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NATURAL DIFFERENTIAL OPERATORS ON RIEMANNIAN
MANIFOLDS AND REPRESENTATIONS OF THE

ORTHOGONAL AND SPECIAL
ORTHOGONAL GROUPS

PETER STREDDER

In his paper "The foundation of the general theory of relativity", [2], pub-
lished in 1916, A. Einstein remarked that on a Lorentz manifold (M,g) the
only covariant tensors of order 2 which depend in any local coordinate system
only on the metric tensor and its first two derivatives, and which depend linearly
on the second derivative, are linear combinations of the tensors gR and
Rijdx1 (x) dxj where R is the scalar curvature and Rijdx1 ® dxj the Ricci
curvature. In an appendix to [10] H. Weyl proved that R is the only function
with these properties.

More recently in [6], P. Gilkey investigated, in a similar vein, forms on
Riemannian manifolds and his results are important tools in the proof of the
index theorem given by Atiyah, Bott and Patodi in [2]. In [4] D. B. A. Epstein
introduces the concept of natural tensor field on Riemannian manifolds. His
paper was a major catalyst in the production of this one and should preferably
be read before it.

The purpose of this paper is twofold. Firstly it is to study natural tensor
fields on Riemannian and oriented Riemannian manifolds. Maintaining the
spirit of the earlier results we shall impose a regularity condition on natural
tensor fields, which leads to their complete classification as a space of homo-
morphisms, between certain representation spaces for the general linear group,
which are equivariant under the action of the orthogonal or special orthogonal
group. The second reason for writing this paper is to define and investigate the
notion of natural differential operator in an analogous fashion. It turns out
that this problem reduces to the study of natural tensor fields.

We shall only give results on Riemannian manifolds. However P. Gilkey
has now extended the Gilkey theorem (cf. [2, § 2]) to apply to manifolds with
an indefinite metric, [8].

The author is indebted to his supervisor, Professor D. B. A. Epstein, who
suggested the idea of natural differential operator and who has given him much
painstaking advice. The results in § 2 were initiated by a suggestion of M. S.
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Narasimhan and have profited from discussions the author has had with him.
Thanks are also due to R. Carter and J. C. Kelley for their tuition and advice
on representation theory and to N. R. O'Brian for his help with algebraic
geometry.

All manifolds, all functions between manifolds and all tensor fields in this
paper are C°°.

1. Preliminaries

1.1. We shall be concerned with functors E from the category of vector
spaces and homomorphisms to itself (see e.g. [5]). With such a functor we
shall assume given:

( i ) a monomorphism of functors iE: E -> Tr where Tr is the rth tensor
power functor for some r.

(ii) an ordered basis E(vt) of E for each ordered basis (vt) of a vector
space V,

(iii) E(φVi) = Eφ(E(v^) for vector spaces V, W and an isomorphism
y><=Hom(F, W).

The rank of E is r.
1.2. An inner product b on a vector space V induces an inner product b

on TrV and hence on EV, which we denote by Eb. Thus EV is a representa-
tion space for GL(V) and 0(F, b) with

E(0(V,b))^0(EV,Eb) .

We denote (EV)* by E * F ; then GL(V) acts on E*V via ψ >-> (Eφ~ψ, for
φ € GL(V). With this action 0(V, b) acts on £* V as a subgroup of 0(E*F, E*, 6).

If (i^) is an ordered basis of V and E(vt) = (wj), define the ordered basis
E(vι) of £ * F to be the ordered basis (wk) where w*(w,) = d).

1.3. Given a Riemannian manifold (M, g), a functor E as in § 1.1 induces
Riemannian vector bundles (EM, Eg), (E*M,E*g) over M with connection
induced from the Levi-Civita connection. These constructions are functorial
and determine subfunctors of the rth tensor power of the tangent bundle and
cotangent bundle respectively.

Further it follows from §1.1 (ii) that given any local coordinate system x,
there are determined unique ordered local bases of sections E(d/dxί), E(dxι)
for EM, E*M respectively.

1.4. We describe in detail certain functors with the properties required in
§ 1.1, which will be needed later.

Given a vector space V, Sr (symmetric group of degree r) acts on TrV in
the usual way.

( i ) The functor Sr.

SrV = {v <= TrV I v = σv all σ e Sr] .
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Let dim V = n and let (Vi) be an ordered basis for V. For each r-tuple of
integers (i19 , ir), 1 < ίγ < < ίr < n, let vu...ir = Σvjl (x) . (x) vjr

where summation takes place over all distinct r-tuples (j19 , jr) which are
rearrangements of (i19 , / r ) . We let Sr{vt) = (viim..ir) ordered by lexicogra-
phical ordering on (i19 , ir).

