TOPOLOGY OF THE COMPLEX VARIETIES $A_s^{(n)}$

I. DIBAG

1. Introduction

Define, for $s \leq \lfloor n/2 \rfloor$,

 $\tilde{V}_{n,2s}$: manifold of ordered 2s-tuplets of linearly independent vectors in Euclidean n-space R^n ,

 $\tilde{A}_s^{(n)}$: space of 2-forms in R^n of rank 2s,

 $\tilde{f}_s^{(n)}: \tilde{V}_{n,2s} \to \tilde{A}_s^{(n)}: \quad \text{map given by}$

$$\tilde{f}_{s}^{(n)}(y_{1}, \dots, y_{2s}) = y_{1} \wedge y_{s+1} + \dots + y_{s} \wedge y_{2s}$$

 $V_{n,2s}$: Stiefel manifold of orthonormal 2s-frames in \mathbb{R}^n ,

 $A_s^{(n)} = \tilde{f}_s^{(n)}(V_{n,2s})$: subspace of $\tilde{A}_s^{(n)}$ of "normalized" 2-forms in R^n of rank 2s,

 $f_s^{(n)}: V_{n,2s} \to A_s^{(n)}:$ the restriction of $\tilde{f}_s^{(n)}$ to $V_{n,2s}$.

It was proved in [4] that the maps $\tilde{f}_s^{(n)}$ and $f_s^{(n)}$ induce the principal Sp(s; R)and U(s)-bundles respectively, and that $A_s^{(n)}$ is a strong deformation retract of $\tilde{A}_s^{(n)}$.

One may, equivalently, define $A_s^{(n)}$ as the space of normalized complex s-substructures of R^n , i.e., pairs (p, J) where p is a 2s-plane in R^n and J is a normalized complex structure on p $(J \in O(p), J^2 = -1)$.

To see the equivalence, let $w \in A_s^{(n)}$. Then $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ for an orthonormal 2s-frame $y = (y_1, \cdots, y_{2s})$. Let p be the 2s-plane spanned by y. For $x \in p$, let $d_x \colon p \to \Lambda^2 p$ be forming wedge products with x, i.e., $d_x(z) = x \wedge z$, and $\delta_x \colon \Lambda^2 p \to p$ be its "adjoint". Define a linear transformation J on p by $J(x) = \delta_x(w)$, $x \in p$. Then $J(y_i) = y_{i+s}$ and $J(y_{i+s}) = -y_i$, $1 \le i \le s$. Thus $J \in O(p)$, $J^2 = -1$. Conversely, a normalized complex s-substructure J, $J \in O(p)$, $J^2 = -1$, can be represented by the matrix $\begin{bmatrix} 0 & -I_s \\ I_s & 0 \end{bmatrix}$ relative to some orthonormal 2s-frame $y = (y_1, \cdots, y_{2s})$ on p. Hence J corresponds to $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ in $A_s^{(n)}$.

It follows from either definition that $A_s^{(n)} = SO(n)/U(s) \times SO(n-2s)$ for s < n/2, $A_s^{(2s)} = O(2s)/U(s) = I_s \cup I_s'$ where $I_s = SO(2s)/U(s)$, $A_1^{(n)} = \tilde{G}_{n,2} = Q_{n-2}(C)$ where $\tilde{G}_{n,2}$ is the oriented 2-planes in R^n , and $Q_{n-2}(C)$ is the complex quadric of dimension n-2.

The spaces $A_s^{(n)}$ appear as "fibres" in global obstruction problems involving Received May 1, 1973, and, in revised form, January 16, 1974.

2-forms of constant rank, and the foremost among these problems are the existence and decomposability of such forms.

- 1. The existence of a 2-form of constant rank 2s on an \mathbb{R}^n -bundle E (or, a complex s-substructure on E) is equivalent to cross-sectioning the associated bundle $A_s(E)$ to E with fiber $A_s^{(n)}$.
- 2. Globally decomposing a given 2-form w of constant rank 2s on E as a sum $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ of products of 1-forms (y_i) on E is equivalent to the lifting of the diagram

where B is the base manifold, $V_{2s}(E)$ the associated bundle to E with fiber the Stiefel manifold $V_{n,2s}$, and w is represented with respect to a suitable metric on E as a "normalized" 2-form on E of constant rank 2s, i.e., as a map w: $B \to A_s(E)$. (Refer to [4].)

2a. In the special case when E is a trivial (product) bundle (e.g., the tangent bundles of Lie groups), the diagram reduces to

and the primary obstructions to lifting w_1 are the pull-back $w_1^*(c_i) \in H^{2i}(B; Z)$ by w_1 of the Chern classes $c_i \in H^{2i}(A_s^{(n)}; Z)$ of the principal U(s)-bundle $V_{n,2s}(A_s^{(n)}; U(s))$.

2b. In the general case (i.e., when the total bundle E is not necessarily trivial) a necessary condition for globally decomposing w is that the 2s-dimensional subbundle S_w of E defined by w is trivial. Using the triviality of S_w (and a suitable metric on it) w is represented as a map $w_1 : B \to I_s$, and then decomposability of w is equivalent to the lifting of the diagram:

(which is the special case of diagram 2a for n=2s) and again the primary obstructions to decomposing w are the pull-back $w_1^*(c_i) \in H^{2i}(B; Z)$ by w_1 of the Chern classes $c_i \in H^{2i}(I_s; Z)$ of $SO(2s)(I_s; U(s))$. (Refer to [4] for details.) In this paper we make a start on these obstruction problems by studying the

topology of the manifolds $A_s^{(n)}$. We represent $A_s^{(n)}$ as the subvariety of the complex Grassmann variety $G_{n,s}^C$ of projective [s-1]-planes lying on the complex quadric $Q_{n-2}(C)$. In perfect analogy with the classical Schubert calculus on Grassmann varieties, we define the Schubert cell $\Omega_{a_0a_1...a_{s-1}}$, $0 \le a_0 < a_1 < \cdots < a_{s-1} \le n-2$. Then the main result of this paper, the CW-structure theorem, states that $A_s^{(n)}$ is a cell complex on the class of Schubert cells

$$(\Omega_{a_0 a_1 \cdots a_{s-1}} | a_i + a_j \neq n-2 \text{ for } 0 \leq i < j \leq n-2)$$
.

As a corollary we obtain the additive homology and cohomology of $A_s^{(n)}$. We then develop a duality theory for $A_s^{(n)}$, and using this and the inclusion map $j: A_s^{(n)} \to G_{n,s}^c$ we compute the Chern classes $c_i \in H^{2i}(A_s^{(n)}; \mathbb{Z})$. Thus given w we can explicitly determine the primary obstructions $w^*(c_i)$ to decompose w.

The paper, as a whole, is self contained. The arguments are based on elementary projective geometry.

2. Universality of $A_s^{(\infty)}$

For fixed s we have a sequence of principal U(s)-bundles:

Thus $A_s^{(\infty)}=\dim_{n\to\infty}A_s^{(n)}$ forms a classifying space for U(s). Let $W_{n,s}$ be the Stiefel manifold of complex orthonormal s-frames in C^n , and define $r_s^{(n)}:W_{n,s}\to V_{2n,2s}$ by $r_s^{(n)}(z_1,\cdots,z_s)=(z_1,\cdots,z_s,iz_1,\cdots,iz_s)$, and $w_s^{(n)}:V_{n,2s}\to W_{n,s}$ by $w_s^{(n)}(x_1,\cdots,x_{2s})=((1/\sqrt{2})(x_1-ix_{s+1}),\cdots,(1/\sqrt{2})(x_s-ix_{2s}))$ where $i=\sqrt{-1}$. $r_s^{(n)}$ and $w_s^{(n)}$ are U(s)-maps, and thus induce imbeddings $\bar{r}_s^{(n)}:G_{n,s}^c\to A_s^{(2n)}$ and $\bar{w}_s^{(n)}:A_s^{(n)}\to G_{n,s}^c$ on the quotient spaces. $\bar{r}_s^{(n)}\circ\bar{w}_s^{(n)}$ and $\bar{w}_s^{(2n)}\circ\bar{r}_s^{(n)}$ are homotopic to inclusion maps $A_s^{(n)}\subset A_s^{(2n)}$ and $G_{n,s}^c\subset G_{2n,s}^c$ respectively. Hence $\bar{r}_s^{(\infty)}$ and $\bar{w}_s^{(\infty)}$ are the desired homotopy equivalences of $A_s^{(\infty)}$ with the standard classifying space $G_{\infty,s}^c$ of U(s).

Let $Q^c(z_1, \dots, z_n) = z_1^2 + z_2^2 + \dots + z_n^2$ be the nonsingular billinear form on C^n . Then it can be easily verified from the definition that

Image
$$w_s^{(n)} = (\pi \in G_{n,s}^c | Q^c \text{ vanishes on } \pi)$$
.

Let $Q_{n-2}(C)$ be the quadric of the form Q^c in $P_{n-1}(C)$. We can now identify $A_s^{(n)}$ with its image in $G_{n,s}^c$, and write this as a

Representation theorem. $A_s^{(n)}$ is represented as the complex analytic variety of linear projective [s-1]-planes on $Q_{n-2}(C)$.

3. Preliminaries

We now list the preliminaries to be needed in the sequel, and for details we refer the reader to [6]. In what follows, \perp_f and \perp_m will denote orthogonal complements with respect to the form Q^c and the Hermitian metric on C^n respectively. \vee will denote join, \cup union and \cap intersection.

