^{\prime}, L_{\xi} \neq 0$ and $L_{\eta} \neq 0$, and L_{ξ}, L_{η} are not proportional. Since L_{ξ} and L_{η} are continuous, there exists a neighborhood V of p^{\prime} such that these properties are satisfied.

Finally, if $\left(L_{\xi}\right)_{m} \neq 0$ and $\left(L_{\eta}\right)_{m} \neq 0$, we can take $p=m$.

4.2. The case $\theta^{(M)} \neq-\infty$ and a Frenet frame over $T^{\perp} M$

Proposition 5. Let \tilde{M}^{n+p} be an $(n+p)$-dimensional $(n \geqslant 3, p \geqslant 2)$ manifold of constant curvature, and M^{n} be an n-dimensional isometric submanifold of \tilde{M}^{n+p} such that
(i) $\operatorname{dim} E_{1}=2$ at every point,
(ii) every point of M is s-regular $(s \geqslant 2)$,
(iii) $\theta^{(M)} \neq-\infty$ at every point.

Let (ξ, η) be the orthonormal frame of E_{1} (defined in Proposition 4), and $\sigma=(h \otimes \xi+k \otimes \eta)$ be the second fundamental form of M^{n}. Then each of the following holds:
(1) There exist s nonnull and nonproportional scalar forms $\tau_{2}, \cdots, \tau_{s}, \theta$ on M everywhere such that

$$
d \tau_{i}=0, \quad\left\|\tau_{i}\right\|=k_{i}^{(M)}(i \geqslant 2), \quad\|\theta\|=\theta^{(M)}
$$

(2) There exist $s-1$ normal orthonormal global (except for the sign) sections ξ_{2}, \cdots, ξ_{s} such that

$$
\begin{aligned}
& E_{2}=\left[\xi_{2}\right], \cdots,\left[E_{s}\right]=\xi_{s}, \\
& \tilde{\nabla}_{X} \xi=-\theta(X) \eta+\tau_{2}(X) \xi_{2}, \quad \nabla_{X}^{\perp} \eta=\theta(X) \xi, \\
& \tilde{\nabla}_{X} \xi_{2}=-\tau_{2}(X) \xi+\tau_{3}(X) \xi_{3}, \\
& \tilde{\nabla}_{X} \xi_{3}=-\tau_{3}(X) \xi_{2}+\tau_{4}(X) \xi_{4} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& \tilde{\nabla}_{X} \xi_{s-1}=-\tau_{s-1}(X) \xi_{s-2}+\tau_{s}(X) \xi_{s}
\end{aligned}
$$

(3) $h(X, Y)=\beta\langle X, T\rangle\langle Y, T\rangle$ where $\beta=h(T, T)$, and T is the global (except for the sign) vector field on M, which is associated to $\tau_{2} /\left\|\tau_{2}\right\|$ in the duality defined by the metric.
(4) $d \theta=\beta[k(X, T)\langle Y, T\rangle-k(Y, T)\langle X, T\rangle]$.
(5) The distribution on M, defined by T^{\perp}, is involutive.

Proof. We know that ξ and η satisfy $L_{\xi} \neq 0$ and $L_{\eta}=0$. Using the Gauss-Codazzi equation

$$
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=\left(\bar{\nabla}_{Y} \sigma\right)(X, Z)
$$

and projecting on E_{1}^{\perp}, we find

$$
h(Y, Z) L_{\xi}(X)-h(X Z) L_{\xi}(Y)=0
$$

Therefore by Lemma 2 we deduce that $\operatorname{rg} h=\operatorname{rg} L_{\xi}=1$, so that there exist a scalar 1-form τ_{2} and a vector field ξ_{2} such that

$$
\begin{aligned}
h(X, Y) & =h(T, T)\langle X, T\rangle\langle Y, T\rangle, \\
\operatorname{pr}_{E_{1}^{\perp}} \nabla{ }_{X}^{\perp} \xi & =\tau_{2}(X)-\xi_{3}, \quad \tau_{2} \neq 0,
\end{aligned}
$$

where T is the vector field associated to $\tau_{2} /\left\|\tau_{2}\right\|$ in the duality defined by the metric.

