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HOLOMORPHIC AND DIFFERENTIABLE TANGENT
SPACES TO A COMPLEX ANALYTIC VARIETY

JOSEPH BECKER

An important invariant in the study of analytic varieties is the local embed-
ding dimension. To measure this precisely one defines T(V, Φp), the tangent
space to V at p with respect to the analytic functions. Similarly one can define
tangent spaces with respect to the infinitely diίϊerentiable functions C°°, and
the k times continuous differentiate functions Ck, whose dimension is the
local Ck or C°° embedding dimension. It is known [6], [18] that T(V, Cp) =
T(V, d)p). In this paper we strengthen that result as follows: there is a locally
bounded function k: V -> Z+ such that T(V, Ck

p

(p)) = T(V, Θv).
An outline of the paper is the following. First show that for curves, k can

be picked < N9 where N is the exponent of the conductor. Then find a curve
C in V such that T(C, Φp) = T(V, Θp). The local boundedness of k follows by
showing there is an upper bound for the conductor number of all nearby li-
near one-dimensional sections of V. One finds this upper bound by stratifying
V into finitely many "equisingular" varieties so that the conductor number
is constant on each one.

For curves, we derive some precise estimates for k, and in § 3 we give ex-
amples to show these estimates are in general the best possible. Also for each
k we show there exists a variety V so that T(V, Ck~ι) Φ T(V, 0), but T(V, Ck}
= T(V, Θ), that is, k is the precise critical degree of differentiability. This
enables us to construct a Stein complex space X with no C°° embedding in any
Cm, but for every k there is a Ck embedding into some Cn.

The author would like to thank K. Spallek and the referee for pointing out
that Theorem 1 of this paper can be obtained directly via 1.1.5 and the last
remark of [16]. The methods employed in [16] are somewhat different and do
not seem to yield a proof of the curve selection lemma (Theorem 2) or the
slicing lemma (Lemma 2) of this paper.

1. Definitions and preliminaries

From [18] we have all of the following. Let V be a complex analytic variety
in Cn, p eV, C\ the ring of germs at p of k times continuously differential^
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complex valued functions on Cn, k = 1, 2, , oo, and /(F, C*) the ideal of
functions in C\ vanishing identically on V. Then

Γ(F, CP - {a e Cn = I?2* : Σ « , - ^ ( p ) + 5,-?L = 0 for all / e /(F, C*))

, - , r 2 n ) 6 ί » : Σ rt-9- = 0 for all / € /(F, C*)) ,

where we identify Cn = /?2n by flΛ = r2A._! + ίr2k. This is clearly a vector space
over the field of real numbers but not necessarily over the complexes: Write
Cn = Rn ® iRn, C = R® ίR. Then

a = ax + iay , f = fx + ify , df = dfx + idfy ,

ia = -ay + iax , if = —/y + //,. , d(//) = -dfy + idfx = idf ,

= ax(dxfx + ίdjy) + ay(dyfx + ίdyfy)

= axdjx + aydyfx + i(axdxfy + aydyjy)

xdjx + aydyfx = 0 = axdxfy + aydyfy .

Hence it is sufficient to consider only the real valued fx and fy in computing
the tangent space.

By T(V, <9P), we will mean the usual Zariski tangent space, sixth tangent
cone of Whitney C6(V, p) = {az Cn : adJF = 0 for aU F e I(V, Θp)}. Other
useful tangent cones are the third, fourth, and fifth of Whitney:

C3(V, p) = {aeCn: 3 sequences qi e V, λt 6 C, qt -+ p, λt(p — qt) -> a) ,

C 4 ( F , p) = {a e C " : 3 s e q u e n c e s (?, e R e g ( F ) , ^, -^p9vt€ T(V, 0qi)

with Vi -+ a} ,

C6(V, p) = {a € Cw : 3 sequences <?{, p€ e F , ^ C, # ί 5 p€ -> p ,

We have the following sequence of strong inclusions:

C3(F, p) C CSV, p) C C5(F, p) C T(V, φ C . C Γ(F, C*) ,

T(V, C*+1) C C Γ(F, C£) C T(F, ί?p) .

In addition, Bloom has shown [5] that if p is an isolated singular point of F,
then Γ(F, Cp is the complex linear span of C5(V, p).

2. One dimensional case

Throughout this section F will be a one-dimensional complex analytic sub-
variety of Cn with the origin as a singular point. If F is irreducible, φ: C —> F
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will denote its normalization. Unless otherwise stated, V will be assumed
to be holomorphically imbedded in its minimal possible dimension, that is,
T(V, ΘQ) = Cn. We begin with some rather technical results, the first similar
to paragraph 2.2 of [17].

Lemma 1. If f € I(V, Ck), there is a hσlomorphic polynomial Pk(z) =
Σ M < * <*X> with Daf(o) = a\aa such that Pk(z) = o(\z\k) on V.

Proof. By appropriate choice of coordinates, the normalization φ can be
w r i t t e n as φ(t) = if1, tHu2ii), , f n u n ( t ) ) , w h e r e q = qx<q2< < qn a n d
the Mi's are units hence o(\z\) = 0(Σ?=i|Zi|) = 0(|Zi|). There exists a polynomial
>4Λ(z, z) = Λth order Taylor expansion of / about the origin such that / — Ak =
Σi/3i=*£%fe) = °(|z|*)> where the ĝ  are continuous functions such that gβ(p)
= 0. Let Λk = Pfc + βfc be the sum of polynomials with Pfe holomorphic and
Qk having no holomorphic terms. Now composing with the normalization and
writing holomorphic polynomial Pit) = Pkiψit)), polynomial Q(t, t) = Qk(φ(t))
with no holomorphic terms, and / = qk, we have

Pit) + Qit,t) = tιgit) + tιhit) = o(| ί|0 ,

where g and h are continuous functions such that gio) = hio) = 0. Hence nei-
ther P nor Q can have any terms of degree / or less, and we conclude that
Pit) = oit1). Thus Pkiz) = oi\z\k) on F. So far V has been assumed to be ir-
reducible but if V is reducible the argument given is valid on each compo-
nent, and the lemma as stated clearly holds if it holds for z in each component.

Lemma 2. There is a biholomorphίc change of coordinates in Cn so that
the normalization has the form φit) = (/%(?), , fnunit)) where the ut are
units, <?! < q2 < < qn, are there is no polynomial in φλit), , ^ fc-i(0
whose order is precisely qk.

Proof. By induction on k first given a normalization φit) rearrange the
variables zί9 , zn so that the lowest qt is first—this completes the first step
of the induction. Now suppose no polynomial in φxit), , φk_xit) has order
#fc> Qi < * < <Ik> and qk < qt for all / > k. Then rearrange the variables
zk+i, - - -, zn so φk+1it) has lowest order. If there is a polynomial hiz17 , zk)
such that hiφxit), , φkit)) has same leading term as φk+1(t), make the change
of coordinates: (z15 , zn) -> (z1? , zk, zk+1 - hizλ, , zk), zk+2, , zn)
eliminating the leading term of φk+1it). Repeat the process. If the process ter-
minates after finitely many steps the induction is completed.

The map ψkit) = iφiit), , φkit)) is one-to-one if and only if the charac-
teristic exponents of the map have greatest common divisor 1. Consider the
following cases:

First Case. ψk not one-to-one. The gcd of char exp of ψk Φ 1 but the gcd
of char exp of φ = 1 so there must be some more char exp in φk+19 , φn.
Hence the above process can not continue idenfinitely. More precisely, if the
process does not terminate, then φk+ι, , φn are formal power series in φ19 φk
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let φk+ί = gi(ψk) and g = (g19 ,gn_ f t). If ψ is not one-to-one, then t ->
(ψk(t)> 8(0) is not one-to-one either.

Second Case. ψk is one-to-one. Then ψ^ is itself the normalization of a
curve, and letting i? be the subring of C{t], the ring of convergent power
series in t, of convergent series in φ^t), , φk(f) it is well known that R con-
tains all power series of high order. (The ideal / of universal denominators
has locus just the origin, so by the Nullstellensatz rad J = m, the maximal
ideal of C{ή. Hence there exists N > 0 such that for / > N, ίιC{t) C R, so
tι € R.) Now if the above process goes on for N(n — k) steps, ord φk+1 > N
and in one more step (subtracting off the corresponding convergent power
series in R) we can make φk+1 = 0, which contradicts the fact that V is im-
bedded in minimal possible dimension.