- **3.1.** The conjugation map $c: C^{n+2} \to C^{n+2}$ given by $c(z_0, z_1, \dots, z_{n+1}) = (\bar{z}_0, \bar{z}_1, \dots, \bar{z}_{n+1})$ has the following properties:
 - (i) $Q^{c}(z; w) = \langle z | c(w) \rangle$, and thus $z^{\perp f} = c(z)^{\perp m}$.
 - (ii) $Q^{c}(c(z)) = \overline{Q^{c}(z)}$, and thus c maps $Q_{n}(C)$ onto itself.
- (iii) The image under c of a projective [s]-plane q lying on $Q_n(C)$ is another projective [s]-plane q', which also lies on $Q_n(C)$ and is m-orthogonal to q. Thus c induces an involution on $A_{s+1}^{(n+2)}$.
- (iv) $Q^c(z; c(z)) \neq 0$ for $z \neq 0$. Thus, if an [s]-plane q is [k]-degenerate with degeneracy q_0 (i.e., $q_0 = q \cap q^{\perp r}$), then Q^c is nonsingular on the join $q \vee c(q_0)$.
- **3.2.** Suppose that a projective [s-1]-plane q lies on $Q_n(C)$, and that P is a point not on q. Then the join $q \vee P$ lies on $Q_n(C)$ if and only if $P \in Q_n(C) \cap q^{\perp_f}$.
- **3.3.** $Q_n(C)$ has a nontrivial intersection with every projective line on $P_{n+1}(C)$.
- **3.4.** An [s]-plane q lies on $Q_n(C)$ if and only if $q \subset q^{\perp s}$. Hence $s \leq n s$, i.e., $s \leq \lfloor n/2 \rfloor$. If $s < \lfloor n/2 \rfloor$, it follows from 3.2 and 3.3 that q is contained in an $\lfloor s + 1 \rfloor$ -plane lying on $Q_n(C)$. Thus the maximal planes on $Q_n(C)$ are $\lfloor n/2 \rfloor$ -dimensional, and any plane lying on $Q_n(C)$ can be imbedded in a maximal one.
- **3.5.** $A_{s+1}^{(2s+2)} = [s]$ -planes on $Q_{2s}(C)$ consists of two connected components or irreducible subvarieties V_0 and V_1 , each of which is homeomorphic to I_{s+1} . The dimension of intersection of two [s]-planes on $Q_{2s}(C)$ is congruent to $s \pmod 2$ if they belong to the same component, and to $s-1 \pmod 2$ if they belong to different components.
- **3.6.** It is a direct consequence of 3.4 and 3.5 that given an [s-1]-plane q on $Q_{2s}(C)$, there exist unique [s]-planes $q_0 \in V_0$ and $q_1 \in V_1$ such that $q = q_0 \cap q_1$, $q^{\perp j} = q_0 \vee q_1$, $Q_{2s}(C) \cap q^{\perp j} = q_0 \cup q_1$.
- **3.7.** Let $Q_{2s-1}(C) \subset Q_{2s}(C)$ be an inclusion of nonsingular quadrics. Then by 3.6 above, each [s-1]-plane q on $Q_{2s-1}(C)$ corresponds to a unique $q_0 \in V_0$, $q_0 \supset q$, and each $q_0 \in V_0$ necessarily intersects $Q_{2s-1}(C)$ in an [s-1]-plane q. This establishes a homeomorphism between V_0 and $A_s^{(2s+1)} = [s-1]$ -planes on $Q_{2s-1}(C)$.
- Let P_q be the unique point of q_0 which is *m*-orthogonal to q. Define a continuous map $f\colon V_0\to Q_{2s}(C)$ by $f(q_0)=P_q$. Let E,F,ξ be the canonical C^{s+1} -, C^s -, C^1 -bundles over $V_0,A_s^{(2s+1)}$ and $Q_{2s}(C)$ respectively. Then, since $q_0=q\lor P_q$, we have $E=F\oplus f^*(\xi)$. $P_q\notin Q_{2s-1}(C)$ by definition, and hence the map f

factors through the open contractible space $Q_{2s}(C) - Q_{2s-1}(C)$, and is thus null homotopic. Hence the pull-back $f^*(\xi)$ of f to V_0 is trivial, i.e., $f^*(\xi) = 1$ and $E = F \oplus 1$.

- **3.8.** Let $q_1 \subset q_2$ be an inclusion of projective [s]- and [s+1]-planes lying on $Q_n(C)$. Let $P \in (q_2-q_1)$. Then $q_2^{\perp f}=q_1^{\perp f}\cap P^{\perp f}$. Let h be a hyperplane in $q_1^{\perp f}$ not passing through P and thus intersecting the hyperplane $q_2^{\perp f}$ (containing P) in an [n-s-2]-plane h_0 . Central projection through P establishes a homeomorphism between $(h-h_0)$ and $Q_n(C)\cap (q_1^{\perp f}-q_2^{\perp f})$. Thus the latter is an open cell of complex dimension n-s-1.
- **3.9.** Let q_0 be a fixed [s-1]-plane in $P_{n-1}(C)$, and $S_t(q_0)=(q\in G_{n,k}^c|\dim(q\cap q_0)=t-1)$ for $t\leq \min(s,k)$. Then the map $S_t(q_0)\to G_{n,t}^c$ defined by $q\to q\cap q_0$ is continuous.
- **3.10.** Let $O_0 \in Q_1(C)$ and $P_1(C)$ be the hyperplane in $P_2(C)$ which is f-orthogonal to O_0 . Let $C^3 = (e_0, e_1, e_2)$, $Q^c(z) = z_0^2 + z_1^2 + z_2^2$, $O_0 = [e_0 + ie_1]$. Then the curves $a(t) = [(\cos t)e_0 + ie_1 + (\sin t)e_2]$ in $Q_1(C)$ and $b(t) = [(\cos t)e_0 + (i\cos t)e_1 + (\sin t)e_2]$ in $P_1(C)$ both starting at O_0 have a common tangent vector $e_2 \in S^5$ at this point. Hence $Q_1(C)$ and $P_1(C)$ have a "double" intersection at O_0 .
- **3.11.** For k=a+b, decompose a [k-1]-plane q_0 into a disjoint join $q_0=q_a\vee q_b$ of an [a-1]-plane q_a and a [b-1]-plane q_b . Let S_a and S_b be the submanifolds of $G_{n,k}^c$ of [k-1]-planes containing q_a and q_b respectively. $q\in S_a$ intersects $q_a^{\perp m}=[n-a-1]$ at [b-1], and the intersection uniquely determines q_a . Hence $S_a=G_{n-a,b}^c$, and similarly $S_b=G_{n-b,a}^c$. dim_c $S_a+\dim_c S_b=(n-a-b)b+(n-b-a)a=(n-k)k$, i.e., S_a and S_b are of complementary dimensions in $G_{n,k}^c$. They also intersect transversally at the single point q_0 . This gives a direct sum decomposition for the tangent plane to $G_{n,k}^c$ at $q_0:T_{q_0}(G_{n,k}^c)=T_{q_0}(S_a)\oplus T_{q_0}(S_b)$.

4. Topology of $Q_n(C)$

Let [p] be a maximal plane of dimension p = [n/2] lying on $Q_n(C)$, $[p] \supset [p-1] \supset \cdots \supset [1] \supset [0]$ be a cellular decomposition for [p] by its subprojective-spaces, and

$$[n+1] \supset [0]^{\perp_f} \supset [1]^{\perp_f} \supset \cdots \supset [n-p-1]^{\perp_f}$$
$$\supset [p] \supset [p-1] \supset \cdots \supset [1] \supset [0]$$

be the corresponding cellular decomposition for $P_{n+1}(C)$.

Define $Q_k(C) = Q_n(C) \cap [n-k-1]^{\perp f}$ for k > p. Then $Q_k(C) \supset [n-k-1]$, and is thus an [n-k-1]-degenerate subquadric of $Q_n(C)$. It follows from 3.8 that $\{Q_k(C) - Q_{k-1}(C)\}$ is an open cell of complex dimension k for k > p+1, and that $\{Q_{p+1}(C) - Q_n(C) \cap [n-p-1]^{\perp f}\}$ is an open [p+1]-cell.

For $n=2p+1, Q_n(C)\cap [n-p-1]^{\perp_f}=Q_{2p+1}(C)\cap [p]^{\perp_f}=[p],$ and thus

$$Q_{2p+1}(C) \supset Q_{2p}(C) \supset \cdots \supset Q_{p+1}(C)$$
$$\supset [p] \supset [p-1] \supset \cdots \supset [1] \supset [0]$$

forms a cellular decomposition for $Q_{2p+1}(C)$.

For n=2p, assume without loss of generality that $[p]=[p]_0 \in V_0$. Then by 3.6 there exists a unique $[p]_1 \in V_1$ such that $Q_n(C) \cap [n-p-1]^{\perp_f} = Q_{2p}(C) \cap [p-1]^{\perp_f} = [p]_0 \cup [p]_1$. Thus

$$Q_{2p}(C)\supset Q_{2p-1}(C)\supset\cdots\supset Q_{p+1}(C)\supset [p]_0$$
,
 $[p]_1\supset [p-1]\supset\cdots\supset [1]\supset [0]$

is a cell decomposition for $Q_{2p}(C)$.

5. CW-structure of $A_{s+1}^{(n+2)}$

Define, for $q \in A_{s+1}^{(n+2)}$ and $t \in Z^+$, $q_t = q \cap$ complex t-dimensional cell of $Q_n(C)$, i.e.,

$$q_t = \begin{cases} q \ \cap \ [t] & \text{for } t < n/2 \ , \\ q \ \cap \ Q_t(C) & \text{for } t > n/2 \ , \end{cases}$$

$$q_{p_0} = q \ \cap \ [p]_0 \ , \quad q_{p_1} = q \ \cap \ [p]_1 & \text{for } p = n/2 \ .$$

Observation. (i) q_t is a subspace of q.

(ii) The sequence (q_t) forms a filtration: For n = 2p + 1,

$$q=q_{2p+1}\supset q_{2p}\supset\cdots\supset q_{p+1}\supset q_p\supset\cdots\supset q_1\supset q_0$$
 .

For n = 2p, either

$$q=q_{2p}\supset q_{2p-1}\supset\cdots\supset q_{p+1}\supset q_{p_0}\supset q_{p-1}\supset\cdots\supset q_0,\ q_{p_1}=q_{p-1}$$
 ,

or

$$q=q_{\scriptscriptstyle 2p}\supset q_{\scriptscriptstyle 2p-1}\supset\cdots\supset q_{\scriptscriptstyle p+1}\supset q_{\scriptscriptstyle p_1}\supset q_{\scriptscriptstyle p_1}\supset\cdots\supset q_{\scriptscriptstyle 1}\supset q_{\scriptscriptstyle 0},\; q_{\scriptscriptstyle p_0}=q_{\scriptscriptstyle p-1}$$
 ,

by subspaces whose dimensions decrease at most 1 at each step.

Proof. (i) Obviously, $q_t = q \cap [t]$ for $t \le n/2$ is a subspace, and

$$q_t = q \cap Q_t(C) = q \cap Q_n(C) \cap [n-t-1]^{\perp_f} = q \cap [n-t-1]^{\perp_f}$$

for t > n/2 is also a subspace.

