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CURVATURE AND SPECTRUM OF COMPACT

RIEMANNIAN MANIFOLDS

P. GUNTHER & R. SCHIMMING

0. Introduction

Let M be a compact and orientable Riemannian manifold of class C°° with
positive definite metric g and dimM == n. The eigenvalues λ, corresponding
to the eigenvalue problem Δω + λω — 0 for alternating, not necessarily homo-
geneous, differential forms ω which are regular everywhere on M, form a mo-
notonically increasing (in a strict sense) sequence Spec (M) = {^};>0. Let 93*
be the finite-dimensional eigenspace belonging to λt. The projection operator
P{p) which gives the homogeneous part of degree p: ω(p) = P{p)ω of any dif-
ferential form ω maps 33̂  onto 93£p) = Pip)%$i. In 93^p) we choose an orthonor-
mal basis ψ{^\ 1 < / < dim 93ψ\ and introduce

(0.1) Φlp)(x) = Σ (sPu\ψu)s){χ) > yx eM ,

or Φ\p)(x) = 0 in case 23^ = {0}, where < , •> is defined by (1.6), (1.5). Now
the following asymptotic expansion holds (for this cf. [19], [18], [3], [5], [10],
[9]):

(0.2) Σ e-*Φ?\x) ~ {AπtY«» Σ (Sp
fc = 0

where the F^(x, f) form a system of double differential forms1 of degree p,
defined in the neighborhood of the diagonal of M x M by recursion formulas
(see (2.1), (2.2)). One gets the expansion (0.2) by applying the parametric
method to Green's form for the heat equation of the manifold M. Integrating
(0.2) over M yields

(0.3) Σ e~λίt dim 33^ ^ (4πt)~n/2 Σ <20fc f (Sp VP)(x)dv(x) .
i = 0 ί " + 0 & = 0 JM

According to the well-known theorems of Hodge [16] and De Rham [6] dim 33^}

Received June 12, 1975, and, in revised form, December 15, 1976.
1 In the normalization adopted here the V^\x, ξ) coincide with the coefficients of

the Riesz kernel forms in [13], [15], [24], [25]. For the Riesz kernel forms and their
coefficients further cf. [8], [4], Note that only double differential forms of "bi-degree"
(p, p) appear.
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= Rp coincides with the p-th Betti number, while for / > 1 a direct decomposi-
tion $<*> = &ip) + ®W holds, where ©<<*> consists of exact forms and ®[p) con-
sists of coexact forms @<°> = {0}, ®<n) = {0}. The "theoreme de telescopage"
(this name was given to the theorem in [3]) by McKean Jr. and Singer [18]
states dim ̂ {p) = dim (£^+ 1 ) for p = 0 ,1 , , n — 1. Introducing these facts
into (0.3) and taking the alternating sum with respect to p one gets for even
/i(cf. [18], [3]):

(0.4) χ(M) = Σ (-ΌpRP = (2π)~n/2 Σ ( - D p ί (Sp V$)(x)dv(x) ,
Ί>=0 p=0 JM

(0.5) ΣC-D
p=0

where χ(M) denotes the Euler-Poincare characteristic of M. For odd n one
has χ(M) = 0, and (0.5) is valid for all k > 0. Now it is highly desirable to
find relations between the Vίp)(x, ξ)—or more exactly their traces—on the one
hand and the curvature of M on the other hand. In this direction many partial
results are known (cf. H. P. McKean Jr. and I. M. Singer [18], M. Berger
[2], E. Combet [5], T. Sakai [22], V. K. Patodi [20], H. Donelly [7], where
they considered small values of k and obtained some conclusions on isospec-
tral manifolds). V. K. Patodi [21] has shown that for even n and k < jn the
integrand in (0.5) vanishes while the integrand in (0.4) just equals Chern's
invariant occuring in the generalization of the Gauss-Bonnet integral theorem.2

Another proof of these facts was given by P. B. Gilkey [11] he studied the
general nature of the invariants considered here and gave an interesting char-
acterization of the Pontrjagin and the Chern forms. Generalizations of Gilkey's
results which are closely connected with the index-theory of elliptic differential
operators can be found in the papers: P. B. Gilkey [12] and M. Atiyah, R.
Bott, V. K. Patodi [1].

In the present paper new results concerning the above mentioned problems
are presented. Our method is quite different from those used by the authors
listed above.

