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DERIVATIVES OF SECONDARY
CHARACTERISTIC CLASSES

JAMES L. HEITSCH

Introduction

Secondary characteristic classes have been studied extensively in recent years,
particularly with regard to foliations. One of the most interesting properties of
these classes is their ability to vary continuously with a continuous deforma-
tion of the foliation. In this paper we construct the derivatives of these seconda-
ry classes for a given foliation.

Let F be a foliation of codimension q on a manifold M. Let Φ be the sheaf
of germs of vector fields on M which preserve F. Then H\M\ Φ) is the space
of infinitesimal deformations of F. There are a graded differential complex WOq

and a natural map

a$:H*(WOq)->H*(M;R)

depending only on F, which gives characteristic classes for the foliation. We
construct a natural map

DF: H\M; Φ) X H*(WOq) -» H*(M; R)

which depends only on F. This map gives the derivatives of the characteristic
classes for the foliation in the sense that if β € Hι(M; Φ) is the infinitesimal
deformation associated to an actual deformation Fs, s e R, Fo = F, then for
/<= H*(WOq)

In a crude sense, if one views a*(f) as a map from the space of foliations on
M to the cohomology of M, one may think of D(.,f) as the induced map on
the tangent space of the space of foliations. The point of this construction is
that it allows one to compute derivatives of characteristic classes corresponding
to deformations of a fixed foliation F using only information provided by the
foliation, i.e. one does not need to know what the deformation is in order to
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construct its associated derivatives. All the information is contained in F and
H\M; Φ).

This construction may also be applied to the secondary classes of Simons

[7].
The paper is organized as follows. In section 1 we review known results and

gather information required later. Section 2 contains the construction of the
map DF. In section 3 we show how to partially extend this construction to the
case of complex foliations. In section 4 we compute the derivatives of two im-
portant examples, the horocyclic flow on a surface of constant negative cur-
vature and the Hopf fibrations, and show that these derivatives are zero.

1. Review of needed results

For a more thorough treatment of the material presented in this section the
reader should consult the references.

Throughout the paper we treat only smooth (C°°) objects and observe the
conventions that M is a manifold, F is a foliation of codimension q on M with
tangent bundle τ, normal bundle v and dual normal bundle v*. C°°(M) is the
space of smooth real valued functions on M. If ξ is a bundle over M, C°°(ξ)
denotes the space of smooth sections of ξ. The cohomology class determined
by a closed form ω on M is denoted by [ω]. Finally we observe the Einstein
convention of summing over repeated indices in any expression.

We begin by briefly recalling the Chern-Weil construction of characteristic
classes. See [17, Chapter XII].

Let glq be the Lie algebra of the real general linear group GLq, and denote
by Ik(GLq) the set of all symmetric multilinear maps

such that for a ίιGLQ,Xu . . . .

f(aXia-\ • •

f'

x*
• •> c

X gh
k

*gl.

ιXka~')

-+R

, Xk) .

Such a map is called an invariant polynomial of degree k. If we define

I(GLq) = Σ Ik(OLq) ,

then I(GLq) has the structure of a graded ring and is given by

I ( G L q ) = R[Cl, ...,cq],

where ck is the kth Chern polynomial and degree ck = k. We observe the Chern
convention for invariant polynomials, that is, if / e Ik(GLq) and / contains
fewer than k arguments, the last one is repeated a number of times to make /
a function of k arguments. Thus
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f(Xu X2) = f(Xu X ^ ^ Q , X, X, 6 glq .
k-i

Let 77: P -^ M be a principal GLQ bundle over M. If a z GLq, then a acts
freely on P on the left by La. A ^-valued r-form Λ on P is called tensorial of
type ad if

(i) A is horizontal, i.e., if Xl9 , Xr <= TP and Π*(XX) = 0 some / then

(ii) Li A -
Observe that if Al9 , f̂fc are tensorial of type ad a n d / e Ik(GLq), then/(Λ l s

• , ylfc) is a well defined form on P which projects to M. In particular the
curvature Ω of a connection 0 on P is a g/^-valued 2-form which is tensorial of
type ad and the 2k-formf(Ω) is a closed form on M.

If θ0 and 0X are two connections on P, we define

where β t is the curvature of the connection tθ1 + (1 — t)θ0, t e R. As θx — θ0

is tensorial of type ad, Δf{θλ, θ0) is a well defined (2k — l)-form on M, and

Thus the cohomology class [f(Ω)] does not depend on θ and in fact depends
only on P. The resulting map

W: I(GLq) -> JΪ*(M; Λ)

is called the Chern-Weil homomorphism.

Now denote by R[cl9 , cq] the polynomial ring over R in the indicated
variables with degree cί = 2i. Let jRβ[cl9 , cq] be the ring R[cl9 , cj/(ele-
ments of degree > 2q), and let A(hl9 A3, , /z2fc+i) be an exterior algebra on the
A's where degree ht — 2ί — 1, and 2A: -j- 1 is the largest odd integer < q. WOq

is the differential complex

Λ ( h l 9 •• 9 h 2 k + 1 ) ® R q [ c l 9 ' " 9 c q ] 9

where d(\ (x) cf) = 0, d(ht (x) 1) = ct ® 1.
Denote the ring of differential forms on M by A(M). Let 0O be a Riemannian

connection on the principal dual normal bundle P of F. If β 0 is the curvature
of θ0, we remark that for any odd / the form CXΩQ) is identically zero. Let θλ

be a basic connection [4] on P with curvature Ωx. Define

aF\WOq-»A{M)

by
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aF(cτ) = c^Ω,) , aF(K) = Λet(θl9 θ0) ,

and extend by linearity. The ci on the right are the Chern polynomials in
I(GLq). This map commutes with the differential operators and induces the map

af:H*(WOq)-+H*(M;R).

This map does not depend on the choices made.
This is one of several independently discovered and essentially equivalent ap-

proaches to secondary classes due to Berstein-RozenfeΓd [2], Bott-Haefliger [6],
Malgrange (unpublished), and Kamber-Tondeur [15]. We have adopted here
the method given in [4].

