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THE RIGIDITY OF SUSPENSIONS

ROBERT CONNELLY

1. Introduction

We investigate the continuous rigidity of a suspension of a polygonal curve
in three-space. The main result is that all such embedded suspensions are rigid.
This is motivated by the old result of Cauchy (in 1813) [4] that all strictly con-
vex polyhedral surfaces are rigid and by the conjecture that all embedded poly-
hedral surfaces are rigid.

We develop here some techniques which we feel are new to the subject of
rigidity and apply them to obtain two results: We suppose that X is a suspen-
sion which flexes such that the distance between the suspension points changes,
but of course all the edges have a constant length.

Theorem 1. The winding number of the curve (equator) about the line through
the suspension points is zero (when defined).

For any polyhedral closed (orientable) surface in R® it is possible to define
the notion of a generalized volume, which is defined even if the surface is not
embedded but only piecewise linearly mapped into R®. It agrees with the ordi-
nary definition of the volume enclosed by the surface, when the surface is em-
bedded.

Theorem 2. For X as above, V() = 0, where V(X)) is the generalized volume.

Theorem 2 implies that all embedded suspensions are rigid.

Recall from Gluck [6] that a polyhedron P regarded as a simplicial map,
linear on each simplex, into R® is rigid iff any homotopy P, fixing the edge
lengths (we call this a flex) is congruent in R® to P, = P.

The proofs of the above involve first defining certain structural equations
which describe the affine algebraic ““variety” of the space of congruence classes
of isometric maps of the polyhedral surface. This variety is described by certain
extrinsic (variable) and intrinsic (constant) parameters, and in a sense Theorems
1 and 2 are formal consequences of the conditions of flexibility. The generalized
volume and the winding number are particularly easy to analyse in the way we
have chosen to set up the structural equations.

The analysis is based on the observation that the variety can be complexified
in a natural way, and since we are interested when the polyhedron flexes we
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can interpret this to mean that the variety is at least (complex) one-dimensional.
It turns out to be convenient to calculate what happens at infinity, and this is
used to prove the theorems.

2. The structural equations

2.1. The vector equations. We state a relation which is helpful in describing
the final equations.

Let 4, 4,, A, be three vectors in R®, where 4, and A4, are not scalar multi-
ples of A4, 0. Let 4;- denote the space perpendicular 4,. Let  be the dihedral
angle between the plane determined by A, and 4,, and the plane determined
by A, and 4,. We regard 6 as the angle between the orthogonal projection of
A, and A4, onto A¢. It is then an easy exercise to show

0 = (A ANy Ay) — (Ai- A)( Ay~ A;) + |4, [Ay, Ay, AT

(L) )(A; - 4;) -
|4, X A;|[4; X A4

IAjXA3|2:(Aj'Aj)(Aa‘Aa)_(Aj'Aa)z, /= 172a
where [X, Y,Z] = X-Y X Z is the scalar triple product. Let 4 denote the
matrix with rows 4,, 4,, 4,, Then

[An Aza A3]2 = [det (Al’ Az’ Aa)]z

(1.2)
= (det Ay = (det A)(det (4Y) = det ((4,- 4,)) ,

where the superscript ¢ denotes the transpose of a matrix.
2.2. The Parameters describing the fiex. We describe the suspension as fol-

lows: Let v,,v,, ---, v, be the vertices of the equator in order. Let the north
and south poles N, S denote the suspension points. Thus (v,, v,,,>, (N, v,),
{S, ;) (j mod n) are the edges of the suspension X forj =1, -- -, n.
N
v
Dy Y
' V3
.S
Fig. 1

Let x = |N — S All the equations to follow can be regarded as functions
of the “variable” x. Let 4 = N — S, the axis, and let §; be the angle between
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the orthogonal projection of v; — S and v,,, — S into 4*. Let e, = v, — S,
ey =N—wv,¢e/ =v,,, —v,,j=1,---,n,and call

— — 1(p2 2 172
€ijp1 = €€, = f(ej + €51 — € ) .

The €’s and e;,,’s are intrinsic constant parameters describing Y, functions of
the lengths of the edges.

