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EXTERNAL CURVATURES AND INTERNAL
TORSION OF A RIEMANNIAN SUBMANIFOLD

JOSEPH GRIFONE & JEAN-MARIE MORVAN

0. Introduction

The geometrical idea of this work is quite natural. Following the construc-
tion of the torsion of a submanifold given by Otsuki [16], and using the
principal normal spaces introduced by Allendorfer, we define the “external
curvatures” of a submanifold to be entities which, in a certain sense, measure
the distance between the submanifold and osculator spaces. Roughly speaking,
the second external curvature (or external torsion), for example, measures the
rate of which the E|-sections leave E| after parallel displacement; E, is the first
principal normal space, i.e., the space spanned by the image of the second
fundamental form (cf. for example [17], [4]).

The study of the case where dim E, > 1 leads us to introduce the notion of
internal torsion ™). In analogy with the external torsion, 8™ describes the
rate of parallel displacement of E-section which stay in E.

Using these quantities, we give a description of the submanifolds of a space
form in the case where dim E, is constant and < 2.

1. Preliminaries

Note. When we want to indicate that the dimension of a manifold M is n,
we write M".

Let (M”, g) and (M"*?, §) be two Riemannian manifolds, and f: M - M
be an isometric immersion. We use the following notation: TM and T M are
the tangent spaces of M and M, v and v are the Levi-Civita connexions on
M and M, R and R are the curvature tensor of M and M, T+ M is the normal
bundle, v+ is the Riemannian connexion induced by v on T M, o is the
second fundamental form of M and K the associated tensor defined by

g(K(X,¢),Y)=g(e(X,Y),$),
where X,YE TM,and{ € T+ M.

Communicated by A. Lichnerowicz, September 27, 1979.



352 JOSEPH GRIFONE & JEAN-MARIE MORVAN

We have
VyY=v,Y+e(X,Y), VX,YETM
Vib=vyt—K(X, §), VXETMV¢ET M
and the following Gauss-Codazzi and Codazzi-Ricci equations:
) R(X,Y)Z= R(X,Y)Z + K(X,0(Y,2)) - K(Y,0(X, Z))
+ (v xo)(Y, 2) =(Vyo)(X. Z),
@ R(X,Y)E= R (X, )¢+ o(X, K(Y, §)) = o(Y, K(X, £))
- (VxK)(Y,8) + (V,K)(X,§)
VX,Y,Z € TMVEE T M, where R is the curvature tensor on T+ M, and
(Vx0)(¥, 2) = v4(o(Y, 2)) — o(V 4 ¥, Z) = o(Y, ¥ 4 Z),
(VxK)(Y. §) = v x(K(Y,£)) = K(V x ¥, §) — K(Y, v }£).

By [A] we denote the vector space spanned by the subspace 4 of a vector
space.

2. External curvatures and internal torsion of a
Riemannian submanifold
Let f= M" - M"*” be an isometric immersion.
Lemma 1. Let 9 be a distribution on T M. If £ € D and X € T, M, then
pro: V % & depends only on §,,.
The proof is obvious.
This lemma allows us to give the following definitions.
Definition 1 (cf. [17] for instance). Let m € M; we define (E,),, = T,, M and

(El)m = [ImO’m],
(ie., the space spanned by the image of o,). If dim £, is constant on a
neighborhood of m, we define
Ly T,MX(E), > Tt M
(X’ £)'_’prEiL VJ,{’g

and (E,),, = [Im L,]. By induction if dim(E,_,),, is constant on a neighbor-
hood of m, we define
L:T,MX(E_),~»Thi M
(X,¢) PPl e g)* vxé,
J<i

and (E,),, = [Im L,], and call E, the ith principal normal space.



EXTERNAL CURVATURES AND INTERNAL TORSION 353

Definition 2. A submanifold M of M is said to be E ~nicely curved if E; is a
subbundle of T+ M, Vi <j.

Definition 3. Let m € M. If (E,),,,.--,(E;),, are defined, we call the norm
of the bilinear map L, (with L, = ¢), i.e.,

(k) = sup  IL(X, ¢l
XET, M,IIXII=1
EE(E;_)pllEl=1
the jth-external curvature (or jth-Frenet curvature) at m.

The principal normal space gives a decomposition of the normal space
T+ M. In order to study submanifolds such that dim £, > 1 we introduce a
decomposition of E,. Let F;, = {n € E| | L,(X,n) =0 VX € TM}, and give
the map

®: TM X F, > E,
(X,n) > pre V.

We define
F,=[Im®] and (™), = Sup Ne(x,n)I.
XET,M,|IXI=1
NE(F),., lInll=1

If (F)),, = {0}, we say that 6™ = —oo.

Definition 4. ™) is called the internal torsion of M.

Remarks on these definitions.

1.(E),, =0 (k™) = 0.

2. A point m € M" such that (k{*),,,- - -,(k{™),, are defined and nonzero
will be said to be s-regular.

3. If M is a curve, then k{™ coincides with the ith Frenet curvature of the
curve. In this case, §* is finite only if the curve is plane, and §™) = 0.

4. Clearly, if dim E, = 1 at every point, then §* = 0 or —co.

5. It can be more interesting (cf. [5]) to take the tensorial norm of the maps
L, to define k(™).

Using the work of Burstin, Mayer, Allendoerfer (cf. M. Spivak [17, Vol. IV,
Chap. 7, p. 241]), we can immediately deduce the following result.