On the other hand, since $\operatorname{dim} E_{1}=\operatorname{dim}[\operatorname{Im} \sigma]=2$ and $\langle\xi, \eta\rangle=0$, we can find a scalar form θ such that

$$
\operatorname{pr}_{E_{1}} \nabla_{X}^{\perp} \eta=\theta(X) \xi
$$

Consequently, we have

$$
\begin{aligned}
& \nabla{ }_{X}^{\perp} \xi=-\theta(X) \eta+\tau_{2}(X) \xi_{2}, \\
& \nabla{ }_{X}^{\perp} \eta=\theta(X) \xi,
\end{aligned}
$$

from which we deduce that $E_{2}=\left[\xi_{2}\right]$.
By Gauss-Codazzi equations we have that $\tilde{R}(X, Y) \eta=0 \forall X, Y \in T M$, so that

$$
\begin{equation*}
R^{\perp}(X, Y) \eta-\sigma(X, K(Y, \eta))+\sigma(Y, K(X, \eta))=0 . \tag{2}
\end{equation*}
$$

Projecting (2) on E_{1}^{\perp} gives $\theta \wedge \tau_{2}=0$.
In the same way, we have

$$
\begin{equation*}
\tilde{R}(X, Y) \xi=0, \quad \forall X, Y \in T M . \tag{3}
\end{equation*}
$$

Projecting (3) on ξ_{2} we find $d \tau_{2}=0$.
Finally

$$
k_{2_{m}}^{(M)}=\operatorname{Sup}_{X \in T_{m} M,\|X\|=1}\left\|\mathrm{pr}_{E_{1}^{\perp}} \nabla_{X} \xi\right\|_{m}=\left\|\tau_{2}\right\|_{m},
$$

and $k_{2}^{(m)}=\left\|\tau_{2}\right\|$.
We conclude by induction. Since $d \tau_{2}=0, T^{\perp}$ is involutive. Thus

$$
\|\theta\|_{m}=\operatorname{Sup}_{X \in T_{m} M,\|X\|=1}\left\|\mathrm{pr}_{E_{1}} \nabla_{X}^{\perp} \eta\right\|_{m} .
$$

Since η is the only section of F_{1}, we deduce immediately that $\|\theta\|=\theta^{M}$.
Finally projecting on η the equation $\tilde{R}(X, Y) \xi=0$ yields readily

$$
d \theta(X, Y)=\beta[\langle Y, T\rangle k(X, T)-\langle X, T\rangle k(Y, T)] .
$$

4.3. The case where $\exists i$ such that $k_{i}^{(M)}=$ const. and $\boldsymbol{\theta}^{(M)}=$ const.

Proposition 6. With the same hypotheses as in Proposition 5, if $\exists i \in\{2, \cdots, s\}$ such that $k_{i}^{(M)}=$ const. $\neq 0, \theta^{(M)}=$ const. $\neq-\infty$, then
$\left(1^{\circ}\right) d \theta=0$,
$\left(2^{\circ}\right) k(X, T)=k(T, T)\langle X, T\rangle$,
$\left(3^{\circ}\right) \theta^{(M)} k(X, Y)=\theta^{(M)} k(T, T)\langle X, T\rangle\langle Y, T\rangle+\beta\left\langle\nabla_{X} T, Y\right\rangle$,
$\left(4^{\circ}\right) \nabla_{T} T=0$.