(ii) For $t \leq n/2$,

 $\dim q_t = \dim \left(q \, \cap \, [t]\right) \leq \dim \left(q \, \cap \, [t-1]\right) \, + \, 1 = \dim q_{t-1} + 1 \; .$ For t > n/2,

$$\begin{split} \dim q_{t+1} &= \dim \left(q \, \cap \, Q_{t+1}(C) \right) \\ &= \dim \left(q \, \cap \, [n-t-2]^{\perp_f} \right) \leq \dim \left(q \, \cap \, [n-t-1]^{\perp_f} \right) + 1 \\ &= \dim \left(q \, \cap \, Q_t(C) \right) + 1 = \dim q_t + 1 \; . \end{split}$$

If
$$n = 2p + 1$$
, then

$$\begin{split} \dim q_{p+1} &= (\dim q \, \cap \, Q_{p+1}(C)) \\ &= \dim (q \, \cap \, [p-1]^{\perp_f}) \leq \dim (q \, \cap \, [p]^{\perp_f}) \, + \, 1 \\ &= \dim (q \, \cap \, Q_{2p+1}(C) \, \cap \, [p]^{\perp_f}) \, + \, 1 \\ &= \dim (q \, \cap \, [p]) \, + \, 1 = \dim q_p \, + \, 1 \; . \end{split}$$

Thus

$$q = q_{2p+1} \supset q_{2p} \supset \cdots \supset q_{p+1} \supset q_p \supset \cdots \supset q_1 \supset q_0$$

is the required filtration.

If n = 2p, then

$$q = [p-1]^{\perp_f} = q \cap Q_{2p}(C) \cap [p-1]^{\perp_f}$$

= $q \cap ([p]_0 \cup [p]_1) = q_{p_0} \cup q_{p_1}$

is a subspace, and thus either $q \cap [p-1]^{\perp_f} = q_{p_0} \supset q_{p_1}$ or $q \cap [p-1]^{\perp_f} = q_{p_1} \supset q_{p_2}$. If $q \cap [p-1]^{\perp_f} = q_{p_0} \supset q_{p_1}$, then

$$\begin{split} q_{p_1} &= q_{p_0} \cap \, q_{p_1} = q \, \cap \, ([p]_0 \, \cap \, [p]_1) = q \, \cap \, [p-1] = q_{p-1} \, , \\ \dim q_{p+1} &= \dim \, (q \, \cap \, [p-2]^{\perp_f}) \leq \dim \, (q \, \cap \, [p-1]^{\perp_f}) + 1 \\ &= \dim \, q_{p_0} + 1 \, \, . \end{split}$$

Thus

$$q = q_{2p} \supset q_{2p-1} \supset \cdots \supset q_{p+1} \supset q_{p_0} \supset q_{p-1} \supset \cdots \supset q_1 \supset q_0$$

is the required filtration.

Similarly, if $q \cap [q-1]^{\perp_f} = q_{p_1} \supset q_{p_0}$, then we have $q_{p_0} = q_{p-1}$ and

$$q=q_{2p}\supset q_{2p-1}\supset\cdots\supset q_{p+1}\supset q_{p_1}\supset q_{p-1}\supset\cdots\supset q_1\supset q_0$$

is the required filtration. q.e.d.

For $0 \le a_0 < a_1 < \cdots < a_s \le n$, we introduce the closed Schubert cell

$$\Omega_{a_0a_1\cdots a_s}=(q\in A_{s+1}^{(n+2)}\,|\dim\,q_{a_t}\geq t)\ .$$

An immediate corollary of the preceding observation is the following.

Corollary. $A_{s+1}^{(n+2)} = \bigcup \Omega_{a_0a_1\cdots a_s}$.

However, some of the cells in this covering are "superfluous", and the next lemma shows that $A_{s+1}^{(n+2)}$ can be covered by a smaller class of Schubert cells $(\Omega_{a_0 a_1 \cdots a_s} | a_i + a_j \neq n \text{ for } i < j).$

Notation. For $a = (a_0, a_1, \dots, a_s)$ and $b = (b_0, b_1, \dots, b_s) \in (Z^+)^{s+1}$, we write: $b \le a$ if and only if $b_j \le a_j$, $0 \le j \le s$; b = a if and only if $b_j = a_j$, $0 \le j \le s$; b < a if and only if $b \le a$, $b \ne a$.

Lemma. $\Omega_{a_0a_1\cdots a_s} = \bigcup_{b\leq a} (\Omega_{b_0b_1\cdots b_s}|b_i+b_j\neq n \text{ for } i< j).$

Proof. Suppose $a_i + a_j = n$ for some i < j; otherwise, the lemma follows trivially. There are two cases to consider.

- 1. dim $q_{a_{i-1}} = \dim q_{a_i} \ge i$. Define $b_k = \min (a_k; a_i i + k 1)$ for $0 \le k \le i-1$. Then dim $q_{b_k} \ge k$, i.e., $q \in \Omega_{b_0b_1...b_{i-1}a_i-1a_{i+1}...a_s}$.
 - 2. $\dim q_{a_{i-1}} = \dim q_{a_i} 1$. Then $[a_i] = q_{a_i} \vee [a_i 1]$. (i) $q_{a_j \perp_f} q_{a_i}$ since $q \subset Q_n(C)$.

 - (ii) $q_{a_j} \perp_f [n a_j 1] = [a_i 1]$, and thus by the above

$$q_{a_i} \subset Q_n(C) \cap [a_i]^{\perp_f} = Q_n(C) \cap [n - a_i]^{\perp_f} = Q_{a_{i-1}}(C)$$
,

i.e., dim $q_{a_{j-1}} = \dim q_{a_j} \ge j$. Define $c_k = \min (a_k; a_j - j + k - 1)$ for $0 \le j$ $k \leq j-1$. Then dim $q_{c_k} \geq k$, i.e., $q \in \Omega_{c_0c_1\cdots c_{j-1}a_{j-1}a_{j+1}\cdots a_s}$. Thus

$$\Omega_{a_0 a_1 \dots a_s} = \Omega_{b_0 \dots b_{i-1} a_i - 1 a_{i+1} \dots a_s} \cup \Omega_{c_0 \dots c_{i-1} a_{i-1} a_{i+1} \dots a_s} ,$$

where $b_k \le a_k$ for $1 \le k \le i - 1$, and $c_k \le a_k$ for $1 \le k \le j - 1$. Hence the lemma follows by induction on $\sum_{j=0}^{s} a_j = a_0 + a_1 + \cdots + a_s$. q.e.d. We now define the open Schubert cell $\Omega_{a_0 a_1 \cdots a_s}^{\text{open}}$ for $a_i + a_j \neq n$, i < j:

$$\mathcal{Q}_{a_0a_1\cdots a_s}^{\text{open}} = (q \in A_{s+1}^{(n+2)} \, | \dim q_t = j \text{ for } a_j \leq t < a_{j+1})$$
 .

The basis of our CW-structure theorem is the following.

Proposition. $\Omega_{a_0a_1...a_s}^{\text{open}}$ is an open topological cell of complex dimension $d_c = \sum_{i=0}^s a_i - s(s+1) + e$, where e is the number of pairs (a_i, a_j) , i < j, $a_i + a_j < n$. For $a_j \le n/2$ and $0 \le j \le s$, $\Omega_{a_0 a_1 \dots a_s}^{\text{open}}$ is the ordinary Schubert cell $(\Omega^c)_{a_0a_1\cdots a_s}^{\mathrm{open}}$ of the complex Grassmann manifold $G^c_{\lfloor n/2\rfloor+1,s+1}(\subset A_{s+1}^{(n+1)})$, in

which case, $e(\Omega_{a_0a_1...a_s}) = \frac{1}{2}s(s+1)$ and $d_c(\Omega_{a_0a_1...a_s}) = \sum_{j=0}^s a_j - \frac{1}{2}s(s+1)$. Proof. We use induction on s. For s = 0, $A_1^{(n+1)} = Q_n(C)$, and the open Schubert cells of $A_1^{(n+2)}$ are precisely the open cells of $Q_n(C)$ as determined in § 4. Let $s \ge 1$, and assume the induction hypothesis for s - 1. We define an onto map $F: \Omega_{a_0a_1...a_s}^{\text{open}} \to \Omega_{a_0a_1...a_{s-1}}^{\text{open}}$ by $F(q) = q_{a_{s-1}}$. It follows from 3.9 that F is continuous. Let F_q be the fiber of F at an arbitrary [s-1]-plane $q \in$ $\Omega_{a_0a_1...a_{s-1}}^{\text{open}}$. We have two cases to consider.

1. $a_s \leq n/2$. Then $\Omega_{a_0a_1...a_s}^{\text{open}}$ is precisely the ordinary Schubert cell $(\Omega^c)_{a_0a_1...a_s}^{\mathrm{open}}$ in the Grassmann manifold $G_{a_s+1,s+1}^c$. $w \in F_q$ cuts $q^{\perp_m} \cap ([a_s] [a_s-1]$) at a single point P_w which uniquely determines w. Hence F_q is

homeomorphic to $q^{\perp_m}\cap([a_s]-[a_s-1])$ which is an open cell of complex dimension $d_c=a_s-s$. Let O_j be the unique point in [j] which is m-orthogonal to [j-1], and $\tilde{q}=[O_{a_0},O_{a_1},\cdots,O_{a_{s-1}}]$ the distinguished element of $\Omega_{a_0a_1...a_{s-1}}^{\text{open}}$. By the induction hypothesis, $\Omega_{a_0a_1...a_{s-1}}^{\text{open}}$ is an open cell and thus contractible. Hence the principal bundle $U(a_{s-1}+1)\to G_{a_sa_1...a_{s-1}}^c$ is "trivial" over $\Omega_{a_0a_1...a_{s-1}}^{\text{open}}$, i.e., admits a cross section $t\colon\Omega_{a_0a_1...a_{s-1}}^{\text{open}}\to U(a_{s-1}+1)$. t_q maps \tilde{q} onto q, and hence \tilde{q}^{\perp_m} onto q^{\perp_m} isomorphically. Also, t_q transforms $[a_s]$ and $[a_s-1]$ isomorphically onto themselves. It thus induces a homeomorphism $t_q\colon F_{\tilde{q}}=\tilde{q}^{\perp_m}\cap([a_s]-[a_s-1])\to q^{\perp_m}\cap([a_s]-[a_s-1])=F_q$. Hence $(q,P)\mapsto t_q(P)$ yields a "trivialization" for F. Thus $\Omega_{a_0a_1...a_s}^{\text{open}}$ is an open topological cell of complex dimension $d_c=\sum_{j=0}^s a_j-\frac{1}{2}s(s+1)$.

