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HOLOMORPHIC AND DIFFERENTIABLE TANGENT
SPACES TO A COMPLEX ANALYTIC VARIETY

JOSEPH BECKER

An important invariant in the study of analytic varieties is the local embed-
ding dimension. To measure this precisely one defines T(V, @,), the tangent
space to V at p with respect to the analytic functions. Similarly one can define
tangent spaces with respect to the infinitely differentiable functions C>, and
the k times continuous differentiable functions C*, whose dimension is the
local C* or C* embedding dimension. It is known [6], [18] that T(V, C3) =
T(V, 0,). In this paper we strengthen that result as follows: there is a locally
bounded function k: V — Z* such that T(V, C;®) = T(V, 0,,).

An outline of the paper is the following. First show that for curves, k can
be picked < N, where N is the exponent of the conductor. Then find a curve
Cin V such that T(C, 0,) = T(V, 0,). The local boundedness of k follows by
showing there is an upper bound for the conductor number of all nearby li-
near one-dimensional sections of V. One finds this upper bound by stratifying
V into finitely many ‘‘equisingular’’ varieties so that the conductor number
is constant on each one.

For curves, we derive some precise estimates for k, and in § 3 we give ex-
amples to show these estimates are in general the best possible. Also for each
k we show there exists a variety V' so that T(V, C*™') = T(V, 0), but T(V, C*)
=T(V,0), that is, k is the precise critical degree of differentiability. This
enables us to construct a Stein complex space X with no C~ embedding in any
C™, but for every k there is a C* embedding into some C™.

The author would like to thank K. Spallek and the referee for pointing out
that Theorem 1 of this paper can be obtained directly via 1.1.5 and the last
remark of [16]. The methods employed in [16] are somewhat different and do
not seem to yield a proof of the curve selection lemma (Theorem 2) or the.
slicing lemma (Lemma 2) of this paper.

1. Definitions and preliminaries
From [18] we have all of the following. Let V' be a complex analytic variety
in C*, pe V, Ck the ring of germs at p of k times continuously differentiable
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complex valued functions on C*, k = 1,2, -, oo, and I(V, C%) the ideal of
functions in C% vanishing identically on V. Then

T(V,Ck) = {a ccr=R":>a, % ) +a, % —oforallfelw, c;g)}
i=1 7 oz, 0Z;

- {(rl, e r)ERY: ST, aaf — 0 for aufel(V,c;)} ,

=1 i

where we identify C* = R*" by a; = r,;_, + ir,;. This is clearly a vector space
over the field of real numbers but not necessarily over the complexes : Write
C"=R"®iR", C = RDPIR. Then

a=a,+ia,,  f=f, +if,, df = df, + idf, ,

ia = —a, +ia,, if=—f,+if,, dGf)= —df,+ idf, =idf,

aeT &0 = a,(d.f, + id.f,) + a,d,f, + id,f,)
= aa:d.zf.t + aydyf.z + l(azdzfy + aydyfy)
<:> azd.z'fz + aydyfx = 0 - axd:vfy + aydyfy *
Hence it is sufficient to consider only the real valued f, and f, in computing
the tangent space.

By T(V, 0,), we will mean the usual Zariski tangent space, sixth tangent
cone of Whitney Cy(V,p) = {ae C": ad,F = 0 for all FelI(V,0,)}. Other
useful tangent cones are the third, fourth, and fifth of Whitney :

C,(V,p) ={aeC": 3sequences q; e V, 2,€C, q; — p, 4,(p — q)) — a},

C,(V,p) = {ae C": 3 sequences q; € Reg (V), g; — p, v; € TV, 0,)

Cy(V,p) = {ae C": 3 sequences q;,p; €V, ,€C, q;,p: —> D »

2(p; — q;) — a} .

We have the following sequence of strong inclusions:
C3(V9 p) C C4(V5 P) c Ca(V> P) C T(V’ C;) c... C T(V> C’;) ’
TW,Ci*hYC ... CTWV,C;) cTWV,0,) .
In addition, Bloom has shown [5] that if p is an isolated singular point of V,
then T(V, C}) is the complex linear span of C,(V, p).
2. One dimensional case

Throughout this section ¥ will be a one-dimensional complex analytic sub-
variety of C™ with the origin as a singular point. If V' is irreducible, ¢: C — V
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will denote its normalization. Unless otherwise stated, ¥V will be assumed
to be holomorphically imbedded in its minimal possible dimension, that is,
TV, 0,) = C". We begin with some rather technical results, the first similar
to paragraph 2.2 of [17].

Lemma 1. If feI(V,CF), there is a holomorphic polynomial P.(2) =
D a1 <k @25 With D*f(0) = a!a, such that P,(z) = o(z]¥) on V.

Proof. By appropriate choice of coordinates, the normalization ¢ can be
written as ¢(¢) = (¢, t"u,(0), - - -, t*u, (1)), whereq = q, < ¢, < - - - < g, and
the u,’s are units ; hence 0(|z]) = 0(3?;|z;])) = 0(z,]). There exists a polynomial
A,(z,7) = kth order Taylor expansion of f about the origin such that f — A, =
2 1s1- 2°85(z) = o(|z|*), where the g, are continuous functions such that g,(0)
= 0. Let A, = P, + Q, be the sum of polynomials with P, holomorphic and
Q. having no holomorphic terms. Now composing with the normalization and
writing holomorphic polynomial P(f) = P,(¢(#)), polynomial Q(z, £) = Q(¢(?)
with no holomorphic terms, and / = gk, we have

P + Q@ 1) = t'g(®) + t'h(®) = o(2]) ,

where g and A are continuous functions such that g(o) = h(o) = 0. Hence nei-
ther P nor Q can have any terms of degree [ or less, and we conclude that
P() = o(#"). Thus P,(z) = o(|z|*) on V. So far V has been assumed to be ir-
reducible ; but if V' is reducible the argument given is valid on each compo-
nent, and the lemma as stated clearly holds if it holds for z in each component.

Lemma 2. There is a biholomorphic change of coordinates in C* so that
the normalization has the form ¢(t) = ("u,(9), - - -, t*u,(2)) where the u; are
units, q, < q, < --- < q,, are there is no polynomial in $,), - - -, ¢y_,(2)
whose order is precisely q,.

Proof. By induction on k; first given a normalization ¢(z) rearrange the
variables z,, - - -, z, so that the lowest g; is first—this completes the first step
of the induction. Now suppose no polynomial in ¢,(?), - - -, ¢, _,(#) has order
9 @, < +-- < gy, and g, < g, for all I > k. Then rearrange the variables
Zis1s ** *» Zn SO &y .1(2) has lowest order. If there is a polynomial A(z,, - - -, z;)
such that A(¢,(?), - - -, #,(¢)) has same leading term as ¢, (), make the change
of coordinates: (z,, - -+, 2,) — (@ =+ +» Zps Zpar — B(Zys ++ +524)s Ziwsy ** s Zn)
eliminating the leading term of ¢,.,(f). Repeat the process. If the process ter-
minates after finitely many steps the induction is completed.

The map (1) = ($,(8), - - -, §,(?)) is one-to-one if and only if the charac-
teristic exponents of the map have greatest common divisor 1. Consider the
following cases :

First Case. +; not one-to-one. The gcd of char exp of 4, = 1 but the ged
of char exp of ¢ = 1 so there must be some more char exp in ¢y .1, - -+, @y
Hence the above process can not continue idenfinitely. More precisely, if the
process does not terminate, then ¢, - - -, ¢, are formal power series in ¢,, ¢y ;
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let ¢p.; = g:(y) and g = (g, - - -, &»_s)- If 4 is not one-to-one, then ¢ —
(P (D), g(#)) is not one-to-one either.

Second Case. +, is one-to-one. Then 4, is itself the normalization of a
curve, and letting R be the subring of C{f}, the ring of convergent power
series in ¢, of convergent series in ¢,(?), - - -, ¢,(?) it is well known that R con-
tains all power series of high order. (The ideal J of universal denominators
has locus just the origin, so by the Nullstellensatz rad J = m, the maximal
ideal of C{#}. Hence there exists N > O such that for [ > N, #C{t} C R, so
t* ¢ R.) Now if the above process goes on for N(n — k) steps, ord ¢;,, > N
and in one more step (subtracting off the corresponding convergent power
series in R) we can make ¢,., = 0, which contradicts the fact that V is im-
bedded in minimal possible dimension.