Theorem 1. Let M" be a connected, simply connected submanifold of a space
form M"*?(c) (of constant curvature c). Suppose that the principal normal space
E, ---E, of M satisfy the following conditions:

M" is E, niced-curved, dim E, ® - -- ®dim E, = r = const., k{}} = 0.
Then M" is a submanifold of M"*?(c) with substantial codimension r (i.e., there
exists a totally geodesic submanifold of dimension n+ r in M"*?(c) which
contains M").
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Examples.

(a) The unit sphere S” in the euclidean space E"*?. We have dim E, =
1, k{S" =1,dim E; = 0 forj > 1.

(b) A cylinder, i.e., a submanifold M" in E"*? such that M" = C X E""!,
where C is a curve. The second fundamental form of M" has the following
expression:

o(X,Y) = o X, T)XY, T)E,

where T is the unit vector tangent to the curve C, | a| is the curvature of C,
and £, is the first principal normal vector of C. We have

Vi = kXX, T)HE,,
VJi'gi—l = k:(C)(X’ T)E — kf£)2<X, T)¢_,,
vx&= —k,(f)l(X, )¢y,

where k}c), 1 <j <i, are the Frenet curvatures of C in E"*? when these
curvatures are defined. We can deduce that if k{<) # 0 on an open set U, and
k{©) =0 on U, then

dimE; = 1 if 1<j<i,

dimE =0 if j>1,
kMO =k© i 1<j<p.

(c) The product of two curves C,, C,: M? = C, X C,, where C, and C, are
two closed curves in E3, the torsion of which is never zero (cf. [18]). In this
case, dim E, = 2,dim E, = 2. This is an example of a compact submanifold of
Euclidean space such that dim E, # 0 at each point.

(d) A nonextrinsic sphere M"” of a Hermitian symmetric space of compact
type, [3], is an example of submanifold such that dim E, = 1, dim E, = n.

(e) In [10] N. Kuiper proved that any substantial tight compact submanifold
M in Euclidean space satisfies (E{"),, = 0 Vm € M.

3. Submanifolds in spaces of constant curvature such that dim E, < 1

Let us consider a submanifold of a Riemannian manifold. Generally, if we
suppose that its first principal normal space has dimension 1, we cannot
deduce any strong restriction on the second principal normal space (see
Example (c), §2). However, we shall show that, if the ambient space has
constant curvature, and dim E, = 1, then the submanifold is cylindrical (in the
sense of B. Y. Chen [2]), and dim E; = 1 or 0. This will allow us to give a
classification of submanifolds such that dim E, < 1.
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We shall prove the two following theorems.

Theorem 2. Let M"*?(c) be a (n + p)-dimensional manifold of constant
curvature ¢, and f: M"™ <> M"*P(c) be an isometric immersion of a connected
Riemannian manifold in M"*?(c). Suppose that the first principal normal space
E, of M satisfy the condition:

dim E, <1 at every point.

Then there exists a dense open set M’ of M such that M’ = M, U M, with
M, N M, = &, where M, and M, are two open sets such that:

(a) The connected components of M, are submanifolds with substantial codi-
mension 1 in M"*?(c).

(b) M, is foliated by hypersurfaces which are totally geodesic in M"7(c).

Theorem 3. Let M"*?(c) be a (n + p)-dimensional manifold of constant
curvature ¢, and f: M" — M"*?(c) be an isometric immersion of a Riemannian
manifold in M"*?(c). Suppose that

(&) M is connected, complete, and E -nicely curved, s = 1,

(B) dim E, = 1 at every point,

(v) k$™ 5 0 at every point (i.e., each point is biregular),

(8) 3i € {1, - -,s} such that k™ = const.# 0.

Then:
(Dc=0,
2) M is flat,

(3) M = C X M,, where M, is totally geodesic in M"*?(¢) and C is a curve of
M"*P(¢) such that kj(-M) = k/(-C’, j=1,---,p, kj(-c) being the classical Frenet
curvatures of C in M"*(c¢).

Remark. If M""7(c) = E"*?, and M" satisfies only (a), (8), (v), using a
theorem of O’Neill [15] we can conclude that M = C X E"~!, where C is a
curve in E"7-

In order to prove this theorem, we need the following propositions.

Proposition 1. Let f: M — M"*?(c) be an isometric immersion of a con-
nected manifold in a space M""P(c) of constant curvature c. Suppose that the
first principal normal space E, of M, has dimension 1 at every point of M,, and
that the second external curvature k™ of M, is null everywhere. Then M, is a
submanifold of substantial codimension equal to 1 in M"*P(¢).

Proof of Proposition 1. Use Theorem 1.

Proposition 2. Let f: M) - M"*?(c) be an isometric immersion of a con-
nected n-dimensional (n = 2) manifold in a space M"*?(c) of constant curvature
c. Suppose that the first principal normal space E, of M, has dimension 1 at every
point of M,, and that every point of M, is biregular. Then for every s-regular
(2 < s < p) m € M, there exists a unique, except for the sign, unit vector system
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(&, - -,&,} orthogonal to M,, and defined on a neighborhood of m, and s — 1
nonnull linear forms v,,- - -,7,, which are closed, proportional, and defined on a
neighborhood of m, such that:

Il = kM), and VX E T, M,,

v & =n(X)E,,
Vxé = n(X)é — n(X)§,

VJ/\"'gs—l = TS(X)gs - Ts—l(X)gs—-P forsgp - 1’
v, = -1( X)),

To prove this proposition we need the following.