2. $a_s > n/2$. $w \in F_q$ again cuts $q^{\perp_m} \cap ([n-a_s-1]^{\perp_f} - [n-a_s]^{\perp_f})$ at a single point P_w which uniquely determines w. It follows from 3.2 that $w \in A_{s+1}^{(n+2)}$ if and only if $P_w \in Q_n(C) \cap q^{\perp_f}$. Thus the fiber F_q is homeomorphic to

$$F_q = Q_n(C) \cap q^{\perp_m} \cap q^{\perp_f} \cap ([n - a_s - 1]^{\perp_f} - [n - a_s]^{\perp_f})$$
.

We now observe the following.

- (i) By 3.1 (iv), Q^c is nonsingular on the join $q \vee c(q)$. Thus the restriction of $Q_n(C)$ to its f-orthogonal complement, i.e., to the plane $q^{\perp_m} \cap q^{\perp_f}$ is a nonsingular quadric $Q_{n-2s}(C)$.
- (ii) Let e_s be the number of indices a_t such that t < s, $a_t + a_s < n$, or equivalently, such that $a_t \le n a_s 1$. Then by the definition of $\Omega^{\text{open}}_{a_0a_1\cdots a_{s-1}}$ we have dim $(q \cap [n-a_s-1]) = e_s 1$. Since $a_t \ne n-a_s \ \forall \ t, \ q \cap [n-a_s] = q \cap [n-a_s-1]$, i.e., dim $(q \cap [n-a_s]) = e_s 1$.
- (iii) $q \subset Q_{a_s}(C) = Q_n(C) \cap [n-a_s]^{\perp f}$, i.e., q and $[n-a_s]$ both lie on $Q_n(C)$ and are mutually f-orthogonal. Thus the join $q \vee [n-a_s]$ lies on $Q_n(C)$. Since dim $(q \vee [n-a_s]) = \dim q + \dim [n-a_s] \dim (q \cap [n-a_s]) = n-a_s-s-e_s$, the subspace $q \vee [n-a_s-1]$ of the join also lies on $Q_n(C)$ and is of (complex) dimension $n-a_s-s-e_s-1$.
- (iv) Let h_q and k_q be the *m*-orthogonal complements of q in $q \vee [n-a_s]$ and $q \vee [n-a_s-1]$ respectively. Then $h_q \subset Q_n(C) \cap q^{\perp_f}$ since $q \vee [n-a_s]$ lies on $Q_n(C)$. Thus

$$egin{aligned} h_q \subset Q_n(C) \ \cap \ q^{\perp_f} \cap \ q^{\perp_m} &= Q_{n-2s}(C) \ , \ \dim h_q &= n - a_s - e_s \ , \qquad \dim k_q &= n - a_s - e_s - 1 \ , \ \ q^{\perp_f} \cap \ [n - a_s]^{\perp_f} &= (q \ ee \ [n - a_s])^{\perp_f} &= (q \ ee \ h_q)^{\perp_f} = q^{\perp_f} \cap h_q^{\perp_f} \ . \end{aligned}$$

Similarly,

$$q^{\perp_f} \cap [n - a_s - 1]^{\perp_f} = q^{\perp_f} \cap k_q^{\perp_f}.$$
 (v)
$$F_q = Q_n(C) \cap q^{\perp_m} \cap q^{\perp_f} \cap (k_q^{\perp_f} - h_q^{\perp_f}),$$
 i.e.,

$$F_q = Q_{n-2s}(C) \cap (k_q^{\perp_f} - h_q^{\perp_f})$$
,

where \perp_f now denotes f-orthogonal complements in the plane $q^{\perp_m} \cap q^{\perp_f}$. Hence it follows from 3.8 that F_q is an open topological cell of (complex) dimension

$$d_c = n - 2s - (n - a_s - e_s - 1) - 1 = a_s - 2s + e_s$$

= $(n - 2s) - \dim h_a \ge \frac{1}{2}(n - 2s)$.

(a) If n is even and $a_s - 2s + e_s = \frac{1}{2}(n - 2s)$, then h_q is a maximal plane on $Q_{n-2s}(C)$, and k_q is of codimension 1 in h_q . It follows from 3.6 that there exists a unique maximal plane h'_q belonging to the opposite variety containing h_q such that $h_q \cap h'_q = k_q$ and $Q_{n-2s}(C) \cap k_q^{\perp f} = h_q \cup h'_q$. Thus

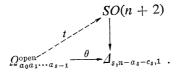
$$F_q = Q_{n-2s}(C) \, \cap \, k_q^{\perp_f} - Q_{n-2s}(C) \, \cap \, h_q^{\perp_f} = h_q \, \cup \, h_q' - h_q = h_q' - k_q$$

is an open projective space.

(b) If $a_s - 2s + e_s > \frac{1}{2}(n-2s)$, then $Q_{n-2s}(C) \cap k_q^{\perp f}$ is an $[n-a_s-e_s]$ -degenerate quadric $Q_{a_s-2s+e_s}(C)$, and hence $F_q = Q_{a_s-2s+e_s}(C) - Q_{n-2s}(C) \cap k_q^{\perp f}$ is an open quadric. Let

$$\Delta_{s,n-a_s-e_s,1} = SO(n+2)/U(s) \times U(n-a_s-e_s) \times U(1) \times SO(a_s-s+e_s-n)$$

be the flag manifold of triplets of ordered mutually m-orthogonal [s-1], $[n-a_s-e_s-1]$ and [0]-subspaces of $[n-a_s+s]$ -spaces lying on $Q_n(C)$. Define $\theta: \Omega_{a_0a_1...a_{s-1}}^{\text{open}} \to \Delta_{s,n-a_s-e_s,1}$ by $\theta(q)=(q,k_q,r_q)$ where r_q is the unique point in h_q which is m-orthogonal to k_q . Continuity of θ follows from 3.9. By the induction hypothesis, $\Omega_{a_0a_1...a_{s-1}}^{\text{open}}$ is an open contractible cell, and thus θ admits a lifting t to SO(n+2), i.e.,



Let O_j be the unique point of [j], m-orthogonal to [j-1], $O'_{n-j}=c(O_{n-j})$ the unique point of $Q_j(C)$, m-orthogonal to $Q_{j-1}(C)$, $0 \le x \le s-1$ the largest integer such that $a_x \le n/2$, $\tilde{q} = [O_{a_0}, \cdots, O_{a_x}, O'_{n-a_x+1}, \cdots, O'_{n-a_s}]$ the distinguished element of $\Omega^{\text{open}}_{a_0a_1\dots a_{s-1}}$, and $\theta(\tilde{q})=(\tilde{q},\tilde{k}_q,\tilde{r}_q)$ the distinguished element of $A_{s,n-a_s-e_s,1}\cdot t_q$ maps \tilde{q} isomorphically onto q, and therefore the plane $\tilde{q}^{\perp_f}\cap \tilde{q}^{\perp_m}$ isomorphically onto the plane $q^{\perp_f}\cap q^{\perp_m}$. Hence t_q maps $\tilde{Q}_{n-2s}(C)$ homeomorphically onto $Q_{n-2s}(C)$. Also, t_q is an isomorphism of \tilde{h}_q and \tilde{k}_q onto h_q and k_q , and thus of $\tilde{h}_q^{\perp_f}$ and $\tilde{k}_q^{\perp_f}$ onto $h_q^{\perp_f}$ and $k_q^{\perp_f}$ respectively, and therefore induces a homeomorphism

$$t_q \colon F_{\bar{q}} = \tilde{Q}_{n-2s}(C) \, \cap \, (\tilde{k}_q^{\perp_f} - \tilde{h}_q^{\perp_f}) \to Q_{n-2s}(C) \, \cap \, (k_q^{\perp_f} - h_q^{\perp_f}) = F_q \, .$$

Thus $(q, P) \mapsto t_q(P)$ yields a "trivialization"

$$\Omega_{a_0a_1\cdots a_{s-1}}^{\text{open}} \times F_{\tilde{q}} \xrightarrow{=} \Omega_{a_0a_1\cdots a_s}^{\text{open}}$$

Hence $\Omega_{a_0a_1...a_s}^{\text{open}}$ is a product bundle over $\Omega_{a_0a_1...a_{s-1}}^{\text{open}}$ and, by the induction hypothesis, is an open topological cell of (complex) dimension

$$d_c = \sum_{j=0}^{s-1} a_j - (s-1)s + e(\Omega_{a_0 a_1 \dots a_{s-1}}) + a_s - 2s + e_s$$

= $\sum_{j=0}^{s} a_j - s(s+1) + e(\Omega_{a_0 a_1 \dots a_s})$. q.e.d.

Suppose dim $q_{a_j} \ge j$ and dim $q_{a_{j-1}} < j$. Since dim $q_{a_j} \le \dim q_{a_{j-1}} + 1$, it follows that dim $q_{a_j} = j$ and dim $q_{a_{j-1}} = j - 1$. Hence we have the standard identity

$$\varOmega_{a_0a_1...a_s}^{
m open} = \varOmega_{a_0a_1...a_s} - \bigcup_{a_{j-1} < a_{j}-1} \varOmega_{a_0...(a_{j}-1)...a_s}$$
 ,

or, equivalently,

$$arOmega_{a_0a_1...a_s}^{
m open} = arOmega_{a_0a_1...a_s} - igcup_{b < a} arOmega_{b_0b_1...b_s} \; ,$$

which, by applying the lemma of § 5, this can be strengthened to read:

$$\Omega_{a_0a_1\cdots a_s}^{ ext{open}} = \Omega_{a_0a_1\cdots a_s} - \bigcup_{c \leq a} \Omega_{c_0\cdots c_s} \quad ext{with} \quad c_i + c_j
eq n, \ i < j \ .$$

It follows from the preceding proposition (by induction on the dimension) that $\Omega_{a_0a_1...a_s}$, $a_i+a_j\neq n$, i< j, is a topological cell attached to the Schubert cells $(\Omega_{c_0c_1...c_s}|c< a, c_i+c_j\neq n, i< j)$ lying on its boundary. This immediately yields the following CW-structure theorem which is the main result of this paper.

CW-structure theorem. $A_{s+1}^{(n+2)}$ is a CW-complex consisting of Schubert cells $\Omega_{a_0a_1...a_s}$ for $0 \le a_0 < a_1 < \cdots < a_s \le n$, $a_i + a_j \ne n$, i < j, $\Omega_{a_0a_1...a_s}$ is the variety of [s]-planes on $Q_n(C)$ which intersect the complex a_j -dimensional cell of $Q_n(C)$ at a plane of complex dimension j, $0 \le j \le s$, and

dim
$$(\Omega_{a_0a_1...a_s}) = 2\left(\sum_{j=0}^s a_j - s(s+1) + e\right)$$
,

where e is the number of pairs (a_i, a_j) , i < j, $a_i + a_j < n$.

