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RIEMANNIAN SUBMERSIONS COMMUTING
WITH THE LAPLACIAN

S. I. GOLDBERG & T. ISHIHARA

1. Introduction

Let M and N be smooth Riemannian manifolds. Let 4% = dé + dd: \? (M)
— /\? (M) denote the Laplace-Beltrami operator on the differential p-forms of
M. Define the set

Q?(M,N) = {¢: M — Nl¢ is a smooth surjective mapping with
rank ¢, > 1 and ¢p*4%4 = 4%¢*A for all A ¢ \? (N)}

of pth Laplacian-commuting mappings. If 27(M, N) is empty, it is said to be
trivial. The condition on the rank is not necessary in defining 2°(M, N) because
any surjective mapping ¢: M — N with o*4y f = 4, ¢*f for all smooth functions
fon N satisfies rank ¢, = n = dim N. In this paper, we ask for the mappings
contained in £2?(M,N). Watson [4] showed that ¢: M — N is contained in
Q°(M, N)ifand only if it is a harmonic Riemannian submersion. He also proved
that the nontriviality of 27(M, N), p > 0, implies that the elements of 2?(M, N)
are Riemannian submersions. We therefore ask for the Riemannian submersions
which commute with the Laplacian. It is an immediate consequence of our main
result that Q'(M, N) = Q*(M,N) = --- = Q™M, N).

In § 2, the basic facts of a Riemannian submersion will be described, especially
its structure tensor. Several relations between the curvature tensors of M and N
and the structure tensor are given in § 3 .The set 2'(M, N) is studied in § 4, and
in the last section the set 2?(M, N), p > 2, is examined.

2. Riemannian submersions

Let M (resp. N) be an m (resp. n)-dimensional manifold with Riemannian met-
ric ds¥; (resp. dsy), and let o: M — N be a Riemannian submersion. Then we may
assume n < m; for, if m = n, a Riemannian submersion (Riemannian covering)
commutes with the Laplacian [4]. We choose local forms w,, - - -, w,, on M and
6, -+ -,0, on N such that ds3, = Jw?, ds% = 262, and

(2.1) SD*(ﬁz):wt: i= 1,“', n.
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(In the sequel, the indices i, j, k, - - - run from 1 to n; a, b, ¢, - - - from 1 to m,
and e, 8, 7, -+ - fromn + 1 to m.)
The structure equations of M are

2.2) dwg, = 2wy N\ wyg dogy = Zwge N\ Wep — 32 Rypeqwe N\ 0g ,

where w,; = —w,, and the R,,., are the components of its curvature tensor.
The components of the curvature tensor of N will be denoted by K ;.
Taking the exterior derivative of (2.1), we get

Yo; N\ (%0, — 05) — Zw, N\ 04 =0.
This allows us to put
(23) Wji; — So*ﬁji = ZLjiawa B Wig = ZLiaawa s

where L;;;, = 0, L;;, = —Ly4,, Lyj, = Ly,; and Ly, = Ly,,. In the sequel, we
will drop ¢* from such formulas when its presence is clear from the context.
We call the tensor, whose components are the L;,;, the structure tensor of ¢. If
YLigq = 0, that is, if YL;,, = 0 (vesp. L,,; = 0), ¢ is called a harmonic (resp.
totally geodesic) mapping.

The inverse image ¢ '(x) of a point x of N is said to be a fibre of ¢. A fibre
of pis a closed submanifold of M of dimension m — n. It is evident that , = - - -
= w, = 0 on the fibres, and that the restriction of Jw? to a fibre gives the in-
duced Riemannian metric. The L;,, may be regarded as the second fundamental
forms of the submanifold ¢~'(x). Hence, if 3L,;,, = 0 (resp. L;,; = 0), then
¢~ (x) is a minimal (resp. totally geodesic) submanifold of M. Suppose M is
complete. Then M becomes a fibre space in Ehressman’s sense. If, moreover, the
fibres are totally geodesic, ¢p: M — N is a fibre bundle with structural group the
Lie group of isometries of a fibre [1], [2]. The horizontal distribution, which is
defined by w,,;, = -+ = 0, = 0, is integrable if the L;;, = 0. If M is com-
plete, and the L,,, and L;;, vanish, then M is locally the Riemannian product of
a fibre ¢~!(x) (x is any fixed point of N) and N, that is, there is an open covering
{U,} of N such that ¢~'(U,) is isometric to the Riemannian product ¢~ '(x) X
U,.