Proof. (1°) We have $k_{i}=\left\|\tau_{i}\right\|=$ const. and $d \tau_{i}=0$. If $\pi=\tau_{2} /\left\|\tau_{2}\right\|, \forall i \in$ [2 $\cdots s$], then $d \pi=0$ since $\pi=\tau_{i} /\left\|\tau_{i}\right\|$. Thus $\theta=\theta^{(M)} \pi$ (cf. Proposition 5 (1)), and consequently $d \boldsymbol{\theta}=0$, because $\boldsymbol{\theta}^{(M)}=$ const.
$\left(2^{\circ}\right)$ is a consequence of Proposition 5 (4).
$\left(3^{\circ}\right)$ The Gauss-Codazzi equations give $\left(\bar{\nabla}_{X} \sigma\right)(X, Z)=\left(\bar{\nabla}_{Y} \sigma\right)(X, Z)$. Projecting this equation on ξ and η we obtain
(i) $\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z)-k(X, Z) \theta(Y)+k(Y, Z) \theta(X)=0$,
(ii) $\left(\nabla_{X} k\right)(Y, Z)-\left(\nabla_{Y} k\right)(X, Z)=0$.

Since $h=\beta \pi \otimes \pi$, from (i) it follows that

$$
m(X, Z)\langle Y, T\rangle=m(Y, Z)\langle X, T\rangle
$$

where

$$
m(X, Y)=\beta\left\langle\nabla_{X} T, Z\right\rangle-\theta^{(M)} k(X, Z)
$$

Hence

$$
m(X, Y)=m(T, T)\langle X, T\rangle\langle Y, T\rangle
$$

i.e.,

$$
\beta\left\langle\nabla_{X}, T, Y\right\rangle-\theta^{(M)} k(X, Y)=-\theta^{(M)} k(T, T)\langle X, T\rangle\langle Y, T\rangle .
$$

$\left(4^{\circ}\right)$ is an immediate consequence of $\left(3^{\circ}\right)$ with $X=T$.

4.4. Proof of Theorem 4

We shall use Propositions 4 and 5.
Let M_{1} be the interior of the set of the points $m \in M$ such that $\left(k_{2}^{(M)}\right)_{m}=0$. Let \tilde{M}_{2} be the interior of the set of the points $m \in M$ such that $\left(k_{2}^{(M)}\right)_{m} \neq 0$ and $\theta_{m}^{(M)} \neq-\infty$. Let M_{3} be the interior of the set of the points $m \in M$ such that $\left(k_{2}^{(M)}\right)_{m} \neq 0$ and $\theta_{m}^{(M)}=-\infty$. We shall study M_{1}, \tilde{M}_{2} and M_{3}.

Since $\operatorname{dim} E_{1}=2, M_{1}$ is an open set, the connected components of which are submanifolds with substantial codimension 2 (cf. Theorem 1). In order to study \tilde{M}_{2}, we shall use Proposition 5. Since on \tilde{M}_{2} the distribution T^{\perp} is involutive, \tilde{M}_{2} is foliated by hypersurfaces \bar{M}_{2} such that $\sigma(X, Y)=k(X, Y) \eta$, $\forall X, Y \in \overline{T M_{2}}$. If $\bar{\sigma}^{2}$ denotes the second fundamental form of $\overline{M_{2}}$ in \tilde{M}^{n+p}, we have

$$
\bar{\sigma}^{2}(X, Y)=k(X, Y) \eta+\left\langle\nabla_{X} Y, T\right\rangle T .
$$

Thus $\operatorname{dim} E_{1}^{\overline{M_{2}}}=2$. Consequently, we can find two open sets N_{1} and N_{2} such that $N_{1} \cup N_{2}$ is dense in M_{2}, and N_{1} and N_{2} satisfy

$$
\left.\operatorname{dim} E_{1}^{\overline{M_{2}}}\right|_{N_{1}}=1,\left.\quad \operatorname{dim} E_{1}^{\overline{M_{1}}}\right|_{N_{2}}=2 .
$$

On $N_{1}, \operatorname{dim} E_{2}^{\overline{M_{2}}} \leqslant 1$, and it is clear that $\operatorname{dim} E_{3}^{\overline{M_{2}}}=0$ on a dense open set of N_{1}. On $N_{2}, \operatorname{dim} E_{2}^{\overline{M_{2}}}=0$ since $L_{\eta}=0$.