Proposition 1. Let V be irreducible, then there exists k > O such that
TW,CYH) =T, 0,).

Proof. Since V is imbedded in minimal dimension, coordinates on C" can
be chosen so that the conclusion of Lemma 2 holds. Then it is sufficient to
pick k = [g,/q,] + 1 where [r] for any real number r is the greatest integer
less than or equal to r. Given f e I(V, Ck), need to show d,f = 0. Now f(z)
— P(2) = o(]z|*) on V. Write

of

1

P,=L,+H,, Ly=7 az, a=

i=1

),

H, = az,  Saftt 3 adl) = ot) .
i=1

2<]al <k

Let a; be the first nonzero coefficient in sum: if it exists we have a contra-
diction since g, < g, < g,k, and a;t* cannot be cancelled by one of the higher
order terms since H(4(?)) cannot have leading term order equal to g;.

Remark. Any linear map z — Y7, ¢;z; gives a branched covering of V of
some sheeting order. It is easy to see that g, - - -, g,, are exactly all the possi-
ble sheeting orders.

Propositian 2. Let V be a reducible curve, V. =V, U --- U V,, such that
TV, 0,) is precisely the complex linear span of TV, Oy, « - -, T(V ., Oy, then
there exists integer k > 0 such that T(V,CE) = T(V, 0,).

Proof. It is always the case that T(V, ¢) D Complex Span {{ 7, T(V,;, 0)},
but in general T(V, @) might be larger. Similarly for all £ and i, T(V,;, C*) C
T(V,C*) so Real Span {{_n,T(V,;,C"} C T(V,C*) since T(V,C") is a real
vector space. Now pick k; > 0 so that T(V;, C*) = T(V, 0) and k = max, {k;}.
Then for each i, T(V;, C¥) is a complex vector space so Real Span {U T(V,C*)}
= Complex Span {U T(V;,C*)} and T(V,C*) = T(V, 0).

Remark. It is clear from the proof that k can be picked to be less than
the maximal sheeting multiplicity of V.

Proposition 3. Let V be any curve, then there exists k > 0 such that
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Proof. Let &, be the germs at the point p of weakly holomorphic functions.
An element u ¢ O is said to be a universal denominator if ud, C @,. Let I be
the ideal of @, of all functions vanishing on Sing (V) and J be the ideal of
universal denominators at p. Then locus (J) C Sing V, [10, p. 56], so by the
Hilbert Nullstellensatz there is a positive integer N, called the conductor num-
ber, such that IY C J. We shall show that k < N + 1.

LetV =V, U --- UV, be the decomposition into irreducible components.
If V, has normalization ¢,(¢), the coordinate with minimal exponent is Cy(V,)
= v,;; letw = Y] a,v, be a real linear combination of the v, with each a; + 0.
Now take a new basis of C* with w as the first element, w = z,; then o(w|)
= 0(|z|) on each component of ¥, hence on all of V. Also w e Real Span
(UCL(V,) C Real Span (U Cy(V,)) C Real Span (UT(V;, C¥) C T(V, C¥). If
felI(V,C*), then 9f/ow = O since w e T(V, C*). Now by Lemma 1, we have
P.(z) = L (2) + H(z) = o(w|*) and L,(z) has no w term. Hence P,(z)/w*
is a weakly holomorphic function. Furthermore since V' imbedded in minimal
possible dimension, w does not divide P,(z) in @. (Suppose P(z) = wg(z).
Then (z) = Ly(2) + H(z) — wg(z) e I(V, 0) and dp) = L; — (g(0), 0, - - -, 0),
since L, has no w term, dy) # O (unless L, = 0) and T(V, @) # C*, a con-
tradiction.) Finally w? is a universal denominator so w”(P,(z) /w*) is holomor-
phic. Hence k < Nor L, = 0.

3. Examples

The estimates given for k in § 2 are, in general, the best possible (Example
1), but are not always the precise minimal values for k& (Example 2). There
exist space curves requiring an arbitrary large k£ (Example 3).

Example 1. Let V be the irreducible space curve given by the image of
&0 = (&, ¢, ). Then T(V, 0,) = C* because there is no first order f vanish-
ing on V since any such f = I + H, I initial part, H higher order part, 0 =
f¢(®) = I, ¢, ©) + H(E, t', 1), order I = 3,4, or 5, and order H > 6. Now
the estimates given for k£ are [maximum multiplicity /minimum multiplicity] +
1 =[5/3] + 1 = 2 and the conductor number + 1 = 2: Since the semigroup
of Z generated by 3, 4, and 5 contains all integers > 3, the holomorphic
functions considered as a subset of the weakly holomorphic functions ¢*(;0)
C ¢0, which are generated by £, #, and # contain all t*, k > 3, and 0/¢*(;0)
is generated by ¢ and 7. Hence z, = ¢, z, = ¢!, z, = #° are all universal de-
nominators, z;.0/¢*(,0) = 0, so conductor number = 1.

By either of the above estimates, T(V, C) = C®. Now we show T(V, C}) =
C? (first two coordinates)—to do this we use Bloom’s result 7(V, Ci) = com-
plex linear span of Cy(V, 0). This is easily computed [5] to be C*.

Example 2. Let g < p <r be three prime integers such that g > 5, 3g <
r, r < 2p, and q divides none of 2p, 2r, r — p, and r + p, and r is not in the
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semigroup of Z generated by q and p; for instance ¢ = 7, p = 13, r = 23.
Let V be the image in C*® of ¢() = (1%, ¢?,¢"); then T(V, O,) = C? [max
multi/min multi] + 1 > 4, conductor number > 4, T(V, C}) = complex li-
near span of Cy(V,0) = C?% but T(V,C% = C*. only this last assertion will
be verified here.

Let fe I(V,C}) and show d,f = (6f/dz,, 0f /97y, 0f | 92,, 8f | 0Z,, 0F | 025, 0f | 3Zs)
=(0,0,0,0,0,0). Now approximating by Taylor series :

@& — X g;'—w)wl)”‘f(w) =o(z —wp), Z,weC?.

la]<2

Composing with the normalization, w = ¢(2), z = ¢(s), writing f,(t) = D*f(¢(?)),
and realizing the second derivative part of the Taylor series is bounded in
comparison to [z — w|*:

(s — 191,,() + (57 — 19f,,() + (s — 9)f, (D)
+ (2 — 9)f,,(O + " — ), () + (5 — ")f,,(®)
=0([s? — 19| + |s? — 2| + |s" — "[1D) .

Now let @ be a primitive gth root of unity, o = €**¥¢, and restrict the above
equation to the lines s = w*t, k = 1, .-, g — 1 to yield

(@*? — De*f, (0 + (0" — Di*f,,(0)

+ (" — Drf, () + (" — D71,
= 0@ (w*® — 1} + |0*? — 1]-|0* — 1| + |o*" — 1)) = 0(s*) .
Now multiply this equation by 77, and let g,(2) = (?/1")f,(1), &) =
@7 /1)f,,(0), g = f.,(, and g,(t) = (/0)"f,,(¢). It suffices to show each a; =
lim,_, g,(2) is zero. Now the g, satisfy the equations:

0= lirf)l (@ — Dgi(®) + (@*7 — Dg,() + (0 — Dgs®) + (0" — Dg,(® ,

so it suffices to show the following matrix is nonsingular :

(0P — 1 o?—1 o —1 o — 1)
w? —1 @2 —1 o —1 wZT——lll

0?—1 o?—1 o —1 o"—1
0o? -1 o?—1 o"—1 o7 — 1J

To compute the determinant, first factor out w? — 1 from the first column,

@” — 1 from the second column, etc., and then perform row operations to

bring it to the Vander Monde form :
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11 1 1)
o @' o @ i
pr @217 er (DZrl '
o @P @ P J

Hence

determinant = (0? — 1)@? — 1)(0” — D)@ — 1)(0? — @?)(0” — @")

