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EXISTENCE OF GENERALIZED SYMMETRIC

RIEMANNIAN SPACES OF ARBITRARY ORDER

OLDRICH KOWALSKI

A Riemannian symmetric space is a Riemmanian manifold (M, g) with the
following properties: for each π M there is a (unique) isometry Jx onMsuch
that

(a) x is an isolated fixed point of Jx,
(b) (Jx)

2 = identity.
It is also easy to show the following property: for every two points x,y β M
we have

(c) Jx o Jy = Jz o Jx, where z = Jx(y).

The following is a direct generalization of the previous situation.
Definition. A Riemannian k-symmetric space (k > 2) is a Riemannian

manifold (M, g) on which a family {sx}xζM of isometries exists with the follow-
ing properties:

(a) Each x 6 M is an isolated fixed point of the corresponding sx,
(b) (sx)

k = identity for all x e M, and k is the minimum number of this
property,

(c) for every x, y e M, sx o sv = sz o sX9 where z = sx(y).

In fact, Ledger and Obata [3] have proved that for every k > 2 there is
a ^-symmetric Riemannian space which is not symmetric. The purpose of this
paper is to strengthen the previous result in the following sense: for every
k > 2 there is a k-symmetric Riemannian space which is not l-symmetric for
I = 2, , k — 1. (Such a Riemannian space is said to be generalized sym-
metric of order k; see [2]). In our further considerations we shall make full
use of the original construction by Ledger and Obata.

1. Let M = G/H be a homogeneous Riemannian space. As usual, we
suppose G acting effectively on the coset space G/H. Thus the Lie group G
can be considered as a group of isometries on M. Let π: G —• M denote the
canonical prejection.

Proposition 1. Let G admit an automorphism σ such that
( i ) H = Gσ = the fixed point set of σ,
(ii) σk = identity,

(iii) the transformation s of M determined by πoσ = soπ is an isometry.
Then M is a Riemannian k-symmetric space.
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Proof. For x e M define a transformation sx of M by the formula sx =
gosog-1, where g € π~ι(x). Then sx is independent of the choice of g. In fact,
for eachft € # wehaveL^oσoL^! = σandπoL Λ = /zoπ. Hence(hosoh~ λ)oπ

= ho(soπ)oLΛ-1 = ho(πoσ)oLh_λ = πo(Lho<joLΛ-1) = TΓO(7, and consequent-
ly, ho so h~ι = 5. Thus for g' = gh we obtain g' o s o g'"1 = gosog-1.

It is clear that ( s j * = identity for each Λ: e M. We have to prove that x is
an isolated fixed point of sx. For, it is sufficient to show that the initial point
o e M, o = π(H), is an isolated fixed point of s. Condition (iii) implies that
^*o ° ττ*e = π*β o σ*e on the tangent space Ge. Let X e Mo be such that s*Q(X)
= Z , and let X e G e be a lift of Z . Then 7r*e(<7*e(l)) = 7 r ψ β φ , and hence
σ*eφ = X + Z, where Z β H e . Now σ*e(Z) = Z, and (α ̂ , ) ^ ^ ) = ^ + ΛZ
= X because (σ*e)

k = identity. Thus Z = 0 and X is a fixed vector of σ*e.
We deduce X € He and Z = 0. Because s1^ has no nonzero fixed vectors and
s is an isometry of M, we conclude that o is an isolated fixed doint of s.

Finally, we have to prove the formula sxosv = sβosx, z — sx(y). For this
purpose we shall identify the elements of G with the corresponding transfor-
mations of M. Then we deduce sogos~ι = σ(g). Put sx = gosog-1, sy

= g /°so(g /)- 1, where JC = g(p) and y = ^(o) . Then (gosog-1 ogΌs~ι)(ό)
= sx(g^(p)) = Jj Cy). On the other hand, g o .y o g"1 o gf o .y"1 z= g o σ(g^ιg>)
= g" belongs to G. Consequently, ^ 0 5 ^ = gosog~ι og' oso (g')"1 =
g " o ί o (g")"1 o g o J o g-1 = ^ 0 ) o Sχ.