Using Theorem 1 we conclude that \tilde{M}_{2} contains a dense open set M_{2} which is foliated by hypersurfaces with substantial codimension 2 in \tilde{M}^{n+p}.

In order to study M_{3}, we shall use Proposition 4. On M_{3}, the index of relative nullity is equal to $n-2$. Using a well-known theorem (cf. [1] for instance), we conclude that M_{3} is foliated by totally geodesic submanifolds of dimension $n-2$.

Theorem 4 is proved.

4.5. Proof of Theorem 5

(A) Let $\boldsymbol{\theta}^{(M)}=0$.
(1°) From Proposition 6 (3), we obtain $\beta\left\langle\nabla_{X} T, Y\right\rangle=0, \forall X, Y \in T M$. Since $\beta \neq 0, T$ is parallel. If M is complete, connected, and simply connected, from De Rham theorem, we have $M=C \times M_{1}$, where C and M_{1} are maximal integral submanifolds of T and T^{\perp} at a point $p \in M$. The general result is obtained by passing to the universal covering of M.
$\left(2^{\circ}\right)$ We have $\operatorname{dim} E_{1}^{\left(M_{1}\right)}=1$ and $k_{2}^{\left(M_{1}\right)}=0$. In fact, let $\sigma^{M_{1}}$ be the second fundamental form associated with the restriction of the immersion to M_{1}. We have $T M=T M_{1} \oplus T$. Hence $\forall X, Y \in T M_{1}, \sigma^{M_{1}}(X, Y)=\sigma(X, Y)+\langle$ $\left.\tilde{\nabla}_{X} Y, T\right\rangle T=k(X, Y) \eta$. Consequently, $\operatorname{dim} E_{1}^{\left(M_{1}\right)} \leqslant 1$. If, at a point $m \in M$, $k_{m}(X, Y)=0 \quad \forall X, Y \in T_{m} T_{1}$, then $\operatorname{dim} \operatorname{Ker} k_{m}=n-1$, and therefore $k_{m}(X, Y)=\gamma\langle X, T\rangle\langle Y, T\rangle$, which implies that h_{m} and k_{m} are proportional; this is excluded. Hence $\operatorname{dim} E_{1}^{\left(M_{1}\right)}=1$.
Let $\nabla^{\perp_{1}}$ be the normal connexion on M_{1}. Then $\forall X \in T M_{1}$ we have $\nabla_{X}^{\perp^{M_{1}}} \eta=k(X, T) T=0$ since $X \perp T$, and thus $\left(k_{2}^{\left(M_{1}\right)}\right)_{m}=0, \forall m \in M_{1}$.
(3°) On the other hand, since T is parallel, $R(X, T) T=0, \forall X \in T M$. From Gauss-Codazzi equations we have

$$
\tilde{R}(X, T) T=K(X, \sigma(T, T))-K(T, \sigma(X, T))
$$

If c is the curvature of \tilde{M}^{n+p}, then

$$
c(\langle X, Y\rangle-\langle X, T\rangle\langle Y, T\rangle)=k(T, T)[k(X, Y)-k(T, T)\langle X, T\rangle\langle Y, T\rangle]
$$

If $c \neq 0$, we have $k_{m}(T, T) \neq 0, \forall m \in M$, since the equality does not hold for every X, Y. Thus

$$
k(X, Y)=\frac{c}{k(T, T)}\langle X, Y\rangle, \quad \forall X, Y \in T M_{1}
$$

Consequently, if $c \neq 0$, the submanifold M_{1} is totally umbilical and is contained in an "hypersphere".

If $c=0$, we have $k(T, T)=0$. In fact, if at a point $m \in M, k_{m}(T, T)_{m} \neq 0$, then $k_{m}(X, Y)=k_{m}(T, T)_{m}\langle X, T\rangle\langle Y, T\rangle$ which is impossible because h_{m} is not proportional to k_{m}.