(0" — 0?)(@ — 0?)(0" — ") @ — @P)

which is nonzero since @ = ™! and ' = 1 if and only if g divides [.
Example 3. Given any integer k > 0, there exists a curve in C* such that
TW,0) = C? and T(V,C*) = C?. Pick integers g < p < r as follows: g >
4k +2,p=qg + 1, r = 2k + Dp — q(k + 1), and let V be the image of
the map 6(t) = (#%,¢?,¢"). By the Whitney extension theorem, one can show
the existence of a C* function + vanishing on V with 0v-/8z,(0) = 0; we can
also find another function in I(V, C*) whose partial with respect to Z, is non-
zero. We need to choose continuous functions 4, on V, 4, = O on V¥ so that

X)) — L(x — Va0 = o(x — Y=l
181<k—lal ﬁ!

restriction to V' of D% where & = (a, ay, a3, @y, a0, @), || = ay + a, + a; +
o, + oy + a5, D* = 0062020502305, Since 4, are to be defined only on V,
and @ is a homeomorphism it suffice to define +,(f) which simplifies notation.
Start off by choosing

1, lal =1and @; = 1,
0, al=1and a; =0,
V. (00) = “ N
0, || > 1 and either a; > 1 or ¢z > 0,

f(al,az,as,a4)(t)’ 0 = 1 and Qg = 0,

where the f,’s are yet to be determined (except for f 4 4,0,0(¢) = ¢7). In this no-
tation, the limiting condition becomes: letting m = k — 1, x = 6(s), y = 6(2),

fals) — IMZ_I | O — 0@, 5D /B! = 0(6(s) — O(B)[™'")
for all s, ¢ C, |a] < m. Now the data will be chosen and different reasons
given for the limit above to go to zero near the origin and away from the origin.
There are two notations of C* on Reg V' one given by Whitney’s theorem
and the other given by the differential structure of X as a complex manifold—



384 JOSEPH BECKER

we want to know that these are the same. (Generalizing Lemma 4.2 of [5].)
Suppose f e C*(Reg (V)) and we are given data f, which satisfy the chain rules :

00,
—ar0,010 »

0 00
~37fa(0) = a—tlfa+(1,0,o,0) + ot

d 06, a0,
ﬁf«(ﬁ) = _872](“(0,1,0’0) + T;fa+(o,o,0,1) )
where 6() = (0y, 65, 6,,0,) = (19,19, tPu(t), t*u(t)). Then f|Reg (V) e C* and

satisfies

o<|BI<i+] Bit+ e+ Bm=4
[B1l+eeet+m|fm|=lal

where | = |a| — |B]| 4+ 1, and C, is an integer constant. Thus

tim {[Drg0) — % (t—ﬁ_!s—)Dﬁ(f(ﬁ))] Jle =k} =0,

ty8—p 181<k—lal
t#s

and this limit can be seen to be the same as that in Whitney theorem by sub-
stituting (s+). See [11, Chapter 1, § 6]. This can best be understood by con-
sidering the analogous computation with functions of one variable and k = 2.
Suppose g = f(6) so g = f'¢ and g’ = /6’0’ + f'6”. We are given that

lim [|g(®) — g(s) — (¢ — 9)g'(s) — 3t — 9)%"® ||t — s =0,
and want to show
lim [[f(x) — f) — (x — Q) — 3= — 'O |x —y|?1=0.

Since lim |(8(f) — 6(s))/(z — s)| exists and is nonzero, we can replace the later
limit by

lim [|g(®) — g(s) — (6() — (NS (0(s)) — 26D — 6(s))*f" (O ||t — 5]7°]

to see that this converges to zero, subtract it from out given limit, substitute
for g’ and g”, and regroup terms to get

Lim [f(s)6(t) — 6(s) — 6@t — $)0'(s) — $(t — )" ()|t — s]7*]

) [ OO — 06)) e _
+ lim > [ T 0(s)0(s)]__0.

Lest the choice of data appear altogether magical, we first show that for the
case ¢ = 3, p > 7, the data are unique and lead naturally to the general
choices. Now for f = w?/z = 7% m = [p/3] < 2, so f is supposed to be at
least twice differentiable and
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1f(s) — f(8) — (59 — 198.f(1) — (s¢ — 193,f(1) — (s — 17)0,f(1) — (s? — 17)3,f |

s — a0 + |57 — ooF

is bounded as ¢, s — 0. Letting s = w? or w’, where o is a primitive cube root
of unity, we have ¢ = s? and

(0" — D27 — (0P — 1)t720,,f(t) — (w? — 1)(F/)P0,f(2)
and
(0¥ — D=2 — (o’ — Dt720,,f(t) — (0 — 1)(Z/1)70,f(2)

are bounded as ¢t — 0. Multiplying by #*#~" yields the matrix equation

0" — 1 C Jew? — 1 w? — 1][o.f(t) "
= lim - i} .
o — 1 -0 |0 — 1 ®® — 1]]|0,f(0) 2/t
Since p and g are relatively prime, the above 2 X 2 matrix is nonsingular and
we can solve for lim,_, 3,f(0)i?/t" = (0" — 0?)(1 — o) /((@° — w?)(1 — @?))

= 1 and lim,_, 3, f()t*" = (1 — &) (0" — @?)/(0® — @")(1 — @?)) = 0. Thus
choosing d,,f = 0 and 4,f = " /%?, the chain rules

= g f + prPTa,f, 0= g0 f + pivia,f

imply that 6,f = (r/q@)t"~? and 9,f = (—p/qg)t" /7.

More generally, we extend the above data by recalling that f, is supposed
to represent D°F = (9*/92)(9°*/92)(8**/ow)(@**/ow)F and defining higher de-
rivatives inductively : any f, with «, # 0 or @, > 2 is identically zero ; terms f,
with a, = 1 satisfy the formula f,(t) = f(1;,00,0,0 (/1?5 frars1,a0,0.00 30 Frar ani1,0,0
are determined by the chain rules. Hence we have

p {0, fa,>0o0re,>1,
T \C e faet v otherwise ,

where C, = [[¢t,(r/q —i+ 1) [[2.(—p/q — j + 1). By the inequalities
r—mq>g¢— (m— 1)g — p > 0, note that f, is bounded on V if and only
if |a] < m. ‘

Let

gD =10 — x CO=0OF,

181<m—1al B!

‘We must show that g, (s, #) = 0(s? — z2~1«! 4 |s? — ¢?|m~!«) yniformly in s
and t. Choose a real constant ¢ > 0 so small that the set {2: |22 — 1| < ¢}
«consists of g connected components about the gth roots of unity. We will treat
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the cases |s¢ — 19| < c|t|? and |s? — 19| > c|t]? separately.
Case A. |s? — t?] > c|t|?. We have
Is|t < Js? — 1] + 1] < (1 + 1/o)fs? — 17,
[s? — 7| < |s|P + P < M|s? — pjple M>0.
Thus
fa(t) — O(Itl‘f—q(aﬁaz)—-pa;) — O(ISII — tqlr/q—(a1+a2)—10a4/q) s
]0(.9) — 0@ F = 0(s? — 12 [frepatpiaiay ([33 =0).

Hence g,(s, 1) = O|s? — 4|//4~ (ar e =2/ — (|59 — t2|m~1<l) by inequalities (x).
Case B. |s? — 1] < c|t|?. We set s = Ao’ where @? = 1 and [2 — 1| < 3.
Note that if &, + B, < 1, we have

fo(2) A . £ )
fors() = ——=2— ([ (6/qg —a,—i+ 1) Ul(—p/q—az—1+ 1.