(ii) The functors Yr9 r>2.
Let T be the Young tableau with r squares in the first row and two in the

second. Let the first r + 2 positive integers (starting at 1) be arranged in T in
increasing order down the columns from left to right. Let lk denote the &th
column in this arrangement. For each integer m mlk+ι let P f c m denote the set
of permutations σ e Sr+2 which fix exery integer except those in Ik U {m}, and
which preserve the order of those in Ik.

YrV = {v € Tr+2V\ Σ <σ)σv = 0, 1 <k<r - 1,

m € Ik + 19 v + (i , j)v = 0 , /, / € Ik} .

For each ordered (r + 2)-tuple of integers (i19 , ir+2) with 1 < ik < n, ix < i2

h< h h< h<h<h< " < ir+2 h< hlet

'Ό i 1 = = / i \Ό ό f \ Qy V'?' / N ^ 7 1-oN QV ^ 7 C \/
ii Lr i—i ^ t-σCi) ^ ^ t σ C 2 ) t - σ ^ ; ' f f U )

where σ runs over all permutations in 5 r + 2 which preserve the sets {2,4},
{1, 3, 5, 6, , r + 2} and lead to distinct (r + 2)-tuples (/σ(1), , / , ( r + 2 ) ) .
Then YrCVi) = (Vί1...ir+a) ordered by lexicographical ordering on (/15 , ir+2).

(iii) If E19E2 are functors as in §1.1, so is Eλ ® E2 with lexicographical
ordering taken for the basis.

1.5. It is well known that for any vector space V, YrV is an irreducible
representation space for GL(V). For each r > 2 define GL(V) maps

ar: S\V) (x) Sr(V) — Yr(V) and /3r: Yr{V) -> ^ 2(F) ® Sr(V)

by

r — 1
# *• V 1 if? . 7;. (x) . . . (x) T;

( r + 1 ) ! - *i*.(»)*«»'(*)* (») ι.(r+») *i

where (y^) is an ordered basis of V, the summation convention is used, and
and sum runs over all permutations σ of {3, , r + 2}. ar and βr do not
depend on the basis {vt) chosen.
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Note that ar and βr satisfy:
a) arβr = id,

b) if Σ 8i1io(2) 'iσ(r+2) = OJ where S r + 1 is the group of permutations of
r

{2,'",r +2}, then

Note that every element in the image of βr satisfies this symmetry condition.
1.6. The maps α r , ^ r in § 1.5 determine GL(V) maps a: 0 52(F) (x) Sr{V)

-> © Γ r (F) and β: © Γ r (F) — © S\V) <g) S'(F) such that Tβ = id. Let 0,)
r>2 r>2 r>2

be the standard basis of Rn, where R denotes the set of real numbers, with dual
basis (V). Let W e © Y*Rn and suppose that the component of β(W) in S2*Rn

r>2

®Sr*Rn is the tensor gu...ir+^ ® . (g) ^ + 2 . Let g(W% be the real valued
functions on Rn (1 < i, j < n) defined by g(W%(x) = 5^ + Σ gm^k^kl

r = 2

xfcr, the superscripts denoting coordinates and not powers.
It follows from § 2 of [4] that these functions determine a Riemannian metric

on a neighborhood U(W) of 0 in Rn. The oriented Riemannian manifold
(U(W), g(W)) has the inclusion chart as a normal coordinate chart at the origin.
It is oriented by the usual orientation on Rn.

Conversely it is also shown in § 2 of [3] that given a Riemannian manifold
(M, g) there exist tensors Wr e Y*M (r > 2), obtained from contracting tensor
products of no higher than the (r — 2)th covariant derivitive of the curvature
tensor, such that in any normal coordinate system at p e M the coefficients of
βr(Wr(p)) are the rth partial derivatives of the metric.

2. The classification theorem

2.1. Natural tensor fields on Riemannian manifolds are introduced by
D . B . A . Epstein in [4]. We extend the definition to the case of oriented
Riemannian manifolds.

Definition. Let E, F be functors as in §1 .1 . A natural tensor field t on
Riemannian manifolds (respectively oriented Riemannian manifolds) of type
(E, F) assigns to each Riemannian manifold (resp. oriented Riemannian mani-
fold) (M, g) a tensor field

t(M, g) e C°°(EM (x) F*M)

such that if /: Mf -> M is a difϊeomorphism (resp. orientation preserving dif-
feomorphism) onto an open submanifold then

f*t(M,g) = t(M'9f*g) .

