J. DIFFERENTIAL GEOMETRY
12 (1977) 203-208

EXISTENCE OF GENERALIZED SYMMETRIC
RIEMANNIAN SPACES OF ARBITRARY ORDER

OLDRICH KOWALSKI

A Riemannian symmetric space is a Riemmanian manifold (M, g) with the
following properties : for each x € M there is a (unique) isometry J, on M such
that

(a) x is an isolated fixed point of J,,

(b) (J,)? = identity.

It is also easy to show the following property: for every two points x,y e M
we have

(c) J,,OJy = JzOJz, where z = Jz(y)

The following is a direct generalization of the previous situation.

Definition. A Riemannian k-symmetric space (k > 2) is a Riemannian
manifold (M, g) on which a family {s,},., of isometries exists with the follow-
ing properties :

(a) Each x e M is an isolated fixed point of the corresponding s,

() (s,)* = identity for all x € M, and k is the minimum number of this
property,

(c) forevery x,yeM, s, o5, = 5,05,, where z = s5,(3).

In fact, Ledger and Obata [3] have proved that for every k£ > 2 there is
a k-symmetric Riemannian space which is not symmetric. The purpose of this
paper is to strengthen the previous result in the following sense: for every
k > 2 there is a k-symmetric Riemannian space which is not l-symmetric for
l=2,..-,k — 1. (Such a Riemannian space is said to be generalized sym-
metric of order k; see [2]). In our further considerations we shall make full
use of the original construction by Ledger and Obata.

1. Let M = G/H be a homogeneous Riemannian space. As usual, we
suppose G acting effectively on the coset space G/H. Thus the Lie group G
can be considered as a group of isometries on M. Let 7: G — M denote the
canonical prejection.

Proposition 1. Let G admit an automorphism g such that

(1) H = G° = the fixed point set of g,

(ii) o = identity,

(i) the transformation s of M determined by nog = sorx is an isometry.
Then M is a Riemannian k-symmetric space.
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Proof. For x e M define a transformation s, of M by the formula s, =
gosog™!, where g € #7'(x). Then s, is independent of the choice of g. In fact,
foreachh e Hwehave L,0o090L, ; = gandzoL, = hox. Hence (hosoh ™) ox
=ho(som) oL, ,=ho(wo0) oL, ,=mo(LycooL,_,) = mog, and consequent-
ly, hosoh™ = s. Thus for g = gh we obtain g’ os0g’™! = gosog™.

It is clear that (s,)* = identity for each x ¢ M. We have to prove that x is
an isolated fixed point of s,. For, it is sufficient to show that the initial point
0eM, o = rn(H), is an isolated fixed point of s. Condition (iii) implies that
Sx0° Txe = Txe 0 Oy, ON the tangent space G,. Let X ¢ M, be such that s,,(X)
=X, and let X ¢ G, be a lift of X. Then n*e(a*e(X ) = n*e(X ), and hence
a*e(X) X + Z, where Z ¢ H,. Now a*e(Z) Z, and (o*e)"(X) X +kZ
= X because (04e)® = identity. Thus Z =0 and X is a fixed vector of Oyger
We deduce X ¢ H, and X = 0. Because S0 has no nonzero fixed vectors and
s is an isometry of M, we conclude that o is an isolated fixed doint of s.

Finally, we have to prove the formula s, 05, = s,05,, 2 = 5,(»). For this
purpose we shall identify the elements of G with the corresponding transfor-
mations of M. Then we deduce sogos™ = g(g). Put s, =gosog™, s,
= g o50(g)™!, where x = g(0) and y = g’(0). Then (gosoglog o5 (0)
= 5,(¢’(0)) = 5,(y). On the other hand, gosoglog os™! = goa(g™'g")
=g’ belongs to G. Consequently, s 05, =gosoglog oso(g)™ =
g'os0(g) ogosog™ = 5,,(3) o5,

2. We shall recall here a class of Riemannian manifolds constructed by
Ledger and Obata (see [3]). Let G be a compact connected nonabelian Lie
group, G**! the direct product of G with itself (k 4+ 1)-times, and 4G**! the
diagonal of G**'. Consider the action of G**' on G* given by

(x5 = 5 Xy ) O> + 05 Vi) = (XY Xpiss s XeYeXers) -

Then G**! acts on G* transitively and effectively, and 4G**! is the isotropy
group at the identity o = (e, - - -, €) of G*. We get a diffeomorphism between
G* and the coset space G¥*!/AG**'. Each tangent vector at the identity of G*
can be written in a unique way in the form (X, .-, X,), where X, ---,
X, eG,.

