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A GENERALIZATION OF MYERS THEOREM
AND AN APPLICATION

TO RELATIVISTIC COSMOLOGY

GREGORY J. GALLOWAY

There have been several applications of Myers method to General Relativ-
ity. The earliest example of such an application which has come to our
attention appears in a paper by Avez [2]. T. Frankel has used Myers theorem
to obtain a bound on the size of a fluid mass in a stationary space-time
universe. (See [3] for an improved version of this result which makes use of
results presented here.) In [5] the present author made use of FrankeFs
method to obtain a closure theorem (i.e., a theorem which has as its conclu-
sion the "finiteness" of the "spatial part" of a space-time obeying certain
cosmological assumptions) for cosmological models more general than the
classical Friedmann models.

The effort to obtain a closure result for a cosmological setting of consider-
ably greater generality has led to a rather curious generalization of Myers
theorem. We wish to present this generalization along with the closure result
which follows from it.

All manifolds under consideration in this paper, whether Riemannian or
pseudo-Riemannian, are assumed to be smooth.

1. A generalization of Myers theorem

Let Mn be a Riemannian manifold, and γ a geodesic joining two points of

Mn. Recall (see [6]) that Myers actually shows that if along γ the Ricci

curvature, Ric, satisfies

Ric(T, T) > a > 0

and the length of γ exceeds πλ/n - 1 /Va , where T is the unit tangent to γ,
then γ cannot be minimal. We have the following generalization.

Lemma 1.1. Let Mn be a Riemannian manifold, and γ a geodesic joining

two points ofMn. Let T be the unit tangent, and σ the arc length along γ. If

(1.1) j £
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holds along γ, where a is a positive constant and f is any differentiable function
of the arc length bounded in absolute value by c > 0, and

(1.2) length ofy > - ( c +}/c2 + a(n - 1)),

then γ cannot be minimal.
Remark. This lemma reduces to Myers result when / = c = 0. Condition

(1.1) does not require that the Ricci curvature be positive along γ.
Proof. The proof of Lemma 1.1 proceeds just as in the proof of Myers

result until explicit use is made of (1.1).
Let γ be a geodesic of length / from point/? to point q in Mn. Let σ be the

arc length along γ, and let T be the unit tangent vector to γ. Let
T, Y2, . . . , YΛ be orthonormal vectors at p. Parallelly displace the vectors
Y2,. . . , Yrt along γ so that T, Y2, . . . , YΛ remain orthonormal along γ.
Define n — 1 vector fields along γ by

Xi(σ)=fi(σ)Yi(σ),i = 2,...,n,

where/2(σ), . . . ,fn(σ) are n — 1 smooth functions on 0 < σ < /.
For each i, define the variation

( σ > ε ι ) "

where exp^^X^α) is the point in Mn reached by traveling along the geodesic
with initial tangent X,(σ) at γ(σ) for a distance εJIXXσ)!!. By construction X,
(for each i) is the variation vector field.

Since X, and T are othogonal and γ is a geodesic, the formula for the first
variation of the arc length gives

lf(0) - 0, i = 2, . . . , n,

where ((ε,) is the length of the varied curve σ -» exp^^-X^α). Using Synge's
formula for the second variation of the arc length we can obtain

rr 2

,,.4) 2, . . . , n,

where K(Γ Λ Y/) is the sectional curvature of the 2-plane spanned by T and
Y# . Now make the special choice

j;.(σ) = sm^ — j , 1=2, ...,n.

Then (1.4) becomes

',"(0) = γ2 • { ~ JΓ' s in 2 (^)*(T Λ Y,) da.
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Hence

(1.5) £ //'(0) -?L.L(n-\)-f' sin2(^)Ric(T, T) do,
1 = 2

since Ric(T, T) = Σ?»2

 K<J Λ Y/) Now suppose condition (1.1) holds along
γ. Then

0.6) / o stf( ;

We integrate by parts to obtain an inequality for the integral on the
right-hand side of (1.6),

> -j'Cl = 7ΓC,

where in the last step we have used |/(σ)| < c along γ. Combining (1.5)—(1.7)
we obtain the inequality

(i 8) ,Σ 4'(0) <

The expression in brackets is negative when

(1.9) / < ^(c +y^2 + a(n - 1) ),

in which case

//(0) - 0, //'(0) < 0

for at least one i. Thus for such an i the varied curve σ -* exp^^-Y^σ), which
passes through/? and q, would have length less than γ for sufficiently small ε,..
Hence the geodesic γ from p to q cannot be minimal if its length / satisfies
(1.9). This concludes the proof.