2.2. Epstein has pointed out in [4] that the problem of classifying all natural
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tensor fields is a complicated one. However there is a natural concept of re-
gularity for such tensor fields, which was essentially introduced by Atiyah,
Bott and Patodi in [2, § 2].

A natural tensor field t of type (E, F) on Riemannian (respectively oriented
Riemannian) manifolds is regular if for a given Riemannian (resp. oriented
Riemannian) manifold (M, g) with a local coordinate chart x on U C M the
coefficients of t(M, g) with respect to the local basis Ex ® F^dldx1 ® dxj) are
given by universal polynomials in gij9 d1 a ]gtj/dxa (a a multi-index, |α:| < iV large)
and (det g^)" 1 (or (det gi3)~^ in the oriented case). A justification of this defini-
tion is given by Atiyah, Bott and Patodi in [2, § 2] for the unoriented case.

On the other hand, the space of oriented Riemannian structures on a vector
space V is naturally identified with GL(n,R)/SO(n,R), n = dim V. It is well
known and is shown in the appendix (A. 2) that any rational function / on
GL(n, R) invariant under the action of SO(n, R) is of form:

f(A) = F{AAι) + (dtt Ay'GiAA') , A e GL(n,R) ,

where F, G: SM(n, R) —> R are rational functions on the space of symmetric
matrices.

Since the identification of GL(n, R)/S0(n,R) with the space of oriented
Riemannian structures is given by

[A] 6 GL(n,R)/SO[n,R) -> (AA', sign (dot A)) ,

the corresponding identification of rings of rational functions shows that it is
natural to regard R[gij9 (detg^)"*] as the ring of functions on the space of
oriented Riemannian structures.

Remark. In applications to the index theorem, polynomial dependence on
(detg^)-* appears explicity even in the unoriented case although this was
overlooked in the original proof in [2]; see [1]. In fact, it follows from [4,
Theorem 5.2] that even if we merely demand that the coefficients of our tensor
field be given by universal polynomials in dgij/dxa(a a multi-index, 1 < \a\ < N
large) with coefficients functions of the gυ (not necessarily continuous) then
the tensor field is regular (polynomial in the terminology of [4]).

2.3. An important class of natural tensor fields is those which are homo-
geneous (see [4, §§ 6 & 7]). A natural tensor field t is homogeneous of weight
k if t(M, λ2g) = λkt(M, g) for all real numbers λ. Note that g is homogeneous
of weight 2 and that the tensors Wr (r > 2) introduced in § 1.3 are also homo-
geneous of weight 2. If / has weight k and is of type (E, F) with rank E = a
and rank F = b, then ί has normalised weight w = b — a — k. t has maximal
weight if w = 0.

2.4. Before proceeding with the main theorem, we need the following
crucial lemma.

Lemma. Let (V, <(?)>) be an oriented inner product space.
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k

(i) The vector space Hom 0 ( F ) ((x) V, R) is zero for odd k, and for even k
it is spanned by elements of the form

Vx (X) (X) Vk ^ (vπ{lv Vπ(2)y <!>,<*_!>, Vπ(k)} ,

where Π € Sk.

(ii) 77ιe vector space Hom,sO(F) ((x) F, i?) is equal to Hom O ( F ) ((x) F, R)
except that if k — n (n = dim V) is nonnegative and even, there is permitted
any linear combination of maps

vx ® (8) vk ι->

Z J εV/"/^π(l)//(l) ' * * Vπ{n)μ{n)\Uπ{n + l) > ^π(n + 2)/ ' ' ' \?π(k-l) 9 V π (k)/ '
μζSn

n

where π e Sk, and Vj = Σ vneλ, (ex, , en) being a positively oriented basis.
1 = 1

Proof, (i) is proved in [2, Appendix 1].
(ii) is proved in [11, p. 64] a proof is also given in the appendix § 5.1 to

this paper.
2.5. The theorem we shall prove in this section tells us that every natural

regular tensor field on Riemannian manifolds is polynomial in the sense of
Epstein [4, § 5]. However it goes further than this. It follows from the theorem
and the theory of representations that the space of homogeneous natural regular
tensor fields of some fixed weight is finite dimensional and that the problem of
calculating it reduces to a problem in representation theory.