By a coincidence form we mean a double differential form the coefficients
of which are defined only on the diagonal of M x M. Every double form
U(p)(x, ξ) defined in a neighborhood of the diagonal gives a coincidence form
U(p)(x, x). Using the metric, the Ricci tensor and the curvature tensor (our
convention for the sign of the curvature tensor coincides with that of J. A.
Schouten [23]) we define some coincidence forms in the following way:3

2 This is just the content of a conjecture of H. P. McKean, Jr. and I. M. Singer [18];
see also the paragraph after the corollary to Theorem II. A detailed proof of the
Gauss-Bonnet integral formula can be found, e.g., in the book of R. Sulanke and P.
Wintgen [26], where there is also an extensive list of literature.

3 The multiplication of double differential forms is the exterior multiplication with
respect to both groups of the variables, which is commutative and denoted by Λ.
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= giadx*dξ' ,

¥™(x) = j>Ria(

3Γ2)(*) - i/^OOΛc* Λ

yx e M ,

Λ

3Γ3)(JC) - \R\iJRhkβr{x)dxi A dx' A dxkdξ« A dξ? A

By means of these forms we further construct, for k > 1,

(0.8)
2kk\

(- l) f c

2*-i(ifc - 1)!
ffl (l) Λ W (2) _ k --L?Γ ( 3 )Ί Λ

Thus the coincidence forms W, Z are defined explicitly in terms of the curva-
ture tensor of (M, g).

Now we can state our theorems.
Theorem I. For k > 0 and 0 < / < n — 1 one has

n-l

Λ

(0.9)
0 ,

= Γ n~ / + 1 1 .

By taking the trace Theorem I becomes
Theorem II. For k > 0 «n^ 0 < / < n — 1

(0.10) 0 , /orκ[B-j+ 1],

/or A =

The traces of the Z ( p ) which appear in Theorem II are given more explicitly
by

Corollary to Theorem II. For k > 1 one has
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SpZ(2fe) = - — SpZ(2*-1}

k
(0.11)

_ (—1) (2k) . pί

For / = 0 and even n Theorem II just gives the above mentioned result of
V. K. Patodi [21] and P. B. Gilkey [11], i.e., the conjecture of H. P. McKean
Jr. and I. M. Singer [18]. (After seeing our manuscript Professor P. B. Gilkey
kindly communicated to us that he was able to prove by means of his method
our formulas (0.10) and also the upper bound for the number of invariants
following from Theorem V.) For / = 0 and odd n Theorem II and the follow-
ing two theorems give no new information if one takes the duality properties
into consideration.

Using Theorem II we obtain the following asymptotic formula.
Theorem III. For 0 < / < n — 1 one has

Σ Σ(~Όp(
(0.12) ί = 0 * = 0

= ί[(n-ί + l)/2]-n/2|(_1)n-ί2C(n-2 + l)/2:-»π-»/2(SpZ ( n-Z ))W + O(t)} .

Integrating over M and applying the "telescopage" theorem at last one gets
Theorem IV. For 0 < / < n — 1 one has

Σ (-Όp(n 7 P)RP + Σ UΣ (-Όp

(0.13)

X

The main tool for the proof of these theorems, to be given in §§ 1-2, is a
rearrangement of the recursion system denning the double differential forms
Vf\ called "expansion to transport forms". This method has already been
applied in other investigations connected with Huygens' principle (cf. R.
Schimming [24], [25], P. Gunther [13]). An analogous expansion applies also
to other geometrical objects forming a graded algebra and allowing the defi-
nition of a Laplacian J, e.g., tensors or spinors.

The expansion to transport forms possesses a dual formulation to be treated
in § 3, and enables us to draw some more conclusions.

As a matter of fact the coincidence forms V(

k

p)(x, x) are universal in the
sense that their components are polynomials of the components gίj, gij9 RίJhk,
Viχ - - VimRijhk of the metric tensor and its inverse, the curvature tensor, and
the covariant derivatives of the latter, the polynomial coefficients being inde-
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pendent of n = dim M. The traces Sp Vψ then are scalar invariants and po-
lynomials in gίj, Fit VimRίjhk with coefficients depending on n. With re-
gard to the duality this first gives 1 + [n/2] invariants for fixed k. The following
theorem proven in § 3 reduces this number to 1 + min {k, [n/2]} and at the
same time explains the way in which the Sp V{

k

v) depend on n and p.
Theorem V. There are universal scalar invariants σr

k for 0 < r < k with
integers r and k,i.e., polynomials in the contravariant fundamental tensor and
the covarίant derivatives of the curvature tensor with coefficients independent
of the dimension n, such that

min{k,p,n-p} /y, O r\

(0.14) r=o \p — r I

Vp with 0 < p < n .