Lemma 2. Let h: R*" X R" > R be a symmetric bilinear form, and L:
R" — R? a linear application. If L # 0, h # 0 and

WY, Z)L(X)—h(X,Z)L(Y)=0 VX,Y,ZER",
thentg h =1g L = 1 and Ker h = Ker L.

The proof of Lemma 2 is obvious.

Proof of Proposition 2. Since the curvature of M"*? is a constant c, the
normal component of R'(X,Y)Z is null VX,Y, Z € TM,. Consequently,
= (?Xo)(Y, Z)= (;YO)(X, Z). Since dim E, = 1, we can write (X, Y)
= h(X, Y)§,, where §, is unique except for the sign. (1)

(Vxh)(Y, Z)& —(Vyh)(X, Z)& + h(Y, Z) Vi &

(1 _h(X, Z)VEE =0.

The projection of (1”) on &, gives
h(Y,Z)L(X)—h(X,Z)L(Y)=0, VX, Y,ZETM,

where L(X) = v 3§,

Since dim E, =1, h # 0; since m is s-regular with s =2, L %+ 0. Then
applying Lemma 2 we obtain rgh = rg L = 1 at m and consequently on a
neighborhood of m. Let L(X) = 1(X)§,, where &, is a unit vector field of
Im L on a neighborhood of m.

Since the curvature of M"*7 is a constant c, (2) gives R(X, Y)§, = 0. Then
the normal componant of R(X, Y)§, is null:

@y RE(X,Y)§ = o(X, K(Y, £) — oY, K(X, £)).

The projection of (2’) on £, gives dr, = 0.
Now assume that m is s-regular, s = 3. The projection of (2') on £, gives

Pref[’z(y)vi'fz —n(X)vy &) =0.
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Let M(X) = prﬁ(vﬁﬁz). M # 0 because s = 3. (2') gives
(27 n(Y)M(X) —n(X)M(Y)=0 VX, YETM,.
Since 7, = 0 and M = 0, we deduce that Ker 7, = Ker M. Hence rg M = 1,
and there exist a unit vector §£; and a linear form 7, such that M(X) = 7,( X)&,.
Moreover by (2”’) we have
(Y)n(X) — n(X)n(Y) =0,

ie,m A1 = 0. Finally, V3£ = 1(X)&; — n( X)§,.

We proceed in such a way, studying the projection of R(X, Y)£, on £, , and
§,+2, 1 <i<s. Now we can evaluate the external curvatures of M,:

(k§2), = Sup  Sup liprge vl

nEE,, XET, M,
Ipll=1 NIXI=1

= Sup ||72(X)§2” = “72“,”,
XET, M,
Ixl=1

and, since El = [gl], E2 = [£2]" : "Ei = [‘Ei]9' )

M) — L
(ki*),,= Sup  Sup HPT ® (E)s vV X"H
NE(Ei—)m XET,, M, J<i

lImll=1 IXxI=1

= Sup lr(X)&N =17,
XET, M,
Ixi=1

Proposition 3. Let f: M} — M"*?(c) be an isometric immersion of an
n-dimensional manifold M, in an (n + p)-dimensional manifold of constant
curvature ¢, (n = 2), such that dim E, = 1. If k™2 5 0 at every point of M,,
then M, is foliated by totally geodesic (n — 1)-submanifolds of M"P,

Proof of Proposition 3. Since every point of M, is 2-regular, the form
7, = [Iv* & |l is defined (except for the sign) on M,. Let T, be the vector field
(# 0 for k$™ + 0) associated with , in the duality defined by the metric, and
let T=T/ITI.

(1) e h(Y, ZXT, X)=h(X, ZXT,Y).

Thus h(X,Y)= B(X,T){Y,T) with B = h(T,T) # 0. Consequently, the
relative nullity index is constant (= n — 1) on M,. Hence applying a result of
[1] we conclude that M, is foliated by totally geodesic (n — 1)-dimensional
submanifolds of M"*?.

We shall now prove Theorem 2 and Theorem 3.

Proof of Theorem 2. Let m € M. One of the following three possibilities
can happen.
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A. 3U,, an open neighborhood of m, such that dim E, |Ul = (. In this case,
U, is totally geodesic, and of course, foliated by hypersurfaces which are totally
geodesic in M"*7(c).

B. 3U,, an open neighborhood of m, such that dim E, |, = 1 and k4{{) = 0.
In this case, using Proposition 1 we can conclude that locally the substantial
codimension of U is one.

C. 3Uj,, an open neighborhood of m, such that dim E, |, = 1 and k§* # 0.
Then using Proposition 2 we can conclude that Uj is foliated by hypersurfaces
which are totally geodesic in M"*?(c).

Finally, it is clear that there exists a dense open set M’ of M on which one of
these three possibilities happens. Hence Theorem 2 is proved.