Computing the Frenet curvatures of C, we find:

$$
\begin{aligned}
& \tilde{\nabla}_{T} T=\nabla_{T} T+\sigma(T, T)=\sigma(T, T)=\beta \xi \Rightarrow k_{1}^{(C)}=\beta, \\
& \tilde{\nabla}_{T} \xi=\nabla{ }_{T}^{\perp} \xi-K(T, \xi)=\tau_{2}(T) \xi_{2}-\beta T \Rightarrow k_{2}^{(C)}=\left|\tau_{2}(T)\right|=k_{2}^{(M)}, \\
& \cdot{ }^{(M)} \cdot \\
& \tilde{\nabla}_{T} \xi_{i}=\nabla_{T}{ }_{T}^{\perp} \xi_{i}=\tau_{i+1}(T) \xi_{i+1}-\tau_{i}(T) \xi_{i-1} \\
& \Rightarrow k_{i+1}^{(C)}=\left|\tau_{i+1}(T)\right|=\left\|\tau_{i+1}\right\|=k_{i+1}^{\left(M^{n}\right)} .
\end{aligned}
$$

Hence

$$
k_{i}^{(C)}=k_{i}^{(M)}, \quad \forall i \in[2 \cdots s] .
$$

(B) Let $\theta^{(M)}=$ const. $\neq 0$. From Proposition 6(3), we have
(*) $k(X, Y)=k(T, T)\langle X, T\rangle\langle Y, T\rangle+\frac{\beta}{\theta^{\left(M^{n}\right)}}\left\langle\nabla_{X} T, Y\right\rangle, \quad \forall X, Y \in T M$.
Let M_{2} be a maximal integral submanifold of the distribution T^{\perp}, and $\sigma^{M_{2}}$ the second fundamental form associated to M_{2}. Then we have

$$
\begin{aligned}
\sigma^{M_{2}}(X, Y) & =\sigma(X, Y)+\left\langle\nabla_{X} Y, T\right\rangle T \\
& =\left\langle\nabla_{X} T, Y\right\rangle\left(\frac{\beta}{\theta^{\left(M^{n}\right)}} \eta-T\right) .
\end{aligned}
$$

Thus $\operatorname{dim} E_{1}^{\left(M_{2}\right)} \leqslant 1$.
On the other hand, $\nabla T \neq 0$ at every point. In fact, if $(\nabla T)_{m}=0$ at $m \in M, k_{m}$ is proportional to h_{m}, and $\operatorname{dim}\left(E_{1}\right)_{m}=1$. Consequently, $\operatorname{dim} E_{1}^{\left(M_{2}\right)}=1$.
Finally, let $\nabla^{\perp^{M_{2}}}$ be the normal connexion on M_{2} induced by ∇^{\perp}. If $x \in T M_{2}$, then

$$
\begin{aligned}
\nabla_{X}^{\perp^{M_{2}}}\left(\frac{\beta}{\theta^{(M)}} \eta-T\right) & =\operatorname{pr}_{T M^{\perp} \oplus T} \tilde{\nabla}_{X}\left(\frac{\beta}{\theta^{(M)}} \eta-T\right) \\
& =\nabla_{X} \frac{\beta}{\theta^{(M)}} \eta+k(X, T) T-\sigma(X, T)-\left\langle\nabla_{X} T, T\right\rangle T \\
& =0
\end{aligned}
$$

since $X \perp T$. Consequently $k_{2}^{\left(M_{2}\right)}=0$.
Now we shall study the case where $\tilde{M}=R^{n+p}(c), c \neq 0$. We shall need the following lemmas.