Corollary to Theorem V. For k > 1 one has

(0.15) σk

k - ( - l ) * S p Z ( 2 f c ) .

For small values of k the invariants σ{ can be given explicitly as follows:

-0 C n W(0) R n \ C n W(l) R

(0.16)

σl = Sp W£»

— I FΨ,R + Rl}kmR — RiJR + R2\
4 1 3 0 180 l l 180 l l 12 J '

^ =

jPΨtR - ~RlikmRmm

σl = SpZ (« = 1{R«'»Λ 1 J I W - 4Λ"ΛM + R2} .
O

For the derivation of (0.16) and of course (0.15), developments in a normal
coordinate system are used (cf. [13], [14], [15]). The formulas (0.16) agree
with a result of V. K. Patodi [20].

In another paper the present results will be applied to Kahlerian manifolds.

1. Conventions and preliminaries

For two alternating differential forms φ(p), ψ ( p ) of degree p with the local
representation

(1.1) φ<p) = φiι...t,dxi* Λ -"
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(1.2) ψ(p) = ψi^.^dx*1 Λ

ψ{p\x) <8> Ψ ( p )(?) will denote the double differential form with the local repres-
entation

( 1 3 )

= ψi^iM)ψai...ap{ξ)dxil Λ Λ dx^dξ*1 Λ Λdξa* .

The trace of a double differential form £/(p) given by

(1.4) U^(x, ξ) = Uil...ipai...ap(x, ξ)dxu Λ Λ ώt'dξ** Λ Λ dξ«*>

is the scalar quantity

(1.5) (Sp £/<*>)(*) - p ! r i α i W gίpapWUίl...ίpai...ap(x,x) .

Further we define

(1.6) <><*», ̂ ( i ">W = Sp (φ<» ® ψ ( p ) ) ω ,

(i 7) (f) ( p >,Ψ ( P >) = f v p > , ψ ( ί ) > > ω ^ w ,

where the volume element is given by dv(x) = * 1 . Let the dual of the form
(1.1) be defined in the usual way by

x Λ Λ d*>-*.

Then instead of (1.7) one can write

(1.70 (φ'p\ Ψ ( p )) = ί Λ * ψ ( p )

The terms "orthogonal" or "orthonormal" with respect to differential forms
refer to the scalar product defined by (1.7) or (1.70- The Laplacian Δ == dδ + δd
for alternating differential forms obeys a product rule

(1.9) J(aip) A β{q)) = (Δa{p)) A β(q) + a{p) A Jβ'q) - 2L(a(p\ β(q)) ,

where a(p), β{q) are two forms with p + q < n, and

(1.10) L(a(p\ /3(Q)) = FWp) A Vφ{q) + L0(aip\ βiq)) .

As one knows, the expression L0(a(p\ βiq)) is bilinear in the components of the
forms a(p\ β{q) with the curvature tensor as the coefficients of its terms. We
introduce
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(1.11) Ωjί = iRϋt^dx* Λ dx*

and the operation4

(1.12) ej(φ) = pφji^ipdx^ A Λ dx*> .

Then the well-known representation of Δ (cf., for example, [6]) leads to

(1.13) LQ(a(p\β(q)) = ( - l ) ' β ' 1 Λ ej(aip)) A etφ
q)) ,

and this formula remains valid if a(p), β(q) are double forms.

Lemma 1.1. For three forms a{p\ βiq), γ{r) with p + q + r < n one has

LW,p»Artr))
1 = L0(a<p), β'q)) A r

( r ) + (-DqrLQ(a^\ γ^) A β(q) .

An analogous formula holds for double forms a(p\ β{q), γ{r) with (— \)qr re-
placed by +1.

Proof. Use (1.13) and the formula

(1.15) etφ
q) A r

( r )) - etφ
q)) A fr) + (-l)qβ(q) A et(fr)) ,

which is easy to verify. In the case of double forms one has to take into con-
sideration the commutativity of their multiplication.