Proof of Theorem 3. We can suppose that M is simply connected. The
general result is obtained by passing to the universal covering of M. The proof
consists in building a parallel vector field on M. Then we apply the
De Rham decomposition theorem (cf. [9]). We need the following lemmas.

Lemma3. k™ =|7(T)|ifi=2.

This is a consequence of Proposition 2.

Lemma 4. Let w be the form associated to T in the duality defined by the
metric. Then d(B w) = 0.

Proof of Lemma 4. Since M"*? is of constant curvature, the normal
componant of R(X, Y)Tis null VX,Y € TM.

(1) © (v x0)(Y,T) = (Vyo)(X,T).

Projecting this equality on §,, we obtain d(8 w) = 0.

Lemma 5. If there exists i €[1 ---p] such that k™ = const.# 0, then
X(B)=0,VXLT

Proof of Lemma 5. 1f i = 1, then k{* = Supllo( X, Y)Il =|A(T, T)|=|B|.
Thus 8 = const. Hence X(8) = 0,VX L T.

If i =2, since w = 7./[|7[l, by Lemma 4 we have d(B7,/lI71) = 0. l[7ll =
k™ = const.= d(B 1) = 0 = dB A 7, = 0 since d 7, = 0, (by Proposition 2) =
X(B)=0,YX LT

Lemma 6. If there exists i € [1 - - - p] such that k™ = const.5 0, then T is
parallel.

Proof of Lemma 6. From (2) we deduce

2 (VxKXNT, &) = (vK)(X,§).

Let X1 T,X€TM. Since K(Y,£)=pB{Y, T)T, VY ETM, we have
K(X,§)=0.Hence ") = X(B)T+ BV xT=B(X,VT)T.Since X L T,
X(B) = 0. Therefore BV T = B{X, Vv T)T. Since B #0 and v ,T L T,
we deduce vV T =0if X L T, and v T = 0. Consequently T is parallel.
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Now we return to the proof of Theorem 3. Since M”*”? is of constant
curvature c,

R(X,Y)Z = c{(X, Z)Y — (Y, Z) X}
+K(Y, B(X, T)(Z, T)%,)
=R(X,Y)Z.

Hence the curvature of M is ¢, and M possesses a parallel field. It follows that
¢ = 0so that M and M"*? are flat.

On the other hand, the distributions A, and A, defined by 7 and T+ are
parallel and differentiable. Hence M is the product of C X M, where C and M,
are maximal integral submanifolds of A, and A,. It is easy to see that M, is

totally geodesic in M"*?.
Now we can estimate the Frenet curvatures of C in M"*?:

VrT=VrT+ B =BE, kO =|B|=kM;

6151 = V#gl — K(T, ¢) = n(T)¢, — BT, k() =|n(T) |= kgM");
Vb= vré& —K(T, &) =1,.(T),, — m(T)¢_y,
kt(f)l =|1.0(T) |= k).

Therefore k() = k™", Vi €[l ---p].

4. Submanifolds such that dim E, = 2

Let us now consider a submanifold M of a space of constant curvature, such
that dim E, = 2. We shall show that it is possible to describe M with the
external curvatures and the internal torsion. We shall prove the following

theorems.
Theorem 4. Let f: M"— M""?(c) be an isometric immersion of an n-
dimensional manifold M" in the space form M"*P(c), n = 3, p = 2. Suppose that

dim E, = 2 at every point m € M.
Then M contains a dense open set M’ such that
M' =M, UM, UM, (MmMj: 2,i#j),

where M|, M,, My are three open sets such that:
(a) The connected componants of M, are submanifolds of M"*?(c) which have

a substantial codimension equal to 2,
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(b) M, is foliated by hypersurfaces of substantial codimension equal to 2 in
Mn+ p( C),

(¢) M, is foliated by (n — 2)-dimensional totally geodesic submanifolds of
M"*P(c).

Theorem 5. Let f: M" - M"*P(c) be an isometric immersion of an n-
dimensional manifold M" in the space form M"*?(c), n = 3, p = 2, such that

(i) dim E, = 2 at every point m € M,

(ii) every point of M is s-regular, s = 2,

(iii) the internal torsion 6™ is constant.
Then each of the following holds:

(A) If the internal torsion ™ =0, and 3i € (2,---,s} such that k™ =
const.# 0 and M is complete, connected, then M = C X M,, where C is a curve,
and M, a submanifold with substantial codimension 1. Moreover, if ¢ = 0, we
have k(© = k™, Vj = 2; if ¢ # 0, then M, is an open set of an “n-sphere”.

(B) If the internal torsion 9™ = const # 0, and 3i € {2,---,s} such that
k™ = const # 0, then M is foliated by (n — 1)-dimensional submanifolds M,
with substantial codimension 2. In particular, if ¢ # 0, then M, is included in an
“n-sphere”.

(C) If the internal torsion 0™ = —o, then M is foliated by (n — 2)-
dimensional submanifolds which are totally geodesic in M"*?.

In order to prove these theorems, we need to study the biregular submani-
folds such that dim E, = 2. This will be done in §§4.1, 4.2, 4.3. The proof of
the theorems are in §§4.4 and 4.5.