Demonstration. As a demonstration of the CW-structure theorem, we now present the following examples.

1.
$$A_3^{(8)} = [2]$$
-planes on $Q_6(C)$

Ω_{012}	Ω_{013_0}	Ω_{013_1}	$arOmega_{014}$	Ω_{023_0}	$arOmega_{023_1}^4$	Ω_{025}	Ω_{03_04}
Ω_{456}	$\Omega_{\scriptscriptstyle 3_156}$	Ω_{3_056}	Ω_{256}	Ω_{3_146}	Ω_{3_046}	Ω_{146}	Ω_{23_16}
Ω_{08_14}	Ω_{03_05} 8	Ω_{03_15} 8	Ω_{045}	Ω_{123_0}	Ω_{123_1}	Ω_{13_04}	Ω_{13_14}
Ω_{23_06}	Ω_{13_16}	Ω_{13_06}	$arOmega_{126}^{00000000000000000000000000000000000$	Ω_{3_145}	Ω_{3_045}	$arOmega_{23_15}$ 10	Ω_{23_05}

Dual cells appear in the same column, and the number in the corner indicates the dimension of the cell. (Refer to § 8 for duality.)

2.
$$A_2^{(7)} = [1]$$
-planes on $Q_5(C)$

$arOmega_{01}$	$arOmega_{02}$	Ω_{03}	Ω_{04} 6	Ω_{12}	$arOmega_{13}$
Ω_{45}	$arOmega_{35}$	$arOmega_{25}^{10}$	$arOmega_{15}$	Ω_{34}^{-10}	$arOmega_{24}$ 8

Corollary. The inclusion map $j: A_s^{(n)} \subset A_{s+1}^{(n+1)}$ is "cellular", and $A_s^{(n)}$ is the subcomplex of $A_{s+1}^{(n+2)}$ consisting of Schubert cells $\Omega_{a_0...a_s}$ for which $a_0 = 0$. In particular, $Q_{n-2s}(C) = A_1^{(n-2s+2)}$ is the subcomplex of $A_{s+1}^{(n+2)}$ consisting of Schubert cells for which $a_j = 0$, j < s.

6. Homology and cohomology of $A_{s+1}^{(n+2)}$

Since $A_{s+1}^{(n+2)}$ admits a triangulation by *even* dimensional cells only, the boundary and coboundary operators are zero, and each Schubert cell represents a distinct homology (cohomology) class. Hence $A_{s+1}^{(n+2)}$ is simply connected, $H^*(A_{s+1}^{(n+2)}; Z)$ is torsion free and vanishes in odd dimensions. $H^{2i}(A_{s+1}^{(n+2)}; Z)$ is the free abelian group on Schubert cells $\Omega_{a_0a_1...a_s}$ for which dim $\Omega_{a_0a_1...a_s} = 2i$.

The Euler-Poincaré characteristic

$$\chi(A_{s+1}^{(n+2)}) = \text{Total number of cells} = 2^{s+1} \cdot {[n/2]+1 \choose s+1}$$
.

It follows from Proposition 2.5.2 of [1] that $K^1(A_{s+1}^{(n+2)}) = 0$ and $K^0(A_{s+1}^{(n+2)})$ is the free abelian group on $\chi(A_{s+1}^{(n+2)})$ generators.

7. Maximal planes on $Q_n(C)$

The special case of the CW-structure theorem for $s = \lfloor n/2 \rfloor$ reduces to Ehressmann's triangulation in [5] of the variety of maximal planes on $Q_n(C)$.

(i) For n=2s the indices (a_0, a_1, \dots, a_s) of a Schubert cell $\Omega_{a_0 \dots a_s}$ are picked one from each column of

$$\begin{pmatrix} 0 & 1 & \cdots s - 1 & s_0 \\ 2s & 2s - 1 & \cdots s + 1 & s_1 \end{pmatrix},$$

since $a_i+a_j\neq n$. Thus once (a_0,\cdots,a_{x-1}) are chosen (where $0\leq x\leq s$ is the largest integer such that $a_x\leq n/2$), a_x is either s_0 or s_1 , and the rest of the indices (a_{x+1},\cdots,a_s) are the elements in the 2nd-row of the complementary columns. Let $V_j=I_{s+1}$ be the irreducible subvariety of $A_{s+1}^{(2s+2)}$ containing $[s]_j$ for j=0,1. Then it follows from 3.5 that $\Omega_{a_0a_1\cdots a_s}$ lies in V_0 if and only if

$$a_x = \begin{cases} s_0 & \text{for } x \equiv s \pmod{2}, \\ s_1 & \text{for } x \equiv s - 1 \pmod{2}, \end{cases}$$

and in V_1 if and only if

$$a_x = \begin{cases} s_1 & \text{for } x \equiv s \pmod{2}, \\ s_0 & \text{for } x \equiv s - 1 \pmod{2}. \end{cases}$$

Thus the Schubert cells of $A_{s+1}^{(2s+2)}$ are evenly divided between V_0 and V_1 , and each $\Omega_{a_0a_1...a_s}$ is uniquely determined by the indices $(a_0, a_1, \dots, a_{s-1})$, i.e., by the dimensions of intersection with the decomposition $[s-1] \supset [s-2] \supset \dots \supset [1] \supset [0]$. We thus put $\Omega_{a_0a_1...a_s} = [a_0, a_1, \dots, a_{s-1}]$ and

$$e(\Omega) = \frac{1}{2}x(x+1) + (2s-a_s) + (2s-a_{s-1}-1) + \cdots + (2s-a_{x+1}-(s-x-1)),$$

$$\dim_c(\Omega) = \sum_{j=0}^s a_j - s(s+1) + \frac{1}{2}x(x+1) + 2s(s-x) - \sum_{j=x+1}^s a_j - \frac{1}{2}(s-x)(s-x-1),$$

i.e.,

$$\dim_c [a_0, a_1, \cdots, a_{x-1}] = \sum_{j=0}^{x-1} a_j + \frac{1}{2} s(s - 2x + 1) .$$

(ii) For n = 2s + 1 the indices of a Schubert cell $\Omega_{a_0a_1...a_s}$ are picked one from each column of

$$\begin{pmatrix} 0 & 1 & \cdots & s-1 & s \\ 2s+1 & 2s & \cdots & s+2 & s+1 \end{pmatrix}.$$

Thus once the first set indices (a_0, a_1, \cdots, a_x) are given, the rest (a_{x+1}, \cdots, a_s) are simply elements of the 2nd-row of the complementary columns. Hence $\Omega_{a_0a_1...a_s}$ is uniquely determined by the dimensions of intersection with the decomposition $[s] \supset [s-1] \supset \cdots \supset [1] \supset [0]$. We thus denote $\Omega_{a_0a_1...a_s} = [a_0, a_1, \cdots, a_x]$,

$$e(\Omega) = \frac{1}{2}x(x+1) + (2s+1-a_s) + (2s-a_{s-1}) + \cdots + (2s+1-a_{x+1}-(s-x-1)) ,$$

$$\dim_c(\Omega) = \sum_{j=0}^s a_j - s(s+1) + \frac{1}{2}x(x+1) + (s-x)(2s+1) - \sum_{j=x+1}^s a_j - \frac{1}{2}(s-x)(s-x-1) ,$$

i.e.,

$$\dim_{c} [a_0, a_1, \dots, a_x] = \sum_{j=0}^{x} a_j + \frac{1}{2}(s+1)(s-2x)$$
.

(iii) Let $h: A_s^{(2s+1)} \stackrel{=}{\longrightarrow} V_0$ be the canonical homeomorphism of 3.7 between the variety $A_s^{(2s+1)}$ of maximal planes on $Q_{2s-1}(C)$ and the irreducible subvariety V_0 of maximal planes on $Q_{2s}(C)$. Let $[s-1] \supset [s-2] \supset \cdots \supset [1] \supset [0]$ be the cellular decomposition of the maximal plane [s-1] on $Q_{2s-1}(C)$, and $[s]_0 \supset [s-1] \supset \cdots \supset [1] \supset [0]$ the cellular decomposition of $[s]_0 = h[s-1]$. Then using the notation introduced above, we can identify the Schubert cells $[a_0, a_1, \cdots, a_t]$ of V_0 and $[a_0, a_1, \cdots, a_t]$ of $A_s^{(2s+1)}$ for $0 \le a_0 < a_1 < \cdots < a_t \le s-1$ through the homeomorphism h.

8. Duality theory for $A_{s+1}^{(n+2)}$

We first briefly summarize the standard duality theory for $G_{n+2,s+1}^c$. (For details see [8, Chapter III].) Let

$$(1) [n+1] \supset [n] \supset \cdots \supset [1] \supset [0]$$

be a cellular decomposition for $P_{n+1}(C)$, and

$$(2) [n+1] \supset [0]^{\perp_m} \supset [1]^{\perp_m} \supset \cdots \supset [n]^{\perp_m}$$

the dual cellular decomposition by m-complementary planes. Let P_j be the unique point of [j] which is m-orthogonal to [j-1]. Let $(\Omega^c_{a_0a_1...a_s})$ and $(\bar{\Omega}^c_{b_0...b_s})$ be the two systems of Schubert cells of $G^c_{n+2,s+1}$ arising from (1) and (2) respectively. $\bar{\Omega}^c_{n-a_s...n-a_0}$ is called the dual cell of $\Omega^c_{a_0a_1...a_s}$. The duality theory for $G^c_{n+2,s+1}$ states that two Schubert cells $\Omega^c_{a_0a_1...a_s}$ and $\bar{\Omega}^c_{b_0b_1...b_s}$ of complementary dimensions intersect transversally at a single point $q = [P_{a_0}P_{a_1}\cdots P_{a_s}]$ if they are dual, and are disjoint if not.