As in Myers result there are two important consequences of Lemma 1.1.
Theorem 1.2. Let Mn be a complete Riemannian manifold. Suppose there

exist constants a > 0 and c > 0 such that for every pair of points in Mn and
minimal geodesic γ joining those points having unit tangent T, the Ricci
curvature satisfies

(1.10) Ric(T, T) > a + - ^ along γ,

where f is some function of the arc length σ satisfying |/(σ)| < c along γ. Then
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Mn is compact and

(1.11) diam (AT) < - ( c +^c 2 + a(n - 1) ).

Proof. Since Mn is complete, any pair of points in Mn can be joined by a
minimal geodesic. By Lemma 1.1 a minimal geodesic joining any pair of
points in Mn and satisfying (1.10) must have length less than or equal to the
diameter estimate in (1.11). Thus (1.11) is established, and Mn is bounded.
Furthermore, since closed and bounded sets of a complete Riemannian
manifold are compact, Mn is compact.

Theorem 13. Let Mn be a complete Riemannian manifold. Suppose there

exist constants a > 0 and c > 0 such that for every pair of points in Mn {not

necessarily distinct) and geodesic γ joining these points with unit tangent T, the

Ricci curvature satisfies (1.10) where f is some function of the arc length σ

satisfying |/(σ)| < c along γ. Then the universal covering manifold of Mn is

compact, with diameter bound as in (1.11), and hence the fundamental group of

Mn is finite.

Remark. The curvature condition (1.10) is required to hold for all geodes-
ies in M", not just minimal geodesies. Thus the hypotheses of Theorem 1.3
are stronger than that of Theorem 1.2. Theorem 1.3 is false if (1.10) is
required to hold for minimal geodesies only. For example, the flat torus
satisfies the hypotheses of Theorem 1.2 but, of course, does not have finite
fundamental group.

Proof of Theorem 1.3. Let Mn be the universal covering manifold of Mn.
By insisting that the universal covering map ψ: Mn -> Mn be a local isometry,
Mn is furnished with the same local differential geometry as Mn.

Now Mn is complete since Mn is. Let γ: [0, /] -» Mn be a minimal geodesic
in Mn> parameterized by the arc length σ, joining p = γ(0) and q = γ(/).
Since ψ is a local isometry, the curve γ = ψ ° γ: [0, /] -» Mn is a geodesic
(not necessarily minimal) in Mn also parameterized by the arc length. Let T be
the unit tangent to γ, and T = ψ^f be the unit tangent to γ, where we let ψ^
represent the differential of ψ.

According to the hypotheses there is a function /: [0, /] -> R such that
(1.10) holds and |/(σ)| < c f o r σ 6 [0, /]. But since Mn and Mn have the same
local differential geometry,

Ric^(f, f ) = RicM,.(T, T).

Hence

Λ(f, f ) > a + - ^ along γ,

where / is a function of the arc length in Mn satisfying |/(σ)| < c along γ.
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Thus Mn satisfies the hypotheses of Theorem 1.2 and, consequently, is

compact, with diameter bound as in (1.11). Hence Mn must be & finite-sheeted

cover of Mn, and πλ(Mn) is a finite group.

2. The closure result of Friedmann cosmology

By a space-time we mean a smooth 4-dimensional manifold M4 furnished

with a pseudo-Riemannian metric

3

<&2= Σ gudxidxJ

iV = 0

with signature — h + +. Let < , ) denote the metric defined by the line

element ds2. A vector V is said to be time-like, light-like or space-like

according as <V, V> < 0, <V, V> = 0 or <V, V> > 0. The arc length along a

time-like curve (i.e., a curve with time-like tangent) is called proper time.

In general relativity it is postulated that the metric components gtj of a

space-time obey the tensor equation

(2.1) RiJ-^Rg^dij^&πκTiJ,

where Rfj is the Ricci tensor, R is the scalar curvature, K is the universal

gravitational constant, and Ttj is the energy-momentum tensor which char-

acterizes the energy-momentum content of the space-time model.