J. Vey [11] has given a basis of H*(WOq) by elements of the form

hiχ hίk (x) cH - • ch , h < . < ik, j \ < . . < U ,

satisfying the auxiliary conditions
(i) if no /z's appear, each Cj must havey even and/Ί + + j\<q. (These

give the Pontrjagin classes of y*.)
(ii) if some /z's appear, then ix < smallest odd j appearing and ix + j \ +

• + jι> q. (These give the secondary characteristic classes of F.)
A Γ vector field on a manifold M with a codimension-gr foliation F is a

vector field Y such that the one-parameter family of local diffeomorphisms
generated by Y maps leaves of F to leaves of F. We identify two Γ vector fields
if their difference is a vector field tangent to F. If Φ is the sheaf of germs of
local Γ vector fields on M, then H\M; Φ) may be viewed as infinitesimal de-
formations of F. The cohomology groups H *(M; Φ) can be computed as fol-
lows.

Recall τ is the tangent bundle of i% v the normal bundle, and let V be the
covariant derivative determined by θ, a basic connection on v*. H*(M; Φ) is
the homology of the differential complex

) v) and XQ9 , Xk <=. C°°(τ), then

i / Ύ/ -y \ v~ι / Λ\iT7 (V Ύ V \

^ ^ V ^ 0 > ' ' ' 9 Άk) Z-i V *•) ' XiG\Λ-Oi ' ' ' 9 -Λ- %•> ' ' ' 9 Λfc)

(1.4)
/ , I II ϋ l I.Λ./, Λ. .-I, /»-n> " * * 9 19 ' ' ' 9 7 5 " ' * , - / !

The " over Xt or 1^ means that entry is deleted. Thus each element of H\M Φ)
is represented by a section σ of r* (x) P with Jσ = 0.
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For our point of view on this see [14]. See also [10], [18], [16], [19], [20], and
[21].

We will be working with 7^-and g/^-valued forms such asΰ) = (ω1? , ωq),
0 = (θ)), etc. To avoid becoming swamped in sub and superscripts we will often
abbreviate. For example, (2.13) written with scripts reads

2. Construction of the derivatives

In this section we construct, for a foliated manifold M, the natural map

DF: H\M\ Φ) X H*(WOq) -> H*(M; R)

referred to in the introduction. This map gives the derivative of the map

a*:H*(WOq)-+H*(M;R).

We first construct for a given basic connection θ and a section σ representing
β e H\M\ Φ) an infinitesimal derivative θ' of 0.

Let F be a codimension-^r foliation on an w-dimensional manifold M, and
denote by T*M the cotangent bundle of M, by τ the tangent bundle to F. The
dual normal bundle p* of F is the subbundle of Γ*Af consisting of those ele-
ments which restrict to zero on r. Let P be the principal bundle associated to
v* and 77: P —• M the projection. A point ω z P consists of a g-tuple ω = (ω1?

• , ωq) where the ωt are linearly independent elements of v* at the point 77(ω).
We will also denote by ω the canonical 7?9-valued one form on P, ω = (ω1? ,
ωq\ given by

(2.1) ω(X) = M 7 7 ^ ) , , ωq(Π*X)) , Xz TP{mu...t.q) .

If a e GLq, it acts freely on the left on P by La and

(2.2) Lα*ω = aω .

The canonical forms ω l5 , ωq define the foliation 77*F on P, with tangent
bundle 77-1(r), and generate an ideal 7(ω) in the ring of differential forms on P
which is closed under exterior differentiation. Also note that the product of any
q + 1 elements in I(ω) must be zero so I(ω)q+ι = 0. If θ is a basic connection
on P, then

(2.3) dω = θ A ω .

That is,

d(Oi = θ) Λ (Oj .
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It follows easily that the curvature

(2.4) Ω = dθ - θ A θ

of θ satisfies

Ω A ω = 0 ,

and s o f l e I(ω) Thus we may write

(2.5) Ω) = Γ% A ωk , Γ% = Γ{j ,

where the Γ)k are one-forms on P.
We now translate some of the results of previous section into statements

about P. The space C°°(Λτ* (x) v) consists of equivalence classes of sections of
ΛkT*M ®v where two sections are identified if their restrictions to τ coincide.
Let v be the normal bundle of the foliation Π*F on P. An element σ e
C°°(ΛkT*P (x) v) may be viewed as an i^-valued fc-form on P by composing
with the canonical one-form ω. We will always think of such σ as 7^-valued
forms in this way. An element a e C°°(ΛkT*P (x) ϋ) projects to an element σ e
C-(ΛkT*M (x) v) if and only if

(i) σ is horizontal ,
(2.6)

(ii) La*σ = aσ , fle GL9 .

If σ ς. C"(yίfcr*®i;), then σ may be represented by an element σ e C°°(ΛkT*P
(x) v) satisfying (2.6). It follows directly from (1.4) that dσ may be represented
by dσ — θ A σ. Thus, if β e H\M; Φ), it may be represented by an i?ρ-valued
one-form σ on P satisfying

( i ) σ is horizontal ,

(2.7) (ϋ) L*σ = aσ,

(iii) dσ — θ A σ\π-1(τ) = 0 .

Definition (2.8). Let β e H\M\ Φ) be represented by the ^Q-valued one-
form σ on P. The derivative ωf of the canonical one-form ω with respect to σ is
given by

α/ = — σ .

Equation (iii) of (2.7) means that

dωf - θ A ω' e I(ω) .

Thus there is a g/^-valued one-form θ' on P satisfying

(2.9) dω' - θ A ω; - θ' A ω .
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Definition (2.10). Any glq-valued one-form θf satisfying (2.9) is called an in-
finitesimal derivative of θ with respect to σ.

If ΘQ and θ[ are two infinitesimal derivatives of θ with respect to σ, then (2.9)
implies (θ[ — 0j) Λ ω = 0. Thus

(2.11) θί-θ'0 = λω9 Xjk = λij,

where λ = (Λ}fc), and the Λ}fc are functions on P.
Lemma (2.12). Ifθ' is an infinitesimal derivative of θ, then
(i) θ' is horizontal,
(ii) θ' is tensorial of type ad modulo ω (i.e., La*θf — aθ'a~λ € I(ω)).
Proof (i) Let v C TM be a complementary bundle to τ, and let £ be its

horizontal lift. Choose a representative σ0 of /3 such that σo|β = 0. Let X <=. TPω

be such that Π^X = 0, and choose an equivariant vector field Y e ύ such that

ωk(Ym) = δl Now ω ; ( r) = 0, ω\X) = 0, and ω(X) - 0. Since Π*([X, Y]ω) = 0,
we have ω[([X, Y]) = 0 and

Θ')(X) = θ'\(X)ωk(Y) = (0'ί Λ ωfc)(X, y)

= (dω\ -ΘΪΛ ω'k)(X, Y) = -ω[([X, Y]) = 0 .