In the following the transport form Tω plays an important role. Let x € M
and ξ e M be two points of M sufficiently near to each other, and denote by
Γ(x, ξ) the square of their geodesic distance. Then the double differential form
Γ(1) satisfies the differential equation

(1.16) LX(Γ, r»)=0

and the initial condition

(1.17) Γ(1)(f,f) = G ( 1 ) (f).

In (1.16) the differentiations refer to the variable x, while ξ remains fixed.
(1.16) can be interpreted as ordinary differential equations for the coefficients
of Γ(1) along the geodesic lines issuing from ξ. Thus Tω(x, ξ) is defined in a
neighborhood of the diagonal of M x M and is of class C°°. We further de-
fine T{p) by

(1.18) Tp) = J-[τ^γ , T(0) = 1 ,

4 The definition (1.12) is, as far as we know, due to E. Kahler [17]. Also the relation
(1.15) was already given in [17], but it should be noted that our inner multiplication
defined in §3 differs from the inner multiplication of Kahler.
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and easily get the composition rule

(1.19) Γ ( p ) Λ Tiq) = Ip ~̂~ ^\τ{p+q'

\ p I

Lemm 1.2. For p > 2 one has

(1.20) ΔxT
p) = ΔxT

a) A T{p~ι) - Lx{Tι\ Tω) A Tp~2) .

Proof. For p = 2 the relation (1.20) readily follows from (1.18) and (1.9).
Now assume it to be true for a certain p. Then substitute it in

(1.21) Jxr
p+1) = —1—{AXT { 1 ) A T(p) + Γ(1) Λ ΔxT

p) - 2Lx(Tω,T(p))}
P + 1

together with

(1.22) Lx(Ta\ Tp)) = Lx(Tiι\ Tω) A Tp~ι) ,

which in turn follows from Lemma 1.1. Thus we arrive at our relation with
p replaced by p + 1.

Lemma 1.3. The transport forms obey the duality relation

(1.23) (*T^)(x,ξ) = Fn-v(x,ξ).

(The *-operation for double forms refers to both groups of indices and vari-
ables as long as no other convention is made.)

Proof. Since both sides of (1.23) satisfy the same differential equation
(1.16) of geodesic parallel translation

(1.24) LX(Γ, T ' Ό - 0 , LX(Γ, Tn~p)) = 0 ,

all one has to do is to perform the routine verification of (1.23) for the initial
values, i.e., for the coincidence forms G(p)(ξ).

Lemma 1.4. For a double differential form U(p) of degree p, 0 < p < n,
and 0 < q < n, one has

(1.25) Sp (Uip) A Γ(<?)) = (n

\
U{p) .

Proof. The relation (1.25) obviously holds for q = 0 and arbitrary p. As-
suming it to be true for a certain q and arbitrary p one has

Sp(U(p) A Γ(«+1)) = — 1 —Sp((U ( p ) A Ta)) A T(q))
Q + 1

(1.26)

= (n P X W (JJ{p) A Tω) .
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An elementary consideration shows

(1.27) Sp (U(p) Λ Γ(1)) = (n - p) Sp U(p) .

Substituting (1.27) in (1.26) yields our relation with q replaced by q + 1.
In particular, taking p == 0 and C/(0) = 1 in (1.25) one gets

(1.28) SpΓ ( ί ? )

2. Expansion to transport forms

The recursion system for the determination of the double forms V(

k

p), oc-
curring in the asymptotic expansion (0.2), reads as follows (cf., for example,
[13]):

(2.1) LX(Γ,VP) + MVr = 0 ,

(2.2) LX(Γ, K<*>) + [M

where M(x, ξ) = \ΔxΓ(x,ξ) — n. The differential equations (2.1) are to be
adjoined by the initial conditions

(2.3) V?\ξ,ξ) = σ*Kξ)

The V{

k

p) with k > 1 are uniquely determined by (2.2) and the regularity con-
dition of the corresponding coincidence forms. Note that in general the Vk

p)

are defined not over the whole, but only in a suitable neighborhood of the
diagonal, of M x M.

Theorem 2.1. There are regular double differential forms Wk

q) of degree
#> 0 < q < n, k > 0, defined in a neighborhood of the diagonal of M x M
such that

{ , p }

(2.4) Vψ = Σ ^ίq) A Tp-v .
q = 0

Proof. For the sake of a formal simplification we set

(2.5) W«> = 0, Γ(«> = 0 , yq < 0, Jfc > 0 .