3. The covariant differential of the structure tensor

The components L;,;, of the covariant differential of the structure tensor L;,,
are given by

(31) Z'Liabcwc = dLiab + ELjabﬁji + Lippweq + ELiacwcb .

This yields, in particular, by means of (2.3),
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(3-2) Lijka. = _Z(LikaLjaa + LijaLka,a) .

Differentiating (2.3) and using the structure equations (2.2), as well as their analo-
gues in N, we get

3.3) Ligye — Liger = Rigpe — 204051001 K 151 -
From this and (3.2) it follows that
(3.4 Ry — Kijiy = (Lol jie — LigaLjie + 2L, L1 -
Contracting (3.3), we obtain
2(Lijaa — Ligas) = Riy — Ky, 2(Lisaa — Lised) = Ria

where R,, (resp. K;;) is the Ricci tensor given by YR, (resp. XKy ;). Since
2L;,, = 0implies X'L,,,, = 0, the above equations lead us to
Lemma 1. If ¢ is a harmonic mapping, then

(3-5) ZLijaa = Rij - Kij 5 ELiaaa = Rz'a .

If the L;;, vanish, then the L;,,. have a simple form. In fact, from (3.1) we get
Lemma 2. If the L;;, = 0, then,

(3-6) Lijka =0, Lijak =0, Lz’ja,e == _ZiarLjﬁr .

4. The Laplacian on functions and 1-forms

In this section we study the set Q'(M, N). The sets 2?(M, N), p > 2, will
be discussed in the next section.

The following lemma is useful in finding conditions for a mapping to com-
mute with the Laplacian.

Lemma 3. Let x be a point of N. Forgiven 1 < i, < --- <i,<nandl <
k < n, there exists a smooth p-form A = XA;,..; 0, /\ -+ /\ 0;, where the
sum is taken over all j, - - -, j, with jy < ... <, such that Ay,...;(x) =0,
Ajy..cipi(x) = 1 and all other Ay, ... ;,, vanish. The A, ... ;. are the coefficients
of the covariant differential of A.

Proof. Let ({x;}, U) be a normal coordinate system at x, and let V' be an
open subset of U. For given constants C,, C,, - - -, C,, there is a smooth function
h on N satisfying h(x) = C,, 0h/ox,(x)=C,, i=1,---,n,and h=00n M — V.
Since {x;} is a normal coordinate system, covariant differentiation at x with
respect to d/ax® is identical with ordinary partial differentiation. Thus a smooth
p-form can be constructed whose covariant differential takes arbitrarily given
values at x. The desired result now follows easily.

Let f be a smooth function on N, and put df = X f;6;,. The covariant differ-
ential of df is given by X f;,0, = df; + 2 f,0;;. Then dyf= —2f;;. Similarly,
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dyo*f = =2 f,; — 2f,L;,.. The commutation condition ¢p*4yf = 4,¢™ f may
then be expressed by X' f;L,,, = 0. Applying Lemma 3, we obtain

Theorem 1. Let ¢ be a smooth mapping from M onto N. For any smooth func-
tion fon N, dy¢* = ¢*4y f if and only if ¢ is a harmonic Riemannian submersion.

This was first proved by Watson [4].

Let A = 3 A4,p, be a 1-form on N. The components A;; of the covariant dif-
ferential V' yA4 are given by YA4,,0, = dA, + YA,0,;, and the components 4,
of the second covariant differential // 'vA of A are given by 24,;,0, = dd;; +
ZAyi0; + 2 Auby;. Set ¢*A4 = YA,0, and Vup*4 = ZAabwa N ;. Then
A - Au A - 0 Az; - Azj9 A’La - ZA Ljuw at = Y4; L]aw af — ZA L]aﬂ)

i=1,--,nja=mn+1, ..., m. Moreover, the components of '} ¢*4 are
/Iijk = Az’jk + ZALLZijIc 5

@.1) A = 2A Loy + AL, ,
Aalj = ZAlLlazj + ZALleai + ZAliLlaj 5

aﬁr =24 Llaﬂr :

To deduce the first equation of (4.1), we use (3.2). Since 4,,0¥4 = —23 Aoy —
AR, )w,and p*dyA = —3(A;;; — A,;K;;)w;, formula (4.1) yields
Lemma 4.