If (7! is another representative of /3 whose restriction to Π~ι(τ) is the same as
(70, then we have

(2.2) and (2.7) (ii) imply that

= aδa'1 .

Let #ί, Θ'Q be the derivatives determined by σλ and σ0 respectively. A straight-
forward computation using (2.9) shows that modulo ω,

(2.13) θi - θ'o = dδ - [θ,δ] .

By [3, Theorem 6, p. 86], the right-hand side of (2.13) is horizontal. As any
one-form in I(ω) is horizontal, Q' is always horizontal,
(ii) Since θ is a connection we have

L*θ = aθa'1

and also

L*ω = aω , L*ω' = aω' .

Applying L* to (2.9) we have

L%θf A aω = ^ ' β " 1 Λ flω ,
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and modulo ω

L*θ' = aθ'cΓ1 .

We can now construct the derivatives of the secondary characteristic classes
of the foliation F on M. Let θr and θ be connections on P, θr Riemannian and
θ basic with curvature Ω. Let σ be an Rq-valued one-form on P which repre-
sents β e H\M\ Φ). Choose an infinitesimal derivative θ' of θ with respect to
σ. For each element hix hίk ® cjl cH of the Vey basis of H*(WOq), we
set u + 1 = ix + j \ + + ̂  and define a differential form on P by

( 2 i 4 ) Λ ( ^ •••**. ® ^ ^.)
= ( - \)k~\u + \)Δet%{θ9 θ'). . dCίk(θ, er)(cilCjl Cjι(θ\ Ω)) ,

and we extend to all of H*(WOq) by linearity.
We remark that if ix + j \ + • + j t > q + 1 (i.e., if A€l hίk®cH • Cjι

is a rigid element of H*{WOq) [13]), then (2.5), which is essentially the Bott
Vanishing Theorem [4], implies that the form cίlcjl ch(θ\ Ω) is identically
zero. Thus Dσ applied to such an element will be zero.

Let / = hu - hίk (x) cjl - cjι be an element of the Vey basis of H(WOq),
and set g = cixcjx ch <= Iu+ί(GLq). Then

(2.15) Dσ{f) = ( - \γ~\u + ϊ)ΔCijβ9 θr) . JCik(θ, θr)g(θ\ Ω) .

Theorem 2.16. For each f as above, Dσ(f) is a globally well defined closed
form on M depending on θ and σ.

Proof, (a) Dσ(f) is independent of the choice of θ''.
If ΘQ and θ[ are two infinitesimal derivatives, we have by (2.11)

g(θ[, Ω) - g(θ'o, Ω) - g(iω, Ω) e I(ω)u+ι = 0 .

(b) Dσ(f) projects to a form on M.
As each ΔCi (θ, θr) projects to a form on M, we check only that g(θ\ Ω) pro-

jects. By [17, Chapter XII, Lemma 1], we need only that 0', Ω are horizontal,
and

L*g(ff, Ω) = g(θ\ Ω) .

It is well known that Ω is horizontal and θ' is horizontal by Lemma 2.12. From
Lemma 2.12 (ii) and the fact that g is adjoint invariant, we have

, Ω) - g{ff9 Ω) = g{L*ff9 aΩa-1) - g{aθ'a~\

= g(L*ef - aθ'ar\ aΩa~ι) e I(ω)u+1 = 0 .

(c) Dσ(f) is closed.
We first show g(θ\ Ω) is closed. Let Ωr be the ^-valued 2-form on P
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Ω') = Γ% A w'k ,

where

Ω) = Γ% A ωk .

Thus

-Ω Aω' = Ω' Aω .

Taking the exterior derivative of (2.9) we obtain

-Ω Λω' = (dθ; - [θ, θ']) A ω .

Thus

Ω' = dθf - [θ, θf]

modulo ω and

g{dθ' - [θ, n Ω) = g(Ω\ Ω) .

For each s e R, let Is(ω) be the ideal of forms on P generated by ωλ + sω[,
• , ωq + sω'q. Note that

Is(ω)q+1 = 0 , Ω(s) = Ω + sΩf € /,(ω) .

The exterior derivative of (2.4) implies that

dΩ = [θ, Ω] .

Using (66) of [8] we have

d(g(θ\ Ω)) = g(dθ\ Ω) - ug(θ\ dΩ, Ω)

= g(dθ\ Ω) - ug(θ\ [θ, Ωl Ω)

= g(dff - [θ, n Ω) = g(Ω', Ω)

As g(Ω(s)) € Is(ω)u+1 = 0, we have dg(θ\ Ω) = 0. Now each in is odd, and θτ

is Riemannian thus we have

d(ΔCίn(θ, θr)) = cin(Ω) .

Since Ω e /(ω), the form d(dCίn(θ, θr)g(θ', Ω) € /(ω)M +^ = 0 and so applying d
to (2.15) we see it is closed.

Theorem 2.17. For eachfe H*(WOq) and β e H\M; Φ) with σ representing
β9 the cohomology class [Dσ(f)] € H*{M\ R) depends only on β and the foliation
F.
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Definition 2.18. We denote [Dσ(f)] by Dβ(f), and call it the derivative off
in the direction of β.

In what follows we will be doing many computations involving g/^-valued
forms a, β, γ, on P. The reader should note that whenever we consider a
form such as f(a, β,γ, ) on P, that form always projects to a form on M.

Proof of Theorem 2.17. (a) Dβ(f) is independent of the basic connection.
Let ΘQ and θλ be two basic connections on P, with associated derivatives θ'o

and θ[ with respect to σ. The connection

θt = tθ1 + (1 - t)θ0 , t e R

is basic and has associated derivative

θ{ = tθί + (l - t)θ'o

with respect to σ. Again using (66) of [8] we have

= gW, θx - 0O, Ωt) - g(θ't, dθι - dθ09 Ωt)

+ (u- Όg(θ't, θλ - θ0, [θt9 Ωtl Ωt)

θ[ - [θt, θ'tl θ, - θ0, Ωt) - g ( β , diβx - θ0) - [θt, θx - θ,l Ωt)

Combining this with the equation

-0-g(θ't9 Ωt) = g{θ[ - ΘΌ, Ωt) + ug(θ[, d(θ1 - θ0) - [θt, Θλ - θQl Ωt) ,
at

we obtain

(2 19)

= g(θ{ - θ'o, Ωt) + ugiθ, - θ» dθ't - [θt, θ't], Ωt) .