Now, to solve (2.1), (2.2), by introducing

(2.6) V(p) = Σ ^ίq) Λ T(p~q)

into (2.2) and making use of LX(Γ, T(p~q)) = 0, we obtain

LX(Γ, V®>) + [M
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(2.7) = Σ {LX(Γ, W^) + [M + 2k\WP] Λ T"-<"

+ Σ {ΔxWi^ A r*-«>

4- W{q) A Λ T(^-9) o r (WW TIP-QΛX
r r v k-l /\ ^α;^ ^^xU^-b-ί Ĵ

Into the last sums substitution of (1.20), as well as the conclusion following
from Lemma 1.1, gives

By using a trivial change of the second summation index and considering (2.5)
at last, we can convert (2.2) to

„ m Σ {LX(Γ, Wφ) + [M
(2.9) q = 0

\1] A ΔxT
a) - W£? A Lx(Ta\ T(1))} Λ F ^ = 0 .

One gets an analogous equation for k = 0. In order to establish (2.1), (2.2)
we impose on the forms W{

k

q) the following system:

(2.10)

LX(Γ,)

(2.11)

L

Ψk

q)) + [M H

—ΔxWίq21 -\-

X(Γ, W{Qq)) + M]

V 2k]W{

k

q)

• 2L (JFlrΛ τω

r o — VJ ,

) _ ψ(?_-i } Λ

p_-v A Lx{Fι\ Γ(1)) .

The initial conditions (2.3) are fulfilled if we require

(2.12)

(2.13) W^(ξ,ξ) = 0, yq>

(2.10), (2.11) represent a recursion system with respect to the increasing k for
the W{

k

q). In particular, the equations with q > 2k give a separate recursion
system for the Wk

q) with q > 2k. This separate system is solved by taking into
account the initial conditions (2.13) and requiring

(2.14) Wiq) = 0 , Vk>0,yq with q > 2k .

Accordingly, (2.6) changes to (2.4). (2.10), (2.11) for q < 2k together with
the initial condition (2.12) for k = 0 and with the regularity condition of the
coincidence forms W(

k

Q)(ξ, ξ) for k > 1 now uniquely determine the W(

k

q) with
q < 2k. Thus Theorem 2.1 is proved.

Theorem 2.2. For integer I and 0 < I < n one has
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(2.15) *Σ (-ΌpVίp) Λ T{n~ι-p) = (° ' for 2k < n - I ,
V P=O l(-l)n-W<»- ι> , jor2k>n-l .

Proof. Applying Theorem 2.1 (in its modification (2.6)) and using (1.19)

and (2.14) we get

"Σi-iyvp A τ(n-ι-p) = nΣ Σ i-iywφ A FP-V A r<»-*-*>
p = 0 P = 0 q = 0

= nΣ Σ (-i)p(n ~ ι ~ q)^ίq) A τ(n~ι-Q).
p = 0 q = 0 \ p — q /

An interchange of the successive summations in the last double sum gives

n-l n-l /y. / n \

Σ Σ (-!)"( % f Λ Γ"-'-" ,

which reduces to (—l)n~ιW(

k

n~l) by a well-known summation formula for the
binomial coefficients.Thus we establish our assertion on account of (2.14).

Remark. By means of (2.15) the W(

k

q) are expressed in terms of the Vk

q\
and in addition to this one obtains certain remarkable relations among the
double forms Vk

v) themselves. The coincidence forms Z ( p ) denned in the in-
troduction will turn out to be the coincidence values of some of the Wk

q).
Lemma 2.1. The double differential form Γ(1) obeys

(2.16) F,Γ("(f,f) = 0,

(2.17) F iF ir»(f,f) = 0,

(2.18) (4xr
i))(£,£) = 2r i»(f),

where the covariant differentiations Ft refer to the first argument x, and the

coincidence form Ψa) was defined in (0.7).

Proof. Covariant differentiations of the defining equation of Γ(1),

LX(Γ, Tω) = (FjΓWjT(l) = 0 ,

give

(ViFjWT™ + (FjΓ)^JTω = 0 ,

(PΨiPjD^T^ + IQPtPjniP'P'T™) + (PjDPΨiP'T™ = 0 .

Passage to the coincidence values x —> ξ establishes (2.16), (2.17) if one takes
into account

ξ, ξ) = 0 , (PtPjDti, f) = 2gίj(ξ) , (FiPjPtDti, f) = 0 .