2. We shall recall here a class of Riemannian manifolds constructed by
Ledger and Obata (see [3]). Let G be a compact connected nonabelian Lie
group, Gk+1 the direct product of G with itself (k + l)-times, and JGk+1 the
diagonal of G*+ 1. Consider the action of Gk+1 on Gk given by

Then G f c + 1 acts on Gk transitively and effectively, and ΔGk+ι is the isotropy
group at the identity o = (e, , e) of Gk. We get a diffeomorphism between
Gk and the coset space Gk+1/JGk+1. Each tangent vector at the identity of Gk

can be written in a unique way in the form (X19 , Z 4 ) , where Z 1 ? ,

Now let Φ be an Ad (G)-invariant inner product on Ge, and let Φίkl be the
Ad (zlGfc+1)-invariant inner product on (Gfc)0 defined by

An alternative definition of Φm is the following: for i = 1, , k and X e Ge

let Z ( < ) denote the vector {Xu • , Xk) € (G*), such that ^ = ΛΓ and ^ = 0
for j φ i. Then Φ»\XU>, YM) = kΦ(X, Y), and φ™(Xw, y«>) = - Φ ( Z , Y)
for / gfc /.



GENERALIZED SYMMETRIC RIEMANNIAN SPACES 205

The inner product Φίkl can be extended, by the left translations of G*+ 1, to
a Riemannian metric on Gk denoted also by Φm. Then Gk+1/JGk+1 becomes
a homogeneous Riemannian manifold (Gk, Φίkl).

Let σ be an automorphism of Gk+1 defined by the rule σ(xi9 -,xk+ι) =
(Xk+i9χi> ' ' •>**)• Then σ satisfies all the conditions of Proposition 1, where
we write k + 1, Gk+1, ΔGk+\ Gk instead of k, G, H, M respectively. In particu-
lar, condition (iii) can be verified as follows: consider the transformation s of
Gk determined by π o a = s o π. Then for any X e Ge we deduce easily s#0(Xιi))
= Z ( ί + 1 ) for / = 1, . . . , Λ - l,sm(X™) = - ( Z ( 1 ) + . . . + X( fe)), and
Φ ^ C ^ o X ^ ^ o Y ^ ) = Φ M ( Z ( ί ) , Y('>) for I,/ = 1, , *. Thus the Rieman-
nian manifold ( G \ Φc*]) is (k + l)-symmetric.

3. In the remainder of this paper we shall specialize the class of manifolds
(Gfc, 0 W ) in a proper way.

Proposition 2. Consider a homogeneous Riemannian manifold (Gfc, Φm)
such that

(a) G is simple,
(b) G*+ 1 is the component of unity of the full isometry group I(Gk, Φc*3).

Then (Gk, Φw) is not l-symmetric for any I < k + 1.
Proof. Let r be an isometry of (Gfc, Φ M ) with the isolated fixed point, o =

(e, , e) such that r* = identity. Define an automorphism p of the group
I(Gk, Φίkl) by the formula p(g) = r o g o r 1 . Then the restriction of ̂  to G f c + 1

is an automorphism p ot Gk+1. We can easily see that πo p = roπ.
Now Gk+ι is a direct product of simple subgroups G* ( ί ) , / = 1, •••,/:+ 1,

all of them being canonically isomorphic to the group G. Then the automor-
phism p: Gk+1 —> Gk+λ induces a permutation v of the indices 1, , k + 1
such that p(G*vW) = G* ( ί ) , i = 1, , k + 1. Denoting by p t the restriction
of p to G*υ ( ί ), we get ̂ fe, , gk+ι) = (^fe^!)), , p*+i(gw(fc+i,)). In particu-
lar, p(g, ., g) = (^(g), , pΛ+1fe)). Because p(JGk+1) C JG f c + 1 , we obtain
px = φ2 = . . . = φk+ι under the canonical identification G* ( 1 ) = = G* ( f c + 1 )

r= G, and therefore a unique automorphism φ: G-^G such that ^(g^ , gk+ι)
= (pfevd))j " * >?>(&><*+i>)) Denote by dp (respectively, dφ) the induced auto-
morphism of the Lie algebra gfe+1 (respectively, g). Then dp(X19 - , Z i + 1 ) =
(dφ(Xvil)), , ̂ ( Z v ( f c + 1 ) ) , -XΊ, , Z f c + 1 6 g.

Now let us recall the following result by Borel and Mostow, [1].
Lemma. A semi-simple automorphism A of a nonsolvable Lie algebra g

leaves fixed an element X such that ad X is not nilpotent.
dφ is a semi-simple automorphism of g because (dφ)1 *= identity. Let X Φ Q

be a fixed vector of dφ and suppose / < k + 1. Then the permutation v con-
tains a cycle (/1? ,/m) of length m < & + 1. Consider the vector Z =
(Z 1 ? , Xk+1) e g*+1 such that Xi = Z for i = Zl5 . . . , /TO and Z^ = -X
otherwise. Clearly, dp(Z) = Z. Now we can identify gfc+1 with the tangent
space (Gk+1)e and ίZ^ with the tangent map p*e. We have π*e o ̂ ^^ = r*,, o Tr̂ e,
and thus the projection π%e(Z) β (Gfc)0 is a fixed vector with respect to r^0.
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Moreover, Ze(Gk+1)e is not tangent to the submanifold JGk+1 and hence
π*e(Z) Φ 0> a contradiction. This completes the proof.