We saw in § 4 that if $[p] \supset [p-1] \supset \cdots \supset [1] \supset [0]$ is the cellular decomposition of a maximal plane [p] on $Q_n(C)$, then the corresponding cellular decomposition

(3)
$$[n+1] \supset [0]^{\perp_f} \supset [1]^{\perp_f} \supset \cdots \supset [n-p-1]^{\perp_f}$$
$$\supset [p] \supset [p-1] \supset \cdots \supset [1] \supset [0]$$

of $P_{n+1}(C)$ gives rise to a cellular decomposition for $Q_n(C)$:

$$egin{aligned} Q_{2p+1}(C) \supset Q_{2p}(C) \supset \cdots \supset Q_{p+1}(C) \ &\supset [p] \supset [p-1] \supset \cdots \supset [1] \supset [0] \qquad ext{for } n=2p+1 \;, \ Q_{2p}(C) \supset Q_{2p-1}(C) \supset \cdots \supset Q_{p+1}(C) \supset [p]_0 \;, \ &[p]_1 \supset [p-1] \supset \cdots \supset [0] \qquad ext{for } n=2p \;. \end{aligned}$$

Let

$$(4) \qquad [n+1] \supset [0]^{\perp_m} \supset \cdots \supset [n-p-1]^{\perp_m} \supset \{[p]^{\perp_f}\}^{\perp_m} \supset \cdots \supset \{[0]^{\perp_f}\}^{\perp_m}$$

be the dual decomposition of $P_{n+1}(C)$ by *m*-complementary planes. Since, $[k]^{\perp_m} = c([k])^{\perp_f}$ and $([k]^{\perp_f})^{\perp_m} = c([k])$, $0 \le k \le p$, (4) is precisely the cellular decomposition

$$(5) \qquad [n+1] \supset c([0])^{\perp_f} \supset \cdots \supset c([n-p-1])^{\perp_f}$$
$$\supset c([p]) \supset \cdots \supset c([0])$$

corresponding to the maximal plane c([p]) on $Q_n(C)$, and thus induces a cellular decomposition for $Q_n(C)$. We put

$$\begin{split} & [\bar{k}] = c([k]) & \text{for } 0 < k < p \ , \\ & \overline{Q_k(C)} = c([n-k-1])^{\perp_f} \cap Q_n(C) \ , \\ & [\bar{k}] = [\overline{n-k}]^{\perp_f} = c([n-k])^{\perp_f} & \text{for } k > p \ . \end{split}$$

For n = 2p, $[p]_j$ is disjoint from $c([p]_j)$ for j = 0, 1. It follows from 3.5 that

$$\begin{split} c([p]_0) \in V_1 \quad \text{and} \quad c([p]_1) \in V_0 \qquad \text{for p even} \ , \\ c([p]_0) \in V_0 \quad \text{and} \quad c([p]_1) \in V_1 \qquad \text{for p odd} \ . \end{split}$$

Thus we put

$$[\bar{p}]_0 = \begin{cases} c([p]_1) & \text{for } p \text{ even }, \\ c([p]_0) & \text{for } p \text{ odd }, \end{cases} \qquad [\bar{p}]_1 = \begin{cases} c([p]_0) & \text{for } p \text{ even }, \\ c([p]_1) & \text{for } p \text{ odd }. \end{cases}$$

Also for n = 2p + 1, put $[\bar{p}] = c([p])$.

With this notation, the induced cellular decomposition of $Q_n(C)$ reads as:

$$egin{aligned} Q_{2p+1}(C) \supset \overline{Q_{2p}(C)} \supset \cdots \supset \overline{Q_{p+1}(C)} \ \supset [ar{p}] \supset [\overline{p-1}] \supset \cdots \supset [ar{0}] \qquad & ext{for } n=2p+1 \; , \ Q_{2p}(C) \supset \overline{Q_{2p-1}(C)} \supset \cdots \supset \overline{Q_{p+1}(C)} \supset [ar{p}]_0 \; , \ & [ar{p}]_1 \supset [\overline{p-1}] \supset \cdots \supset [ar{0}] \qquad & ext{for } n=2p \; . \end{aligned}$$

The Schubert cells, arising from this decomposition, will be denoted by $\overline{\Omega}_{a_0...a_s}$. It is clear that the two cellular decompositions of $Q_n(C)$ (obtained from (1) and (2) are congruent under the action of SO(n+2), and thus the corresponding Schubert cells $\Omega_{a_0a_1...a_s}$ and $\overline{\Omega}_{a_0a_1...a_s}$ represent the same homology class. Let also $(\Omega^c_{b_0...b_s})$ and $(\overline{\Omega}^c_{b_0...b_s})$ be the two systems of ordinary Schubert cells of the Grassmann variety $G^c_{n+2,s+1}$ corresponding to (3) and (4) respectively.

Definition. $\Omega_{a_0a_1...a_s}^t = \overline{\Omega}_{n-a_sn-a_{s-1}...n-a_0}$ is called the dual cell of $\Omega_{a_0a_1...a_s}$ with the following convention:

If n = 2p, then put, for $a_j = p_0$,

$$n - a_j = \begin{cases} p_0 & \text{for } p \text{ even }, \\ p_1 & \text{for } p \text{ odd }, \end{cases}$$

and, for $a_j = p_1$,

$$n-a_j = egin{cases} p_1 & & ext{for } p ext{ even }, \\ p_0 & & ext{for } p ext{ odd }. \end{cases}$$

$$e(\Omega_{a_0a_1\cdots a_s}) = \text{number of pairs } (a_i,a_j), \ i < j, \ a_i+a_j < n \ .$$

$$e(\Omega^t_{a_0a_1\cdots a_s}) = \text{number of pairs } (a_i,a_j), \ i < j, \ a_i+a_j > n \ .$$

Thus $e(\Omega) + e(\Omega^t) = \frac{1}{2}s(s+1)$, and by the CW-structure theorem,

$$\dim_c(\Omega) + \dim_c(\Omega^t) = \frac{1}{2}(s+1)(2n-3s) = \dim_c A_{s+1}^{(n+2)}.$$

Also $\Omega_{a_0a_1\cdots a_s}\longmapsto \Omega^t_{a_0a_1\cdots a_s}$ is a bijection between Schubert cells of a fixed dimension and those of complementary dimension.

Lemma. There exists a minimal imbedding J of the system $(\Omega_{a_0a_1...a_s})$ of $A_{s+1}^{(n+2)}$ into the system $(\Omega_{b_0b_1...b_s}^c)$ of $G_{n+2,s+1}^c$, and a minimal embedding \bar{J} of $(\bar{\Omega}_{a_0a_1...a_s})$ into $(\bar{\Omega}_{b_0b_1...b_s}^c)$ such that

- (i) $\Omega_{a_0a_1...a_s} \subset J(\Omega_{a_0a_1...a_s})$ and $\overline{\Omega}_{a_0a_1...a_s} \subset \overline{J}(\overline{\Omega}_{a_0a_1...a_s})$, and $\Omega_{a_0a_1...a_s} \subset \Omega_{b_0b_1...b_s}$ in $A_{s+1}^{(n+1)}$ if and only if $J(\Omega_{a_0...a_s}) \subset J(\Omega_{b_0...b_s})$ in $G_{n+2,s+1}^c$ (and a similar condition for \overline{J}).
- (ii) $\Omega_{a_0a_1\cdots a_s}$ and $\overline{\Omega}_{b_0b_1\cdots b_s}$ are "dual in $A_{s+1}^{(n+2)}$ if and only if $J(\Omega_{a_0a_1\cdots a_s})$ and $\overline{J}(\overline{\Omega}_{b_0b_1\cdots b_s})$ are "dual" in $G_{n+2,s+1}^c$.
 - (iii) $J(\Omega_{a_0a_1\cdots a_s})\cap A_{s+1}^{(n+2)}=\Omega_{a_0a_1\cdots a_s}$ except for n=2p and $a_j=p_1$ for

some j, in which case $J(\Omega_{a_0\cdots p_1\cdots a_s})\cap A_{s+1}^{(n+2)}=\Omega_{a_0\cdots p_1\cdots a_s}\cup\Omega_{a_0\cdots p_0\cdots a_s}$ (and a similar condition for \bar{J}).

Proof. We first construct imbeddings j and \bar{j} of the cells of $Q_n(C)$ into those of $P_{n+1}(C)$ as defined by (3) and (4) respectively by putting:

$$\begin{split} j([k]) &= [k] & \text{for } 0 < k < n/2 \;, \\ j([p]_0) &= [p] & \text{and} & j([p]_1) = [p+1] = [p-1]^{\perp_f} & \text{for } n = 2p \;, \\ j(Q_k(C)) &= [k+1] = [n-k-1]^{\perp_f} & \text{for } k > n/2 \;; \text{similarly }, \\ \overline{j}([\overline{k}]) &= [\overline{k}] & \text{for } 0 \le k < n/2 \;, \text{ and for } n = 2p \;, \\ \overline{j}([p]_0) &= \begin{cases} [\overline{p-1}]^{\perp_f} = [\overline{p+1}] & \text{for } p \; \text{even }, \\ [\overline{p}] & \text{for } p \; \text{odd }, \end{cases} \\ \overline{j}([p]_1) &= \begin{cases} [\overline{p}] & \text{for } p \; \text{even }, \\ [\overline{p-1}]^{\perp_f} = [\overline{p+1}] & \text{for } p \; \text{odd }, \end{cases} \\ \overline{j}(Q_k(C)) &= [n-k-1]^{\perp_f} = [\overline{k+1}] & \text{for } k > n/2 \;. \end{split}$$

Define J and \bar{J} by

$$egin{aligned} J(arOmega_{a_0a_1\cdots a_s}) &= arOmega_{j(a_0)\,j(a_1)\cdots j(a_s)}^c \;, \ ar J(ar \Omega_{a_0a_1\cdots a_s}) &= ar \Omega_{j(a_0)\,j(a_1)\cdots j(a_s)}^c \;. \end{aligned}$$

Properties (i), (ii) and (iii) are easily verified from the definition. q.e.d.

This lemma enables us to develop a duality theory for $A_{s+1}^{(n+2)}$ from the standard duality theory for $G_{n+2,s+1}^c$.

Proposition. (i)
$$\Omega_{a_0a_1\cdots a_s}\cap\Omega^t_{b_0b_1\cdots b_s}=\emptyset$$
 unless

$$\Omega_{a_0a_1\cdots a_s} \supset \Omega_{b_0b_1\cdots b_s}$$
 (i.e., $a \ge b$).

(ii) Let O_j be the unique point of [j] which is m-orthogonal to [j-1], and let $O'_j=c(O_j)$, $0 \le j \le s$. Let $0 \le x \le s$ be the largest integer such that $a_x \le n/2$. Then $\Omega_{a_0a_1...a_s}$ and $\overline{\Omega}_{b_0b_1...b_s}$ of complementary dimension intersect transversally at a single [s]-plane $\tilde{q}=[O_{a_0},\cdots,O_{a_x},O'_{n-a_{x+1}},\cdots,O'_{n-a_s}]$ if they are "dual", and are disjoint if not.