Now if we set
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then, as is well known, the Laplacian of Γ(1) can be expressed as

ΔxT
ι\x,ξ) = {-FΨjtίa(x,ξ) + Rl(x)tla(x,ξ)Wdξa ,

and the corresponding coincidence form reduces to

ξ9ξ)dxidξa = Ria(ξ)dx*dξ = 2 r »

which completes the proof.
Theorem 2.3. For integer I, 0 < / < n — 1, the coincidence forms Z{p)

defined by (0.8) obey

(2.19) W^\+im(ξ,ξ) = Z^-ι\ξ).

Proof, (a) We start with the case where n — I is even. Put n — l — 2k.
Then [(n - / + l)/2] = k. In view of Wf = 0 for q > 2Λ the recursion
system (2.10), (2.11) gives

20) L χ ( Γ ' ^ } + [ M + 2 * ] ^ } = ^-i" a ) Λ L - ( r i ) ' Γ C 1 )) >
V* > 1 .

Now passing to the coincidence values on both sides and considering

M(f, ξ) = 0 , L,(Γ, W^)(ξ, £) = 0

we get

(2.21) 2/:^Γ}(f, f) = (*n2-\"2) Λ L,(Γ(», Γ(»))(£, £) , y/: > 1 ,

which is solved by in view of (2.12),

(2.22) Wr(ξ, f) = ^

Owing to (2.16), here one can replace the operator L by the operator Lo. Fur-
ther using formula (1.13) we readily get

Λ dξ

= -Ωββ(ξ)dξ< A dξ? = -

Hence

( 2 . 2 3 ) W « > ( £ , f ) = i A ^
2 A:!

which is our assertion in the considered case.
(b) Now let us turn to the case n — I — 1, where [(« — / + l)/2] = 1.

By (2.11), (2.5) and (2.14) we have, for the determination of
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(2.24) LX(Γ, Wn + [M + 2\WP = 2LX(W$\ Γ(1)) - ^ Λ ΔXT™ .

Passing to the coincidence values one can replace L by Lo owing to (2.16),
but the resulting expression vanishes because the first argument in Lo is a form
of degree 0. On account of (2.12) we get

(2.25)

and hence, by Lemma 2.1,

(2.26) »?>(£,£) = -Ψ{1)(ξ) = -

(c) At last we consider the case where n — / is odd. Put n — I = 2k — 1
with k > 2. Then [(w — / + l)/2] = k. By considering W(

k

q) = 0 for q > 2k,
from (2.11) it follows

-v) + [M + 2k\W(ik'1)

(2.27) = 2LX{W^2\ T(1)) - jn2_V2) Λ JxT
ω

+ PF^r 3 ) Λ L^Γ ( 1 ), Γ(1)) .

Passing to the coincidence values on both sides and taking account of the re-
sults of (a) and (b) we get

Kξ9ξ)
2ft \k — 1)!

(2-28) ^rp
Λ

Now owing to Lemma 1.1 and (1.13)

L 0((f (2»)*-1, Γ»)(f, f)

(2 29) ( Λ 1 ) L » ( r < 2 > ' Γ < υ ) ( f ' f ) Λ (ψ(2Ύ~2&
= (A - l)fl^'(f) Λ ^ ( r ( 2 ) ) ( ί ) Λ ^(G ( 1')(f) Λ

= {k - l)Ψw(ξ) A (Ψm)k-2(ξ)

Substituting this in (2.28) one has

2kW?-»(.ξ,ξ) = -WPr*>(Jl,ξ) A r ( 2 '(f)

(2.30) + 2 , i ~ T υ ! g "'® A ?f(2)(?)

Λ
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Solving (2.30) by an elementary induction with respect to k, the beginning
case k = 1 being given by (2.26), we get

=
(2.31) 2*-Kk-l)l

A z i l ] Λ

which completes the proof of Theorem 2.3.

Now we are in a position to prove Theorems I-IV mentioned in the intro-
duction.

Proof of Theorem I. Pass to the coincidence values on both sides of for-
mula (2.15) of Theorem 2.2 and apply formula (2.19) of Theorem 2.3.

Proof of Theorem II. Take the trace on both sides of formula (0.9) of
Theorem I and consider Lemma 1.4 and the fact that the G(p) are the coin-
cidence values of the T ( p ).