Proposition 1. Let V be irreducible, then there exists k > 0 such that
T(V,Q) = T(V,(PQ).

Proof. Since V is imbedded in minimal dimension, coordinates on Cn can
be chosen so that the conclusion of Lemma 2 holds. Then it is sufficient to
pick k = [qn/qj + 1 where [r] for any real number r is the greatest integer
less than or equal to r. Given / e I(V, Ck), need to show dof = 0. Now f(z)
- Pk(z) = o(\z\k) on V. Write

Pk=Lk + Hk, Lk =

Hk= Σ "X , Σ fli^ + Σ
2<|α|<fc i = l 2<|α|<fc

Let cij be the first nonzero coefficient in sum: if it exists we have a contra-
diction since qό <qn< qλk, and ast

qi cannot be cancelled by one of the higher
order terms since Hk(φ(t)) cannot have leading term order equal to qό.

Remark. Any linear map z —> Σ?=i ctZι gives a branched covering of V of
some sheeting order. It is easy to see that q19 , qn are exactly all the possi-
ble sheeting orders.

Propositian 2. Let V be a reducible curve, V = Vx U U Vm such that
T(V, ΦQ) is precisely the complex linear span of T(Vl9 ΦQ), , T(Vm, <PQ), then
there exists integer k > 0 such that T(V, Cξ) = T(V, (Po).

Proof. It is always the case that T(V, Θ) 3 Complex Span {|JΓ=i T(Vi9 <D)}9

but in general T(V, Θ) might be larger. Similarly for all k and /, T(Vi9 Ck) c
Γ(F, Ck) so Real Span {UΓ=i T(Vi9 Ck)} c T(V, Ck) since T(V, Ck) is a real
vector space. Now pick kt > 0 so that Γ(F*, C*0 = Γ(F<, Θ) and Λ = max^ {kt}.
Then for each /, T(Vi9 Ck) is a complex vector space so Real Span {U T(ViCk)}
= Complex Span {U T(Vi9 Ck)} and T(V, Ck) = T(V, Θ).

Remark. It is clear from the proof that k can be picked to be less than
the maximal sheeting multiplicity of V.

Proposition 3. Let V be any curve, then there exists k > 0 such that
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t) = T(V,(90).
Proof. Let ϋv be the germs at the point p of weakly holomorphic functions.

An element u e Θ is said to be a universal denominator if uΰv C Θv. Let / be
the ideal of Θv of all functions vanishing on Sing (V) and / be the ideal of
universal denominators at p. Then locus (/) C Sing V, [10, p. 56], so by the
Hubert Nullstellensatz there is a positive integer N, called the conductor num-
ber, such that IN C /. We shall show that k < N + 1.

Let V = Vx U U F n b e the decomposition into irreducible components.
If Vi has normalization φi(t), the coordinate with minimal exponent is C 3(F ί)
= Vi let w = 2] aiVi be a real linear combination of the vt with each at Φ 0.
Now take a new basis of Cn with w as the first element, w — zx\ then o(\w\)
= o(\z\) on each component of V, hence on all of V. Also w € Real Span
(U C3(Vt)) c Real Span (U CIV,)) C Real Span (U T(Vi9 Ck)) c Γ(K, Cfc). If
/ e / (F, Cfc), then 3//3w = 0 since w e T(V, Ck). Now by Lemma 1, we have
Pk(z) = Lk(z) + Hk(z) = o(\w\k) and Lk(z) has no w term. Hence Pk(z)/wk

is a weakly holomorphic function. Furthermore since V imbedded in minimal
possible dimension, w does not divide Pk(z) in Θ. (Suppose Pk(z) = wg(z).
Then ψ(z) = Lk(z) + Hk(z) - wg(z) e I(V, Θ) and doψ = Lk~ (g(p), 0,. , 0),
since Lk has no w term, Joψ Φ 0 (unless Lfc = 0) and T(V, Θ) Φ Cn, a con-
tradiction.) Finally wN is a universal denominator so wN(Pk(z)/wk) is holomor-
phic. Hence k < N or Lk = 0.

3. Examples

The estimates given for /: in § 2 are, in general, the best possible (Example
1), but are not always the precise minimal values for k (Example 2). There
exist space curves requiring an arbitrary large k (Example 3).

Example 1. Let V be the irreducible space curve given by the image of
φ(t) = (t\ t\ ?). Then T(V, Φo) = C3 because there is no first order / vanish-
ing on V since any such f = I + H9I initial part, H higher order part, 0 =
f(φ(t)) = I(t\ t\ t5) + H(t\ t\ tδ), order / = 3, 4, or 5, and order H > 6. Now
the estimates given for k are [maximum multiplicity/minimum multiplicity] +
1 = [5/3] + 1 = 2 and the conductor number + 1 = 2 : Since the semigroup
of Z generated by 3, 4, and 5 contains all integers > 3, the holomorphic
functions considered as a subset of the weakly holomorphic functions φ*(vΘ)
C C(P, which are generated by t\ t\ and f contain all tk, k>3, and d&\φ*{v&)
is generated by t and t2. Hence zλ = ί\ z2 = t\ z3 = t5 are all universal de-
nominators, zicΘlφ*(vΘ) = 0, so conductor number = 1.

By either of the above estimates, T(V, Q) = C\ Now we show T(F, CJ) =
C2 (first two coordinates)—to do this we use Bloom's result T(V, CJ) = com-
plex linear span of C 5(F, 0). This is easily computed [5] to be C2.

Example 2. Let q < p < r be three prime integers such that q > 5, 3q <
r, r < 2p, and q divides none of 2p, 2r, r — p, and r + p, and r is not in the
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semigroup of Z generated by q and p for instance q = 7, /? = 13, r = 23.
Let V be the image in C 3 of 0(0 = (tq, t*, f) then T(V, 0O) = C 3, [max
multi/min multi] + 1 > 4, conductor number > 4, Γ(F, CJ) = complex li-
near span of C6(V, 0) = C 2, but T(V, C?) = C 3 . only this last assertion will
be verified here.

Let / e I(V, CD and show Jo/ = (βf/dz19 df/dz^ df/dz29 df/dz29 df/dz» S//3z3)
= (0, 0, 0, 0, 0, 0). Now approximating by Taylor series :

f(z) - 2 fe-"0V/(w) = oQz - wf) , z, w e C3 .

Composing with the normalization, w = φ(t), z = φ(s), writing fa(t) = Daf(φ(t)),
and realizing the second derivative part of the Taylor series is bounded in
comparison to \z — w\2:

- must)

— t*\

(s' - r)fZ3(t) + (sr

- t*\ + \sr -tr\Y) .

Now let ω be a primitive ^th root of unity, ω = e2πί/q, and restrict the above
equation to the lines s = ωkt, k = 1, ,q — l t o yield

Now multiply this equation by r r , and let gλ(f) = (tp/tr)fZi(i), g2(t)
(Jtp/tr)f2Λ(f), g3(t) = f8z(t), and &(ί) = (t/t)rfS3(t). It suffices to show each ^,
lim^o gi(f) is zero. Now the gt satisfy the equations:

0 = lim (ωkp -
t-0

(0 + (ωkp - I)g2(t) + (ωkr - I)g3(t) + (ωkr -

so it suffices to show the following matrix is nonsingular:

p -

— i ω ^P _ i

ωr -

1

- 1 ω4r - 1

To compute the determinant, first factor out ωp — 1 from the first column,
ωp — 1 from the second column, etc., and then perform row operations to
bring it to the Vander Monde form:
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1

ωr

ω2

Hence

determinant = (ωp - l)(ωp - l)(ωr - l)(ωr - l)(ωp - ωp)(ωr - ωr)

- (ωr - ωp)(ωr - ωp)(ωr - ωp)(ωr - ωp)

which is nonzero since ω = ω~ι and ωι = 1 if and only if q divides /.
Example 3. Given any integer k > 0, there exists a curve in C 3 such that

T(V, Θ) = C 3 and T(V, Ck) = C2. Pick integers q < p < r as follows: q >
Ak + 2, p = q + 1, r = (2k + l)p — q(k + 1), and let F be the image of
the map θ(f) = (tq, tp, tr). By the Whitney extension theorem, one can show
the existence of a Ck function ψ vanishing on V with 3ψ/dz3(O) Φ 0; we can
also find another function in I(V, Ck) whose partial with respect to z3 is non-
zero. We need to choose continuous functions ψa on V, ψ0 = 0 on V so that