4.1. Biregular submanifolds such that dim £, = 2

Proposition 4. Let f: M" - M"*?(c) be an isometric immersion of an n-
dimensional manifold M" in an (n + p)-dimensional (n = 3, p = 2) manifold
M"P(c) of constant curvature ¢ such that dim E | = 2 at every point and such
that every point is 2-regular. Then each of the following holds:

(1) If 0™ % —co at every point of M, there exists a global, except for the
sign, frame (§, n) of E, such that L; # 0 and L, = 0, where Ly(x) = prg: vt
Moreover, dim E, = 1 at every point of M.

(il) If 0™ = —co at every point, then the index of relative nullity of M is
n — 2 at every point of M. Moreover, dim E, < 2.

Proof of Proposition 4. (i) Since k{™ % 0 at every point m € M, then
dim F, <dimE, at every point (F, is defined in §2). Since dim E, =
2,dimF, <2.
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On the other hand, since §{*) # —co at every point m, dim F; > 0 at every
point m. Consequently dim F, = 1, and F, is a subbundle of T+ M, with fibers
of dimension 1.

Let n be the global section (except for the sign), which spans F,. We have
L; =0 at every point m. If § is a section of E, such that (5, £)=0 and
1€l = 1, it s clear that L; # 0 at every point.

(ii) Let » be the index of relative nullity of M. (v(m) = dim N,,, where
N,={XET,M/o(X,Y)=0, VY € TM}). We have »(m)<n—2 for
every m € M. In fact, if »(m) = n, m is a flat point; this is impossible for
(k$M),, # 0. If v(m) = n — 1, then dim (E,),, = 1, which is excluded.

In order to show that »(m) =n — 2, and that dim E, <2, we need the
following two lemmas.

Lemma 7. Let m € M such that there exists an orthonormal frame (&, 1) of
(E\),, such that L, and L, are not proportional. Then v(m)=n — 2 (and
dim(E,),, < 2).

Lemma 8. Let 6™ = _oo at every point of M. Then, for every m € M,
every neighborhood of m and every orthonormal frame (£, m) of E, on U, there
exists a neighborhood V C U such that L and L, are not proportional on V.

Combining these two lemmas we obtain
(*) Vm € M, YU, neighborhood of m, v, open, V C U, such
that v|, =n — 2.

Now assume that there exists m € M such that »(m) <n — 2. Since v is
upper semicontinuous, there exists a neighborhood U of m such that » |, <n
— 2. But this is impossible because of (*). Thus »,, = n — 2 at every point
x EM.

Proof of Lemmas 7 and 8. 'The proof of Lemma 7 results from the following

algebraic lemma.
Lemma. Let L, M: R" > R? be two linear maps. If there exist a, 3: R" > R
not simultaneously null such that

o X)L(X) + B(X)M(X) =0 VX ER,

Then L and M are proportional ortg L <1 andrg M < 1.
Proof. Letrg L =k, and let vy, - -, v, be a basis of R” such that

L(X) = w(X)o, + -+ (X)vy,
M(X)=m(X)v, + -+ +7,(X)v,,

where w,,- - -, w, are independent linear forms.
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(a) If 3] > k such that 7, # 0, there exists X, such that m(X;) # 0. Thus
B/(Xy)m(X,) = 0. Consequently B,(X,) =0 and therefore a;(X,) # 0, from
which it follows that L(X,) = 0. But the set of the X, such that 7,( X)) # 0 is
dense, and L continuous, so L = 0. (In particular L and M are proportional.)

(b) Suppose L # 0 and M # 0. By the argument of (a) we see that rg L =
rg M. If rg L = 1, the lemma is proved.

Suppose rg L = k > 1, and let, for example,

L(X)= w](X)'% + o e (X) oy,
M(X)=m(X)o, + - +m(X)v,.

We have
a(X)[“’l(X)Ul +-- +wk(X)Uk]
+:8(X)[W1(X)01 + - +’”’k(X)Uk] =0.

Let X, be an element of Ker w,. Then B( X,)m(X,) = 0. If B(X,) =0, we
have a( X;) # 0. Thus
wi(Xo)v, + -+ (X))o =0,

so that X, € Ker L; therefore rg L < 1 which is excluded. Hence B(X,) # 0
and m(X,) = 0.
Then Ker w, C Ker 7, so that

7, =Nw, (A, ER).
Thus

L(X)=w(X)o, + -+ (X)o,,
M(X)=Nw (X))o, + - +A 0 (X)v,.

We deduce
a(X)e,(X) + B(X)Aw(X) =0,
a( X)w (X) + B(X)A w0 (X) = 0.
By choosing an X|, such that w,(X;) = 1 and w,(X;) = 1, we obtain

O‘(Xo) + }‘1:3(X0) =0,
a(X,) +A,8(Xp) =0,

from which it follows that A, = A, since a( X;) and B( X)) are not both zero.
In the same way one can prove that A, = A,, etc. So L is proportional to M.
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Lemma9. Let h and k be two nonnull and nonproportional bilinear symmetric
forms on R" (n = 3), and L, M two linear maps from R" into R? such that
(»*) A(Y,Z)L(X)+k(Y,Z)M(X)=h(X,Z)M(Y)+ k(Y, Z) M(Y),

VX,Y,Z R

Then

(1) Ker s N Ker k = Ker L N Ker M,

(2) dim(Kerh N Kerk) = n — 2,

(3) dim[Im L U Im M] < 2.