Lemma 10. With the notations of Proposition $6, \forall X \in T M$ we have

$$
c\{\langle X, T\rangle T-X\}=-\left[\frac{\theta^{(M)}}{\beta} k(T, T)+\frac{T(\beta)}{\beta}+k(T, T) \frac{\beta}{\theta^{\left(M^{n}\right)}}\right] \nabla_{X} T
$$

Proof of Lemma 10. From Gauss-Codazzi equations, we have

$$
\begin{align*}
\tilde{R}(X, Y) T & =R(X, Y) T-K(X, \sigma(Y, T))+K(Y, \sigma(X, T)), \\
& =R(X, T) T-k(T, T) \frac{\beta}{\theta^{\left(M^{n}\right)}} \nabla_{X} T . \tag{**}
\end{align*}
$$

Let us compute $R(X, T) T$. From the proof of Proposition 6 (3) (ii) we have

$$
\left(\nabla_{X} k\right)(Y, Z)=\left(\nabla_{Y} k\right)(X, Z) .
$$

Replacing k by its expression (Proposition 3.3) gives

$$
\begin{aligned}
& \frac{\beta}{\theta^{(M)}}\langle R(X, Y) T,Z\rangle \\
&+d(k(T, T) \pi)(X, Y)\langle Z, T\rangle \\
&+\frac{1}{\theta^{(M)}} X(\beta)\left\langle\nabla_{Y} T, Z\right\rangle-\frac{1}{\theta^{(M)}} Y(\beta)\left\langle\nabla_{X} T, Z\right\rangle \\
&+k(T, T)\langle Y, T\rangle\left\langle Z, \nabla_{X} T\right\rangle-k(T, T)\left\langle Z, \nabla_{Y} T\right\rangle=0 .
\end{aligned}
$$

Thus we deduce

$$
\begin{aligned}
R(X, Y) T=\frac{\theta^{(M)}}{\beta}[& \left\{k(T, T)\langle X, T\rangle-\frac{X(\beta)}{\theta^{(M)}}\right\} \nabla_{Y} T \\
& \left.-\left\{k(T, T)\langle Y, T\rangle-\frac{Y(\beta)}{\theta^{(M)}}\right\} \nabla_{X} T\right] .
\end{aligned}
$$

From ($* *$) and $\nabla_{T} T=0$ it follows that

$$
\tilde{R}(X, T) T=-\left[\frac{\theta^{(M)}}{\beta} k(T, T)+\frac{T(\beta)}{\beta}+k(T, T) \frac{\beta}{\theta^{(M)}}\right] \nabla_{X} T .
$$

Since the curvature of \tilde{M}^{n+p} is constant $(=c)$, we have

$$
c\{\langle X, T\rangle T-X\}=\gamma \nabla_{X} T
$$

with

$$
\gamma=-\left[k(T, T) \frac{\beta}{\theta^{(M)}}+\frac{T(\beta)}{\beta}+k(T, T) \frac{\theta^{(M)}}{\beta}\right] .
$$

Lemma 11. If $c \neq 0$, the direction η is quasiumbilical.

Proof of Lemma 11. At first we recall that a directiion $\nu \in T M^{\perp}$ is quasiumbilical if $\exists f_{1}$ and $\exists f_{2} \in C^{\infty}(M)$ such that

$$
\langle K(X, v), Y\rangle=f_{1}\langle X, U\rangle\langle Y, U\rangle+f_{2}\langle X, T\rangle,
$$

where $U \in T M$. Let $Y \perp T$. From Lemma 10 it follows that $-c Y=\gamma \nabla_{Y} T$. Since $c \neq 0$, we deduce that $\gamma \neq 0$ at every point of M. Consequently, $\nabla_{X} T=c / \gamma\{\langle X, T\rangle T-X\}$. Thus from Proposition 6 (3) we deduce

$$
k(X, Y)=f_{1}\langle X, T\rangle\langle Y, T\rangle+f_{2}\langle X, T\rangle
$$

with

$$
f_{1}=k(T, T)-\frac{\beta c}{\boldsymbol{\theta}^{(M)} \gamma}, \quad f_{2}=-\frac{\beta c}{\boldsymbol{\theta}^{(M)} \gamma} .
$$