The structural equation comes from the fact that };%_, 4, is an integer multi-
ple of 2z. This means that the suspension closes up as one proceeds around the
equator. We use (1.1) to describe this fact in terms of the parameter x. With
this in mind we define Q; to be the real part of the numerator of (1.1), y; the
rest of the numerator, and H,H,,, as the denominator. Explicitly

Q; = e;;..x — (e;- A)e;,,- A)

_ 1(,2 12\ ( p2 /2
= €511 X — Z(ej + x — ej)(ej+l +x —€ei),

2.1
y; = |4lle; 5., 4]0,
H; =14 X ¢ .
Note
é W+ x— &
yi = —xdet €iji1 €1 Hej +x — €],
et Fx—ep) e+ x—ep) x
H} =éx — 1(&) + x — e} .
Geometrically
sinﬁjz—lffyf -, cosﬁjzﬁ—Q!‘)—.
i HH,,, H,H,.,

This shows that
0O, = a quadratic function of x ,
¥i
H? = a quadratic function of x .

a cubic function of x ,

Thus by (1.1) we have

o — Qi+ ;
H,H,,
22 L= ez — 17 @i+ )
@2) 7]:,[1 HjHj+1

We also can write (2.2) as
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(2.3) [1(Q; + y) = ]ﬂl Q;, — ).
= a
We refer to (2.3) as the basic structural equation of Y.

3. The geometric properties of the extrinsic parameters,
and generalized volume

3.1. Determination of y,. Note that y, is a function of the vectors ¢, ¢, ,,
e}, €;,1, ¢/ and A4, and no other part of the suspension. We claim

Property 1. % = 1e/’x(x — b,)(x — b)), where b; and b’; are the real maxi-
mum and minimum values of x such that the two triangles (N, v;, v,,,) and
{S,v;,v;,,y can be embedded in R* with x = |N — S|

Proof. From the definition, y, is only 0 when x is 0, or the two triangles
above are planar, and this must occur when x = b, or b). By the definition of
y; and (1.2) we see % = x-quadratic. Thus the roots of the quadratic are b;
and 5.

From (2.1) we see that the coefficient of x° is e/>. Note

2
e; € 1
/72 2
e =det{e;,, e, 1
1 1 0
Vst
Vi
N 7S
s vy ///
Ay
v; y bi
///
v
N
Fig. 2

3.2. Determination of Q; and H,.

Property 2. Q; and H} are quadratic functions of x with leading coefficient
— %, and the other coefficients are polynomials in the squares of the edge lengths.
(The main point is that they have the same leading coefficient).

3.3. Topological and geometric properties. Let w(Y) = w denote the wind-
ing number of the equator about the N, S axis as mentioned in the introduc-
tion. Then from (2.2) we have

Property 3.

0; = ¥logﬁQ4j+yj ,

1 i=1 2mi H,H

Jj+1

where the 6; and log are chosen such that —x < 6, < x.
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Next we observe that the scalar triple product can be regarded as ¢ of the
volume of the tetrahedron spaned by the three vectors. Thus,
Property 4. The volume of {S,v;,v,,,, N) is

Yj
6iv x
The volume is considered as a signed quantity.

3.4. Generalized volume. Associated to any simplical oriented surface li-
nearly mapped into R® is a number which will turn out to be the volume en-
closed by the surface in case it is embedded.

Let v, v,, - - - be the vertices of the surface M in R® and let (v;, v, v,) be

a typical positively oriented 2-simplex of M. It is well-known that the volume
of the tetrahedron spaned by 0, v;, v, v, is

%[/vj’ vka /vl] = 'é_ det (vja vka ,vl) )

where as before [ , , ] is the scalar triple product, and implicit is that the volume
may be + or —. We define the volume “enclosed” by M as

V(M) == LZ[,UJ" Vi vl] >

where the sum extends over all the 2-simplices of M, and the indices are chosen
so that the orientation agrees with some orientation of M.

Lemma 1. If M is embedded, then + V(M) is the volume of region inside M.

Proof. From the definition of V(M) we see that each summand of V(M) is
just the volume of the cone over some 2-simplex ¢ of M with the sign chosen
so that if the normal pointing away from the solid enclosed by the surface is
on the opposite side of the plane determined by o, then the sign is 4 and is
— otherwise. This is compatible with some orientation of M.