Lemma 2.20.

g(θί - θ'o, Ωt) + ug(βx - θ0, dθ't - [θt, θ't], Ωt) = 0.

Proof. If we apply (2.5) to θt we have that the curvature Ωt of θt satisfies

(Ωt)} = (Γt)% Λ ωt .

Set

φ% = (Γtγjh A ω'k.

Then modulo ω

Ω't = dθ[ - [ϋt, θ't].
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(2.3) applied to θx and θ0 implies that θx — θ0 e I(ω), i.e.,

(2.21) {βy - <?„)$ = λ)kωk , 1% = λij .

If we now apply (2.9) and (2.20) to θ[ and θ'o, we obtain that modulo ω

(θί - ΘΌ)) = λ)kω'k .

Set

Ω(s, t) = Qt + sΩ't ,

I,(ω) = /(ah + S(υ[, • • -,ωq + sω'q) .

Then Ω(s, t), θ(s) e V,(ω) so

g(θ(s), Ω(s, 0) 6 / s(ω)α + 1 Ξ 0 ,

g(fl - θ'o, Ωt) + κg(0, - θ0, dθ't - [θt, θ't], Ωt)

= g(dldsθ(s), Ω(s, 0) + wg(Φ), 9/3ίfl(j, /), β(ί, 0)l.-o

= d/dsg(θ(s),Ω(s,t))U = O.

Thus (2.19) and Lemma 2.20 imply

~g(θ't, Ωt) = -ud(g(θ't, θλ - θo, Ωt) .
ot

By [13, Theorem 1] we have

^-ΔCi{θt, θr) = dWi + iCi(θx — #o, Ωt) ,
dt

where Wi is some form on M. Thus

- 1 . ( 4 (0 ί f ̂ ) . . . J (βt, ̂ ( β ί , flί))
dt

= Σ 4 ί a ( ^ , β r ) {dWίn + incin{θx - θ09 Ωt)) Δeik(θt9 θr)g(θ't, Ωt)

- ΔCi2(βt, θr)- . Δetk(θt9 θτ)ud{g((Tt9 θx - 0o, Ωt)) .

Each term in the sum of the form ΔcH (incin) Δc g is zero as

ci£θι-θ09Ωt)gW9Ωt)eI(ω)u+t* = 0.

As

d(ΔCί (θt9 θ
r)g(θ't, Ωt)) = cίn{Ωt)g{θ't, Ωt) € / ( ω r + ί - - 0 ,
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each term in the sum of the form Δc (dlYin) ΔCikg may be written as
d(JCi2 . JVin . . ΔCikg). Finally as

d(ΔCίn(θt, θr))g(tft9 θx - θ0, Ωt) = cίn(Ωt)g(θ'0 θ, - θ0, Ωt) e I(ω)u+ί« = 0 ,

we may write the last term as — d(ΔCί2 Δc.ug). Thus

(2.22) -jfV«&> θ^'" Δ*$» VW* Ω^ = dW

for some form W on M. Integrating (2.22) from t = 0 to t = 1 finishes the
proof of part (a).

(b) Dβ(f) is independent of the choice of Riemannian connection.
As d(g(θ\ Ω)) — 0, we need only show that for two Riemannian connections

θr

0 and θ{ on P

ΔCi2(θ, θl) ΔCik(θ, θ[) - ΔCί2(θ, θl) ΔCίk(θ, θl) - exact on M .

If we write

ΔCί2(θ, θl) . ΔCik(θ, θ[) - ΔCi2(θ, θl) ΔCίk(θ, θl)

= Σ {Δct%{θ, θl) ΔCίnJΘ, θl)ΔCin(θ, θl) ΔCίk(θ, θl)
n = 2

- ΔCi2(θ, θl) ΔCin(θ, θl)ΔCίn+i(θ, θl) ΔCik(θ, θl)) ,

then this follows directly from the facts:
(i) If deg Ci is odd, then ΔCi(θl, θl) = exact on M. See [9, Proposition 4.3].
(ii) ΔCi(θ, θl) - ΔCi(θ, θl) = ΔCί(θr

0, θl) + exact on M. See [13, Theorem 1].
(c) Dβ(f) is independent of the choice of representative of β.
Suppose that σ0 and σλ are two /^-valued one-forms on P representing β,

whose restrictions to Π~\τ) are the same. Let θ'o and θ[ be the corresponding
derivatives of θ. From the proof of Lemma 2.3 (i) we have

θί-θ'0 = dλ- [θ, λ] .

Thus

g(θί9 Ω) - g(0ί, Ω) = g(dλ - [Θ9 λ], Ω)

= g(dλ, Ω) + ug(λ, [θ, Ωl Ω) = dg(λ9 Ω) .

Now

ΔCH(Θ, θr)- - ΔCik{θ, θr)g(θi, Ω) - ΔCH{Θ, (90 ΔCih{θ, θr)g(θ'o, Ω)

= ΔCH{Θ, θr)-- ΔCiJiθ, θ')d(g(λ, Ω))

= d{ΔCi(θ, θ')--- Δct(θ, θ')g(λ, Ω)) .
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The last equality follows from the fact that for each in, n > 2

d(JCin(θ, θr))g(λ, Ω) = cin(Ω)g(λ, Ω) e I(ω)u+ίn = 0 .

Thus Dβ(f) does not depend upon the extension to T*M of the section σ e
C°°(τ* (x) v) representing β.

If γ and δ are elements of C°°(τ* (g) y) with dγ = 0 and dd = 0, then for
/<= H*(WOq\ Dr+δ(f) = Dγ(f) + Dδ(f). Thus it is sufficient to show that given
λ € C°°(V), there is a form W on M such that

Ddf) = dW .

An element λ e C°°(V) corresponds to an i?ρ-valued function h on P which satis-
fies

h{aώ) — ah(ω) , a € GLρ .

The correspondence is given by choosing a representative

for λ and letting Ϋ be its horizontal lift. Then

h(ω) = ω{Ϋ) , i.e., hk(ω) = ωk(Ϋ) .

The element dλ is represented by the i?9-valued one-form

dh- θh .

Then

ff A ω = dω' - θ A ω'

By (2.5), Ωh = Γ A ωh. Now as

Γi — Γi
1 jk — L kj 9

θ') A ωj = Γ)k A ωkhj = Γ)khk A ωj ,

and so

ff = Γh .