The fact that Ker 2 N Ker k = Ker L N Ker M is a straightforward exercise.

On the other hand, dimKer(# N Kerk) <n — 2 because h and k are
nonproportional and nonnull. We prove that dim(Ker# N Kerk) =n — 2.

Suppose that dim(Kerh N Kerk) <n — 3, and let F = (Kerh N Kerk)*,
dim F=3. For X, € F,let G, = {Y € F|h(Y, X;) =0} and G, = {Y € F|
k(Y, X,) = 0}. We have

dimG, NG,=ZdimF—2=>1.

Therefore there exists Z, € F such that h(X,, Z,) =0 and k(X,, Z,) =0
Thus VX, € F, 3Z, € F such that h(Y, Z;) L(X,) + k(Y, Z,) M(X,) = 0,
VY € R". Since Z, & Kerh N Kerk, there exists ¥, € R” such that a =
h(Yy, Zy) and B = k(Y,, Z,) are not simultaneously null (a and 8 depend on
X,)- Hence VX, € F, Jay, By, € R not both zero such that

"‘XL(XO) + IBXOM(XO) =0.

Going back to the problem, if L = L|. and M = M |, then L and M are
proportional or rg L<1landrgM = 1. Since F = (Ker L N Ker M)*, L and
M are proportional or rg L <1 and rg M < 1. Hence these two cases are
excluded respectively by the hypothesis and the assumption that dim(Kerz N
Kerk)<n—2.

For the proof of the last part (3), see [14].

Proof of Lemma 8. Let (£, m) be an orthonormal frame of E, on U. Then
(L;), = 0and (L,),, = 0is impossible for (k§{*"),, # 0.

Suppose that (L;),, # 0 and (L,),, = 0. Let W C U be a neighborhood of m

on which Ly, # 0. On W there exists a point p such that (L,), # 0 (for if
Ly, =0, then §{" # —o0). If there exists a neighborhood W’ of p such that
L,=aL, on W then Ly, = 0 where £ = (€ + an)(1 + «*)7'/2. But this is
1mpossxble because 0(’" ) = —o0. Therefore VW neighborhood of p, there exists
p’ € W such that at p's Lg#0and L, # 0, and L, L, are not proportional.
Since L, and L, are continuous, there exists a neighborhood V of p’ such that
these properties are satisfied.

Finally, if (L;),, # 0 and (L,),, # 0, we can take p = m.
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4.2. The case 8™ s —o and a Frenet frame over T+ M

Proposition 5. Let M""? be an (n + p)-dimensional (n = 3, p = 2) manifold
of constant curvature, and M" be an n-dimensional isometric submanifold of
M"*P such that

(i) dim E, = 2 at every point,
(ii) every point of M is s-regular (s = 2),

(iii) 6™ = —co at every point.

Let (&,m) be the orthonormal frame of E, (defined in Proposition 4), and
6 =(h®&+ k ®n) be the second fundamental form of M". Then each of the
following holds:

(1) There exist s nonnull and nonproportional scalar forms ©,,---,7,, 6 on M
everywhere such that

dr,=0, lzll=kM (i=2), 18] =0",
(2) There exist s — 1 normal orthonormal global (except for the sign) sections
&y, -, &, such that
E,=[&) - [E] =€,
VxE=-0(X)n+n(X)E, vin=0(X)E,
%xgz =-n(X)é+n(X)§,
v xé: = 7(X) €+ n(X) &,

%ng—l = _'Ts—l(X)gs—Z + T_\.(X)ss.

B) (X, Y)=B{X,TY{Y,T) where B = h(T,T), and T is the global (ex-
cept for the sign) vector field on M, which is associated to 1, /||, || in the duality
defined by the metric.

(4) d§ = BIK(X, TXY, T)-k(Y, TX X, T}

(5) The distribution on M, defined by T* , is involutive.

Proof. We know that § and 7 satisfy L; 0 and L, = 0. Using the
Gauss-Codazzi equation

(GXO)(Y’ Z) = (EYO)(X’ Z)
and projecting on E;", we find
h(Y,Z)L(X)— h(XZ)L,(Y)=0.
Therefore by Lemma 2 we deduce that rg & = rg L, = 1, so that there exist a
scalar 1-form 7, and a vector field &, such that
h(X,Y)=h(T,TX,TXY,T),
Prg: Vxé=n(X) 4, n#0,
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where T is the vector field associated to 7,/ 7, || in the duality defined by the
metric.
On the other hand, since dim E; = dim[Imo] =2 and (£ n)= 0, we can
find a scalar form @ such that
prg, Vxn=0(X)¢.

Consequently, we have

Vxé=0(X)n+n(X)§,

vxn=0(X)§,
from which we deduce that E, = [£,].

By Gauss-Codazzi equations we have that R( X,Y)Wn=0VX,YE TM, so
that

() R (X,Y)n —o(X, K(Y,n)) + o(Y, K(X,7)) = 0.