Then it is easy to see that the volume enclosed by M is the sum of the
volumes of the cones in some subdivision, where the signs are chosen + or —
as above. Since V(M) is invariant under subdivision the result follows.

Fig. 3
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Remarks. 1. V(M) is independent of where the origin is chosen.

2. If M is immersed and bounds an immersed 3-manifold, then V(M) is +
the volume of this 3-manifold. In particular V(M) = 0 .

3. In the differentiable case the above formula is analogous to the Minkow-
ski type formula

V(M) = %JN-XdA ,

where X describes the surface, and N is the outward pointing unit normal.

4. 1In case M is a suspension X, we can calculate V(M) in terms of previ-
ously defined variables by taking the origin at S and using Property 4. For
x #+ 0, '

1
V()= ——-

6ivx A7

4. Proofs of Theorems 1 and 2

4.1. The winding number theorem.

Proof of Theorem 1. From Properties 1 and 2 we see that 6§, is an analytic
function of x, being the log of an algebraic function. The crucial observation
is that 6, is only a function of that part of the suspension which involves v,
and v,,,, namely x, the five edge lengths, and the sign of y,.

We next observe that if we consider x as complex and take the limit of ¢, as
x goes to infinity along some path, in the complex plane, which avoids all the
singular points of §,, we see that §, approaches some multiple w; of 2z. This is
because of Properties 1 and 2 that the highest degree of x (in a power series
expansion about oo say) in the numerator and denominator is 2, and the lead-
ing coefficients are the same. Thus e***7* = 1, and w;, is some integer. It is clear
that,

3w, = w() .

But w; depends continuously on the intrinsic parameters and thus can be com-
puted for any particular case, and they all must be the same number. It is then
clear that each w, = 0, and thus w(2) = 0.

4.2. Reducing the structural equation. Before we can show that V(Y) = 0,
we must investigate more thoroughly the nature of the structural equation (2.3).
In particular we must show how it reduces or splits up into ““disjoint” equa-
tions of the same sort. To this end we recall the b,’s and &’’s of property 1 for
y;. We say y,, is equivalent to y,, (more precisely we should say j, is equivalent
to jy) iff b; = b;, and b, = b,. Alternatively y,, is equivalent to y,, iff y,,/y,, is
constant, as a function of x.
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Lemma 2. Let Y flex with variable x, and let C be an equivalence class of in-
dices described above. Then

.1 JLIC(Q,» + ) = JJ;IC(Q]- =)

Proof. Let b, b’ correspond to the b,’s and &)’s in the definition of C. Let
C, be the set of indices corresponding to those y,’s which have b, = b. We
wish to show first that

4.2) jﬂ Q; + ) =ng (Q; — ).

From Properties 1 and 2 we see that each factor of (2.3) is a nice algebraic
function of x with no finite poles and only two branch points at b, and &’.
Start a path at any x not at any of the branch points, and proceed once around
b and not around any of the other b,’s or b)’s, (unless they are equal to b).
Only the sign of the y,’s for j e C, will change on both sides of (2.3). Thus

@3 1@+ ) [1(Q; —») =11 (@5 — »)) I;[ Q@+,

where N = {1, 2, -- -, n}.
Dividing (2.3) with (4.3) and cross-multiplying we get
2 2
[me +»] =[ne-»|.
Thus (4.2) holds up to +.
If (4.2) holds with a minus sign, then we compute the coefficient of the
highest power of x on the left and right (i.e., divide both sides by x*™, m being

the number of elements in C,, and take the limit as x — oo0). On the left it is
—1)™ and on the right it is — (—{)™, since the leading coefficient of Q; is
— 1. Thus (4.2) must hold with a +.
Finally we repeat the above argument with (4.2) replacing (2.3), C replacing
C,, C, replacing N, and &’ replacing b. (4.1) then follows.

4.3. The proof of Theorem 2. By Lemma 2 and Remark 4 after Lemma 1
it is sufficient to show that

2., =0.

jec
Since all the y;’s in C differ by a multiplicative constant, write y, = ¢,y =
¢;x(x — b)(x — b’). Thus we must show Y} ,..c; = 0.