~ Σ
l

for x j e F , |αr| < A:, and ψ(0)0)0)0)1)0)(O) Φ 0 ;
restriction to V of Dαψ where a = (< 1̂? α2? #3>
a4 + a5 + a6, Da = da

zld
a

2?d%d^da

z%da

2«. S i n c e ψ

α is supposed to represent the

? <̂ 5J ̂ 6 ) ? |α | = (Xi + a2 + otz +
are to be denned only on F,

and θ is a homeomorphism it suffice to define ψa(β) which simplifies notation.
Start off by choosing

0,

0,

|αr| = 1 and aδ = 1 ,

|αr| = 1 and α:5 — 0 ,

\a\ > 1 and either a5 > 1 or a6 > 0 ,

, 5̂ = 1 and a6 = 0 ,

where the /β 's are yet to be determined (except for /(0,0,o,o)^(0 = tr)> I n this no-
tation, the limiting condition becomes : letting m = k — 1, x = ^(j), y

~ Σ - θ(ί))βfa+β(t)/βl = o(\θ(s) -

for all 5 , ί e C, \a\ < m. Now the data will be chosen and different reasons
given for the limit above to go to zero near the origin and away from the origin.

There are two notations of Ck on Reg V one given by Whitney's theorem
and the other given by the differential structure of X as a complex manifold—
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we want to know that these are the same. (Generalizing Lemma 4.2 of [5].)
Suppose / e Cfc(Reg (F)) and we are given data fa which satisfy the chain rules:

~^—Ja\yJ — -Γ—/α + (l,0,0,0) Ί " ——Ja + (0,0,1,0) 5

at at at

~Γ(0,1,0,0) ~Γ " Γ ^ / α + (0,0,0,1)

where θ(t) = (Θ19Θ29Θ3,ΘA) = (tq,tq,tpu(t), tpu(t)). Then / | R e g ( F ) e C * and
satisfies

(**) -JU»7Γ/((?)= Σ C Λ Σ Γ H W ,
O ίθJt 0<\β\<i + j βi+"' + βm=β 1 = 1

\βi\ + — + m\βm\ = \a\

where / = | α | — | j S | + l , and C^ is an integer constant. Thus

Σ / r M ) = o,
tΦs r

and this limit can be seen to be the same as that in Whitney theorem by sub-
stituting (**). See [11, Chapter 1, § 6]. This can best be understood by con-
sidering the analogous computation with functions of one variable and k = 2.
Suppose g = f{0) so g' = fff and g" = ]"θ'θr + fθ". We are given that

l i m [\g(t) - g(s) - ( t - s)gKs) - i(t - s)2g"(s)\ \t - s\~2] = 0 ,

and want to show

lim [|/(*) - f(y) - ( x - y)f(y) - \{x - y)T(y)\ \x - y\~2] = 0 .

Since lim \(θ(t) — θ(s))/(t — s)\ exists and is nonzero, we can replace the later

limit by

lim [\g(f) - g(s) - (θ(f) ~ θ(sW(0(s)) - \(θit) - θ(s))ψ{θ{s))\\t - *|-2]

to see that this converges to zero, subtract it from out given limit, substitute
for g/ and g", and regroup terms to get

lim [f\s)\θ(t) - θ(s) - θ(t - s)θ\s) - i(t - sfθ"{s)\ \t - ^|-2]

= o .
\t — s

Lest the choice of data appear altogether magical, we first show that for the
case q = 3, p > 7, the data are unique and lead naturally to the general
choices. Now for / = w2/z = t2p~\ m — [p/3] < 2, so / is supposed to be at
least twice differentiable and
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\sq - tq\2 + \sp - tp\2

is bounded as t, s —> 0. Letting s = ωt or ω2ί, where ω is a primitive cube root
of unity, we have ίq = sq and

(of -

and

are bounded as t —> 0. Multiplying by t2p~r yields the matrix equation

Since p and # are relatively prime, the above 2 x 2 matrix is nonsingular and
we can solve for limt_0 dj(t)tp/tr = (ωr - ωp)(l - ωr)/((ωp - ωp)(l - ωp))
= 1 andlimt_odj(i)tp-σ = (1 — ωr)(ωr — ωp)/((ωp — ωp)(l — ωp)) = 0. Thus
choosing 9W/ = 0 and 9TO/ = tr/tp, the chain rules

rf~ι = qtq~ιdzj + ptp~λdj , 0 = qtq~ιdj + P~tp~ιdJ

imply that 9,/ = (r/q)tr~q and 9,/ = (~p/q)tr/tq.
More generally, we extend the above data by recalling that fa is supposed

to represent DaF = (dai/dz)(da2/dz)(da*/dw)(dai/dw)F and defining higher de-
rivatives inductively: any fa with a3 Φ 0 or a4 > 2 is identically zero terms fa

with a4 = 1 satisfy the formula /β(ί) = /(βl fβl lo ιO)(O/ϊp /(αi+i,«2,o,o) and/ ( α i,α 2 + 1,0 ? 0 )

are determined by the chain rules. Hence we have

Γ0 , if a3 > 0 or <*4 > 1 ,

\Cat
r~qai/tqa2+paii , otherwise ,

where Ca = Π?ii W ^ — « + 1) Πf=i ( ~ P / ^ - / + 1). By the inequalities
r — mq > σ — (m — l)q — p > 0, note that fa is bounded on V if and only
if \a\ < m.

Let

Σ

We must show that gα0, ί) = 0 ( | ^ — ^|™-M + ^ P _ ^jm-ui) u n i f o r m i y j n s

and ί. Choose a real constant c > 0 so small that the set {λ: \λq — 1| < c]

consists of q connected components about the gth roots of unity. We will treat



386 JOSEPH BECKER

the cases \sq — tq\ < c\t\q and \sq — tq\> c\t\q separately.
Case A. \sq - tq\ > c\t\q. We have

\s\q < \sq - tq\ + \tq\ < (1 + l/c)\sq - tq\ ,

\sp - tp\ < \s\p + \t\p < M\sq - tq\p/q , M > 0 .

Thus

fa(f) = 0 ( | ί | r - e ( α i + α 2 ) - p α 4 ) = 0 ( | ^ — ί«|r/β-(«i + ««)-P«4/β) 9

\θ(s) - θ(t)\β = OQsq - tψ+e*+pw«) , (β3 = 0) .

Hence ga(s, t) = O\sq — ίίf/«-<«+«»)-iWί> = OQSQ _ ^|m-ι«i) ^y inequalities (*).

Case B. \sq - tq\ < c\t\q. We set s = λωι where ωq = 1 and \λ - 11 < J.

Note that if αr4 + /34 < 1, we have

Thus if we set

,δ / δi

we have

:-V)(
ga(λωt,t) = c α ( r - β α i / ^ α 2 + p α 4 ) U r + ί ) α ^ r - « α i / ^ α 2 + 3

- V Λ ^ " "Aί-PlQ ~ a2\(lQ _
/ i I II I \Λ

i o i ^ ~ ~ ^ i i \ /3 / \ Q I

\p\<=in— \a\ \ Πj / \ p2 /

Consider the function (with γλ and γ2 real) h(z, w) = zriwr* where h(l,w)
wΪ2 and h(z, 1) = zΓl. The Taylor expansion gives

h{z,w) = Σ ί ) ί
\o1/\o2

provided that \z — 11 < J and \w — 11 < J. Then letting ^(^) =
^β^Jβ^^ w e have

2 ()(Yλ l ) ( ^ l) + 0(\λq -
\δ\<ι \δ1 ' \ δ 2 '

Applying this to the above:
first when a4 = 1, then r + pa4 = 0 (mod q),
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ga(λwt, t) = ca(tr-qai/tqa*+p)[λr-qai/λqa*+p - F-**I/)***+P

+ 0(\λq - l|*-ι«ι+i)]

= O(tr-(m-1)q-p\(λωt)q - tψ-w) .