Proof. Suppose $\Omega_{a_0\cdots a_s} \not\supset \Omega_{b_0b_1\cdots b_s}$. Then $J(\Omega_{a_0\cdots a_s}) \not\supset J(\Omega_{b_0\cdots b_s})$ by part (i) of the lemma, and it follows from the duality theory for $G^c_{n+2,s+1}$ that $J(\Omega_{a_0\cdots a_s}) \cap J(\Omega_{b_0\cdots b_s})^t = \emptyset$. Also $J(\Omega_{b_0\cdots b_s})^t = \bar{J}(\Omega^t_{b_0\cdots b_s})$ by Part (ii) of the lemma. Thus $J(\Omega_{a_0\cdots a_s})$, $\bar{J}(\Omega^t_{b_0\cdots b_s})$ and their subsets $\Omega_{a_0\cdots a_s}$, $\Omega^t_{b_0\cdots b_s}$ are disjoint, respectively, by the lemma.

(ii) It follows from Part (ii) of the lemma that if $\Omega_{a_0...a_s}$ and $\overline{\Omega}_{b_0...b_s}$ are dual in $A_{s+1}^{(n+2)}$, so are $J(\Omega_{a_0...a_s})$ and $\overline{J}(\overline{\Omega}_{b_0...b_s})$ in $G_{n+2,s+1}^c$, and $J(\Omega_{a_0...a_s})$ and $\overline{J}(\overline{\Omega}_{b_0...b_s})$ intersect transversally at a single [s]-plane $\tilde{q} = [O_{a_0}, \dots, O_{a_x}, O'_{n-a_x+1}, \dots, O'_{n-a_s}]$ by the duality theory for $G_{n+2,s+1}^c$.

Obviously, $\tilde{q} \in \Omega_{a_0 \cdots a_s} \cap \overline{\Omega}_{b_0 \cdots b_s}$, and the subset $\Omega_{a_0 \cdots a_s}$ of $J(\Omega_{a_0 \cdots a_s})$ and

subset the $\overline{\Omega}_{b_0...b_s}$ of $\overline{J}(\overline{\Omega}_{b_0...b_s})$ also intersect transversally at \tilde{q} . If $\Omega_{a_0...a_s}$ and $\overline{\Omega}_{b_0...b_s}$ are not dual, then it follows from Part (i) of the proposition that they are disjoint. q.e.d.

This can be best expressed in a single theorem:

Intersection theorem. Homology classes $\{\Omega_{a_0...a_s}\}$ and $\{\Omega_{b_0...b_s}\}$ of complementary dimension intersect in 1 if they are "dual" and in 0 if not.

9. Chern classes

An immediate application of the duality theory for $A_s^{(n)}$ is the computation of the Chern classes of the principal U(s)-bundle $V_{n,2s}(A_s^{(n)}; U(s))$.

Theorem. "Stability" for Chern classes is attained at n=2s+3, and the ith Chern class $c_i=\Omega_{01}^*..._{s-i-1}{}_{s-i+1}..._s$ for $n\geq 2s+3$. As for the unstable cases:

- (i) For n = 2s + 2, $c_i = \Omega_{01...s-i-1}^* s_{-i+1...s_0} + \Omega_{01...s-i-1}^* s_{-i+1...s_1}$.
- (ii) For n = 2s + 1, $c_i = 2[01 \cdots s i 1, s i + 1 \cdots s 1]^*$.
- (iii) For n = 2s, $c_s = 0$ and $c_i = 2[01 \cdots s i 2, s i \cdots s 2]^*$, $1 \le i \le s 1$.

Proof. For $n \ge 2s + 3$, let $j: A_s^{(n)} \to G_{n,s}^c$ be the "inclusion", $\dim_c (\Omega_{a_0a_1...a_s})$ = i, and

$$j_*(\Omega_{a_0...a_s}) = k_{a_0...a_s}\Omega_{01...s-i-1\ s-i+1...s}^c$$

+ linear combinations of other [i]-cells of $G_{n.s}^c$.

Taking "intersections" of both sides with $(\Omega^c)_{01...s-i-1}^t$ yields

$$k_{a_0\cdots a_s} = j_*(\Omega_{a_0\cdots a_s}) \cdot (\Omega^c)_{01\cdots s-i-1}^t {}_{s-i+1\cdots s}.$$

 $n \ge 2s+3$ implies that $n-1-s > \frac{1}{2}(n-2)$, and thus $[\bar{a}_j] \cap Q_{n-2}(C) = \overline{Q}_{a_{j-1}}(C)$ for $a_j \ge n-1-s$. Hence

$$egin{aligned} A_s^{(n)} \, \cap \, (\varOmega^c)_{01...s-i-1}^t \, {}_{s-i+1...s} &= A_s^{(n)} \, \cap \, ar{\varOmega}_{n-1-s...n+i-s-2}^c \, {}_{n+i-s...n-1} \ &= \, ar{\varOmega}_{n-2-s...n+i-s-3} \, {}_{n+i-s-1...n-2} \ &= \, \varOmega_{01...s-i-1}^t \, {}_{s-i+1...s} \, , \end{aligned}$$

which implies that

$$\begin{array}{l} \mathcal{Q}_{a_0\cdots a_s} \, \cap \, (\mathcal{Q}^c)^t_{01\cdots s-i-1\; s-i+1\cdots s} = \, \mathcal{Q}_{a_0\cdots a_s} \, \cap \, A^{\, \scriptscriptstyle{(n)}}_s \, \cap \, (\mathcal{Q}^c)^t_{01\cdots s-i-1\; s-i+1\cdots s} \\ = \, \mathcal{Q}_{a_0\cdots a_s} \, \cap \, \mathcal{Q}^t_{01\cdots s-i-1\; s-i+1\cdots s} \, . \end{array}$$

It follows from the duality theory for $A_s^{(n)}$ that $k_{a_0...a_s}$ except $k_{01...s-i-1}$ all vanish. By the proposition of § 5

$$\Omega_{01...s-i-1} = \Omega_{01...s-i-1}^c = I_{s-i+1...s}^c$$

and thus

$$k_{01...s-i-1} = \Omega^{c}_{01...s-i-1} = \Omega^{c}_{01...s-i-1} = 1$$

by the duality theory for $G_{n,s}^c$. Hence the dual map j^* on the cohomology level satisfies

$$j^*(\Omega^c)^*_{01...s-i-1} = \Omega^*_{01...s-i-1} = I^*_{01...s-i-1}$$

and $c_i = \Omega^*_{01...s-i-1}$ s_{-i+1}..._s by "naturality" for Chern classes.

(i) For n=2s+2, again let $j:A_s^{(2s+2)}\to G_{2s+2,s}^c$ be the inclusion. Then

$$j^*(\Omega^c)^*_{01...s-i-1}{}_{s-i+1...s} = \sum_{\dim_c(\Omega_a)=i} k_{a_0...a_s} \Omega^*_{a_0...a_s}$$
 ,

$$[\overline{s+1}] \cap Q_{2s}(C) = [\bar{s}_0] \cup [\bar{s}_1], [\bar{a}_j] \cap Q_{2s}(C) = \overline{Q}_{a_{j-1}}(C), \text{ for } a_j \geq s+2,$$

$$\begin{split} A_s^{(2s+2)} &\cap (\mathcal{Q}^c)_{01...s-i-1}^t {}_{s-i+1...s} \\ &= A_s^{(2s+2)} \cap \overline{\mathcal{Q}}_{s+1...s+i}^c {}_{s+i+2...2s+1} \\ &= \overline{\mathcal{Q}}_{s_0} {}_{s+1...s+i-1} {}_{s+i+1...2s} \cup \overline{\mathcal{Q}}_{s_1} {}_{s+1...s+i-1} {}_{s+i+1...2s} \\ &= \mathcal{Q}_{01...s-i-1}^t {}_{s-i+1...s_0} \cup \mathcal{Q}_{01...s-i-1}^t {}_{s-i+1...s_1} \,, \end{split}$$

and thus

$$\begin{split} & \mathcal{Q}_{a_0 \cdots a_s} \, \cap \, (\mathcal{Q}^c)^t_{01 \cdots s-i-1} \, {}_{s-i+1 \cdots s} \\ & = \, \mathcal{Q}_{a_0 \cdots a_s} \, \cap \, A_s^{(2s+2)} \, \cap \, (\mathcal{Q}^c)^t_{01 \cdots s-i-1} \, {}_{s-i+1 \cdots s} \\ & = \, \mathcal{Q}_{a_0 a_1 \cdots a_s} \, \cap \, (\mathcal{Q}^t_{01 \cdots s-i-1} \, {}_{s-i+1 \cdots s_0} \cup \, \mathcal{Q}^t_{01 \cdots s-i-1} \, {}_{s-i+1 \cdots s_1}) \; . \end{split}$$

Hence $k_{a_0\cdots a_s}$ except $k_{01\cdots s-i-1}$ $s_{-i+1\cdots s_0}$ and $k_{01\cdots s-i-1}$ $s_{-i+1\cdots s_1}$ all vanish.

 $\mathcal{Q}_{01\cdots s-i-1\ s-i+1\cdots s}^c$ and $(\mathcal{Q}^c)_{01\cdots s-i-1\ s-i+1\cdots s}^t$ intersect transversally at a single [s-1]-plane $\tilde{q}=[O_0,\cdots,O_{s-i-1},O_{s-i+1},\cdots,O_s]$ and $\tilde{q}\in\mathcal{Q}_{01\cdots s-i-1\ s-i+1\cdots s_0}\cap(\mathcal{Q}^c)_{01\cdots s-i-1\ s-i+1\cdots s}^t$, and thus their subsets

$$\Omega_{01...s-i-1} = \sum_{s-i+1...s_0} t$$
, $(\Omega^c)_{01...s-i-1}^t = \sum_{s-i+1...s} t$

also intersect transversally at \tilde{q} . Hence $k_{01...s-i-1}$ $s-i+1...s_0=1$, and similarly $k_{01...s-i-1}$ $s-i+1...s_1=1$.

$$j^*(\varOmega^c)^*_{01...s-i-1}\,{}_{s-i+1...s}=\varOmega^*_{01...s-i-1}\,{}_{s-i+1...s_0}\,+\,\varOmega^*_{01...s-i-1}\,{}_{s-i+1...s_1}\;,$$

and, by naturality, the result follows.