Proof of the corollary to Theorem II. Let dx\ dξa be the differentials appear-
ing in a local representation of a double form. Let βj be the operation defined
by (1.12) with respect to the differentials dx\ and ea an analogous operation
with respect to the differentials dξa both operations commute with each other.
Then for a double differential form U(p) one can write

(2.32) Sp W» = - Sp (g<βέ?« W ) )
P

Now an easy computation using (1.15) shows that

8iaetέa(ίWi2ψ) = kgt έJίeJW™) A [Ψ™]*-1)

(2.33) = kgiaeaet(W{2)) A [ J F T " 1

+ k(k - l)guei(W™) A e£Ψ(2)) A [Ψ'2ψ~2 .

Further, from the definition (0.7) it follows

gt'έMΨ™) = - 4 r υ , g*β^(?Γ(2)) Λ ea(Ψi2)) =

Thus by (2.32), (2.33) one has the assertion of the corollary:

SpZ(2A;) =
2kkl

(\ω A Ψ{2) — ψπ)\ /\

2 J
s

2k~ιkl
~ 1 SρZ ( 2*-1 } .
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Proof of Theorem III. Multiply the expansion (0.2) by (-l)p (n ~J P \

0 < p < I, and add the resulting expression. Substituting the results of Theo-
rem II in the right of the obtained equation we arrive at (0.12).

Proof of T her em IV. First, one has to integrate formula (0.12) over M.
For i > 1 one takes into consideration

Σ
p=0

= *Σ (-Vp(n ~ P) dim ft?-" + *Σ (-Όp(n " P) di
p=l \ I / P = 0 \ I /

which establishes Theorem IV.

3. Dualisation and Conclusions

Definition. Let X(p\ γ^+«> be double differential forms of degrees p, p + q
(q > 0) respectively. A double form X{p) V Y{p+^ of degree q is defined by

(3.1) Xip) V Y(p+q) = *(X(p) A *y^+«)) .

The following theorem gives an expansion dual to the expansion to trans-
port forms of Theorem 2.1.

Theorem 3.1. For 0 < p < n and the double forms W(

k

q) considered in § 2
one has

{ , p }

(3.2) V(

k

n-p) = Σ W(

k

q) V T(n~p+q) .
q = 0

Proof. Taking the dual of both sides of (2.4) yields

min{2k,p}

Σ *(^} ( )(3.3) Σ
q = 0

By Lemma 1.3 we can write

(3^4) J(p-q) _. *γ

Further we use the well-known relation
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(3.5) *V(

k

p) = Vk

n~p) ,

which originates from the duality properties of Green's form of the heat e-
quation. Substituting (3.4) and (3.5) in (3.3) one can apply the above defini-
tion and thus derive the assertion of Theorem 3.1.

Lemma 3 1. For a double differential form U(p) of degree p one has

(3.6) Sp(*U(p)) = SpUCp) .

The proof is a matter of routine.
Lemma 3.2. For a double differential form U{p) of degree p, 0 < p < n,

one has

(3.7) Sp (U{q) V T{n~p+q)) = (n ~~ q) Sp U{q) .
\p - q)

The proof follows from our definition and Lemmas 3.1, 1.3 and 1.4.
Theorem 3.2. For the double forms Wk

q) considered in § 2 one has, yk
> 0, vp with 0 < p < n,

min{2k,n-p} /„ n \ min{2k,p} /„ n \

(3.8) Σ ( q) Sp wp = Σ ( q) SP wp .
e=o \ p ) 5=o \p — qj

Proof. We take the trace on both sides of (3.2) in Theorem 3.1, and obtain
by applying Lemma 3.2

(3.9) Sp V£-p) = Σ ί Q)
q=o \p — q)

Wίq) .

Further we replace p by n — p and take the trace once more on both sides of
(2.4) in Theorem 2.1. This yields

(3.10) Sp n w " p ) = Σ ( n ~ q ) Sp
q = 0 \ p I

The comparison between (3.9) and (3.10) leads to the assertion.
Lemma 3.3. For integers p and r with 0 < r <p <n and 0 < r <\n one

has

) £ : ) (
p — r / Q=r \p — q/\q — r

The proof is carried out by induction with respect to r.
Now we come to the
Proof of Theorem V. To begin with we consider for fixed k > 0 the linear

equation system for quantities σr

k, 0 < r <
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(3.12) Sp WF = Σ (-Όp+r( V )σr

k , Vp with 0 < p< Γ-5-Ί .
r=o \p — rl L 2 J

T h e matrix of the coefficients of the linear system has triangular shape with
principal diagonal consisting of numbers equal to one. Hence the σr

k, 0 < r
< ίjn,] are uniquely determined as linear combinations of the Sp Wk

p\ 0 <
P < ίjri], with integer coefficients. We now show that the quantities σr

k thus
denned obey

(3.13) Sp Wψ> = m m { g w / 2 ] } ( - l ) W r )σr

k , Vp with 0 < p < n .
r = 0 \p — rl

To this end we form the sums

V /n n \ ( τnin{g,[n/2]}

(3.14)