So in this case (using *), ga(s, t) = o(\sq — tq\m-]al).
Now when α4 = 0, σ = — p (mod q), so

ga(2ωt,t) = CAr-t'i/t^lωW-***/)***

_ Σ (rjq- aΛί-plq -
|/3|<m-|«l \ β χ / \ /32

_ (άjpp _ i) ^ (r/Q - «i V
Ii8|̂ m-|α| \ βχ J\ β2

= O(\t\r-q]a][ωpλr-qai/λqa* - F-qaiβqa*+p + \λq -

gβ(*,0 = Q(\t\r'qm\sq - tq\m~w + \t\r-qim-1)-p \sq - tq\m-^-1\sp - tp\)

= o(\sq — ί«|TO-"β' + \sp — tp\m-{al) .

Finally T(V, Ck+1) = T(V, Θ) follows from the estimate given in Proposition
1 since [max multi/min multi] + 1 = [(kq + 2k + l)/q] + 1 = k + 1.

Note. The exact statement of the Whitney extension theorem being em-
ployed here is : Let A be a closed set in Rn and / a continuous real valued func-
tion on A. Then a necessary and sufficient condition that / have a Ck extension
to some open subset of Rn containing A is that there exist continuous real
valued functions / = /0, fa, \a\ < k on A such that for all a, p e A

/„(*) - Σ
lim £,., = °
xΦy " ^ "

Example 4. A one-dimensional Stein space X such that there is a holomor-
phic homeomorphism of X into C3, there is no holomorphic embedding of X
into any Cn, but for every k there is a Cfc embedding X-*C2 f c + 1. We will give
curves Xk in Ck such that for / < k - 1, Γ(Zfe, C

ι) = Cι+1. Let 4 > 4k + 2,

the curve in Ck given by t -> (ί«, ί«+1, Γ1, Γ2, , Γ*-2) The methods of Ex-
ample 3 applied to curve πt(Xte), ί = 3, , k show that T(Xk, Cι) = Cz + 1,
where TΓ̂  : Cfc —»C3, TΓ^ZΊ, , Xn) — (xu x2, Xi). Now patch these Xk together
away from the singular points to form a noncompact irreducible one-dimen-
sional complex space X. By [Gunning & Rossi, Theorem IX, B. 10] X is a
Stein space, so [Gunning & Rossi, Theorem VII, C. 10] there is a holomor-
phic homeomorphism of X into C3. The obstruction to the existence of a holo-
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morphic embedding of X in some Cn is that the local holomorphic embedding
dimension be bounded. However one can embed X in C2k+1 with Ck functions
by using a partition of unity to patch together local embeddings. Alternately
one can construct a weakly holomorphic homeomorphism X —»C2k+1 by usual
method for Stein space.

Remark. Of course if there is a fixed n such that for every k there is a Ck

embedding of a Stein space X into Cn, then there is a holomorphic embedding
into some Cn.

4. Equisingular case

For a "special class of varieties, we can show that the conductor number is
an upper bound for least k such that T(V, Ck

p) = T(V, Θv). For a variety V of
pure dimension r in Cn, let C = Sing (Sing V) U {p e V\ dim C4(F, p) > r} (J
{/? 6 F | dim C 5(F, /?)>> + 1} where C 4(F, p) and C 5(F, p) are the fourth and
fifth Whitney tangents cones to V at p, [24], [25]. Then C is an analytic sub-
set of V of codimension at least two [22, Prop. 3.6] and every p <= V — C has
an open neighborhood so that after a local biholomorphic change of coordi-
nates the following hold (and V is said to be equisingular at p):

(i) For each irreducible component Vt of V, Vt Π Sing V = Sing Vt —
Cr~\ [22, Props. 2.10, 2.12, and 4.5].

(ii) Each component has a one-to-one nonsingular normalization [22, Prop.
4.2] φ: D — Vt given by φ(t19 . , tr) = (ί l5 , ίr_1? /«, ^ r + 1 ( 0 , , #„(*)),
where ζjr is the sheeting order of π | Vt and π(jc15 , xn) = (JC1? , x r). The
branching set of this projection is just φ({tr = 0}) = Cr~ι.

Now let Condp(F) denote the conductor number of the variety at the point
p. If Vi is a component of V, it is clear that any universal denominator for
V is a universal denominator for V{ and since Sing Vt = Sing V, we have that
Condp(F) > Condp(Vi). For any fixed s = (ί15 , ί r - 1) consider the curve
ί^s in Vi given by ίr -> φ(s, tr). Since this curve Ws lies in E s == s X C n " r + 1 ,
weakly holomorphic functions on Ws extend to weakly holomorphic functions
on Vi by ignoring the first r — 1 variables. Hence any universal denominator
for Vi is a universal denominator for Ws and Cond^F^) > Condp(Ws).

Note that for s in a neighborhood of p, Cond s(F) < Cond p(F). (The ideal
sheaf of / is coherent [7, Theorem 22] because it is the kernel of Θ —>
H o m ^ , ΰ\G\ hence I(Sg(V))/J is coherent; the index of nilpotence of a co-
herent sheaf is an upper semi-continuous function.) We will show that for k >
Condp(F), T(V, Cp = T(V, Θp). Then defining k{p) to be the minimal such
k, we have a function V —> Z. Then A; is bounded on compact sets.

Now we need to prove
Lemma 2. There is an analytic set Ar c Cr~ι such that {Js<ίA> T(V, Θs) is

a complex vector bundle over Cr~ι — A' such that for s $ A', Es Π T(V, Θs)
= TQV,, Θs) and T(V, Θs) - T(WS, Θs) Θ C"\
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Then letting N = Condp(F) + 1, for all s$A'9 s near p, Cond,(F) < N so
T(Ws,Cξ) = Γ(W,,0β) by Proposition 3. Now Cr~\Ws C F, so Cr~ι =

1 " 1 , Cf) C Γ(K, Cf) via [18, Satz 1.2.1] and T(Wa9 Cf) C T(V, Cf). Hence
, Cf) D Γ(JFS, Cf) Θ Γ(C r- χ, Cf) = Γ(W,, 0,) Θ Cr~ι = Γ(F, 0,), so

But Lemma 2 just follows from a sequence of results of an earlier work [3,
§ 2]. Let U be a polydisk in C m centered at 0 and (zt) coordinates in £7. Given
/u * * 5 /m £ ̂ W> ^ϋ ) w e denote by i£ the sheaf of relations among (fj). For
any integer q, 0 < q < n9 we may write £/ = E7n_β X Uqd Cn~q X C 9 . For
a e C/n_α we set Ua

q = {fe e t/: 6 — α € Uq}. We denote by # | Ό\ the restriction
of R to E/; and by R(U$ sheaf of relations among (fό | U

a

q).
Lemma α. For eαc/z integer q there is a negligible set Aq c C/n_9 .ywc/z ί/ẑ ί

f̂lc/z /κ>mί p € (C/w_^ — Aq) X (0) /zα.s1 α neighborhood Np on which there are
a,, - , ak e Γ(iVp, Λ) wiϊλ ίήe property that (at | N p Π t/J) generate R(U«) | N p

Π 17;. fl^ΛC^ Λ(C/;) and R\Ua

q agree off of Aq.
Lemma ^8. Lei U be as in Lemma a and let X be a pure r-dimensional an-

alytic subset of U. Assume for some fixed q that given any a e Un_q, a is con-
tained in every irreducible component of l ί l C/J. Denote by lx the sheaf of
germs of holomorphic functions vanishing on X. Then there is a negligible set
A C Un_q such that given p e Un_q — A there are a neighborhood Np of p
and h19 , hm e Γ(Np9 Ix) with the following properties :

(a) (hi) generates IX\NP,
(b) for any a € Un_q - A, (ft41 Ua

q Π Np) generates Iznut I Ua

q Π Np.
In these lemmas, "negligible" means the countable union of local analytic va-

rieties. However it can be seen from the proofs that the set being removed is
analytic in the event that the slices of the variety are one-dimensional. These
proofs can be found at the end of the section.