Expand (4.1) by the binomial theorem and collect the terms which do not
cancel,

(44 (me)z 2o+ =0,
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where the terms left out involve higher powers of the y,’s and lower powers of
the Q,’s. The order of x is 3/2 in y, and is 2 in Q,. Thus we see that the coeffi-
cient of the highest power of x'/* in (4.4) is

(—h" e

Thus ) ¢; = 0 and applying the above argument for each equivalence class
shows that V(%) = 0 proving Theorem 2.

4.4. The main result.

Corollary. If X is a suspension which is immersed bounding an immersed 3
manifold, then Y is rigid.

Proof. 1If X is not rigid, it flexes by the definition of rigidity. If x varies
during the flex, then V(2) # 0 by Remark 2, but this contradicts Theorem 2.

If on the other hand x is constant, we may regard Y as being the union of n
rigid tetrahedra (N, v,,v,,,, S) since all the edges are fixed during this flex.
(Recall x = |N — S|.) The only way Y can flex without extending to a con-
gruence of R®is for at least 2 of the v,’s to be situated on the north-south axis.
But then X is immersed at neither N nor S. Thus in either case we obtain a
contradiction, and 2 must be rigid.

5. Conjectures and related results

5.1. Conjectures. It is natural to conjecture that all immersed surfaces are
rigid, but this is false (see [5]). The strongest conjecture along these lines which
we can imagine is the following.

Conjecture 1. If M* is a immersed 2-manifold in R® bounding an immersed
3-manifold, then M is rigid.

In view of Theorem 2 the following also seems natural.

Conjecture 2. If M* is a simplical orientable 2-manifold linearly mapped into
R3, then V(M?) is constant during any flex.

5.2. C(lassifying flexible suspensions. The basic structural equation and
particularly Lemma 2 can be used to give a geometric or algebraic geometric
description of flexible suspensions. Property 1 can be regarded as defining y,
so that x and the y, are elliptic functions of a single parameter. The group ac-
tion defined on the elliptic curves defined by property 1 can then be used to
generate many examples of flexible suspensions.

Each factor of (4.1) gives rise to four points on the elliptic curve, the roots
of O, + y,;. The equation is to be interpreted as saying that the collection all
the points is symmetric about the x-axis. It then becomes a combinatorial pro-
blem to find the ways of chosing such a collection of points. A flow graph with
a flow in the elliptic group is helpful here.

5.3. The octahedron. The simplest nontrivial suspension is when n = 4,
the octahedron, which can be viewed as a suspension in three ways. The analysis
described in § 5.2 can be carried out in this case to give a complete description
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of all flexible octahedra. It turns out that there are three classes. The two
simpler classes are described in [5].

However, in 1896 Bricard [2] also classified all flexible octahedra by a some-
what different approach. We thank Brank Grunbaum for pointing this refer-
ence and related ones out to us [1], [3], [7], [8].

We also wish to point out that Theorem 1 cannot be used to prove the co-
rollary, even in the case of the octahedron. The following is a picture of an
embedded (therefore rigid) octahedron with the property that if it is regarded
as a suspension in any of the three ways, then the winding number of the equa-
tor about the north-south axis is zero.

Fig. 4

5.4. More general suspensions. It is possible to generalize the above analy-
sis of suspensions to the case where the equatorial curve is piecewise-smooth
instead of piecewise-linear. One obtains by a similar analysis a formula analog-
ous to (2.2) where an integral replaces the product. However, one must be a
bit careful about what one means by rigidity here, for it is possible to have the
suspension of an arc rigid if one does not allow a subdivision at a critical point
on the arc. If one does allow subdivisions of this sort, the situation is quite si-
milar to the piecewise-linear case. In fact it is possible to prove a winding
number theorem with proof and statement similar to Theorem 1. We do not
know how to show the analogue of Theorem 2.

The author would like to thank the Institiut des Hautes Etudes Scientifiques
at Bures-sur-Yvette, France, for inviting him as a visitor and the many people
there for their encouragement and stimulation.

Added in proof. Conjecture 1 and the rigidity conjecture mentioned in the
introduction are now known to be false; see [9] or [10].
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