Note that (2.5) implies that modulo ω

Γh= -i(Ϋ)Ω ,

where /( ) is interior product. Thus we may use
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0>= -ί(Ϋ)Ω ,

and for g e Iu+1(GLq) we have g(fl) € I(ω)u+ι = 0, so

, Ω) = -g(i(Ϋ)Ω, Ω) = _zL_/(f)g(f l) - 0 .
W + 1

Thus Ddλ(f) = 0.
This completes the proof of Theorem 2.17.
Theorem 2.23. Let Fg, s e R be a differentίable family of foliations on M,

and let β be the infinitesimal deformation of Fo determined by Fs. Then for all
/ e H*(WOq)

, /Ae infinitesimal derivative gives the actual derivative of the character-
istic classes for the foliation Fo.

Proof Let ω\ θs be respectively the canonical i^-valued one-form and a
basic connection on Ps the principal dual normal bundle of Fs. We choose θs

to vary differentiably in s. For small s9 Ps is canonically isomorphic to PQ. We
use these isomorphisms to obtain two families on Po, ωs and θs satisfying

( i ) ωs is an i?9-valued one-form.
(ii) θs is a connection form,
(iii) dωs = θs A ωs.

Indicating derivatives in s evaluated at s = 0 by , and writing ω for ω\ θ for
θ0, ώ for ώS9 and θ for ^ s, we have

If σ is a representative of the class β, we have likewise

dω' = θ' Λ ω + θ Λ ω' ,

where α/ = — σ. If we can choose a σ so that ώ = ω\ we would have modulo ω

θ = θ' .

Let ^ r be a Riemannian connection on Po. Then by Lemma 2.25 below we
would have for / = htl hik (x) cJX cjι9 h + j \ + + jι = u + 1

3 -«?.(/) i
;β=o

= ( - 1 ) - (« + l)J e i i ( ί , ffO • ΔCik(θ, θ')cHch • • • Cjι(θ, Ω)

= ( - \γ-\u + \)ΔCH{Θ, &)••• Δcι{β, F)cilCjl • • • Cjι{θ', Ω)

= Dβ{f) ,
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and we will be done.
Choose a Riemannian metric on M, and denote by Π^ the projection of

TM onto the subbundle vs normal to the foliation Fs. Then (see [14]) β is re-
presented by the element σ e C°°(τ£ <8) v0) given by

(2.24) σ(X) = -J-Πi-(X) , forler0.
ds β=o

The normal subbundle v0 of FQ pulls back to a horizontal sub-bundle v of
7!P which is complementary to Π~ι(τ0)9 and v is trivial. For small s, ωs is a
non-singular /^-valued one-form on ύ. Let

be a global framing of v which is dual to ω\ i.e.,

ω)(Xi) = δ) .

It follows easily that σ is represented by the 7^-valued one-form σ on Π~ι(τ)
given by

σ(X)= -ω(
\ OS

Since

0 for

σ{X) = -ω(^L

I ' ' T ^ * i
!«=o 3s U=o

Thus α/ = — σ = ώ and we are done.

Lemma 2.25. Let f = htl A,, (8) c^ cu e H*(WOq) be an element of
the Vey basis. Set u + 1 = iλ + j \ + + j l 9 and let Fs be a smooth family
of codimension-q foliations on M. Let θs be a family of connections on Po as in
the proof of Theorem 2.23, and let θr be a Riemannian connection on Po. Then

ds

[ c < a ( 0 . , θr) • • Δeik(θ,9 θr)cilCjl

Proof Again we use [13, Theorem 1] which states
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ds

ds

where W* is some form on M. Thus

ds

= [Σ 4,,^., βr) • (dwin + '.

• • Δett{θ., θr)ch • • • cn(Ωs)

+ Σ Δetί(θs, θr)-- JCίic(θs, θr)ch{Ωs)

• • • ΰdcsJΛ-θn β.) cίt(Ω,)] .

Since

d(ΔCin(βs, θr)ch • • • chφ.))

= cin(Ωs)ch • • cuφ.) e / k ) « + l t ( i " - ω = 0 ,

all the terms in the first sum involving the dW/s are exact. As

cln(-~θs, Ω)jch • • • cu(Ω.) e / ( α ) . ) " " - - " ' ,

all the other terms except the first are zero; for if n > 2, u + (/„ — Q > q + 1.
In the second sum we use the fact that for n > 2

d{ΔCi (ft., θr))ch(Ωs) • • • jmcj-ξ-θ., Ωs) • • • c}ιψ,)

" \ ds /

= cin(Ωs)ch(Ωs) • • • j m C j m ^ - θ . , £ , ) • • • CjχΩ.) 6 7 ( a > ) " + < - - " = 0

to show that modulo exact terms

ΔCiι(θt, θr)--- Δett(θn F)ch(Ωs) • • • jmdcjm(-^θs, Ω)j • • • ch(Ωs)
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-*ctιφ,)Δttt(β,,n JCik(θs,θ
r)ch{Ωs)

Thus we obtain

~diaFs

aSθ"θr) - Δ«t<β.>θr)cH • • • cuφ.)

+ h i - iy-ictιφ,)Att(β., θr) • • • ΔCH(ΘS, θ")ch{Qs)
I

Σ
(2.26) / 3 \ 1

• • • ΰc]m(-ξ-θs, Ωs) •••ciιφ.)\

h • • • cjt(Ωs)

. Ω ) • • • ^ , ( β

Now if/e Ik(GLq) and g e Γ(GLq), by definition (see [17])

(k + /)!

where the sum is taken over all k, I shuffles π. It is easy to check that

(2.27) (k + iχfgχxlt X2) = kfiX,, X,)g(X2) + lf(X,)g(^, ^) ,

and so the sum inside the { }in (2.26) is equal to

(« + \YHCH

finishing the proof.
Note that if u > q, then we have both (d/ds)a$(f) and Dβ(f) are zero.

3. Extension to complex foliations

We now show how to partially extend the construction of the previous sec-
tion to the case of complex foliations. The numbering in this section was done
so that objects corresponding to things in § 2 have corresponding numbers, i.e.,
(3.3) corresponds to (2.3), etc.
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We begin by remarking that if GLqC denotes the complex general linear
group, then

I(GLqC) = I(GLq) <g> C ,

and all the comments in § 1 concerning the Chern-Weil homomorphism hold
for GLqC.