Now T(V, Θs) = {a: a dpf = 0 for all / e I(V, Θs)} but it is unnecessary to use
all / e I(V, (Ps), any finite set of generators h19 , hm for I(V9 Θs) over Θs will
suffice / = (f19 - - , fm), ft e VΘ on V among (dhl9 , dhm) and Sf = the sheaf
of relations (/, g) = (fl9 , /m, gl9 -.., gm), ft ed), gte Φm on Cn among
(dh19 , dhm9 hl9 - , ATO). Define π:^-^Rby π(f, g) = f. Clearly π is onto
and ΛI {s} = T(V, Θs). By Lemma a, there exists analytic Aλ c C7""1 so that for
a $ Λ , ^ ( ϋ ; ) = Se 117; and hence R(Όa

q) = R \ Ua

q. Then for a i Au R(Ua

q) \ {s}
= (RI Ua

q) I {s} and by definition (R \ 17;) | {̂ } - £ s Π Γ(F, ί?,). For α M i U Λ,
by definition Λ(t/;) | { J } = Γ ( ^ s , ί?,). Thus letting m = max^e,-, {rankp (dftl5

. . , dftTO)} and ^ a = {p e Cr~ι: rankp (dhu , dΛJ < m}, A; = A2[j A.U
A is the required set.

Remark. It is actually unnecessary to remove the set A2, and the reason
for this is extremely revealing for what is going on in the above discussion.
Really Lemma 2 states that there exists a curve C in V, C = Ws U coordinate
axis in Cr~\ such that T(C9 G) = T(V9 Θ) hence T(V9 C

k) D T(C, Cfc) =
Γ(C, ^) = T(V9 &). At point s e A2 however, to get such a curve it is not suf-
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ficient to just take intersections of V with linear subspaces. This is illustrated
by the following example.

Let V be the image in C 4 of φ(s, t) = (s, t3, t\ st6) none of φt is a power
series in {φj}jΦi, so T(V, Θ) = C 4 . Now if we restrict as above to the slice xx

= s — 0, we get (0, ?, t\ 0) whose tangent space is CX2Xz, not CX2XsXi as needed.
Taking a nonsingular slice back in the normalization, s = cίfe, c constant, k >
0, yields (ctk, t\ t\ tk+b); since k + 5 is in the semigroup generated by 3 and
4, the tangent space is CX2Xs if & > 5, Ca?1 if fc = 1, C^, , if A: = 2, and a two-
dimensional subspace of CXίX2X3 if A: = 4 or 3—in any case nothing in the x4 di-
rection. If instead one trys a linear section ax1 + bx2 + cx3 + dx4 = 0 in the
ambient space, one gets (-(fo/3 + c/4)/(a + dt6), t\ t\ -{bf + cf)j{a + dt5))
the tangent space is a two-dimensional subspace of CXlX2Xs. Hence we resort
to nonsingular sections in the normalization sp = tq, q < p, p and q relatively
prime integers, which itself has normalization λ-+(λq,λp). Composing gives
λ->(λq, λ3p, λip, λbp+q) so it is possible for these to be all independent since
5p + q < 6p (the semigroup generated by 3p and Ap does not contain integers
between 5p and 6p). In fact q — Ί and p = 11 works.

Attempted proof of Lemma a (which does not quite work). Use induction
on q—the relation of /1? , fm will be reduced to several relations of the type
R(gi, , gm) in n_ l(

each a 6 Un_q.
We may assume that at least one fi9 say fm, which is not independent of

zn_q+ι, - - , zn (or else we get trivially an isomorphism of R \ Un_q and R(Un_q)
and we are immediately reduced to the case q = 0). Choose coordinates in Uq

so that fm is not identically zero in the zn direction and writing z = (x, y) e
Un_q X Uq, let A, - {x e Un_q: 0*/T O/3ZΪ)(JC, 0) = 0 for all * > 0} and A2 =

{JC 6 C/n_?: for each f, not independent of zn, (dkfi/dzk

n)(x, 0) = 0 for all A; >
0} each is a proper analytic subset of Un_q and ^47 = (Aλ U ̂ 42) X Uq. If
p $ Af, each /̂  is regular in the zn direction so by the Weierstrass preparation
theorem, there is a neighborhood Np of p, unit u and holomorphic polynomial
£« € n-fflzj so that /€ = w ^ in iVp. Now the lemma is a local result and per-
mits multiplication by units so we can replace the / / s by the g/s .

A relation (a19 , am) € R is said to be a polynomial relation if each at e
n-i@[Zn\ t π e n Λ is generated over nΘ by the polynomial relations. Let a e R
and for each / = 1, , m — 1 write at = utgm + rt by the division theorem
where κ t € n0 and r̂  € π _i^b n ] has degree < deggm . Let rm be denned by
the equations:

in a manner which commutes with restriction to Όa

q for

8m

0

0

0
Q

όm

0

0

0

8m

gm-l

+ •

rm-l

γm



HOLOMORPHIC TANGENT SPACES 391

It remians only to show rm is a holomorphic polynomial. Clearly (r19 , rm)
eRso rmgm = - Σ*<m hSi £ n-ΛzJ By the algebraic divisor algorithm rmgm

= Qgm + R where Q, R ε n-Mzn] and d e g # < deggm . But then R/gm is
holomorphic, gm vanishes to order deggm in the zn direction because it is
Weierstrass, and R vanishes to lower order. Thus R = 0 and rm = Q. Note
that each entry of the above relations has degree < max deg gt = k.

Next we reduce the polynomial relations among the g/s to finitely many
holomorphic relations among the coefficients of the gt's. Let a = (a19 α m ) ,
at = Σϊ=i CX> ^ = Σ t i aft then α g R if and only if ΣΓ-i Σj-o ^ - , 4 =
0 in „_!$ for y = 0, , 2k. This means the element

is a relation between the finitely many sections v — 0, 2k:

where αj = 0 if v» < 0.
Remark 1. Each s has as entries either all the tail coefficient α$ or αjjj1 = 1.

(For y < A:, it contains αj and for v > k it contains a%.)
Now one completes the induction by applying the previous construction to

each sv removing another analytic set so that in the complement each coefficient
of sv can be written locally as the product of a unit and a holomorphic poly-
nomial. However there is one irrepairable error in this construction: While
there is an obvious isomorphism of relations between {uλgλ, , umgm) and re-
lations between (gl5 , gm) in the second stage of the induction there are sev-
eral equations to be satisfied, each inducing an isomorphism of the relations
with and without the units, but these isomorphisms are not all the same and
the composition of two of them are unlikely to preserve the polynomial rela-
tions so it seems impossible to reduce to several relations on n_2@. The only
way around this difficulty seems to make the following assumption: Each ]i is
a holomorphic polynomial, at least one is monic in zn (hence Ar = 0) and at
each stage of the induction each s has holomorphic polynomials as entries with
at least one of them a Weierstrass polynomial. While this assumption might
seem rather arbitrary, it is in fact satisfied in the application to the ideal sheaf
of a variety.

Proof of Lemma a. We proceed by induction on q. When q = 0, U\ is
just the point {a} and R(U^) is the vector subspace of Cι spanned by the vectors
(f)(ά)). The matrix F = [/}] defines a map F: 0£ -> Θι

π such that R = ker F.
The set A0 of points where the rank of (fd) is less than maximal is analytic and
on U — A\ R is the sheaf of sections of a vector bundle so our conclusion
holds there. This takes care of q = 0.

Next, suppose q > 0. We denote by M the field of meromorphic functions
on U, and set r equal to the rank of F over M. We may find a matrix B over
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M and a holomorphic function h such that

hBF =
A/

0
ΪL
0

Here / is the r x r identity matrix, and the /} are holomorphic. Now a
e R if and only if

i =

Notice that if we multiply h be any holomorphic function, all of the above re-
mains valid. Writingz = (x,y) e Un_q x C/β, expandh as λ(jt,y) = Σiah£x)y%
and set Λ' = {z e U: Aβ(*) = 0} for all a with \a\ Φ {0}. Changing h if neces-
sary we may assume that Af is a proper analytic subset of U. Λf is also homo-
geneous in the last q variables so Af ΓΊ Un_q is a proper analytic subset A" of
C/n_α and ^ 7 = A" X J7β. If p e (Un_q - A") x (0), then after changing our
last q coordinates h will be regular in zn at p. Now we can find a neighborhood
Np of p such that h = uh', with w a unit and Λ7 a Weierstrass polynomial. If
we write /} = i)^h' + fJi2 and α̂  = αr̂ Â7 + aj>2, then our previous equations
can be written in the form

&ih' + Σ / J Λ . 2 = 0 , I = 1, ---,r .