In the oriented case, in addition to the usual polynomial tensor fields, there
are allowed tensor fields of the form:

Σ ( d e t g ^ ) V ( 1 ) ' gπ{nyg" g"g.. -" g..w:ιm . wι:.
7tζSn

where the dots indicate contraction or summation with a local basis.
Equivalently we introduce tensor fields of the form:

Σ ( d e t £ o ) V ( 1 ) ' g'ln)'gmm - gmmg.. gSRil. - VRY.. ,
πζ.Sn

where R is the Riemann-Christofϊel tensor Rimdxι ® dxj (x) dxk (x) dxι.
Theorem. Let R denote the set of real numbers. Then there is a bijection

between natural regular tensor fields on Riemannian manifolds {respectively
oriented Riemannian manifolds) of type (E, F) (rank E = a, rank F = b) and
equivariant O(ή) (resp. SO(ή)) homomorphisms:

Ψ : R θ θ θ θ θ SHYrt*Rn) ® ® S'KYrt*Rn)
ί = l 2<n< ' <ri s = l jι, ',ΐί>i

Jl+'" + Ji = S

-> ERn (8) F*Rn
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which vanish except on a finite number of direct summands. Further:
( i ) There are no such tensor fields, homogeneous of normalised weight

w < 0, or w = 1.
(ii) The tensor filds which are homogeneous of maximal weight correspond

bijectively to O(n) (resp. SO(ή)) maps

Ψ : R -* ERn (x) F*Rn

(iii) The tensor fields, homogeneous of normalised weight w > 2, cor-
respond bijectively to O(n) (respectively SO(ή)) maps

Ψw: © Θ Θ SHY^R71) ® • <8> SHYffl")
ί = l 2<n< <ri Ju ' Ji^1

rij1+'" + riJi = w
-> ERn (x) F*Rn ,

where Nw = [ £ ( - 3 + (9 + 8w)*)].
Proof. The proof is given in the oriented case. The unoriented case is

slightly simpler. So let / be a natural regular tensor field on oriented Riemannian
manifolds. Define ψt: R 0 © Y*Λ* -> EΛ* <g) F*fl* by W ^ t(U(W),g(W))(O)

r>2

identifying the fibre of EU(W) ® F*V(W) at O with ERn ® F*Rn via the
canonical basis determined by the inclusion chart.

Now let a e SO(ή). Then the expansion of gtj(aW) at O in the normal co-
ordinate chart determined by a is the same as that of gij(W) with respect to
the inclusion chart. Since the coefficients of t are given by universal polynomials,
the coefficients of t(U(aW), g(aW))(O) with respect to the basis of ERn (x) F*Rn

obtained by applying a to the standard basis are the same as those of t(U(W),
g(W))(O) with respect to the standard basis. Thus ψt is an equivariant poly-
nomial map vanishing except on a finite number of direct summands. Complete
polarisation determines φt.

Conversely, suppose an equivariant SO(ή) m a p ^ is given. Now let (M,g)
be an oriented Riemannian manifold, and let p e M. Then there is a natural
identification of TVM with Rn which is well defined up to composition with
elements of SO(ή). Since φ is equivariant under the action of SO(n), ψ deter-
mines a unique SO(TPM, g(p)) map

φ(M, g)(p) :R®@ 0 0 © SίKYΪM ®
ϊ = 2 2<ri< <r/ s = l Ju 'Ji^-1

Jl+ '+Ji = S

— EPM <g> F*M ,

vanishing except on a finite number of summands. Define

t,(M,g)(p)

(@(B Θ Θ ® w
2 i i i i
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with N large.
If follows from § 2.4 that tψ is determined in the required way by universal

polynomials. Since the whole construction is functorial, tφ is the required natural
tensor field. Clearly φtφ = ψ. Conversely it follows from § 1.5 and § 2.4 that
tΨt = t.

For that last part of the theorem consider SO{n) maps:

S'*(Y*xR
n) (x) (x) SHYfβ") — ERn (x) F*Rn ,

with jk > 1, 2 < rx < < ri. These are determined by SO(ή) maps:

S^Y^R") (x) (x) SHY*tR
n) (x) (g) Rn* <g) (g) Rn -» # ,

and hence the component natural tensor fields thus obtained are of two types:

l) g" - g g.. - g..w:r\ --v w:rί ^ :r ! w:r\ = P ,

where there are c contractions and summation is over all indices except a upper
and b lower.