19P1FaB2+DBs
Thus if we set

(7)=srNo=i+n,

5 i=1
we have
_ _ r/q — a\( —p/q — &) (6(s) — 6(0))*
85,0 = 1.L5) — 1) 'ﬁiﬁ'zﬁi_ Ll ( 8 ) ( B: ) PP TR

g,(Zwt, t) — Ca(tr—qal/iqaz-*-]-?u) [w7‘+pa4zr-qa1/2qaz+pa4

|ﬂ|s§—[a| <r/q‘3_ a1)< —p/‘g - aZ)(lq — DA — 1) (@Pi? — 1)5.] )
it st 1 2

Consider the function (with 7, and y, real) A(z, w) = 2'w™ where A(1,w) =
w' and h(z, 1) = z"*. The Taylor expansion gives

hew) = 3 (gj)(gz)@ 1w — P 4 00z — 1[4 w — 1Y),

provided that [z — 1| < % and |w — 1| < 4. Then letting ¢(2) = h(2%, 29 =

291792 we have

= % (“)(gz )(zq — 1R — 1P 4 0027 — 1)

161<t \ 9,

Applying this to the above:
first when a, = 1, then r + pa, = 0 (mod g),
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2.(wt, f) = C (17=9% |1+ P)[gr=1m | Jaea+p _ Jr=am [aestp
+0(20 — 1)
= Q@7 =™V P(Qet)? — 2™l
So in this case (using *), g,(s, ) = o(|s? — 2 |™~!1),
Now when a, = 0, ¢ = —p (mod g), so

2.t 1) = C, (171 [fams) [P 7 =am | Jas

—@®r -1 X (r/q - 051)( —prlq — az)(zq — 1A — 1)#]
181<Sm=lal B B
— O(Itl"q‘“‘[@pl"q“l/zq“’ — 2"“1“1/2']“2"‘1’ + Mq — 1|m-[al+1
— (@PA? — 1)zr-qa1/2qa2+p + Iapjp — 1]]2¢ — 1]™'=1])
= O(ltlf-qm I(Zt)q — tq|m—lal + |tl7—q(m—1)—11 ](21)‘1 — tq]m-lal-l l(th)p — tpl) ,
g«(S, t) = O(It[r—-qm ‘sq — tqlm—lal + ltlr—q(m—l)—p [sq — tQ|m—lal—1|sp — tp[)

— 0(|S<1 — tq|"“]”" + Isp — tplm—lal) .

Finally T(V, C**Y) = T(V, 0) follows from the estimate given in Proposition
1 since [max multi/min multi] + 1 = [(kg + 2k + 1)/ql + 1 =k + 1.

Note. The exact statement of the Whitney extension theorem being em-
ployed here is: Let 4 be a closed set in R” and f a continuous real valued func-
tion on A. Then a necessary and sufficient condition that f have a C* extension
to some open subset of R" containing A is that there exist continuous real
valued functions f = f,, f,, |a| < k on A such that for all o, p e 4

Flo) = Iﬂl<§—lal (x T y)ﬂf“ﬁ(y)

!
lim kﬁ_] : =0.
L x— ¥l

Example 4. A one-dimensional Stein space X such that there is a holomor-
phic homeomorphism of X into C?, there is no holomorphic embedding of X
into any C*, but for every k there is a C* embedding X — C?**!, We will give
curves X in C* such that for l < k — 1, T(X,,CY) = C'*'. Let ¢ > 4k + 2,
n=Q+D@+D—-U+Dg=Ilg+21+1,for0<I<k—2, and X,
the curve in C* given by ¢ — (29, 12*!, ¢, ¢, . . . t"*-2), The methods of Ex-
ample 3 applied to curve ;(X,), i = 3, - - -, k show that T(X,, C}) = C'*!,
where z;: C, — C?, (X, - -+, X,) = (%, X,, x;). Now patch these X, together
away from the singular points to form a noncompact irreducible one-dimen-
sional complex space X. By [Gunning & Rossi, Theorem IX, B. 10] X is a
Stein space, so [Gunning & Rossi, Theorem VII, C. 10] there is a holomor-
phic homeomorphism of X into C*. The obstruction to the existence of a holo-
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morphic embedding of X in some C” is that the local holomorphic embedding
dimension be bounded. However one can embed X in C**! with C* functions
by using a partition of unity to patch together local embeddings. Alternately
one can construct a weakly holomorphic homeomorphism X — C?%*! by usual
method for Stein space.

Remark. Of course if there is a fixed n such that for every k there is a C*
embedding of a Stein space X into C™, then there is a holomorphic embedding
into some C™. '

4. Equisingular case

For a special class of varieties, we can show that the conductor number is
an upper bound for least k such that T(V, C%) = T(V, @0,). For a variety V of
pure dimension r in C*, let C = Sing (Sing V) U {p e V|dim C(V,p) > r} U
{p e V|dim C,(V, p) > r + 1} where C,(V, p) and C,(V, p) are the fourth and
fifth Whitney tangents cones to ¥ at p, [24], [25]. Then C is an analytic sub-
set of V' of codimension at least two [22, Prop. 3.6] and every p ¢ V — C has
an open neighborhood so that after a local biholomorphic change of coordi-
nates the following hold (and V is said to be equisingular at p):

(1) For each irreducible component V; of V, V, N SingV = Sing V', =
C™ 1, [22, Props. 2.10, 2.12, and 4.5].

(i) Each component has a one-to-one nonsingular normalization [22, Prop.
42] ¢: D — Vz given by ¢(t1’ ) tr) = (tla ety ¢r+1(t)a ] ¢n(t))’
where q is the sheeting order of #|V; and n(x,, - - -, x,,) = (x;, - - -, x,). The
branching set of this projection is just ¢({t, = 0}) = C™.

Now let Cond, (V) denote the conductor number of the variety at the point
p. If V, is a component of V, it is clear that any universal denominator for
V is a universal denominator for V; and since Sing V; = Sing V, we have that
Cond,(V) > Cond,(V,). For any fixed s = (¢, - - -, ¢,_,) consider the curve
W, in V; given by ¢, — ¢(s, t,). Since this curve W, lies in E; = 5 X C""*1,
weakly holomorphic functions on W, extend to weakly holomorphic functions
on V, by ignoring the first r — 1 variables. Hence any universal denominator
for V; is a universal denominator for W, and Cond,(¥;) > Cond,(W ).

Note that for s in a neighborhood of p, Cond,(V) < Cond,(V). (The ideal
sheaf of J is coherent [7, Theorem 22] because it is the kernel of ¢ —
Hom, (0, G|0), hence I(Sg(V))/J is coherent; the index of nilpotence of a co-
herent sheaf is an upper semi-continuous function.) We will show that for k£ >
Cond,(V), T(V,C}) = T(V, 0,). Then defining k(p) to be the minimal such
k, we have a function V' — Z. Then k is bounded on compact sets.

Now we need to prove

Lemma 2. There is an analytic set A" C C"! such that \ ;g4 T(V, 0,) is
a complex vector bundle over C™™' — A’ such that fors¢ A’, E, N T(V, 0,)
=TW,,0,) and TV,0,) = TW,, 0,) ® C™ .
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Then letting N = Cond, (V) + 1, for all s ¢ A/, s near p, Cond, (V) < N so
TW,,CY¥) = T(W,, 0,) by Proposition 3. Now C"', W, C V, so C"' =
T, CHCT(WV,C") via[l8, Satz1.2.1} and T(W,, CY) C T(V, CY). Hence
TW,CHDTW, CHOTECHCH=TW,, 0)@C" =TV, 0,), so
TWV,CY) =T, 0,).

But Lemma 2 just follows from a sequence of results of an earlier work [3,
§ 2]. Let U be a polydisk in C™ centered at 0 and (z,) coordinates in U. Given
fir v fme I'(U, 04) we denote by R the sheaf of relations among (f;). For
any integer g, 0 < g < n, we may write U = U,_, X U, C C*"? X C% For
aeU, ,wesetUs={beU:b — aecU,}. Wedenote by R|Uj; the restriction
of R to U? and by R(U?) sheaf of relations among (f;| U3).

Lemma a. For each integer q there is a negligible set A, C U,_, such that
each point p e (U,_, — A, X (0) has a neighborhood N, on which there are
ay, « -+, a; € I'(N,, R) with the property that (a;| N, N U;) generate R(U) | N,
N U¢. Hence R(U%) and R|U¢ agree off of A°.

Lemma 8. Let U be as in Lemma o and let X be a pure r-dimensional an-
alytic subset of U. Assume for some fixed q that given any a e U,_,, a is con-
tained in every irreducible component of X N U%. Denote by Iy the sheaf of
germs of holomorphic functions vanishing on X. Then there is a negligible set
A C U,_, such that given peU,_, — A there are a neighborhood N, of p
and hy, ++ -, hy, € I'(N,, I y) with the following properties :

(@) (h,) generates I x|N,,

(b) foranyaeU,_,— A, (h;|U; N N,) generates Iyys|Us N N,.