All of the entries in this equation are polynomials of bounded degree in zn.
Thus we may view these last equations as a larger set of equations involving
functions of n — 1 variables. These may be thought of as defining a system of
relations equivalent to the restriction to Np of those we began with. Because
of the lack of dependence on zn we may view these last equations as defining
relations on Np Π (Cn~ι X (pj). AH of the above commutes with restriction
to t/J, so we may assume inductively that our lemma holds on Np. If we cover
Un_q — A" with a locally finite set (NPi), then it is easy to see from [13] that
Ah', together with the union of the negligible sets in each NPi, forms a negligi-
ble subset of Un_q, and in its complement the conditions of the lemma are
satisfied. This completes the proof.

Remark 2. If q = 1 or 0, the set Aq is analytic—because we avoid having
to use the divisor theorem in the complement of where we already used it.

Our proof of Lemma 1 is modeled closely on Spallek's work in [13], [14],
[15] in which he proved the following converse to our result: If F is a finitely
generated subsheaf of 0, there is an analytic set Aq of dimension at most
n — q—1 such that if g e Θ(U) and for every a e Un_q, g \ Ua

qε F \ Ua

q, then g e

F(U — Aq). Because our applications do not permit the type of coordinate
changes employed in [13], our result in Lemma a is weaker than the corre-
sponding result in [13].



HOLOMORPHIC TANGENT SPACES 393-

Proof of Lemma β. In order to apply Lemma a we need to express lx as
a sheaf of relations in a manner which commutes with restriction. To do this
we recall Cartan's proof of the coherence of 7X[9]. Since Un_q c X, we may
change our last n — q coordinates so that projection on the first r coordinates
induces a w-sheeted branched covering with branch locus B. (At this stage we
may have to shrink U. We will only use the local form of this lemma.) Near
each point of D — Π(B) the map Π has u local inverses of the form Wj(x) =
(xl9 >- ,xr, wjtr+1(x), , wj>n(x)). Using these we form Π? = 1 fo - w^ίz)),
and this extends to a polynomial Pt{z) € &(P)[Zi\. By a linear change of the
last n — r coordinates we may insure that the discriminant δ of Pr+1 is not
identically 0. Let C = {z e U: 3(z) = 0}. For i = r + 2, , n we define poly-
nomials Qi(z) as follows: if z € £/ — C, then near z

= J.det[l,w i t r + 1(Λ), ',wj>r+1(x)k-\δ(x)wjfi(x),

Here J 2 = 5 and JC = (zl9 , zr). Qt extends to an element of 0(D)[z r + J.
Let p: U -+ Un_q be the canonical projection associated with our choice of

coordinates. A' = [a e Un_q: dimα C ί l ί/J = dim l ί l Ua

q = r — n + <grisa
proper analytic subset of ί / ^ since C Π t/J = (p \ C)-\a), { k l : dimδ f~\f{b))
> 1} is an analytic set for any holomorphic map f:X-+Y and any integer /,
and if dim C Π Όa

q = dim Z ί l ί / J then C Π Ua

q contains a component of X
Π J7; so a € C Π C/J by hypothesis and dimα C Γi Uq = r — n + q. Notice

that for aeUn_q restriction gives Π: X Π Ua

q -> D Π Όa

q. Since 5 C C, if
^ s Un_q — Af then all of the above constructions commute with restriction to
X (Ί Uq. From [9] we know that g e 7 x > α if and only if for all sufficiently large
Λ/, (Pg is in the ideal generated by the germs of P r + 1 , , Pn9 δzr+2 — Qr+2>

• , δzn — QTO at a, and similarly for IΣΓ[U*tα. Thus 7X ί t t is the identified set of
germs which appear as the first element in a e &χ~a+1> defining a relation be-
tween the germs of δN, Pr+1, δzt — Qi at a. Now we can apply Lemma a to
complete the proof.

Now returning the proof of Lemma 2 (to show analyticity of the removed
set), we must study the bad set (ala Lemma a) of the relations among Pr+1,
• ,Pn, zr+2δ — Qr+2, * -,znδ — Qn, which arises in reducing the relations
from Cn to Cn~q. Since we are assuming each slice of the variety is one-di-
mensional, n — q — r— 1, q = n — r + 1. For the first n — r steps of the
induction in Lemma a it is possible to use the method of the first proof and
hence get no bad set (each Pt, Ziδ — Qt is a holomorphic polynomial in rΦ[zr+1,
• , z J , and after each reduction to less variables each sv has all entries holo-
morphic polynomials and by Remark 1, at least one entry a Weierstrass poly-
nomial—either the leading coefficient of Pp equal to 1, or all the Pi9 i < /).
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Then for the last two steps of the induction one can use the method of the
second proof of Lemma a and by Remark 2, remove an analytic set.

5. Homogeneous case

Now consider the case of a homogeneous algebraic variety, which is a set
V = common locus in Cn of finitely many homogeneous polynomials. Here it
is easy to find an analytic curve (reducible) C in V such that T(V, 0O) =
T(C, ΦQ). For analytic set V, let L(V) denote the complex linear span. First
construct a curve CinV such that L(C) = L(V) as follows : pick finitely many
points v19 , vk e V and let Ck = L{vλ) U U L(vk) clearly Ck c V so
L ( C k ) c L ( V ) . It L ( C k ) φ L ( V ) , t h e n V ς t L ( C k ) p i c k vk+ι eV- L ( C k ) a n d
let Ck+ι = L(i;fc+1) U Ck. Then dim L(Ck+ι) > dim L(CΛ) so eventually for
some m, L ( C J = L(F).

Now applying Lemma 3 below to both C and V, we have T(V, Θ) = L(F)
- L(C) = Γ(C,ύ?).

Lemma 3. // V is homogeneous, then L{V) = T(V, Θ).
Proof. Any / e I(V, 0) is the sum of homogeneous polynomials which all

vanish on V, so V is the common locus of the initial terms which are linear
hence V C T(V, Θ). Since T(V, Θ) is linear, L(V) C T(V, Θ). On the other
hand, dim T(V, Θ) is the minimal embedding dimension of V, so dim T(V, Θ)
< dim^f(F).

Remark. It is not at all surprising that the result is so easy for homogene-
ous varieties since the critical degree of differentiability is just k = 1: By the
methods [3, Lemma 3] of Lemma 3 one easily sees that L(C5(V)) = T(Cδ(V), Θ)
ID T(C3(V), Θ) = ΠV, 0), but C5(F) C T(V, C1) so T(V, (9) c L(Cδ(V) c
L(Γ, C1)) = T(F, C1) because T(V, C1) is a complex vector space. Hence

τ(y9e>) = r^c 1 ) .
Alternately, one can see that the critical degree of differentiability is just

one as follows : Suppose T(V, CD Φ T(V, Θ) = ambient space, then some dif-
ferentiable function vanishing on V has a nonzero partial derivative at the ori-
gin, so considering the Taylor expansion of / restricted to V we have Zi/\z\—+
0 on V as \z\ —> 0, for some zt ^ 0 on V. But V is homogeneous and | ^ | / | ^ z |
= |z<|/|z|, so the values of |Zi|/|z| do not change as \z\ -> 0.

6. General case

Theorem 1. For any point p eV, a complex analytic variety, there exists
an integer k > 0 such that T(V, Ck

p) = T(V, Φp). If k(p) is defined to be the
smallest such integer, then the function k: V —• Z is bounded on compact sub-
sets of V and bounded for algebraic varieties.

The first statement follows from Theorem 2, as pointed out in the remark
at the end of the last section. The second statement follows from the proof of
Theorem 2.
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Theorem 2. For every p ζ. V, there is a co mplex analytic curve C in V
passing through p such that T(C, Θv) = T(V, Θp).

Proof. This was inspired by [4, § 4] where it is shown that every differ-
ential operator on a variety is the finite sum of differential operators on curves
in the variety. Unfortunately the proof given there does not seem to guarantee
that first order operators are the sum of first order operators on curves.

Proposition 4. Let V be an analytic variety with dim V > 1, p e V. Then
there is an analytic variety W C V with dim W < dim V such that T(W, Θv)
= T(V, Θp). It is clear that Theorem 2 follows from Proposition 4 by induc-
tion. Before starting on the proof we review some well known facts about com-
pletion of modules [26].