Throughout this section we adopt that notation that F is complex codimen-
sion-# complex analytic foliation on a complex manifold M. We denote the
holomorphic tangent bundle of M by TM, and remark that the tangent bundle
τ of F is a subbundle of TM. We denote the holomorphic cotangent bundle
by Γ*M. Similarly the antiholomorphic tangent and cotangent bundles are
denoted by TM and Γ*Af respectively. We write the normal bundle TM/τ of
F a s v, and its dual bundle as v*. A section of v* is then a section of Γ*M,
i.e., a (1, 0)-form on M, whose restriction to τ is zero.

Let Rq[cl9 , cq] be a truncated polynomial ring isomorphic to Rq[cl9 , cq]
of § 1, and denote by Λ(hl9 , hq) an exterior algebra on the hi where degree
hi = 2/ — 1. The graded differential complex WUq is defined to be

WUq = Λ(hl9 • • •, λ ρ ) ® Rq[cl9 , cq] <g> Rq[cl9 9cq] ,

where the differential is given by

d(ht (x) 1 ® 1) = 1 (x) c, (x) 1 - 1 <g) 1 (x) c, ,

r / ( l ( 8 ) c , ® 1) = </(l <g> 1 <g> c€) = 0 ,

or more informally

d(ht) = c, - c, , Jfe) = </(c€) = 0 .

Denote the ring of complex valued differential forms on M by A(M). Let θϋ be
a Hermitian connection, and ^x a basic connection [1] (with curvatures Ωo and
£?! respectively) on P, the principal bundle associated to v*.

Define αrF: WUq -> ^(M) by

and extend linearly. Since θ0 is Hermitian, the form ct{Ω^ is totally real, i.e.,

C^ΩQ) = c^fio), and thus aF commutes with the differentials and induces

As in the real case, a$ does not depend on the choices made. See the references
in § 1 to the construction of ά$ in the real case and [5].

A basis of Iq+ί(GLqC) is given by elements of the form
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c z = c t l " c i k , ( h + -' + i k = q + l , h < '•- < h ) .

Each element cτ determines an element hcj € H2q+ι(WUq) given by

hcj = [Λflcίa cίfc + c,A2^3 •- ctk+ + c ί t cίfc_AJ .

These elements are known to vary linearly independently [5].
A Γ vector field on M for F is a holomorphic section <F> e C°°(v), where

7 e C°°(ΓM0 TM) is a vector field whose associated real part preserves F in
the sense that the local diffeomorphisms which it generates map leaves to leaves.
Let Φ be the sheaf of germs of local Γ vector fields for F. Then H\M\ Φ) may
be interpreted as infinitesimal deformations of F. The groups H*(M; Φ) can be
computed using the complex

C » - ^ C - ^ i r * Θ ?*Λf) <g> v) - ί U C°°(Λ2(τ* Θ Γ*M) (x) v) - ^ U .

where d is defined by (1.4) using a basic connection on v. Thus each β ς.
H\M\ Φ) can be represented by an element σ e C 0 0 ^ 1 ^ * Θ T*Af) (x) y) with
dσ = 0, and any two such representatives differ by an element df, f € C°°(y).
See the references after (1.4).

The construction of the derivatives for the elements hcT, c7 € Iq+1(GLqC),
now proceeds in a fashion nearly identical to the real case. We will outline it
indicating the necessary changes.

Denote by 77: P -> M the principal bundle associated to v*. Then, as in the
real case, P has a canonical C^-valued one-form ω, and if Θ is a basic connec-
tion then

(3.3) dω = θ A ω .

This immediately implies that the curvature Ω of 0 satisfies

(3.4) β Λ ω = 0 ,

so we may write

(3.5) Ω) = Γ% A ωk ,

(3.6) Γ% = Γlj .

Just as in the real case, β e H\M; Φ) can be represented by a C9-valued one-
form σ on P such that

( i ) σ is horizontal ,

(3.7) (ii) L*σ = aσ9

(iii) dσ — θ A σ\π-Hτ@TM) = 0 .
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Definition 3.8. Let β e H\M\ Φ) be represented by the C^-valued one-form
σ on P. The derivative ω' of ω with respect to σ is given by

ωr = —σ.

Equation (3.7) (iii) implies that there is a glqC-valued one-form θr on P such
that

(3.9) dωf - θ A ωf = θf A ω .

Definition 3.10. Any g/βC-valued one-form ff satisfying (3.9) is called an
infinitesimal derivative of θ with respect to σ.

It is easy to check that (2.11) and Lemma 2.12 hold in the complex case. In
the proof of Lemma 2.12 we note that TM is now the holomorphic tangent
bundle of M, and we must replace Π~\τ) by Π~\τ Θ TM).

Definition 3.14. Let /<= Iq+ι(GLqC), and denote by hf the element which /
determines in H2q+1(WUq). Let β <= H\M; Φ) be represented by σ. Let Ω be the
curvature of a basic connection θ on P, and let θ' be an infinitesimal derivative
of θ with respect to σ. Define

Dβ(hf) - [2(q + \)Sf{ff, Ω)] .

Here «/ denotes the imaginary part of a form.
Theorem 3.17. Let f, θ, θ\ Ω be as in Definition 3.14. Then 2(q + \)Sf(β\ Ω)

is a globally well defined closed form on M whose co homo logy class depends only
on β and f.

Proof. To prove this we merely repeat the proof of Theorem 2.16, parts
(a), (b) and (c) ignoring the parts pertaining to the ΔCi. Then we repeat the
proof of Theorem 2.17 parts (a) and (c). In part (a) we stop at the end of the
proof of Lemma 2.20. In part (c) we disregard the parts pertaining to the ΔCi,
and for τ* read r* Θ TM. As the proofs carry over with only minor changes
we omit them.

Theorem 3.23. Let F8, s e R be a differential family of complex analytic foli-
ations on M, and let β e H\M\ Φ) be the infinitesimal deformation of Fo deter-
mined by Fs. Then for all fa Iq+1(GLqC),

Proof This proof proceeds identically to the proof of Theorem 2.23. In
particular we choose a family of connections θs on Po such that θs is basic for
Fs and varies differentiably in s. Then we need to choose a representative σ of
β so that modulo ω0

-J-0.1 = Θ' ,
ds |«=o
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where θf is the infinitesimal derivative determined by θ0 and σ. To do this
choose a Hermitian metric on M obtaining a family of projection operators
Πj. Then σ is given by (2.24). See [14]. In the proof of Theorem 2.23 we must
replace r0* by r0* Θ T*M, and Rq by Cq. The proof of Theorem 3.23 is then
completed by

Lemma 3.25. Letfe Iq+\GLqC) and FS9 θs as in the proof of Theorem 3.23.
Denote the curvature of θs by Ω89 Then

^aU¥) = 2
ds

Proof By linearity we may assume / = cίχ cίk. Let θh be a Hermitian
connection on Po. Then

aUV) = K4 4 l(0., θh) - Δ-Cii(θs, θh))cί2(Ωs) cίk(Ωs) +

+ cίχ{Ωs) cίk_x{Ωs\ΔCik(ΘJh) - Δ-Cίk(θS9 θ
h))] .