The simplest cosmological models based on Einstein's general theory of

relativity are the classical Friedmann models. These models have space-time

topology M4 = R X V3 and are dust filled, i.e., filled with a "collisionless"

fluid characterized by a mass density p and a unit, time-like velocity field u

which is orthogonal to each "spatial section" V3 = {t} X V3. The Fried-

mann models are characterized by stringent symmetry conditions; all ob-

servations made by an observer comoving with the cosmic fluid are assumed

to be locally isotropic. As a consequence, the spatial sections V3 are locally

isotropic spaces in the induced metric and scalar fields such as the density p,

and Hubble expansion parameter h = \ div u are constant on any section.

By solving the Einstein equations exactly we find that the curvature of the

section V3 has the same sign as the empirical quantity 8τπcp — 3A2. If

(2.2) 8τrκp - 3h2 > 0

holds on V3, then Vf is a space of constant positive curvature and, in fact, is

covered by the 3-sρhere if we assume that V3 is complete. Thus V3 is

compact with finite diameter, i.e., the (spatial) universe is "finite." This is the

closure result of Friedmann cosmology.
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The geometric result to be presented in the next section, when interpreted
cosmologically, represents a closure theorem analogous to the closure result
of Friedmann cosmology for a vastly more general cosmological setting.

3. A general closure theorem

Let u be a smooth unit time-like vector field on a space-time M4. The
existence of such a vector field implies, in particular, that M4 is time-orienta-
ble with u "pointing into the future." (When interpreting physically we should
view M4 as a model of the actual space-time universe, and u as the velocity
field describing the average flow of matter (galaxies) in the universe.)

We say that u is irrotatiotml if the covector vy defined by p(X) = <u, X> for
all X, has exterior derivative dv which vanishes on all vectors orthogonal to u.
By using the formula

dv(X, Y) = Xv(Y) - Yv(X) - K[x> γ])>

it follows immediately that dv vanishes on all vectors orthogonal to u if and
only if the bracket of two vectors orthogonal to u is still orthogonal to u.

Thus by well-known theorems (see [7], for example), if u is irrotational, one
can pass through any point of M 4 a maximal connected 3-dimensional
submanif old V3 orthogonal to u. The conclusions of the closure theorem shall
refer to such a V3 (which physically, we may interpret as the "spatial universe
at some moment in time"). No assumption of homogeneity or isotropy of the
hypersurface V3 in the induced Riemannian metric is imposed.

Let X be a vector field defined along a flow line generated by u, and
suppose that X is invariant under the flow generated by u,

(3.1) [ X , u ] = V x u - V u X = 0,

where [ , ] is the Lie bracket, and V is the connection associated with the
space-time metric. Let X x be the projection of X onto the subspace orthogo-
nal to u, i.e.,

X± = X + <X, u>u.

The proper time derivative (d/ds)\\X^\\, where HX̂ H is the length of the
projected vector X±, measures the rate at which "nearby" flow lines in the
direction of X"1- recede from the flow line along which X is defined. A positive
derivative, {d/ds^X^W > 0, indicates a recession of "nearby" flow lines in
the direction of X-1, and a negative second derivative, (d2/ds2)\\X±\\ < 0,
indicates a deceleration of the recession in the direction of X x . For a more
thorough discussion of the kinematics of fluids, see [5] and references cited
therein.
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We are now in a position to state the closure theorem.
Theorem 3.1. Let u be a smooth unit time-like vector field on a space-time

M4. Furthermore, suppose u is irrotational so that through any point of M4 one

can pass a maximal connected 3-dimensional submanifold of M4 orthogonal to

u. Let V3 be such a manifold, and suppose V3 is complete in the induced

Riemannian metric. Suppose, in addition, the following conditions hold on V3.

(I) At each point p of V3

(i) the flow generated by u is expanding in all directions, i.e.,

for all vector fields X defined along the flow line through p which satisfy (3.1),

(ii) the rate of expansion is decreasing in all directions, i.e.,

for all vector fields X as in (i).

(II) The Ricci curvature Ric of M4 satisfies

inf(Ric(£ξ)-3A2)=λ>0,
v3

Hill - 1, <fc u} = 0,

where h = \ div u.
(III) The flow lines are of bounded geodesic curvature on V3, i.e.,

sup||Vuu|| = μ < oo.
v3

Then V3 is compact and, in fact,

(3.1) diam(F3) < J ( μ +^μ2 + 2λ ).