Obviously Ip = 0 for 0 < p < [%n] owing to (3.12). On the other hand for

p > \n we get, setting pf — n — p and formally taking into account Theorem

3.2,

Here we can apply (3.12) and Lemma 3.3 so that

)( r k Σ (
— q/\q — r) r=o \ p —

^ (n-2r\ r £, i n - 2Λ r π

r = 0 \p' — r J r = 0 \ p — Γ /

The equations Ip = 0 for 0 < p < n, however, form a linear homogenous
system for the quantities between the braces in (3.14), the matrix of which

has triangular shape and has the numbers ln TΓ ̂ J Φ 0 in the diagonal. This

establishes (3.13). Further we show

(3.15) σr

k = 0 f o r £ < r <

To this end let k < [\rί\. In (3.13) we choose p = 2[\ή\ to begin with. Be-
cause of Wk

q) = 0 for q > 2k we get

[ra/2] / r \

Σ ( - l ) Ί M = (-l)C n / 2 ]4n / 2 ] = 0 .

-o \2[in] - rl



616 p. GUNTHER & R. SCHIMMING

Assume σr

k = 0 to be shown already for [\n\ — / + 1 < r < [\ri\, where ad-
ditionally [%n] — l> k, otherwise the proof is finished. Then in (3.13) we
set p = 2([^n] — /). Again with p > 2k one has

min{2[«/2]-2ί,[>/2]} /

(3-16) Σ (-!)'(,„ '
r=o \2[^ή\ — 21 — r

By the induction hypothesis the summation index r can be limited according
to r < [\ri\ - /. Then, however, σψ^~ι = 0 follows immediately from (3.16).
Thus (3.15) is proved. Return now to (3.9) written in the equivalent form

(3.17) Sp Vψ = t (
<z=o \p — q

Substituting (3.13) in (3.17) taking account of (3.15), interchanging the succes-
sive summations and applying Lemma 3.3, we thus get (0.14) of Theorem V.

It remains to show that the σr

k are universal invariants. To this end we think
the coefficients of the double forms W(

k

q)(x, ξ) as functions of x expanded to
finite Taylor's series about ξ with a remainder of a sufficiently high order.
Performing the expansion in a normal coordinate system with origin ξ the in-
dividual Taylor terms can be expressed according to a standard procedure as
polynomials, with coefficients independent of the dimension, in the metric
tensor and its inverse, the curvature tensor and the covariant derivatives of
the latter.5 This can be arranged in such a way that only the gίj and
Vu - - VuRiίhk occur, not the giά. For the lowest double form W^ it can be
seen from the formula (in normal coordinates)

(3.18) W$Kx9 ξ) = {g(x)/g(ξ)}~ι/i , g = Det (gίj) .

For the higher double forms Wk

q) it can be seen by an induction with respect
to k using the recursion system (2.11). The gtj occur only in the coincidence
value, that is, only in the Taylor term of zero order, of the transport form
T(1). Since no terms gtj occur in the coincidence forms W(

k

q)(ξ, ξ), no factors
n = gίjgυ can appear in the traces Sp Wk

q\ Thus the Sp W{

k

q) turn out to be
universal invariants, and the same holds for the σr

k, because the linear equa-
tion system (3.12) for the determination of the σr

k by the Sp W(

k

q) is independent
of n. This completely establishes Theorem V.

Proof of the corollary to Theorem V. Owing to (3.15) we can write (3.13)
in the form

/ Γ \

(-Όp+r( k
\p — r/

5 In [14] explicit formulas are given by means of which the derivatives of the metric
tensor in normal coordinates are expressed by the curvature tensor and its covariant
derivatives.



CURVATURE AND SPECTRUM 617

Now put p = 2k. Then the sum on the right-hand side contains at most one
term, while to the left-hand side we apply (2.23) so that we get (0.15) and,
in addition,

for k > Γ—1 .
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