Again [13, Theorem 1] implies

3

ds

^ΔCi(θs,β
h) = dWt + icJ-^θs, Ω) ,

as \ as /

— Δ-C£θs,θ
h) = dWt +

A straightforward computation using these facts, (2.27) and the fact that dCi(Ωs)
= dct{Ωs) = 0 shows that modulo exact terms

~-(cίx(Ωs) cίr_xφs)(ΔCίr(θs, θh) - Δ-Cir{θS9 Θ
h))cίr+X(ΩS) . cik(Ωs))

as

(<7 + l)(cti • • • cir_lCir • • ctj(J-θn Ωs

Summing over r we obtain
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= 2(q +

In the next section we will compute θf for specific foliations. We do the
computations locally on M, not globally on P. Specifically we do the following.

Let F be a codimension-^ foliation on M, and choose a basic connection θ
for F. Let β e Hι(M; φ), and choose a representative σ 6 C°°(T*M (x) v),
(C°°((Γ*M0 Γ*M) (g) y) in the complex case). Let U be a neighborhood on
M on which F is defined locally by one-forms ωl9 , ωρ.

( i ) Compute the local connection and curvature forms θ = (θ)), Ω — (Ω))
with respect to the local basis ωl9 , ωq of v*.

(ii) Choose a local basis <AΊ>, , < ^ > for v and write σ^ = σk ® <^fc>.
(iii) Set ω = —a)i(Xk)-ak.
(iv) Compute dω[ — θ) A ω). This will lie in the ideal generated by ωl9

-"9ωq9 i.e., write dω, - θ) A ω) = θ') A ωj9 and set θf = (θ')).
(v) Finally for fe H2q+ι(WOq), Dβ(f) is represented by the form whose

restriction to U is (q + l)f(θ'9 Ω). F o r / e Iq+ι(GLqC), Dβ(hf) is represented by
the form whose restriction is 2{q + l)J^/(0/, 42).

4. Some interesting trivial examples

In this section we compute two examples for which all derivatives are zero.
Example 4.1. The Lie group SL(2, R) has Lie algebra

We may choose a basis of left invariant one-forms on SL(2, R) ω, ωu ω2 which

satisfy

dω — ω A ωλ , dωx = ω Λ ω2 , ί/ω2 = ωx Λ α>2

Let X, Y and Z be left invariant vector fields dual to ω, ωλ and ω2 respectively.

Then

[X,Y]=-X, [X,Z]=-Y9 [Y,Z]=-Z.

Consider the foliation F on SL(2, R) defined by ω. The normal bundle v to
F i s spanned by <X>, and as dω = — ωλ A ω, the covariant derivative V of a
basic connection on v satisfies

The bundle v is trivial as is τ the tangent bundle to F. Thus

C-(r* (g) î ) = {(/ω, + ^ω2) ® <X> I f9g e C~(SL(29 R))} ,

C°°(^2τ* (8) i;) = {Aω! Λ ω2 (g)
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A simple computation using the above information and the definition of d gives

+ gω2) <8> <X»(Y, Z) = (Yg-Zf+ 2g) (

Let β e H\SL(2, R);Φ), and suppose β is represented by (fωλ + gω2)(x)<Ar>.
Then

ω' = — (/αh + gω2) , Θ = —ωι .

Using the fact that d{fjωγ + gω2) <g) < ^ » = 0we have that

dω' - β Λ ωf = (df{X)ωx + dg(JT)ω2 + fω2) A ω .

Thus

(4.2)

In addition

(4.3)

The complex i/*(ί

θ' = df{X

Ω =

VOλ) satisfies

' 1

K + dg(X)ω2

dθ = -ω A

) = { ° ' *

+ fω2 .

ω2 .

¥ = 0 , 3 ,

= 0, 3 ,

and HχW0λ) is generated over R by /z^i, the Godbillon-Vey invariant [12],
where h&φ, Ω) = θ' A Ω. So from (4.2) and (4.3) we have

(4.4) λ lCl(0', Ω) = df(X)ω A ωγ A ω2 - rf(/ωi Λ ω2) .

In order to obtain results about foliations on compact manifolds we form
the manifolds SL(2, R)/Γ where Γ is a discrete subgroup. For the proper choice
of Γ we obtain the horocyclic foliation of geodesic flow on the unit tangent
bundle of any compact Riemannian surface of constant negative curvature.
Roussarie has noted that the Godbillon-Vey invariant of this foliation is non-
zero as it is a multiple of the volume form of the manifold.

The computation for SL(2, R) extends to these foliations by restricting to
sections invariant under Γ of the relevant bundles on SL(2, R).

By (4.4) we have that [/z1c1(̂
/, Ω)] = 0 for any infinitesimal derivative of θ,

and so the following.
Theorem (4.5). Let M be a Riemannian surface of constant negative curva-

ture, and let F be the horocyclic foliation of the geodesic flow on the unit tangent
bundle T°M. Then

DF: H\T°M; Φ) X H ""{WO,)) -* i/*(Γ°M; R)

is the zero map.
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Theorem 4.5 says that if we consider the Godbillon-Vey invariant as a co-
homology valued function on the space of foliations on T°M, then the horo-
cyclic foliation F is a critical point of this function. The reader should be cau-
tioned that it is possible for a family of foliations Fs to exist on T°M with Fo

= F satisfying hλcλ(Fs) varies continuously. Theorem 4.5 implies only that

(d/dsMaiFM-o = 0.
Example 2. The Hopf fibratίons. Consider the natural fiber bundle Cn+ι ~

{0}^ CPn. This gives a foliation F on Cn+ι ~ {0} of complex dimension 1. We
prove

Theorem 4.6. Let Fs, s 6 R be any differential family of complex foliations
of dimension 1 on Cn+ι ~ {0} such that Fo = F. Then for any element fς.
Γ+ι(GLnC) the element hfe H2n+\WUn) satisfies

=0

In [6] examples are given of foliations Fs as in the theorem such that the
elements determined by the cH ch e In+ι(GLnC) vary linearly independently.
Just as Theorem 4.5, Theorem 4.6 says that if we consider the elements /z/e
H2n+\WUn) as functions on the space of foliations on C n + 1 ~ {0}, the Hopf
fibration is a critical point. This is so because of the tremendous symmetry in-
herent in its structure.