Projecting (2) on E; gives § A\ 7, = 0.
In the same way, we have

(3) R(X,Y)t=0, VX, YETM.
Projecting (3) on ¢, we find d 7, = 0.
Finally
k(zl’:’) = Sllp ||PI'E|l v x§||,,, = “72”,,,,
XET, M, XlII=1

and k™ = ||, |l.
We conclude by induction. Since d 7, = 0, T* is involutive. Thus
nel,, = Sup Ipre, V% 1l -
XET, M, XII=1
Since 7 is the only section of F,, we deduce immediately that || 8] = ™.
Finally projecting on 1 the equation R( X, Y') £ = 0 yields readily

do(X,Y)=B[(Y,TYk(X,T) — (X, TYk(Y,T)].

4.3. The case where 3 such that k() = const. and 6™ = const.

Proposition 6.  With the same hypotheses as in Proposition 5, if 3i € {2,- - +,s}
such that k™ = const.# 0, §*) = const.# —oo, then

(1°)d 8§ =0,

%) k(X, T) = k(T, T)(X, T),

B OMK(X,Y)=0MKT, TYX, TYY, TY+ B(V 4T, Y),

@4)v,T=0.
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Proof. (1°)Wehave k;, = |[7,ll = const.andd 7, =0.If 7 =1, /|7, ||, Vi €
[2 ---5), then d 7 = 0 since 7 = 7,/II7,|l. Thus 8 = 6* 7 (cf. Proposition 5
(1)), and consequently d § = 0, because 6™ = const.

(2°) is a consequence of Proposition 5 (4).

(3°) The Gauss-Codazzi equations give (V yo}( X, Z) = (V yo XX, Z). Pro-
jecting this equation on £ and  we obtain

D) (Vyh(Y,2Z)—(VyhXX,Z) — k(X,Z2)0(Y) + k(Y, Z)8(X) =0,

(i) (V x kXY, Z) = (V yk)(X, Z) = 0.

Since h = B ® o, from (i) it follows that

m(X, ZXY, TY=m(Y, ZXX X, T),

where
m(X,Y)=B(v T, Z)-0Mk(X, Z).
Hence
m(X,Y)=m(T, T X, TYY,T),
ie.,

B(V 5, T, YY— 6Mk(X,Y) = 6Mk(T, T){X, TY, T).

(4°) is an immediate consequence of (3°) with X = T.

4.4. Proof of Theorem 4

We shall use Propositions 4 and 5.

Let M, be the interior of the set of the points m € M such that (k{*),, = 0.
Let M, be the interior of the set of the points m € M such that (k{*’), 0
and 6™ # —oco. Let M, be the interior of the set of the points m € M such
that (k$™),, # 0 and §{™ = —co0. We shall study M,, M, and M,.

Since dim E; = 2, M, is an open set, the connected components of which are
submanifolds with substantial codimension 2 (cf. Theorem 1). In order to
study M,, we shall use Proposition 5. Since on M, the distribution T% is
involutive, M2 is foliated by hypersurfaces E such that 6( X, Y) = k(X, Y)n,
VX,Y €T M,. If 52 denotes the second fundamental form of M, in M"*7, we
have

(X, Y)=k(X,Y)n+ (v Y, T)T.

Thus dim EE = 2. Consequently, we can find two open sets N, and N, such
that N; U N, is dense in M,, and N, and N, satisfy

dim EM: |y =1, dim EM |y =2.
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On N,, dim E}> < 1, and it is clear that dim E}"> = 0 on a dense open set of
N,.On N,, dim E}"> = O since L, = 0.

Using Theorem 1 we conclude that M, contains a dense open set M, which
is foliated by hypersurfaces with substantial codimension 2 in M"*?.

In order to study M,, we shall use Proposition 4. On M,, the index of
relative nullity is equal to n — 2. Using a well-known theorem (cf. [1] for
instance), we conclude that M; is foliated by totally geodesic submanifolds of
dimension n — 2.

Theorem 4 is proved.

4.5. Proof of Theorem 5

(A) Let ™ = 0.

(1°) From Proposition 6 (3), we obtain B(V 4»T,Y)=0,VX,Y € TM.
Since B8 # 0, T is parallel. If M is complete, connected, and simply connected,
from De Rham theorem, we have M = C X M,, where C and M, are maximal
integral submanifolds of 7 and T at a point p € M. The general result is
obtained by passing to the universal covering of M.

(2°) We have dim E(M) = 1 and k™) = 0. In fact, let o™ be the second
fundamental form associated with the restriction of the immersion to M,;. We
have TM =TM, ®T. Hence VX,YETM,, o™(X,Y)=0(X,Y)+(
V x Y, T)T = k(X, Y) 7. Consequently, dim E{™ < 1. If, at a point m € M,
k(X,Y)=0 VX, YET,T,, then dimKerk, =n— 1, and therefore
k. (X,Y)=v(X, T)Y, T), which implies that %, and k,, are proportional;
this is excluded. Hence dim E{™) = 1.

Let v*"' be the normal connexion on M,. Then VX € TM, we have
v+"'n = k(X, T)T = 0 since X L T, and thus (k§"»),, = 0, Vm € M,.

(3°) On the other hand, since T is parallel, R(X, T)T = 0, VX € T M. From
Gauss-Codazzi equations we have

R(X,T)T=K(X,o(T,T)) — K(T,0(X, T)).
If ¢ is the curvature of M"*?, then
c({X,Y)— (X, TYY,T)) = k(T, T)[k(X,Y) — k(T,T){X,TXY,T)].
If ¢ # 0, we have k,(T, T) # 0, Vm € M, since the equality does not hold

for every X, Y. Thus

c
k(X,Y)= ——(X,Y), VX, YETM,.