In these lemmas, “negligible” means the countable union of local analytic va-
rieties. However it can be seen from the proofs that the set being removed is
analytic in the event that the slices of the variety are one-dimensional. These
proofs can be found at the end of the section.

Now T(V,0,) ={a: a-d,f =0forall f e I(V, 0,)} but it is unnecessary to use

all f e I(V, 0,), any finite set of generators A, - - -, h,, for I(V, 0,) over 0, will
suffice f = (f}, - - -, fn), f; € yO o0 V among (dh,, - - -, dh,,) and & = the sheaf
of relations (f,8) = (f, -+, fm, 85 "+, 8n)> f:€0, g€ O™ on C™ among

(dhy, - -+, dhy, hy, - -, hy). Define z: & — R by z(f, g) = f. Clearly « is onto
and R|{s} = T(V, ¢,). By Lemma «, there exists analytic 4, C C”~!so that for
a¢ A, (U = &|Us and hence R(U%) = R|U% Thenfora¢ A,, R(U%) | {s}
= (R|UY)|{s} and by definition (R|U%)|{s} =E, N T(V,0,). For a¢ A, U A4,
by definition R(U%) |{s}= T(W,, 0,). Thus letting m = max, .-, {rank, (dh,,
++-,dhy)}and 4, = {pe C"': rank, (dh,, - - -,dh,) <m}, A’ = A, U 4, U
A is the required set.

Remark. It is actually unnecessary to remove the set A,, and the reason
for this is extremely revealing for what is going on in the above discussion.
Really Lemma 2 states that there exists a curve C in V,C = W, U coordinate
axis in C"7, such that T(C,0) = T(V,0); hence T(V,C*) D T(C,C*) =
T(C,0) = T(V, 0). At point s ¢ A, however, to get such a curve it is not suf-
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ficient to just take intersections of V' with linear subspaces. This is illustrated
by the following example.

Let V be the image in C* of ¢(s, t) = (s, £, %, s¢°) ; none of ¢; is a power
series in {¢;};.;, so T(V,®) = C*. Now if we restrict as above to the slice x,
=5 =0, we get (0, #, ¢!, 0) whose tangent space is C,,,, not Cy, ,,, as needed.
Taking a nonsingular slice back in the normalization, s = ct*, ¢ constant, k >
0, yields (ct*, £, ¢, t**%); since k + 5 is in the semigroup generated by 3 and
4, the tangent space is C,,,, if k > 5, C,, if k=1, C,,,, if k=2, and a two-
dimensional subspace of C,, ,,,, if Kk = 4 or 3—in any case nothing in the x, di-
rection. If instead one trys a linear section ax, + bx, + cx, + dx, = 0 in the
ambient space, one gets (—(b#® + ct')/(a + dP®), £, ¢, — (b + ct’)/(a + dt°));
the tangent space is a two-dimensional subspace of C,,,,,,. Hence we resort
to nonsingular sections in the normalization s? = #¢, g < p, p and q relatively
prime integers, which itself has normalization 2 — (19, 2). Composing gives
A — (29, %%, 2*, 2°P*9) 50 it is possible for these to be all independent since
5p + g < 6p (the semigroup generated by 3p and 4p does not contain integers
between 5p and 6p). In fact ¢ = 7 and p = 11 works.

Attempted proof of Lemma « (which does not quite work). Use induction
on g—the relation of f,, - - -, f,, will be reduced to several relations of the type
R(gy, -+, 8n)in ,_,0™ in a manner which commutes with restriction to U for
eachaecU,_,.

We may assume that at least one f;, say f,, which is not independent of
Zn_qs1s * * *» 2y (OF else we get trivially an isomorphism of R|U,_, and R(U,,_,)
and we are immediately reduced to the case g = 0). Choose coordinates in U,
so that f,, is not identically zero in the z, direction and writing z = (x,y) €
U, XUy letd, ={xeU,_,: (0*f,/0z)(x,0) = O for all k > 0} and 4, =
{x e U,_,: for each f, not independent of z,, (3*f;/9zf)(x,0) = O for all k¥ >
0}; each is a proper analytic subset of U,_, and 4" = (4, U 4,) X U,. If
p ¢ A’, each f; is regular in the z, direction so by the Weierstrass preparation
theorem, there is a neighborhood N, of p, unit u and holomorphic polynomial
8; € »_,0[z,] so that f, = u,g; in N,. Now the lemma is a local result and per-
mits multiplication by units so we can replace the f;’s by the g;’s.

A relation (e, - - -, @,,) € R is said to be a polynomial relation if each @, €
»-10[z,]; then R is generated over ,0 by the polynomial relations. Let & € R
and foreachi =1, ..., m — 1 write o; = u;8, + r; by the division theorem
where u; € ,0 and r; € ,_,0[z,] has degree < degg,. Let r, be defined by
the equations :

24 m ( [ n
<] i
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It remians only to show r, is a holomorphic polynomial. Clearly (r,, - - -, 7,)
€ RSOFp8m = — Xiiemi8: € n_10[z,]. By the algebraic divisor algorithmr,.g,,
= Qg + R where Q, Re ,_,0[z,] and deg R < degg,. But then R/g,, is
holomorphic, g, vanishes to order degg, in the z, direction because it is
Weierstrass, and R vanishes to lower order. Thus R = 0 and r,, = Q. Note
that each entry of the above relations has degree < max deg g; = k.

Next we reduce the polynomial relations among the g;’s to finitely many

holomorphic relations among the coefficients of the g;’s. Let @ = (a, - - - @y),
a; = Yk ciz, g, = Yk aiz; then a e Rif and only if i1, 214 o al_,c5 =
0in ,_,0 for v = 0, - - -, 2k. This means the element
i - - k+1
[cl] = (c(%’ . _’C}“c(z), . 'ac?c’c(;n 17 t _’C;Cn 1’ ° '7Clrcn) € n—lam( i
is a relation between the finitely many sections vy = 0, - - -2k :
s, = (aia . ‘,axl;—kaaf, . ’aaf—k, t "a:n—l’ t _’avm_—kl,a;n’ v ”a:n—k) )

where a¢ = 0 if y < O.

Remark 1. Each s has as entries either all the tail coefficient af or ay = 1.
(For v < k, it contains g} and for v > k it contains aj’.)

Now one completes the induction by applying the previous construction to
each s, removing another analytic set so that in the complement each coefficient
of s, can be written locally as the product of a unit and a holomorphic poly-
nomial. However there is one irrepairable error in this construction: While
there is an obvious isomorphism of relations between (u,g,, - - -, 4,8,) and re-
lations between (g, - - -, g,) in the second stage of the induction there are sev-
eral equations to be satisfied, each inducing an isomorphism of the relations
with and without the units, but these isomorphisms are not all the same and
the composition of two of them are unlikely to preserve the polynomial rela-
tions so it seems impossible to reduce to several relations on ,_,@. The only
way around this difficulty seems to make the following assumption : Each f; is
a holomorphic polynomial, at least one is monic in z,, (hence A’ = @) and at
each stage of the induction each s has holomorphic polynomials as entries with
at least one of them a Weierstrass polynomial. While this assumption might
seem rather arbitrary, it is in fact satisfied in the application to the ideal sheaf
of a variety.

Proof of Lemma «. We proceed by induction on g. When g = 0, U is
just the point {a} and R(U?) is the vector subspace of C! spanned by the vectors
(fi(@)). The matrix F = [f] defines a map F: 0% — @, such that R = ker F.
The set A° of points where the rank of (f,) is less than maximal is analytic and
on U — A°, R is the sheaf of sections of a vector bundle so our conclusion
holds there. This takes care of g = 0.