Proof of Theorem 4.6. In what follows subscripts denoted by /, j run
from 1, •••,«, and those denoted by A, B, run from 0, •••,«.

Since F is given by a fiber bundle structure over CPn, the dual normal bundle
v* to F is isomorphic to the pull back of the holomorphic cotangent bundle
T*CPn on CPn. Any connection on τ*CPn of type 1, 0 may be pulled back
to give a basic connection on v*. See [1], We shall use the Kahler connection.
Let U be the open set of Cn+ι ~ {0} defined by

£ / = { ( z 0 , - ,zn)\zoφθ}.

U may also be considered as a homogeneous coordinate system on CPn. Let
< , > denote the standard Hermitian inner product on Cn+\ and let <z, z> =

zl
ω, = d\

} L l l

form a basis for the local one-forms on CPn. As F is spanned by the vector
field

X = zAd/dzA ,
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we see that the ωj define F on U. The local connection form of the Kahler con-
nection on CPn in the basis given by the ωs is

and the local curvature form is

(4.7) Ω) = <Dj Aω, + δfa A ωt .

Finally note the volume form d Vol on CPn when restricted to U is

d Vol = Kωx Λft)iΛ Λωre Λ ωn , # a constant .

Lemma 4.8. Iffz In+1 (GLnC), then for θ, Ω as above and any infinitesimal
derivative θr ofθ,f(θ\ Ω) is a multiple of the tr 6' Λ d Vol.

Proof. I{GLnC) is a polynomial algebra over C with generators ck9 k —
1, •••,«, where the degree ck = k, and for Xl9 • , Xk € g/raC

(4.9) cfe(Xl9 , A^) = 2 δ l ' X Ί \ ' ' ' X l(X l 9 , A^) = ^ = = - 2 J δil- ik

where the sum is over all permutations Π of 1, , fe, all ordered subsets
(/1? , /fc) of k elements of (1, •••,«) and all permutations (jl9 ,yfc) of
(il9 , /fc), and ^ ::// denotes the sign of the permutation il9 , ik ->jl9 Jk.

I f / = ari...rtcri - crs for tfri...rs € C, then

/(* ' , β) = Σ — V π rA(fl) * crι(β\ Ω) c r s(β) .
Σ=I n + 1

From (4.7) it is easy to see that ck(Ω) is a multiple of (ωι Λ ωz)
fc, i.e.,

ck(Ω) - ^ ω ^ Λ % Λ AωJk A ωjk .

Thus a typical term of /(#', β) is a multiple of

cr{θ\Ω) A (trΩ)n-r+ί .

From (4.9) we have

(4.10) cr(θ\ Ω) = 2 _ ^ . _ _ g ajVΛ f̂l'Λ Λ Λ θ'% A Λ flj; .

Consider a single term of / ( ^ , Ω) of the form β7^ Λ Ω% Λ Λ β j ; Λ
(tr Ω)n~r+ι and assume zΊ Φ j \ . For the moment we also assume Ω) = ώj A ωt.
As ίx Φ j \ , Ω% Λ Λ Ω% contains the form ωίχ but not the form ωir Each
term of ( t r β ) n " r + 1 which contains ωtl also contains ωiχ. Thus Ω)\ Λ Λ
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Ω% Λ (tr Ω)n~r+ι is an (n, «)-form on CPn each term of which either contains
ω\x or does not contain ωu. In either case the form must be zero. The same
argument works equally well for all other terms of (4.10) and the addition of
the terms 5)-^ A ωt to Ω) changes nothing. Now by the symmetry of cr we
have

(4.11) cr(θ',Ω) = Kc1(θ')cr_iφ)9

K a constant. To complete the lemma we need only note that cλ is a multiple
of tr and (tr Ω)n is a multiple of d Vol.

Let Fs, s e R be a differentiable family of foliations on Cn+ι ~ {0} such that
Fo = F. As noted above F i s spanned by X = zAd/dzA. Let

Then ω is dual to X, and the infinitesimal deformation σ of F associated to Fs

is given by

σ = ω (x) γAd/dzA

for some holomorphic vector field

n a / a z , on c» + 1 - {0}.

Thus

dzΛ

We make several observations which will greatly simplify the necessary com-
putations.

(a) ω, ω and the ωj9 a)j form a basis of 1-forms on U. Ω consists entirely of
(1, l)-forms in the ωj9 ωά. If θ' is any infinitesimal derivative of 0, we may dis-
regard all terms of type ωJ? ω, in ff when computing /(#', Ω) for/e In+1(GLnC)
as these terms will wedge to zero for dimensional reasons.

(b) We wish to show that

2J(J{Θ\ Ω)) = 0

for any derivative θ''. Because of the linearity of our constructions as explained
in § 2 we may assume that all the γA = 0 except γλ.

(c) The function γ = γλ is holomorphic on Cn+1 ~ {0}. If n > 1, then
Hartog's Lemma implies that γ is holomorphic on Cn+ι. Again by linearity,
we may assume

γ(z0, , zn) = za

0° - za

n

n , ^ > 0 ,
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and we have

ω[ = — γ/zo ω ,

ω'j = 0 , j φ l .

(d) 2 t/[(/(0', Ω))] is a well defined class in

H*»+1(Cn+1 ~{0};C) ,

and U is a dense subset of Cn+1 ~ {0}. Thus, if we compute a local expression

for/(0', β) on £/ and have

f /(#', Ω) = 0 ,

then

2JW, β)] = /M/, <σ» = 0 .

(e) dω is the pull pack of 2-form of type 1, 1 on CPn, and so can be ig-
nored in the computation.

(f) The volume form on S2n+ι is ω A d Vol.
Now a straightforward computation shows that modulo ωj9 ajj

Thus

V ^ ;||z||2 3zt dzΛ

Observe that

For 7* ̂  zx both integrals are zero if γ = zx they are equal since

= 1 , zxzλ = zkzk for any k
J S^n + i JS2» + i\\Z\\

As for the second term in tr θf we see that

and so
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dz^ ||z||2 LW / J||z||2

Again the integral is zero unless γ = zl9 but in that case

*-A
A

In all cases we have

f f(θ', Ω) = 0

for any/e In+1(GLnC), and so the imaginary part is zero, proving the theorem.
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