(ii) For n = 2s + 1,

$$\begin{split} [\bar{s}] &\cap Q_{2s-1}(C) = [\bar{s}-1] \;, \quad [\bar{a}_j] \cap Q_{2s-1}(C) = \overline{Q}_{a_{j-1}}(C) \quad a_j > s \;, \\ A_s^{(2s+1)} &\cap (\Omega^c)_{01...s-i-1}^t {}_{s-i+1...s} = A_s^{(2s+1)} \cap \overline{Q}_s^c ... {}_{s+i-1}^s {}_{s+i+1...2s} \\ &= \overline{Q}_{s-1} {}_{s...s+i-2}^s {}_{s+i...2s-1}^s \;, \end{split}$$

 $a_0 + a_1 = (s - 1) + s = 2s - 1$, and repeatedly using the method of the proof of the lemma in § 5 we obtain

$$\begin{array}{l} \overline{\mathcal{Q}}_{s-1\;s\;s+1...s+i-2\;s+i...2s-1} = \overline{\mathcal{Q}}_{s-2\;s\;s+1...s+i-2\;s+i...2s-1} \\ \vdots \\ = \overline{\mathcal{Q}}_{s-i\;s\;s+1...s+i-2\;s+i...2s-1} \\ = \mathcal{Q}_{01...s-i-1\;s-i+1...s-1\;s+i-1}^{t}, \end{array}$$

and therefore

$$\begin{split} &\mathcal{Q}_{a_0\cdots a_s} \, \cap \, (\mathcal{Q}^c)^t_{01\cdots s-i-1} \, {}_{s-i+1\cdots s} \\ &= \, \mathcal{Q}_{a_0\cdots a_s} \, \cap \, A^{(2s+1)}_s \, \cap \, (\mathcal{Q}^c)^t_{01\cdots s-i-1} \, {}_{s-i+1\cdots s} \\ &= \, \mathcal{Q}_{a_0\cdots a_s} \, \cap \, \mathcal{Q}^t_{01\cdots s-i-1} \, {}_{s-i+1\cdots s-1} \, {}_{s+i-1} \, . \end{split}$$

Thus $k_{a_0...a_s}$ except $k_{01...s-i-1}$ s-i+1...s-1 s+i-1 all vanish.

 $\Omega_{01...s-i-1}$ s-i+1...s-1 and $(\Omega^c)_{01...s-i-1}^t$ s-i+1...s intersect at a single [s-1]-plane $\tilde{q} = [O_0, \cdots, O_{s-i-1}, O_{s-i+1}, \cdots, O_{s-1}, O'_{s-i}]$, and $k_{01...s-i-1}$ s-i+1...s-1 is the degree of intersection at this point. Let $a = [O_0, \cdots, O_{s-i-1}, O_{s-i+1}, \cdots, O_{s-i}]$, and let S_a and S_0 be the submanifolds of $G^c_{2s+1,s}$ of planes passing through a and O'_{s-i} respectively. Then by 3.11 we have a direct sum decomposition of tangent planes

$$T_{q}(G_{2s+1,s}^{c}) = T_{q}(S_{a}) \oplus T_{q}(S_{0}) .$$

Also

$$S_a \cap \Omega_{01...s-i-1} = \Omega_{01...s-i-1} = \Omega_{01...s-i-1} = \Omega_{11...s-1} ,$$

 $S_0 \cap \Omega_{01...s-i-1} = S_{i+1}...s-1 = S_{i+1} =$

where $Q_1(C)$ is the nonsingular quadric on the 2-plane (O_{s-i}, Y, O'_{s-i}) , Y being the unique point of $[s-1]^{\perp j}$ which is m-orthogonal to [s-1]. Since

$$\dim \Omega_{01\cdots s-i-1} \, {}_{s-i+1\cdots s-1} \, {}_{s+i-1} = \dim \Omega_{01\cdots s-i-1} \, {}_{s-i+1\cdots s-1} \, + \, \dim Q_1(C) \, ,$$

we obtain a subdecomposition of (6):

$$\begin{array}{c} T_q(\Omega_{01\cdots s-i-1} \ s-i+1\cdots s-1 \ s+i-1) \\ = T_q(\Omega_{01\cdots s-i-1} \ s-i+1\cdots s-1) \oplus T_qQ_1(C) \ . \end{array}$$

Also

$$S_a \cap (\Omega^c)_{01...s-i-1}^t s_{-i+1...s} = (\Omega^c)_{01...s-i-1}^t s_{-i+1...s-1}$$
,

where t on the right hand side denotes "dual" in the Grassmann manifold $G_{2s,s-1}^c = [s-2]$ -planes on $(O'_{s-i})^{\perp m}$, and

$$\begin{split} S_0 \, \cap \, & (\varOmega^c)_{01...s-i-1}^t \, {}_{s-i+1...s} = [\overline{s-1}]^{\perp_f} \, , \\ \dim \, & (\varOmega^c)_{01...s-i-1}^t \, {}_{s-i+1...s} \\ & = \dim \, (\varOmega^c)_{01...s-i-1}^t \, {}_{s-i+1...s-1}^t + \dim \, [\overline{s-1}]^{\perp_f} \, . \end{split}$$

Thus we obtain

(8)
$$T_{q}(\Omega^{c})_{01...s-i-1}^{t} {}_{s-i+1...s} = T_{q}(\Omega^{c})_{01...s-i-1}^{t} {}_{s-i+1...s-1} \oplus T_{q}[\overline{s-1}]^{\perp_{f}}.$$

Since (7) and (8) are subdecompositions of the same direct sum decomposition (6),

The first summand is zero by the duality theory for $G_{2s,s-1}^c$. Let $P_1(C) = (O_{s-i}')^{\perp_f}$ in the 2-plane (O_{s-i}, Y, O_{s-i}') . Then $P_1(C) \subset [\overline{s-1}]^{\perp_f}$, and it follows from 3.10 that dim $T_qQ_1(C) \cap T_qP_1(C) = 1$. Since $T_qQ_1(C) \not\subset T_q[\overline{s-1}]^{\perp_f}$, we have dim $T_qQ_1(C) \cap T_q[\overline{s-1}]^{\perp_f} = 1$, and it follows from (9) that

$$\begin{aligned} k_{01...s-i-1} &_{s-i+1...s-1} &_{s+i-1} &= 2 \ , & \text{i.e.,} \\ c_i &= j^* (\Omega^c)_{01...s-i-1}^* &_{s-i+1...s} &= 2\Omega_{01...s-i-1}^* &_{s-i+1...s-1} &_{s+i-1} \\ &= 2[01 \cdots s-i-1, s-i+1 \cdots s-1]^* \end{aligned}$$

by the notation of $\S 7$.

(iii) For n=2s, let $V_0=I_s$ be an irreducible subvariety of $A_s^{(2s)}$. The principal U(s)-bundle $f_s^{(2s)}:V_{2s,2s}\to A_s^{(2s)}$ is two disjoint copies of the canonical U(s)-bundle E over V_0 . By 3.7, E splits into a direct sum $E=1\oplus F$ of a trivial line bundle 1 and the canonical U(s-1)-bundle F over $A_{s-1}^{(2s-1)}$, or equivalently $f_{s-1}^{(2s-1)}:V_{2s-1,2s-2}\to A_{s-1}^{(2s-1)}$. Thus $c_s(E)=0$ and

$$c_i(E) = c_i(F) = 2[01 \cdots s - i - 2, s - i \cdots s - 2]^*$$

for $1 < i < s - 1$

by (ii) above and (iii) of § 7.

10. Applications

A 2-form w of constant rank 2s on a trivial R^n -bundle E (over B) can be represented (after suitable normalization) as a map $w_1: B \to A_s^{(n)}$, and decomposing w into a sum $w = y_1 \wedge y_{s+1} + \cdots + y_s \wedge y_{2s}$ of products of 1-forms (y_i) on E is equivalent to lifting w_1 to $V_{n,2s}$. (Refer to [4] for details.) We thus obtain

Proposition. A necessary condition for the decomposability of a 2-form w of constant rank 2s on a trivial R^n -bundle E (over B) is that $w_1^*(c_i) = 0$ in $H^{2i}(B; Z)$ where $c_i \in H^{2i}(A_s^{(n)}; Z)$ are as given by the theorem of the preceding section.

If the total bundle E is not trivial, then a necessary condition for a 2-form w on E of constant rank 2s to decompose is that the 2s-dimensional subbundle S_w of E, on which w is a 2-form of maximal rank, is trivial. Using the triviality of S_w , w is represented as a map $w_1: B \to I_s$. Then w decomposes if and only if w_1 lifts to SO(2s). By (iii) of the theorem of the preceding section, a necessary condition for the existence of such a lift is

$$2w_1^*([01\cdots s-i-2,s-i\cdots s-2]^*)=0$$
 for $1\leq i\leq s-1$.

It can be verified (although we shall not go into the ring structure of $H^*(A_s^{(n)}; Z)$ here) that ($[01 \cdots s - i - 2, s - i \cdots s - 2]^*, 1 \le i \le s - 1$) form a homogenous system of generators for $H^*(I_s; Z)$, and this immediately yields

Proposition. A necessary condition for the decomposability of a 2-form w of constant rank 2s on an R^n -bundle E (over B) is:

- 1. S_w is a trivial bundle,
- 2. Image $w_1^* \subset 2$ -torsion in $H^*(B; Z)$.

References

- [1] M. F. Atiyah, K-theory, Benjamin, New York, 1967.
- [2] —, Some examples of complex manifolds, Bonn Math. Schr. 6 (1958).
- [3] S. S. Chern, Complex manifolds without potential theory, Van Nostrand, Princeton, 1967.
- [4] I. Dibag, Decomposition in the large of two-forms of constant rank, Ann. Inst. Fourier (Grenoble) 24 (1974) 317-335.
- [5] C. Ehressmann, Topologie de certaines espaces homogenes, Ann. of Math. 35 (1934) 396-443.
- [6] W. V. D. Hodge & D. Pedoe, Methods of algebraic geometry, Vol. II, Cambridge Univ. Press, Cambridge, 1951.
- [7] W. S. Massey, Obstructions to the existence of almost complex structures, Bull. Amer. Math. Soc. 67 (1961) 559-564.
- [8] J. T. Schwarz, Differential geometry and topology, Gordon and Breach, New York, 1968.

MIDDLE-EAST TECHNICAL UNIVERSITY ANKARA, TURKEY