Now let @ be an Ad (G)-invariant inner product on G,, and let %1 be the
Ad (4G**Y)-invariant inner product on (G¥), defined by

OHI(X,, -+ -5 Xp), (X, + -+, X))
k
= 50X, X + 50X, — X, Xy = X))

An alternative definition of @ is the following: fori =1, ---,k and X ¢ G,
let X denote the vector (X,, - - -, X;) € (G¥), such that X; = X and X; = 0
for j # i. Then @HFI(XD, YD) = k@(X,Y), and PHI(X®, YY) = —O(X, Y)
fori #j.
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The inner product @1 can be extended, by the left translations of G**!, to
a Riemannian metric on G* denoted also by @™, Then G**!/A4G**! becomes
a homogeneous Riemannian manifold (G*, @*3).

Let ¢ be an automorphism of G**! defined by the rule o(x,, - -+, Xz,)) =
(X441 X1, + + +, X;). Then ¢ satisfies all the conditions of Proposition 1, where
we write k + 1, G¥*1, AG**, G* instead of k, G, H, M respectively. In particu-
lar, condition (iii) can be verified as follows: consider the transformation s of
G* determined by 7 0o ¢ = sox. Then for any X ¢ G, we deduce easily 5,,(X®)
= X6 for j=1, ..., k—1, S*O(X(")) = —(X® + ... + X®) and
OF)(54, XD, 5, YP) = QXD YP) for i,j =1, ---, k. Thus the Rieman-
nian manifold (G*, @) is (k + 1)-symmetric.

3. In the remainder of this paper we shall specialize the class of manifolds
(G*, @) in a proper way.

Proposition 2. Consider a homogeneous Riemannian manifold (G*, ®™7)
such that

(@) G is simple,

(b) G**'is the component of unity of the full isometry group I(G*, @*1).
Then (G*, ™) is not l-symmetric for any | < k + 1.

Proof. Letr be an isometry of (G*, ®™*1) with the isolated fixed point. 0 =
(e, - -+, ) such that r' = identity. Define an automorphism g of the group
I[(G*, @')) by the formula §(g) = rogor~'. Then the restriction of g to G**!
is an automorphism p of G**'. We can easily see that 7op = rox.

Now G**! is a direct product of simple subgroups G*®, i =1, ...,k + 1,
all of them being canonically isomorphic to the group G. Then the automor-
phism p: G**' — G**! induces a permutation v of the indices 1, ---,k + 1
such that p(G**®) = G*®,i =1, ...,k 4+ 1. Denoting by ¢, the restriction
of p to G**9, we get p(8y, - -+, 8p41) = (0185 -+ *5 Pr+1(8ur+1))- In particu-
lar, o(g, - - -, 8) = (¢1(9), - - -, 1.1(8)). Because p(4G**') C AG**!, we obtain
0, = @, = + -+ = @, under the canonical identification G** = ... = G*®**D
= G, and therefore a unique automorphism ¢ : G— G such that p(g,, - - -, 8.1
= (¢(8.y)> * * +» (8, +1y)). Denote by dp (respectively, dy) the induced auto-
morphism of the Lie algebra g**! (respectively, g). Then dp(X,, - - -, X, =
(do(X,a)), -+, dp(X,k41y)s Xys + -5 Xiyr € 6

Now let us recall the following result by Borel and Mostow, [1].

Lemma. A semi-simple automorphism A of a nonsolvable Lie algebra g
leaves fixed an element X such that ad X is not nilpotent.

dp is a semi-simple automorphism of g because (dyp)’ = identity. Let X +# 0
be a fixed vector of dy and suppose [ < k + 1. Then the permutation v con-
tains a cycle (i, ---,i,) of length m < k + 1. Consider the vector Z =
X, + -+, Xy egh™? such that X; =X for i=1i,.--,i, and X, = —X
otherwise. Clearly, dp(Z) = Z. Now we can identify g**! with the tangent
space (G**'), and dp with the tangent map p,,. We have 7,0 pye = Fyo0 Tyes
and thus the projection 7 ,.(Z) e (G*), is a fixed vector with respect to r,,.
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Moreover, Z e (G**'), is not tangent to the submanifold 4G**' and hence
74e(Z) # 0, a contradiction. This completes the proof.