Next, suppose g > 0. We denote by M the field of meromorphic functions
on U, and set r equal to the rank of F over M. We may find a matrix B over
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5
ol

Here [ is the r X r identity matrix, and the f; are holomorphic. Now « = (a;,)
€ R if and only if

M and a holomorphic function h such that

hl
hB-F = l—
0

ah + X fia; =0, i=1,---,r.
j>r

Notice that if we multiply /4 be any holomorphic function, all of the above re-
mains valid. Writing z = (x,y) € U,_, X U,, expand A as a(x, y) = 3, h(x)y",
and set A" = {z e U: h(x) = 0} for all & with || # {0}. Changing # if neces-
sary we may assume that A’ is a proper analytic subset of U. A’ is also homo-
geneous in the last g variables so A’ N U,_, is a proper analytic subset A" of
U, ,and A’ =A" x U,. If pe (U,_, — A”) X (0), then after changing our
last g coordinates & will be regular in z, at p. Now we can find a neighborhood
N, of p such that & = uh’, with u a unit and 4’ a Weierstrass polynomial. If
we write f = fi ./ + f, and a; = «; /' + a;,, then our previous equations
can be written in the form

ah’ + 3 fia;, =0, i=1,...,r.
ji>r

All of the entries in this equation are polynomials of bounded degree in z,,.
Thus we may view these last equations as a larger set of equations involving
functions of n — 1 variables. These may be thought of as defining a system of
relations equivalent to the restriction to N, of those we began with. Because
of the lack of dependence on z, we may view these last equations as defining
relations on N, N (C*' X (p,)). All of the above commutes with restriction
to U%, so we may assume inductively that our lemma holds on N,. If we cover
U,_, — A” with a locally finite set (N,,), then it is easy to see from [13] that
A", together with the union of the negligible sets in each N,,, forms a negligi-
ble subset of U,_,, and in its complement the conditions of the lemma are
satisfied. This completes the proof.

Remark 2. If g=1 or 0, the set 4, is analytic—because we avoid having
to use the divisor theorem in the complement of where we already used it.

Our proof of Lemma 1 is modeled closely on Spallek’s work in [13], [14],
[15] in which he proved the following converse to our result: If F is a finitely
generated subsheaf of @, there is an analytic set 4? of dimension at most
n —q — 1 such that if g ¢ O(U) and for everyae U,_,, g|Us € F| U3, then g ¢
F(U — A9). Because our applications do not permit the type of coordinate
changes employed in [13], our result in Lemma « is weaker than the corre-
sponding result in [13].
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Proof of Lemma 8. In order to apply Lemma « we need to express [y as
a sheaf of relations in a manner which commutes with restriction. To do this
we recall Cartan’s proof of the coherence of 1,[9]. Since U,_, C X, we may
change our last n — g coordinates so that projection on the first r coordinates
induces a u-sheeted branched covering with branch locus B. (At this stage we
may have to shrink U. We will only use the local form of this lemma.) Near
each point of D — [I(B) the map I/ has u local inverses of the form w;(x) =
Xy, vy Xy Wy (X)), -+, Wy ,(x)). Using these we form []%.; (z; — w;,:(2)),
and this extends to a polynomial P;(z) € O(D)[z;]. By a linear change of the
last n — r coordinates we may insure that the discriminant § of P,,, is not
identically 0. Let C = {ze U: 6(z) = 0}. Fori =r + 2, - - -, n we define poly-
nomials Q;(z) as follows: if z e U — C, then near z

0.(z) = z a2y

ay(x) = 4-det[1,w; , (), - - -, w; , ., (D)F, 6w, 4(x),
wj,r+1(x)k+l5 Tty wj,'r+1(x)u—1] .
Here 4> =6 and x = (g, - - -, Z,). Q; extends to an element of O(D)[z,.,].

Let o: U — U,_, be the canonical projection associated with our choice of
coordinates. 4’ = {ae U,_,:dim,C N U} =dmX N U;=r—n+qisa
proper analytic subset of U,,_, since C N U% = (p|C)~(a), {b € X : dim, f~'(f(b))
> [} is an analytic set for any holomorphic map f: X — Y and any integer /,
and if dimC N U? = dim X N U% then C N U} contains a component of X
N U%so ae C N U% by hypothesis and dim, C N U} =r — n + q. Notice
that for ae U,_, restriction gives I/: X N U — D N U;. Since B C C, if
aeU,_, — A’ then all of the above constructions commute with restriction to
X N U¢. From [9] we know that g € Iy, if and only if for all sufficiently large
N, %g is in the ideal generated by the germs of P,,,, -+, P, 02,,, — O, .0
v, 02, — @, at a, and similarly for Iy,,e . Thus Iy , is the identified set of
germs which appear as the first element in « € 0%;*", defining a relation be-
tween the germs of 6%, P,,,, dz; — Q; at a. Now we can apply Lemma « to
complete the proof.

Now returning the proof of Lemma 2 (to show analyticity of the removed
set), we must study the bad set (ala Lemma «) of the relations among P, ,,
v, Py 2000 — Qpisy -+ 05 2,0 — Q,, Which arises in reducing the relations
from C™ to C"?. Since we are assuming each slice of the variety is one-di-
mensional, n — g =r — 1, g = n — r + 1. For the first n — r steps of the
induction in Lemma « it is possible to use the method of the first proof and
hence get no bad set (each P;, z;0 — Q; is a holomorphic polynomial in ,0[z, .,

-+, Z,], and after each reduction to less variables each s, has all entries holo-
morphic polynomials and by Remark 1, at least one entry a Weierstrass poly-
nomial—either the leading coefficient of P;, equal to 1, or all the P;, i < ).
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Then for the last two steps of the induction one can use the method of the
second proof of Lemma « and by Remark 2, remove an analytic set.

5. Homogeneous case

Now consider the case of a homogeneous algebraic variety, which is a set
V = common locus in C" of finitely many homogeneous polynomials. Here it
is easy to find an analytic curve (reducible) C in V such that T(V, 0,) =
T(C, 0,). For analytic set V, let L(V) denote the complex linear span. First
construct a curve C in V such that L(C) = L(V) as follows : pick finitely many
points v, - - -, v, € Vand let C, = L(v,) U --- U L(v,); clearly C, C V so
L(Cy) C L(V). If L(C,) # L(V), then V ¢ L(C,) ; pick v,,, ¢ V — L(C,) and
let Ci,1 = L(vg,,) U Cy. Then dim L(C,,,) > dim L(C,) so eventually for
some m, L(C,,) = L(V).

Now applying Lemma 3 below to both C and V', we have T(V, ¢) = L(V)
= L(C) = T(C, 0).

Lemma 3. If V is homogeneous, then L(V) = T(V, 0).

Proof. Any fel(V,0) is the sum of homogeneous polynomials which all
vanish on V, so V is the common locus of the initial terms which are linear;
hence V C T(V, ). Since T(V, O) is linear, L(V) C T(V, ®). On the other
hand, dim 7'(V/, @) is the minimal embedding dimension of V, so dim T'(V, O)
< dim Z(V).

Remark. It is not at all surprising that the result is so easy for homogene-
ous varieties since the critical degree of differentiability is just k = 1: By the
methods [3, Lemma 3] of Lemma 3 one easily sees that L(C,(V)) = T(Cx(V), 0)
DTC,(V),0) =TWV,0), but C(V) C T(V,C") so T(V,0) C L(C,(V) C
L(T,CY) =TW,C") because T(V,C") is a complex vector space. Hence
TW,0) =TW,CH.

Alternately, one can see that the critical degree of differentiability is just
one as follows : Suppose T(V, C;) #= T(V, @) = ambient space, then some dif-
ferentiable function vanishing on ¥ has a nonzero partial derivative at the ori-
gin, so considering the Taylor expansion of f restricted to V' we have z;/|z| —
Oon V as|z| — 0, for some z; == 0 on V. But V is homogeneous and |1z;|/| 2z
= |z;|/|z|, so the values of |z;|/|z| do not change as |z| — O.

6. General case

Theorem 1. For any point p ¢ V, a complex analytic variety, there exists
an integer k > 0 such that T(V,C%) = T(V, 0,). If k(p) is defined to be the
smallest such integer, then the function k. V — Z is bounded on compact sub-
sets of V and bounded for algebraic varieties.

The first statement follows from Theorem 2, as pointed out in the remark
at the end of the last section. The second statement follows from the proof of
Theorem 2.
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Theorem 2. For every peV, there is a complex analytic curve C in'V
passing through p such that T(C,0,) =TV, 0,).