Remarks. Conditions (I)(i) and (I)(ii) are certainly satisfied in the expan-
sion phase of every Friedmann model, where, in fact, the expansion is
isotropic. We emphasize, however, that conditions (I)(i) and (I)(ii) do not
require that the expansion or rate of expansion be isotropic. If u is interpreted
physically as the velocity field describing the average motion of galaxies in
the universe, then according to (I)(i) and (I)(ϋ) there must be galaxy recession
and deceleration of the recession in all directions about each point in the
spatial universe. Experimental evidence suggests the occurence of this type of
expansion behavior from our vantage point in the universe. Also, condition
(I)(i) is equivalent to the assumption that the second fundamental form B on
V3, defined by

B(X, Y) = -<Vxu, Y>
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for vectors X, Y tangent to V3, be negative semi-definite.
It is worth pointing out that the statement and proof of Theorem 3.1 do not

make any use of the Einstein equations; the theorem may be viewed as a
purely geometric result. If, however, it is assumed that the metric tensor
satisfies the Einstein equations (2.1), then the Ricci tensor may be expressed
in terms of the energy-momentum tensor as

(3.2)

for unit vectors ξ orthogonal to u, where T is the trace of the energy-momen-
tum tensor. In the case of a dust, characterized by a velocity field u and mass
density p, the form of the energy-momentum tensor is well known, and the
right-hand side of (3.2) equals 4τrιcp, which is half of the density term
appearing in the crucial Friedmann condition (2.2). Thus condition (II) is a
slightly strengthened analogue of (2.2).

In relativity, the covariant derivative Vuu is sometimes called the 4-acceler-
ation. Condition (III) that the 4-acceleration be bounded on V3 (but not
necessarily on all of M4) seems to be a physically reasonable condition. In the
case of a dust the flow lines generated by u are necessarily geodesies and,
hence, Vuu = 0 on M4 so that condition (III) is automatically satisfied.

4. Proof of the closure theorem
About each point of V3 there exist a local coordinate neighborhood U3

and a local coordinate t with values in the interval (-ε, ε) such that

W = (-ε, ε) X ί/3,

where W is an open neighborhood of M4, and U3 = {t} X U3 is orthogonal
to u. The neighborhood U3 is obtained by following the flow generated by u
through U3 for coordinate time t. This existence of the coordinate t, which we
shall refer to as a synchronous time coordinate, is guaranteed by the Frobenius
theorem since u is assumed to be irrotational.

In Wy the space-time metric can be expressed in the form

(4.1) ds2 = -φ2dt2 + Σ

where xa are local coordinates introduced in U3 and u = (l/φ)θ/9/.
In order to make use of Theorem 1.2 it is necessary to compute the Ricci

curvature along geodesies in the hypersurface V3 orthogonal to u.
Lemma 4.1. Let γ be a geodesic in V3 with unit tangent ξ9 and let σ be the

arc length along γ. Extend ξ along the flow lines through γ by making it
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invariant under the flow generated by u. Let U3 be a coordinate neighborhood of

V3 which intersects the geodesic γ, and t be a synchronous time coordinate in the

neighborhood (-ε, ε) X U3 of M4 so that the space-time metric takes the form

(4.1). Then the Ricci curvature of V3, Ricκ, is related, along γ in U3, to the

Ricci curvature Ric of space-time by the equation

(4.2) + i <έ v-u>+ ( i 5
where θ = div u, B is the second fundamental form on V3, s is proper time, and

ξ, e2, e3 are orthonormal vectors.

The proof of Lemma 4.1 is computational in nature, and an outline of it is

given in §5.

Now the goal is to show that the hypotheses of Theorem 1.2 hold on V3

with a = λ and c = μ. Since V3 is a complete Riemannian manifold, every

pair of points can be joined by a minimal geodesic. Let γ: [0, /] —> V3 be a

minimal geodesic joining points p = γ(0) and q = γ(/), parameterized by the

arc length σ. Let ξ be the unit tangent along γ, and ζ, £2> £3 be orthonormal

vectors at p. Parallelly transport ξ2, ξ3 along γ so that ξ, £2> €* remain ortho-
normal along γ. Extend ξ, ξ2, ξ3 along the flow in the usual way be making

them invariant under the flow generated by u. Let eλ = £ x and e, = ξf,

i = 2, 3.