Proposition 3. For G = SOQ3) and ®(X,Y) = —}tr(ad Xoady) the
conditions of Proposition 2 are satisfied.

Proof. In the following, the elements of g (respectively, g*) are considered
as left invariant vector fields on G (respectively, G*). First of all, there is a
basis {X,, X;, X;} of g such that [X}, X,] = X,, [X,, X,] = X,, [X,, X,] = X,.
We have 9(X,, X,) = 4, for a, = 1,2, 3, and the vectors X¥, a« = 1,2, 3,
i=1,...,k, form a basis of g*. Now recall formulas (14) of [3]: for X,Y e g

VY = Tklﬁ)-{[x, YI® — [X, Y19}  forij,

Vx(i)Y“) — %[X’ Y](i) .

A routine calculation shows the following properties of the curvature tensor R
of @t¥1:

R(X®,X{)X® = 0 whenever a = 8 # rora = =7,
(D R(X®,X{X® and R(X®, X)X® belong to the subspace
generated by X, X, X .

Let H, be the component of the unity of the isotropy group of I(G*, ™)) at
the origin o, and denote the corresponding Lie algebra by f,. Then §, has a
faithful isotropy representation by endomorphisms of g* = (G*),. Clearly, the
necessary condition for A4 e, is that 4A(9™) = A(R) = 0, where 4 acts as a
derivation on the tensor algebra of g*.

Let A € §), and set

(2) AXO = ¥ Sa@pxXy,  i=1,--nka=123.

p=1j=1
The relation (A9¥)(XP, X§”) = 0 implies
(3) Kt + ahp) — X aift — Ty =0.
A l#Jj

Further, we can calculate easily
RXP,XP)XP = —1 X fore = .
Consider the relation (AR)(X?, X)XP =0, i.e.,

—1AXY = RAXD, XP)XP + RX®, AXP)XP

(4) + R(X®D, X;i))AX‘('i) .

Let us substitute (2) in (4) and consider a vector X, where y # «, 8 and
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j # i. This vector enters into the left-hand side with the coefficient — %a{®;.
According to (1), there is only one term on the right-hand side the evaluation
of which can involve X, namely, the term R(X®, al)3 X)X ?. Now

RXD, afXXP = allle + DX© — XD/ 140k + 177

Comparing the coefficients at X we finally get a{}}; = 0. Thus we have
proved

(5) as =0 fori#j,a+#p.
Substituting in (3) we get
(6) a@Bt + afls =0 fora + 8.

In particular, for { = j we obtain

) va
(7) aBt + a5 =0,
and hence
2 — k
(8) ai=a@i=-. =aBl forazp.

Now let us compare the coefficients at X, j # i, in the relation (4). X’
enters into the left-hand side with the coefficient — la{®4;. As for the right-hand
side, X§ can be involved only in the evaluations of the terms R(a{?: X,
XHXP, RXP,aPbXXP, RIXP, XP)af:X?). After routine calcula-
tions we obtain

(9) Gk + 2a@s + (K + 2k)a@h =0 .

Writing these relations for (&, 8) = (1, 2), (2, 3), (3, 1) respectively, we obtain
finally

(10) a®z =0 fori+#ja=1,2,3.
Having i = j and « = B in (3), we deduce from (10)
11 aBe=0, a=12,3,i=1,-.--,k.

If we summarize (5), (10) and then (7), (8), (11), we can see that
b C 4([30(3)]%). On the other hand, the group G**! = SO(3)**! is contained
in I(G*, @) so that 4(SO(3)**") is contained in H,. Thus H, = 4(SO(3)*"),
and consequently SO(3)**! is the component of the unity of I(G*, @) as re-
quired. Hence we can conclude our paper with

Theorem. For each integer k > 2 there exists a compact generalized sym-
metric Riemannian space (M, g) of order k such that the component of the
unity of the full isometry group I(M, g) is semi-simple.
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