Hence η is quasiumbilical.
We can now proceed to prove (B). To this end, let M_{2} be a maximal integral submanifold of T, and $\sigma^{M_{2}}$ the second fundamental form associated to M_{2}. Then

$$
\sigma^{M_{2}}(X, Y)=k(X, Y) \eta+\left\langle\nabla_{X} Y, T\right\rangle T .
$$

Since $c \neq 0$, we deduce

$$
\sigma^{M_{2}}(X, Y)=f_{2}\langle X, T\rangle \eta+\frac{c}{\gamma}\langle X, T\rangle T .
$$

Thus $\sigma^{M_{2}}(X, Y)=\langle X, T\rangle\left(f_{2} \eta+c / \gamma T\right)$, which shows that M_{2} is totally umbilical and contained in $(n-1)$-dimensional hypersphere. Hence M^{n} is foliated by $(n-1)$-dimensional hyperspheres, when $c \neq 0$, and (B) is proved.
(C) Let $\boldsymbol{\theta}^{(M)}=-\infty$. In this case, we know that the index of relative nullity of M is equal to $(n-2)$ at every point m of M. Consequently, M is foliated by totally geometric submanifolds of dimension $n-2$.

Hence Theorem 5 is completely proved.
Remarks. Some of the results in this paper are summarized in [6], [7], [8]. The topological properties of the principal normal spaces are exposed in [13] and summarized in [11] and [12]. The existence of immersions with prescribed external curvatures has been studied in [5]. These papers are a part of the second author's thesis [14].

References

[1] S. Alexander, Reductibility of Euclidean immersions of low codimension, J. Differential Geometry 3 (1969) 69-82.
[2] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
[3] ___ Classification of totally umbilical submanifolds of symmetric spaces.
[4] P. Dombrowski, Differentiable maps into Riemannian manifolds of constant stable osculating rank. I, J. Reine Angew. Math. 274/275 (1975) 310-341.
[5] J. Gasqui \& J. M. Morvan, On external curvatures, Ann. Fac. Sci. Univ. Toulouse.
[6] J. Grifone \& J. M. Moran, Courbures de Frenet d'une sous-variété d'une variété Riemannienne et cylindricité, C. R. Acad. Sci. Paris, Série A, 283 (1976) 207.
[7] ___ Courbures externes et torsion interne d'une sous-variété d'une variété Riemannienne, C. R. Acad. Sci. Paris, Série A, 285 (1977) 67.
[8] ___ Sur les sous-variété à torsion interne et externe constante, C. R. Acad. Sci. Paris, Série A, 285 (1977) 257.
[9] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vols. I, II, John Wiley, New York, 1963, 1969.
[10] N. Kuiper, Minimal total absolute curvature for immersions, Invent. Math. 10 (1970) 209-238.
[11] J. M. Morvan, Quelques relations entre la topologie d'une sous-variété et ses courbures externes, C. R. Acad. Sci. Paris, Série A, 287 (1978) 28.
[12] __, Sur quelques relations entre l'auto-enchainement d'une sous-variété Riemannienne, la somme des indices de ses points d'intersections avec certains fibrés et ses courbures externes, C. R. Acad. Sci. Paris, Série A, 287 (1978) 145.
[13] _, Topology of a submanifold and external curvatures, Rend. Math.
[14] _, Quelques propriétés géométriques et toppologiques des sous-variétés Riemanniennes, Thèse d'Etat, Université de Limoges, 1979.
[15] B. O'Neill, Isometric immersions of flat Riemannian manifolds of Euclidean space, Michigan Math. J. 9 (1962) 199-205.
[16] T. Otsuki, Frenet frame of an immersion, Kōdai Math. Sem. Rep. 20 (1968).
[17] M. Spivak, A comprehensive introduction of differential geometry, Vol. IV, Chap. 7. Publish or Perish, Boston, 1970.
[18] J. L. Weiner, Closed curves of constant torsion. II, Proc. Amer. Math. Soc. 67 (1969).

Universite Paul Sabatier, Toulouse