“2) AMSD*A — ¢*dyAd = Z{A)(R;; — Kj; — YLji00) — A2 L0 0,
+ 2{A)(Rj, — 2ZL;p0q) — 22 A4;;L; )0, -

We introduce the operator H: \' (M) — A'(M) defined by H(3B,w,) =
2'B,w;. This definition does not depend on the choice of the local forms w,.
Using Lemmas 1 and 3, we obtain from Lemma 4

Proposition 1. Let ¢: M — N be a Riemannian submersion. For any 1-form A
on N, H{dy¢p*A) = ¢* 4y A if and only if ¢ is a harmonic Riemannian submersion.

If 4,,0*4 = ¢*4y A for any 1-form A, then ¢ is harmonic, and YL;,., = R;,
by Lemma 1. Hence the coefficient of w, in (4.2) vanishes if and only if the L,
= 0. Conversely, if YL;,, = 0 and the L;;, = 0, then (4.2) implies 4,¢p*4 =
¢*4yA for any 1-form 4. Thus we have

Proposition 2. Let ¢: M — N be a smooth surjective mapping with rank ¢, >
1. For any 1-form A on N, dy¢*A = ¢*4yA if and only if ¢ is a harmonic
Riemannian submersion and the L,;, vanish.

5. The Laplacian on p-forms

I:et A= ZA“ il N e N by, be a p-form on N, and set ¢*4 =
A, @ay N\ -+ N @, Then A,.., = A;..;, and all other components
vanish. Denote the components of Iy A (resp. V,o*A) by A4,,.. 15,5 (TESD. A,,.. capss)
and the components of '3, 4 (resp. V'3,¢0*A) by A4,,...,, ;x (resp. A,,.. .appe)- We have
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+ Z Z Ail'"ip—ll'ip+1"'ia—1]'iv+1"'ipKiipjig>0i1 /\ c /\ 011’ .

p#e i,]

as well as a similar expression for 4,¢*4. Put

5.1 Aye*A — o*AyA = IB,..o0n N -+ N o, .

As in the previous section, A4,,...,, . can be expressed in terms of the 4,,.

Agpiy,is Aigeveipjio Lias and L,,;.. For example,

~

?
Ailu-ip,ij = Ail---ip,ij - Z Z Ail---i,;_1kip+1---ip(LijnLkipa - LkiaLi,,ja) .

p=1j,a

Employing relations of this type, we get
Lemma 5. The coefficients in (5.1) may be expressed as

:b:i
I
DMy
“IM
EN

4 4 'Ll---ip_lii,,+1---ip<Riip - Kiip - ; Lii,,aa)
(5.2)

cip

p
+ Z y Ail"'ip—-liip+1"‘ig‘—1jia+1“‘ipLijaLipiaa - Z Ail---ip,iLiaa B

p#Ec T,j Ty

Bil-«oip_gaip+1---ip = Z Ail'--ip_liip+1-~~ip(‘Ria - Liaaa)
a

K4

D
(5'3) - 2 ZI: Z Ail"'i,o—liip+1‘“ia—ljia-!-l"‘ip(Riajia + Eﬁj LiﬂﬂLjivﬁ)
a=1 j
-2 ;J: Ail---ip._liip+1---ip,jLija >
Bir"ip—wip+1"'ia—1ﬂia+1""ép
5.4
= - Z Ail---i,,_lii,,H-.-i.,_ljz‘,,“-ui,,(Rz‘jap + 2 ZLiaaLjﬂa> P
1,7 a
(55  Buopwpia, =0

If for any p-form A, the corresponding B,,...;, vanish, then from (5.2) and

Lemma 3 we have YL,,, = 0. If, in addition, the B;,.

cvip_1aipt1eeri

, =0, then (5.3)

implies that the L;;, = 0. Conversely, assume 3'L;,, = 0 and the L,;, = 0. Then
by Lemmas 1 and 2 we conclude that the B,,...,, = 0 for any p-form A. Taking

account of Proposition 2, we obtain

Theorem 2. Let ¢: M — N be a smooth surjective mapping with rank ¢, > 1.
Let p (>1) be fixed. For any p-form A, Ayo*A = ¢*4dyA if and only if o: M — N

is a harmonic Riemannian submersion with integrable horizontal distribution.
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Corollary 1. Q'(M,N) = Q(M,N) = --- = Q"(M, N).

It was shown in [4] that if Q?(M, N) is nontrivial for a fixed p, then b,(N)
< b,(M), where b, denotes the p-th betti number. Thus

Corollary 2. Let ¢: M — N be a smooth surjective mapping with rank ¢, > 1.
Then a necessary condition that ¢ be a harmonic Riemannian submersion with
integrable horizontal distribution is b,(N) < b,(M) for allp =1, - - -, n.
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