Introduce the notation

HeJΓ- ^ l leJ, α - 1 , 2 , 3 .

Then

θ = div u - 2 <Ve

 u ' O - <V»U' u> " Σ < v « 3 e«>

(4.3) = j ||eJΓ along γ,
α - l

since it can be shown that ||eo|Γ = <Vê u, eα> along γ. Thus,

(4.4)

< Σ
a<β
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since, by (I)(i), ||eα||" > 0. Now, by the Schwartz inequality,

Σ l|eJIΊ|e,|| --±[(Σ l|eJ| )2-Σ(lleJΓ)2l
a<β 2 L V a ' a \

The inequalities (4.4) and (4.5) may be combined to give

(4.6)

Furthermore, by assumption (I) (ϋ) the inequality

(4.7) -£llMl<0
ds1

holds.
It now follows from (4.3), (4.6) and (4.7) that

(4.8) Ricκ(έ Q > Ric(έ Q - 3A2 + •£,

where, for each σ0 E [0, /],

/(σ) = <ξ,Vuu>(σ).

Since, by assumption III,

|<fc Vuu>| < ||Vuu|| < μ,

we have

(4.9) |/(σ)| < μ for 0 < σ < /.

Using assumption (II) we reduce (4.8) to

(4.10) R i c κ ( £ ξ ) > λ + -^| along γ,

where/satisfies (4.9). Theorem 3.1 now follows from Theorem 1.2.
Remark. The derivation of (4.10) with / satisfying (4.9) makes use of the

fact that γ is a geodesic but not that it is minimal, i.e., inequality (4.10) holds
along all geodesies. This observation together with Theorem 1.3 establishes
the following.

Theorem 4.1. If the hypotheses of Theorem 3.1 are satisfied, then the

fundamental group of V3 is finite.

Remark. As a final remark we note that it would be desirable to obtain a
generalization of the closure result presented here which does not require the
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irrotation assumption. If the approach of this paper is to be used, this
problem amounts to finding the appropriate generalization of (4.2).

5. Outline of the proof of Lemma 4.2

The proof makes use of the following known result, a proof of which can
be found in [4].

Lemma 5.1. The ^-acceleration Vuu is related to the function φ (appearing
in (4.1)) by the equation

Vuu = gradκ log φ,

where gradκ is the gradient operator on V3 in the induced metric g^.
The setting is as in Lemma 4.2. Let βj = ξ±. Then a computation, using

Lemma 5.1, shows that βj is invariant under the flow generated by 3/9/. Let
βj, e3, together with e^ form an orthonormal triad of vectors along γ and
tangent to V3. Denote by ^(e, Λ e, ) and A^(e, Λ ej) the sectional curvatures
of M 4 and V3 respectively associated with the plane spanned by e, and ey.

The Ricci curvatures may be expressed as sums of sectional curvatures,
namely,

(5.1) Ric(fc©- Σ AfoΛe,),

(5.2) RMfc©= 2 *κ(eiΛe, ),
7 = 1

where by definition K(eλ Λ V\) = ^κ( ei Λ ©i) = 0 and % = u. By using the
Gauss equations

*(ei Λ e,) = Kyie, A ej) - B2(ev ej) + B(ev eλ)B(ej, e,), i = 1, 2,

and the identity
3

we can combine (5.1) and (5.2) to give
3

(5.3) RMfc & = Ricft Q - K(e, Λ u) + ΘB(ev ex) + Σ B\tv ey).

Now using the definition of sectional curvature we have

,u)u,e1>

«W' e,> + <VuVeu, β l > + <V[ei,u]u, e i > .
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Calculations, together with the use of Lemma 5.1, yield the equalities

-i<ί.v.«>,
,, e,),

along γ. Thus

By substituting (5.4) into (5.3) and making use of the identities

B(ev ex) = —^11*11| along γ,

we obtain the desired result.

Remark. Recently we were made aware of a paper of W. Ambrose [1] in

which a qualitative generalization of Myers theorem is obtained. Although

this result may be used (via Lemma 4.1) to prove the compactness of V3, it

does not give a bound on the diameter.
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