Proposition 3. For G = SO(3) and Φ(X, Y) = - £ tr (adZo ad Y) the
conditions of Proposition 2 are satisfied.

Proof. In the following, the elements of g (respectively, gfc) are considered
as left invariant vector fields on G (respectively, Gk). First of all, there is a
basis {Xl9 Z2, Z3} of g such that [Xl9 X2] = Z3, [Z2, Z3] = X19 [Z3, Z J = Z 2.
We have Φ(Zα, Z^) = δaβ for a, β = 1, 2, 3, and the vectors Z ^ , α = 1, 2, 3,
i = 1, •••,/:, form a basis of g*. Now recall formulas (14) of [3]: for Z, Y e g

F*«>y('} = W n ^ ί [ z ' y ] ( i ) - [z> y ] ( i )> for' * > >

A routine calculation shows the following properties of the curvature tensor R
of 0M:

i?(Z<«, JC<«)AΓ«> = 0 whenever aφβφγ or a = β = γ,

( 1) ί ( Z » , Z y ' ) ^ and i?(Zi«, Z«»)^f belong to the subspace

generated by Xf, Z<J>, Xf> .

Let ίί 0 be the component of the unity of the isotropy group of I(Gk, ΦlkΊ) at
the origin o, and denote the corresponding Lie algebra by I)o. Then ί|0 has a
faithful isotropy representation by endomorphisms of g* = (G*)o. Clearly, the
necessary condition for A e ϊj0 is that A{Φm) = A{R) = 0, where /ί acts as a
derivation on the tensor algebra of g*.

Let A 6 Ijo and set

(2) ΛXf = Σ Σ 4 5 W , i = U k, a = 1,2, 3 .

The relation {A0^)(X^, Xf) = 0 impUes

( 3 ) A(βgjί + α$J) - Σ βglί - Σ β|β; = 0 .

Further, we can calculate easily

R(X«>, Xf)X? = -\Xf ίoτaΦβ.

Consider the relation (AR)(X™,Xf)X™ = 0, i.e.,

Let us substitute (2) in (4) and consider a vector X(

T

3), where γ Φ a,β and
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/ Φ i. This vector enters into the left-hand side with the coefficient — \a{$β.
According to (1), there is only one term on the right-hand side the evaluation
of which can involve Xγ\ namely, the term R(X™, a^{βX\j))Xf. Now

R(X<i\a${βX^)Xf = a$fβ[(k + 2)Xf - X^]/Wk + I)2] .

Comparing the coefficients at X\j) we finally get af]{β = 0. Thus we have
proved

( 5 ) a\% β = 0 foiiΦhaΦβ.

Substituting in (3) we get

( 6 ) fl$J + έigj; = 0 for a Φ β .

In particular, for / = / we obtain

(7) 48i + *8i? = o ,

and hence

Now let us compare the coefficients at X(

β

j\ j Φ i, in the relation (4). Xψ
enters into the left-hand side with the coefficient —\af$. As for the right-hand
side, X{p can be involved only in the evaluations of the terms Riβ^JC^,
Xf)X«\ R{X«\affi,XM)X<i\ R(X^9X^)(a^iX^). After routine calcula-
tions we obtain

( 9 ) (3k + 2)<i$: + (k2 + 2k)afflβ = 0 .

Writing these relations for (a, β) = (1, 2), (2, 3), (3,1) respectively, we obtain
finally

(10) ^ = 0 toiiφj,cc= 1,2,3 .

Having i = / and a = β in (3), we deduce from (10)

(11) < : = 0 , α = l , 2 , 3 , i = l, •-.,*.

If we summarize (5), (10) and then (7), (8), (11), we can see that
ϊj0 C J([^o(3)]fc). On the other hand, the group Gk+1 = SO(3)k+1 is contained
in /(Gfc, Φ M ) so that J(SO(3)k+1) is contained in HQ. Thus Ho = J(5O(3)*+1),
and consequently 5O(3)fe+1 is the component of the unity of I(Gk, Φm) as re-
quired. Hence we can conclude our paper with

Theorem. For each integer k>2 there exists a compact generalized sym-
metric Riemannian space (M, g) of order k such that the component of the
unity of the full isometry group I(M, g) is semi-simple.
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