Consequently, if ¢ # 0, the submanifold M, is totally umbilical and is con-

tained in an “hypersphere”.
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If ¢ = 0, we have k(T, T') = 0. In fact, if at a point m € M, k (T, T),, # 0,
then k,(X,Y) =k, (T, T),{(X, T)(Y, T) which is impossible because #,, is
not proportional to k.

Computing the Frenet curvatures of C, we find:

%TTzv T+o(T,T)=0(T,T)=B¢=kO =8,
Ti—v £— K(T é)—a( )éz BT=k‘C>—|T(T)|—k‘M)

%Tgizv# §= ,+1(T)§,+| "'(T)gz 1
= k() = [T l(T) = N7yl = kl(fl" .
Hence
KO =kM vie[2---s].
(B) Let 6™ = const.# 0. From Proposition 6(3), we have

(%) k(X,Y):k(T,T)(X,T><Y,T>+—B—<VXT,Y), VX,YETM.
eM"

Let M, be a maximal integral submanifold of the distribution 7+, and o>
the second fundamental form associated to M,. Then we have

oM(X,Y)=0o(X,Y) +(V Y, T)T

= (VXT,Y)( B n— T).
oM™
Thus dim E{M? < 1.

On the other hand, v T # 0 at every point. In fact, if (Vv T),, =0 at
m € M, k,, is proportional to h,, and dim(E,),, = 1. Consequently,
dim E(M2) = 1.

Finally, let v+ be the normal connexion on M, induced by v*. If
x € TM,, then

VJ)EMZ(;’%W - T) = prTM"‘EBT%X(E@M_)n - T)
B

= Vxgon

n+k(X,T)T—o(X,T) = (v xyT,T)T
-_—O,

since X L T. Consequently k{2 = 0.

Now we shall study the case where M = R"*?(¢), ¢ # 0. We shall need the
following lemmas.
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Lemma 10. With the notations of Proposition 6,YX € T M we have

(M)

(X, YT = x) = | L2 (1, ) + T(B) +k(r,7) L |y, T

B oM™

Proof of Lemma 10. From Gauss-Codazzi equations, we have
R(X,Y)T=R(X,Y)T - K(X,o(Y,T)) + K(Y,0(X, T)),

(x+) =R(X,T)T—k(T,T)'_'B—VxT-
eM"

Let us compute R( X, T') T. From the proof of Proposition 6 (3) (ii) we have
(Vxk)Y,Z)=(vyk)X, Z).
Replacing k by its expression (Proposition 3.3) gives

0(M)<R(X Y)T, Zy+ d(k(T,T) 7)(X,Y)(Z,T)

G(M)X('B)(vYT Z)= 0(M) —~ Y(B(VxT, Z)

+k(T, TXY, T Z, V4 T)— k(T, T} Z, vy T)=0.

Thus we deduce

(M)
R(x,Y)T=2"

2 {k(T TY(X, Ty~ X(ﬂ)}vyr

M)

{k(T TY(Y, Ty~ ('B)}v al

(M)

From (**) and v T = 0 it follows that

R(X, T)T——[ w(r, 1)+ LBy wr L, T
B 9
Since the curvature of M"*? is constant (= c), we have
(X, TYT— X} =vyV 4T,

with
y= —[k(T T)0<M> T(B) + k(T, T) 3 ]

Lemma 11. If ¢ # 0, the direction n is quaszumbilical.
Proof of Lemma 11. At first we recall that a directiion » € TM* is

quasiumbilical if 3, and 3, € C®(M) such that
(K(X,7),Y)=f(X, UXY,U)+ /X, T),
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where U € TM. Let Y L T. From Lemma 10 it follows that cY =y v, T.
Since ¢ # 0, we deduce that y# 0 at every point of M. Consequently,
V xT = c¢/Y{{X, T)T — X}. Thus from Proposition 6 (3) we deduce

k(X,Y) = f(X, TXY, T)+ f(X,T)

with
Be __Be

My’ h= My

fl = k(T’T) -

Hence 7 is quasiumbilical.

We can now proceed to prove (B). To this end, let M, be a maximal integral
submanifold of 7, and 6™z the second fundamental form associated to M,.
Then

oM (X,Y)=k(X,Y)n+ (v Y, T)T.

Since ¢ # 0, we deduce
oM(X,Y) = f( X, T)n + §<X, T)T.

Thus oM(X,Y) = (X, T)(f,m + c/yT), which shows that M, is totally
umbilical and contained in (n — 1)-dimensional hypersphere. Hence M" is
foliated by (n — 1)-dimensional hyperspheres, when ¢ # 0, and (B) is proved.

(C) Let 6™ = _o0. In this case, we know that the index of relative nullity
of M is equal to (n — 2) at every point m of M. Consequently, M is foliated by
totally geometric submanifolds of dimension n — 2.

Hence Theorem 5 is completely proved.

Remarks. Some of the results in this paper are summarized in [6], [7], [8].
The topological properties of the principal normal spaces are exposed in [13]
and summarized in [11] and [12]. The existence of immersions with prescribed
external curvatures has been studied in [5]. These papers are a part of the
second author’s thesis [14].
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