Let A be a local noetherian ring with maximal ideal ra, and E a finitely
generated A module. Then E is given the structure of a topological group with
the fundamental system of neighborhoods mkE, called the natural topology.
If F is a closed submodule of E, the natural topology of E induces on F the
natural topology of F, and the quotient E/F also has the natural topology.
The completion (via Cauchy sequences) of E in this topology is E = lim E/mkE

and also has the natural topology given by the fundamental system of neigh-
borhoods mkE. If P|fc mkE = {0}, the canonical map E —> E is injective, E is
considered as a dense subset of E, and E is complete, that is, £ = E. If 0 —>
F —> E -^ G —> 0 is an exact sequence of finitely generated A modules, then
0 _> / _> E —>G—>0 is an exact sequence of finitely generated A modules,
consequently E/F = E/F, F Π E = F, and F is closed in E. Next E = AE,

so if a, b are any two ideals of A, άb = AaAb = Aab = ab. If a is any ideal
of A, then (A Π ά)A = A-(A Π a) c AA Π Aά = Aά = a, in summary
(A Π ά)A c 5. If a, b are ideals of A and α = S, then a = ά Γi A = b Γi A
= 6. If {FJ is a finite family of submodules of E, then (Π F*)Λ = Π FV For
an infinite family, we have (ΓΊ F^)Λ c F 4 since the latter is a closed set. For
any submodule F of £ , Π*=i (F + mkE) = ^

If A is the ring of convergent power series over the complexes, C{X1? ,
Xn}, then A = C[[Z 1 ? , X J ] the ring of formal power series over C, and
every ideal of either ring is closed. By an analytic ring we mean C{Xl9 ,
Xn}/I where I is an ideal. If an analytic ring A is an integral domain, so is its
completion A, [10, Theorem 1], hence the completion of a prime ideal is again
prime. Conversely if A is an integral domain, then A is an integral domain
since it is a subring of A if p is prime in A, then p Π A is prime in A.

If A is a local noetherian ring, dim (A) is the largest integer k such that
there exists a strictly increasing chain of prime ideals pQ^pλcz (Zpk = m
oίA. The dimensions of C{X19 , Z n } and C[[X1? , XJ] are both n. The
height of a prime p is the length Λ of the largest chain of primes px c c
phc p. The depth of a prime /? is the length d of the longest chain of primes
p C /?! C C pd = m, so that Lengthy (p) + Depths (/?) = dim^. Depth and
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height of a prime and dimension of a ring are both preserved by completion.
Now returning to the proof of Proposition 4, assume F is imbedded in mini-

mal possible dimension, that is, T(V, 0p) — Cn so /(F) c ra2, where m is the
maximal ideal of Θ. We want to show that there exists an analytic set W c F,
dim W < dim F so that I(W) c m2. The most naive idea would be to say Θv

is a unique factorization domain, so let W be the union of two different sub-
varieties W19 W2 of codimension one in F, where Wλ is the locus of fλ so I(W^)
is generated by fλ. Then any / e I(Wι U W2) can be written as / = fλg, g e
I(W2) so ord / > 2. However this does not work: Let F = locus of z3 — xy
in C 3, JFi = locus (JC) = y axis = {(0, α, 0)}, JF2 = locus (JC - z) = Wx U
{(fl, fl2, a)}, and f = x — z. Hence the proposition will have to be proven by
contradiction of assumption that all lower dimensional subvarieties have tan-
gent space not equal to Cn.

Let d imF = r, F = F ' U Vh', d imF' = r, d i m F " < r - 1. Let Fί', , V'{
be the irreducible components of Vh', and V[9 , F^ the irreducible compo-
nents of F ' . Let / = /(F, 0). Then ^ = 1{V[, Θ) and p* = /(Ff, (P) are all
prime and / = (Π?=i^*) ^ (Πi=iPί) Pi ck a countable set Wt+19 Wι+2, of
irreducible subvarieties of codimension one in V such that U Wt is dense in
V'. (Take local parameterization π: V —> Cr and a countable dense set ΛΪ e
CPr~1, such that each at determines a hyperplane ^ normal to it. Then U Ht

is dense in Cr so π~\H^) is dense in V since π is a closed map. Let Wt be the
irreducible components of π~ι{Hi).) Then Pι+ί = I(Wι+ί,(9) is prime and
P l ^ i Pi = I since ano continuous function vanishing on a dense subset of F
is identically zero. For all k let Ik = Pλ Π Π P fc. Clearly we have

Λ Z ) ^ = ) . . . / » = > • - . 3 n / f c = / ,

/1D/2D..o/,D..on/ίD(n/^/.

Now / C m2, so / C m2 = m2, and the proposition clearly follows from the
below lemmas which imply I (£ in2.

Lemma 4. // no /fc c m2, ίλen Π 4 ςzί m2.

Lemma 5. ΠΓ=i h = (ΠΓ=i 7fc)Λ

Proof o/ Lemma 4. Suppose fkelk9 ord /* = 1 for all /:. Let #J. be the
complex vector space given the image of the natural map Ik -+m/m2. Then
H\Z) HlZD - - is 3, decreasing sequence of finite dimensional vector spaces
and hence is stable for large /, say H) Z) H\ for all /. By assumption H\ Φ 0,
choose 0 Φ hγ e H\. Now define homogeneous polynomials hk of degree k in-
ductively as follows: Suppose h19 ,hk_1 are defined, φk_ι = hλ + +
hk_x, so that for all /, Igj e Θ9 ord gj > k, and ψk_x + ̂  € /y . Let H) be the
complex vector space spanned by the image S) of the natural map Ij—>m/mk+1,
restricted to those elements in I3 whose image in m/mk is φk_λ. Then H\ 3
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Hk D is a decreasing sequence of finite dimensional vector spaces and is
stable for large /, say Hk z> Hk for all /. Choose hkeSk. Then hk g S) for all
/—apriori hk is only in H), but there exist finitely many ct € C, hji9 gsi e Θ, hjt

homogeneous polynomial of degree k, ord gJt > k + 1, ψk_λ + ή i £ + gj% e Ij,
so that φk = ψk_x + hk = Σ Ciiψk-i + hji + gjt) modm*+ 1 . Comparing terms
of orders Λ — 1 and k, we have 2 ^ = 1 and Σ CjΛ^ = AΛ. /, is a vector
space so Σ cί(ψk-i + nn + gji) e h a n d i t s image in m/mk+1 is φk. Hence
for all /, ψk e Skj and there exist g5 = Σ ci8ji s o t h a * ψk + £/«, £ Ij completing
the induction. Let φ be the formal sum Σk=ι hk £ @> Then φ = (φk + g3) +
iψk ~ φ\ ~ Sj 6 Ij + rhk + mk (Z ϊj + mk, ψ e Π* (^ + ^*) = A = h> s o

^ Π i 4 q e d.
Now the result of Lemma 5 does not hold for any set of ideals but depends

upon the fact that infinitely many (/ > /) ίs are height-one primes in Θv.
Counterexample to general statement of Lemma 5: Let In be the ideal in
C{x,y} generated by x + ΣUiklyk and yn+1. Then Π?-i'» = (0), so
( Π J = 1 / J Λ = (0). But ίn = ideal in C[[x, y]] generated by the same two ele-
ments and contains the divergent series x + Σ£-i * ' yk> s o Πn=i K =£ (0)

Proof of Lemma 5. The primes Pt are all distinct, and

We need to show ΠΓ=i A c e a c n 4i Now each pι+i contains some qp and each
qj is contained in infinitely many Pι+ί let β^ be the intersection of all Pι+ί such
that $y C Pι+i. Clearly C\h

j=1 Qό = Γ)i=1 Pι+ί, qs c Qj9 and it suffices to prove
equality. But qό has depth r, each P i + ί has depth r - l , ^ c β j C infinitely
many P i + ί , and no ideal can belong to infinitely many minimal primes, soβ s

is prime and equals q3 (via Noether Lasker decomposition).
Now we turn to proving that k: V —> Z is bounded by an upper semicontinu-

ous function, and hence k(p) is bounded on compact subset of V. To see this,
we look carefully at the curve Cp in V through p given by Theorem 2. It varies
analytically—has a bounded number of components and C^\PCP can be made
into the union of equisingular families of curves of a different variety, and so
the conductor number of Cp is locally bounded. More specifically, assume 0
€ V. Then in some neighborhood of the origin we have

Proposition 5. There is a fixed analytic set L, 0 e L, such that for all p €
Sg V, dim V ΓΊ (L + p) = 1, and Γ(K, 0p) = Γ ( F Π (L + p), ί?p).