Proof. This was inspired by [4, § 4] where it is shown that every differ-
ential operator on a variety is the finite sum of differential operators on curves
in the variety. Unfortunately the proof given there does not seem to guarantee
that first order operators are the sum of first order operators on curves.

Proposition 4. Let V be an analytic variety with dimV > 1, pe V. Then
there is an analytic variety W C V with dim W < dim V such that T(W, 0,)
= T(V,0,). It is clear that Theorem 2 follows from Proposition 4 by induc-
tion. Before starting on the proof we review some well known facts about com-
pletion of modules [26].

Let A be a local noetherian ring with maximal ideal m, and E a finitely
generated A module. Then F is given the structure of a topological group with
the fundamental system of neighborhoods m*E, called the natural topology.
If F is a closed submodule of E, the natural topology of E induces on F the
natural topology of F, and the quotient E/F also has the natural topology.
The completion (via Cauchy sequences) of E in this topology is £ = lim E/m*E

and also has the natural topology given by the fundamental system of neigh-
borhoods #*E. If (M), m = {0}, the canonical map E — Eis 1n]ect1ve E is
considered as a dense subset of E, and E is complete, that is, E=E 10—
F - E — G — 0 is an exact sequence of finitely generated A modules, then
0—F—E—G—0is an exact sequence of finitely generated 4 modules,
consequently E/F = E/F, FNE=F,andF is closed in E. Next E = AE,

so if a, b are any two ideals of A, db = AaAb = Aab = gB. If 4 is any ideal
of A, then (4 N &" = A-(4 N & c AA N Ad = Ad = &, in summary
(ANarca lfabareidealsof 4 and d =b, thena=daNA4=5N A4
= b. If {F/} is a finite family of submodules of E, then (N F)" = N F,. For
an infinite family, we have (N F)" C F, since the latter is a closed set. For
any submodule F of E, M., (F + m*E) = F

If A is the ring of convergent power series over the complexes, C{X,, - - -,

X,}, then 4 = C[[X,, - -, X,]] the ring of formal power series over C, and
every ideal of either ring is closed. By an analytic ring we mean C{X|, - - -,

X,}/I where I is an ideal. If an analytic ring 4 is an integral domain, so is its
completion A4, [10, Theorem 1], hence the completion of a prime ideal is again
prime. Conversely if 4 is an integral domain, then A is an integral domain
since it is a subring of A4 ; if  is prime in 4, then 5 N A4 is prime in A.

If A is a local noetherian ring, dim (4) is the largest integer k such that
there exists a strictly increasing chain of prime ideals p, Cp, C --- C p, =m
of A. The dimensions of C{X, - - -, X,} and C[[X,, - - -, X,]] are both n. The
height of a prime p is the length 4 of the largest chain of primes p, C --- C
pr C p. The depth of a prime p is the length d of the longest chain of primes
pCp C .- Cp,=m, so that Length,(p) + Depth,(p) = dim A. Depth and
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height of a prime and dimension of a ring are both preserved by completion.

Now returning to the proof of Proposition 4, assume V is imbedded in mini-
mal possible dimension, that is, T(V, @,) = C™ so I(V) C m?, where m is the
maximal ideal of @. We want to show that there exists an analytic set W C V,
dim W < dim V' so that I(W) C m*. The most naive idea would be to say O,
is a unique factorization domain, so let W be the union of two different sub-
varieties W,, W, of codimension one in V, where W, is the locus of f, so I(W,)
is generated by f,. Then any fe I(W, U W,) can be written as f = f,g, g ¢
I(W,) so ord f > 2. However this does not work: Let V = locus of z* — xy
in C° W, =locus(x) =y axis = {(0,a,0)}, W, =locus(x —z) = W, U
{(a,d’, @)}, and f = x — z. Hence the proposition will have to be proven by
contradiction of assumption that all lower dimensional subvarieties have tan-
gent space not equal to C™".

LetdmV =r, V=V'UV”, dimV’' =r, dimV”" <r—1. Let V{, -- ., V}
be the irreducible components of ¥, and V7, - - -, V7, the irreducible compo-
nents of V. Let I = I(V,®). Then g, = I(V;,0) and p, = I(V/, ®) are all
prime and I = (M, ;) N (.. p,;). Pick a countable set W,,,, W,,,, - - - of
irreducible subvarieties of codimension one in ¥’ such that U W, is dense in
V’. (Take local parameterization z: V/ — C” and a countable dense set a; ¢
CP", such that each a, determines a hyperplane H; normal to it. Then U H;
is dense in C” so =~ '(H;) is dense in V since r is a closed map. Let W, be the
irreducible components of z~!(H;).) Then P, ; = I(W,,;, 0) is prime and
(Mis1 P; = I since ano continuous function vanishing on a dense subset of V
is identically zero. For all k let I, = P, N -.- N P,. Clearly we have

LoD 1,D>- D>\ I=1,
k=1

a a © L fiad A -
leIZD---DIkD---DﬂIkD<ﬂ1k> =1.
k=1 k=1

Now I € m?, so [ C n/’t\’ = ?, and the proposition clearly follows from the
below lemmas which imply I ¢ 7.

Lemma 4. If no I, C m?, then N I, ¢ i

Lemma 5. (i, [, = (M 1)

Proof of Lemma 4. Suppose f; € I, ord f, = 1 for all k. Let H; be the
complex vector space given the image of the natural map I, — m/m?. Then
H: D H: D ... is a decreasing sequence of finite dimensional vector spaces
and hence is stable for large j, say H; D H; for all j. By assumption H; # O,
choose 0 # h, € Hi.. Now define homogeneous polynomials /, of degree k in-
ductively as follows: Suppose h, - - -, h;_, are defined, ¢;_, =h; + -+ +
hi_y, so that for all j, 3g; € 0, ord g; > k, and ¢;_, + g; € I;. Let HY be the
complex vector space spanned by the image S* of the natural map I, —m/m**!,
restricted to those elements in I; whose image in m/m* is ¢,_,. Then H}Y O
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Hf O ... is a decreasing sequence of finite dimensional vector spaces and is
stable for large j, say H: D H} for all j. Choose hj € S*. Then h;, ¢ S% for all
j—apriori h, is only in H%, but there exist finitely many ¢; € C, hy;, 8;:€ 0, hy;
homogeneous polynomial of degree k, ord g;; >k + 1, ¢, + hys + 80 € 15,
so that o, = ¢,_; + hy = 3 ¢i(pi_s + hy; + g;;) mod m**!. Comparing terms
of orders k — 1 and k, we have ), c; =1 and }; ¢;h;; = hy. I, is a vector
space so Y. ¢pr_, + My + ;) € I; and its image in m/m*** is ¢,. Hence
for all j, ¢, e S% and there exist g; = 2. ¢:8: so that ¢, + g:.. € I; completing
the induction. Let ¢ be the formal sum Y7, h; € 6. Then 0= (gok + gj) +
(¢k—go)—gjel +mk+m"clj+mk,goeﬂk(lj—}—m)_f j,so
pe(;l; qed.

Now the result of Lemma 5 does not hold for any set of ideals but depends
upon the fact that infinitely many (j > I) I; are height-one primes in Oy.
Counterexample to general statement of Lemma 5: Let I, be the ideal in
C{x,y} generated by x + X} 7., k!y* and y"*'. Then (M7_.I, = (0), so
(N I)N = (0). But I, = ideal in C[[x, y]] generated by the same two ele-
ments and contains the divergent series x + Y=, k! y*, so ("=, I, = (0).

Proof of Lemma 5. The primes P, are all distinct and

A o /K A A " no L
NE=0(NP) =0 Eo1=(0a)n (b))
i=1 k=1 \i=1 k=1 =1 i=1

)

We need to show ()i, P; C each cj ;- Now each p,, ; contains some ¢, and each
g, is contained in 1nﬁmtely many P, ;; let Q ; be the intersection of all P, +¢ such
that g, C Pm Clearly M., Q; = ﬁl 1PM, q; C @, and it suffices to prove
equahty But g, has depth r, each P, hasdepthr — 1, ¢ ; C Q; C infinitely
many P,,;, and no ideal can belong to infinitely many minimal primes, soQ j
is prime and equals g; (via Noether Lasker decomposition).