Proposition 6. Γ/iere w an wpper bound, over all p e Sg F, /or ί/ι̂  con-
ductor number of V Pi (L + p) at p.

Clearly the boundedness of k(p) follows from Propositions 5, 6, and 3.
Proof of Proposition 5. It can easily be seen that there is a fixed set of

analytic varieties {Hi}, in Cn each containing the origin such that the curves
Hi Π V are distinct. (If V is of pure dimension, we can choose the Ht to be
linear subspaces otherwise we must start off by taking the locus of functions
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vanishing identically on all the lower dimensional irreducible components, but
not identically on any top dimensional component.) Let Lk = (J£= 1 Ht and
Ck — Lk Π F . Then the proof of Proposision 4 shows that for every p e V,
there exists k > 0 (depending on p) such that T(V, Φp) = T(V Γ) (Lk + p), Θp).
Now let T be the analytic set Upesg vPX T(V9 Θp) C C2n and Tk = {JpeSg v

p X T(V Π (Lk + p), Θp) c C2n then T = U?=i Tk. If we knew each Tk were
an analytic set, then Proposition 5 would follow from Lemma 6 since T re-
stricted to a compact neighborhood can have only finitely many irreducible
components.

Lemma 6. Let Zλd Z2 C be an increasing sequence of analytic sets
such that UΓ=i Zfc = Z is analytic and has only finitely many irreducible com-
ponents. Then Z — Zk for some k.

Proof. Every irreducible component Zf of Z must be in some Z Λ , or else
Zr = U?=i (Z' Π Zfc) is the union of countably many analytic subsets of lower
dimension. Since Z' is a complete metric space, the Baire category theorem
says it cannot be the union of countably many closed nowhere dense subsets.

But Tk is too hard to work with directly, so instead we introduce some new
varieties by stringing out the old ones. Define Wk = Up<=sg v P X V Π (Lk + p)
C C2n. Then Wk is an analytic set in C2n : Let V be the locus of fi9 Sg V the
locus of gi9 and Lfc the locus of lt. Then Wk is the set of (a, b) e C 2 n such that

gί(a) = 0, /,(&) = 0, h(b - a) = 0. Let ̂  = Sg V X F C C2 7\ Consider Sg F
to be in each Wk and W as Sg F X 0. Let Sfc = Upesg v P X ^ ( ^ , ^ ) , 5 =
UpesgFP X T(W,(9P). By the proof of Proposition 4, 5 = U SΛ, and by
Lemma 6, 5 = Sk for some fixed k, so for all p € Sg F , 7W f e , ^ ) = T(W, Θp)
= Γ(Sg F, ύ?p) X Γ(F, tf?p). Let E = {(0, ί ) ) : h C n } = 0 χ C n in C2n and
E α = E + a. Then £ p Π Wk = V Π (Lk + p) and £ p Π W = F . Intersect-
ing the above with E p yields

n (L, + p),^) - Γ(EP n ψ, ,^ ) c £ p

= Ep Π

where the inclusion is not always equality. However by Lemma 2 there is an
analytic set A c Sg F, dim 4̂ < dim Sg F such that ίoi peSgV — A, the a-
bove inclusion is an equality. If A were null, the proposition would-be proven
—but since this is rather unlikely we iterate the construction. Let Wk — {JveA

pχVΠ(Lk + p),W = AχV, Sk = UPZAP X TQVk, 0P), S = UPZAP X

T(W, Θp). Then S = U Sk by Proposition 4, S = Sk for some Λ by Lemma
6, and by Lemma 2 there exists analytic B a A, dim J5 < dim^i so that for
all p € ,4 - 5 , Γ ( F Π (Lk + p), ύ?p) = Γ(F, Φp). This finally yields a stratifica-
tion of Sg F, and an integer k associated to each strata so that for each point
in that strata Γ ( F Π (Lk + p), Θp) = T(V, Θp). Just take the largest of this
finite set of integers.

Proof of Proposition 6. Let Lo be the fixed analytic set of Proposition 5
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and Wo = Upesg v P X V Π (Lo + p). Let d = dim Sg F, choose a projection
Pι'.Cn —•Cd giving a local parameterization of S g F near the origin, choose a
projection p2: C w —> C 1 giving a local parameterization of Lo near the origin,
and define π: C2n -> C d + 1 by ττ(a, 6) = (^(α), ft(6)). Then (*| Wΰ'^O, 0) =
î Γ^O) x p^iP) = (0, 0), so π gives a local parameterization of WQ such that
ττ(Sg F) C C<* where C d is identified with Cd X 0 in C d + 1 . Let J?! be the
branching set of px. Let B2 be the branching set of π—each irreducible com-
ponent of which either contains Sg V or intersects Sg V in a set of dimension
less than Sg V—and let B'2 be the union of intersection of those irreducible
components of B which do not contain Sg V. Let Z be the union of the com-
ponents of Sg V of non-maximal dimension, and Z/ the intersection with Sg V
of all irreducible components of Sg Wo which do not lie in Sg V. Let A =

Then for each p e Sg V — A, there is a neighborhood U of p in C2n such
that π I U Π Wo gives a local parameterization with branching set B a manifold
contained in Cn X 0, π(B) c C ώ . Now TΓ : TF0 — 5 -> Cd+1 — Cd is a cover-
ing projection and induces a map on the first homotopy groups π* : ^(WΌ — B)
—> τr1(CίZ+1 — Cώ) ~ Z. Since Z is a principal ideal domain, image (π*) ^ qZ
for some <?. Let Dd+1 be a unit polydisc in Cd+\ Dd = Dd+ί Π Cd, and ψ(ί l 5

•• ,U, td+1) = (ί1? , ίd, ίj+ 1). Then ψ # ^ ( D d + 1 - Dώ)) - 9 Z . By a standard
result in algebraic topology, there exists a map φ: Dd+1 — Dd —> TF0 — B such
that π<p = ψ. (Given map ψ : Z —> X and covering map π: X —> X, then there
exists map φ: Z —> X so π^ = ψ if and only if ψ^π^Z) c TΓ^TΓJCZ).) Then ^
is holomorphic because locally it is π~ιty. Since TΓ is a proper map (inverse
image of compact sets are compact), φ is bounded near Dd, so by the Riemanr.
removable singularities theorem it extends to a holomorphic map on Dd+\
Φ(t) = (t19 - , td, tl+1,φd+2, - , φ2n) Then φ is one-to-one because π and ψ
are both q to one off Dd. (Another standard result in algebraic topology is that
the number of points in the fiber of a covering map π: X —> X is the index of
subgroup π*πι(X) in TΓ^Z).) In summary, each irreducible component of Wo

has a normalization of the above form.

Let Nλ = Cond0 (Wo), for p near 0, Condp (WQ) < Nx. Now we want to
show that for p z Sg F - A, Condp (Wo) > Cond (PF0 Π Ep = V Π (Lo + pj)y

e.g., /(Sg WQYdv(W,) C ^(JF 0 ) implies

/(Sg (^o n EP))*0P(WQ n E P ) c ΘP(W0 n E P ) .

Since for fixed s e Cd, φ(s, td+1) is the normalization of Wo Π Ep, the restric-
tion map άp(W0) -> ^ ( ^ o Π E p ) is onto: let hφ e 0P{W, Π Ep), hφ € ^^(D1)
C Θp{Dd+ι) extending the function by ignoring the other d variables so hφ e
ΦP(WQ). Also any element of /(Sg (Wo Π Ep))k is the sum of elements either
identically zeo on Wo Π Ep or in /(Sg (JF0))fc, in either case a universal de-
nominator of Wo Π Ep; the set of universal denominators is an ideal so line
* is valid.
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Now we repeat the construction. Let Wo = [JpζA p X V Π (Lo + p) and

N2 = Cond0 (Wo), take a local parameterization of Wo, and remove an analytic

set A' of strictly lower dimension to make Wo equisingular along A — Ar

hence Condp (V Π (Lo + /?)) < N2 for all p e ^ - Λ'. This finally gives a

stratification of Sg F and an integer JV* associated to each strata so that for

each point in that strata Condp (V Π (Lo + /?)) < Nt. Just take the largest of

this finite set of integers.
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