Now we turn to proving that k:V' — Z is bounded by an upper semicontinu-
ous function, and hence k(p) is bounded on compact subset of V. To see this,
we look carefully at the curve C,, in V through p given by Theorem 2. It varies
analytically—has a bounded number of components and (1, C, can be made
into the union of equisingular families of curves of a different variety, and so
the conductor number of C, is locally bounded. More specifically, assume 0

€ V. Then in some neighborhood of the origin we have

Proposition 5. There is a fixed analytic set L, O ¢ L, such that for all p e
SgV,dmV N(L+p)=1,and TV,0,) =TV N (L + p),0,).

Proposition 6. There is an upper bound, over all p e SgV, for the con-
ductor number of V N (L + p) at p.

Clearly the boundedness of k(p) follows from Propositions 5, 6, and 3.

Proof of Proposition 5. 1t can easily be seen that there is a fixed set of
analytic varieties {H;}, in C™ each containing the origin such that the curves
H; N V are distinct. (If V is of pure dimension, we can choose the H; to be
linear subspaces ; otherwise we must start off by taking the locus of functions
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vanishing identically on all the lower dimensional irreducible components, but
not identically on any top dimensional component.) Let L, = | %, H; and
Cy =L, N V. Then the proof of Proposision 4 shows that for every p e V,
there exists k > 0 (depending on p) such that T(V, 0,) =T(V N (L, + p), 0,).

Now let T be the analytic set | J,cqe v 0 X T(V,0,) C C*™ and Tj, = | ege v
pXTW N (Lg+ p),0,) CC*";thenT = | J;_, T, If we knew each T, were
an analytic set, then Proposition 5 would follow from Lemma 6 since T re-
stricted to a compact neighborhood can have only finitely many irreducible
components.

Lemma 6. Let Z, C Z, C --- be an increasing sequence of analytic sets
such that \ )7_, Z, = Z is analytic and has only finitely many irreducible com-
ponents. Then Z = Z, for some k.

Proof. Every irreducible component Z’ of Z must be in some Z,, or else
Z' = Uz (Z' N Z,) is the union of countably many analytic subsets of lower
dimension. Since Z’ is a complete metric space, the Baire category theorem
says it cannot be the union of countably many closed nowhere dense subsets.

But T, is too hard to work with directly, so instead we introduce some new
varieties by stringing out the old ones. Define W, = U, cqe v P X VN (Ly, + p)

C C*. Then W, is an analytic set in C*": Let V be the locus of f;, Sg V' the
locus of g;, and L, the locus of [;. Then W, is the set of (a, b) e C** such that
8@ =0, f(b)=0,1(b—a) =0.Let W=SgV xVcC?*. Consider SgV
to be in each W, and W as SgV X 0. Let S; = Upesgv P X T(Wy, 0), S =
Upesev P X T(W, 0,). By the proof of Proposition 4, § = U S, and by
Lemma 6, S =S, for some fixed %, so for all pe SgV, T(W,, 0,) =T(W, 0,)
=TESgV,0,) X T(V,0,). Let E={(0,b):beC"} =0 X C" in C** and
E,=E+a ThenE, N W, =V N (L, + p)and E, N W = V. Intersect-
ing the above with E, yields

TV N (Ly + p), 0,) = T(E, N W,,0,) C E, N T(W,, 0,)
—E, N TW,0,) =T(V,0,) ,

where the inclusion is not always equality. However by Lemma 2 there is an
analytic set 4 C Sg V, dim A < dim Sg V¥ such that for pe SgV — 4, the a-
bove inclusion is an equality. If 4 were null, the proposition would be proven
—but since this is rather unlikely we iterate the construction. Let W= Upea
pXVN(Le+ p), W=AXV, 8 =Upap X T(Wk,@ ), 8 = UpeaP X

T(W,0,). Then § = U S, by Proposition 4, § = § for some k by Lemma
6, and by Lemma 2 there exists analytic B C 4, dim B < dim 4 so that for
allped — B, TV N (L, + p),0,) = TV, 0,). This finally yields a stratifica-
tion of Sg V, and an integer k associated to each strata so that for each point
in that strata T(V N (L, + p), 0,) = T(V, 0,). Just take the largest of this
finite set of integers.

Proof of Proposition 6. Let L, be the fixed analytic set of Proposition 5
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and Wy = Upese v P X V N (Ly + p). Let d = dim Sg V, choose a projection
p1: C™ — C* giving a local parameterization of Sg V' near the origin, choose a
projection p,: C™ — C* giving a local parameterization of L, near the origin,
and define z: C*" — C%*! by =(a, b) = (p,(@), p,(b)). Then (x| W) '(0,0) =
0:1(0) X p;'(0) = (0,0), so  gives a local parameterization of W, such that
7n(Sg V) C C? where C? is identified with C¢ X 0 in C%*'. Let B, be the
branching set of p,. Let B, be the branching set of z—each irreducible com-
ponent of which either contains Sg V' or intersects Sg 7 in a set of dimension
less than Sg V—and let B; be the union of intersection of those irreducible
components of B which do not contain Sg V. Let Z be the union of the com-
ponents of SgV of non-maximal dimension, and Z’ the intersection with Sg V'
of all irreducible components of Sg W, which do not lie in SgV. Let 4 =
SgSgV UB, UB,UZUZ.

Then for each p e SgV — A, there is a neighborhood U of p in C*" such
that z| U N W, gives a local parameterization with branching set B a manifold
contained in C" X 0, n(B) < C%. Now n: W, — B — C?*! — C? is a cover-
ing projection and induces a map on the first homotopy groups =, : 7;(W,— B)
— m(C4* — C?) =~ Z. Since Z is a principal ideal domain, image (z,) ~ gZ
for some g. Let D%*! be a unit polydisc in C%*!, D¢ = D?*! N C?, and (¢,

Statge) = (b, oo oy 1y, 25.0). Then 7, (D% — D?)) ~ gZ. By a standard
result in algebraic topology, there exists a map ¢: D*' — D? — W, — B such
that 7o = +. (Given map +-: Z — X and covering map = : X — X, then there
exists map ¢: Z — X so n¢ = + if and only if .7 (Z) C n'*n'l(X) ) Then ¢
is holomorphic because locally it is z7'. Since = is a proper map (inverse
image of compact sets are compact), ¢ is bounded near D¢, so by the Riemanr.
removable singularities theorem it extends to a holomorphic map on D?%*!,
SO = (b, « 5 tg, 8341, Pasa> * * > Pon). Then ¢ is one-to-one because z and +»
are both g to one off D?. (Another standard result in algebraic topology is that
the number of points in the fiber of a covering map z: X — X is the index of
subgroup n-*rcl(i’ ) in 7;(X).) In summary, each irreducible component of W,
has a normalization of the above form.

Let N, = Cond, (W), for p near 0, Cond, (W,) < N,. Now we want to
show that for p e SgV — A4, Cond, (W) > Cond (W, N E, =V N (L, + p)),

e.g., [(Sg Wy)*C,(W,) C 0,(W,) implies
ISg (W, N E))6,(W, N E,) € 0,W, N E,) .

Since for fixed s € C?, ¢(s, t;,,) is the normalization of W, N E,, the restric-
tion map G,(W,) — 6(W, N E,) is onto: let hp e 6,(W, N E,), h¢ € 0,(D")
C 0,(D**") extending the function by ignoring the other d variables so A¢ e
0,(W,). Also any element of I(Sg (W, N E,))* is the sum of elements either
identically zeo on W, N E, or in I(Sg (W,))*, in either case a universal de-
nominator of W, N E,; the set of universal denominators is an ideal so line
* is valid.

(%)
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Now we repeat the construction. Let W, = L_)Z,e 4P XV N(L,+ p) and
N, = Cond, (W,), take a local parameterization of W,, and remove an analytic
set A’ of strictly lower dimension to make W, equisingular along A — A’;
hence Cond, (V N (L, + p)) < N, for all pe A — A’. This finally gives a
stratification of Sg ¥ and an integer N, associated to each strata so that for
each point in that strata Cond, (V N (L, + p)) < N,. Just take the largest of
this finite set of integers.
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