2)

where there are c contractions and summation is over all indices except a upper
and b lower.

i

Incase 1), equating weights gives b — a — w — — 2u + 21 + 2 J j f c , count-
fc = l

i ί

ing indices gives a = 2u — c, b = 2/ + 2 r Λ + 2 Σ /fc - c, whence w =
fc=l fc=l

i

Σ rkjk>
k=l

i

In case 2), equating weights gives b — a — w = n + 2l+2J]jk — 2u —
k=l

i i

2n, counting indices gives a = 2u + n — c, b = 21 + Σ rkh + 2 Σ h — c>
k=l k=l

ί

whence w = Σ rkjk.
k=l

That w cannot equal 1 follows from rk > 2 for all k. Finally the computa-
tion of Nw is left to the reader.

Remark. For future reference we note that in the unoriented case all natural
regular homogenous tensor fields have even weight.

2.6. Finally in this section we extend the Gilkey theorem [2, § 2] to the
oriented case.

Recall that * : C°° (j\ T*M\ -> C°° Γ/\ T*Nf\ is defined by ωf

A *ω =
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ω)v, where (Mn, g) is an oriented Riemannian manifold, ω' is any r-form, and
v is the orientation form given in a positively oriented local coordinate system
by (det gi^dx1 Λ Λ dxn. Further, * maps natural regular r-forms on ori-
ented Riemannian n-manifolds to natural regular (n — r)-forms on oriented
Riemannian n-manifolds.

Corollary. The natural regular homogeneous r-forms on oriented Rieman-
nian manifolds (Mn,g) of weight k are linear combinations of forms of two
types:

1) Natural regular r-forms ω on Riemannian manifolds, homogeneous of
weight k. For k = 0 these are precisely the Pontrjagin r-forms.

2) The forms *ω where ω is a natural regular (n — r)-form on Riemannian
manifolds, homogeneous of weight k + n — 2r.

In particular the conformal (weight 0) n-forms are sums of:
a) The Pontrjagin n-forms,
b) The forms f (det gi^dx1 Λ Λ dxn where f is a natural regular func-

tion on Riemannian manifolds, homogeneous of weight —n.
Thus if n is odd, it follows from the remark of §2.5 that there are no con-

formal natural regular n-forms.

Proof. It follows from [2, § 2], § 2.5 above and the fact that * adds n — 2r
to the weight of a homogeneous r-form.

Remark. I. M. Singer has conjectured that if ω is a natural regular n-ίorm

on oriented Riemannian ^-manifolds and /(M) = ω{M, g) is independent

of the metric for each ^-manifold M, then there are a real number c, a natural
regular (n — l)-form p and a Pontrjagin rc-form η such that ω = dp + cEn + η
where En is the Euler class. Certainly ω has to be conformal, for if we write
ω = 2 (ύi where ωt is homogeneous of weight /, then for all real numbers λ

ΐ0
2

ΐ>0

KM) = Σ ί ωt(M,g) = Σ ί o>i(M,λg) = Σ V ί o)t(M,g) .
i>0 J M i>0 J M ί>0 JM

Hence ωt(M, g) = 0, / > 0, and ω has to be of type a) or b). The conjecture
J M

has now been confirmed by P. Gilkey [7].

3. Natural differential operators

3.1. For a review of differential operators, we refer the reader to R. S.
Palais [9]. Before making our definitions however, there are some notions which
we would like to recall explicitly.

3.2. Let ξ, η be C°° vector bundles over a smooth manifold M, with C°°(ξ)
the space of C°° sections of ξ. We let Difffc (ξ, η) denote the space of differential
operators of order < k from C°°(f) to C°°(^). Let Sk(ξ) denote the Λ -fold sym-



656 PETER STREDDER

k

metric tensor power of ξ with itself, and let Sk: (x) ξ —• Sk(ξ) be the map char-
acterized by

Sk(v, <g> <g> vk) = () ( )

where ^ e f ^ for some x e M. Then we have the symbol exact sequence:

0 > Diff^ (f, 9 ) — U Diff* (£, jy) - ^ > Horn (5fc(Γ*M) (x) f, ,) > 0

where / is inclusion and γk is characterized by

gks)(x)

where g, e C°°(M), gί(x) = 0, ^xg, = vt e Γ*M, j € C°°(f), J(JC) = β e f Λ.
3.3. Let is, F be functors as in §1.1 . Recall that given a Riemannian

manifold (M, g) there is a unique torsion free connection V on ΓM satisfying
Vg — 0. This is the Levi-Civita connection, ί7 induces a connection F on
EM ® F*M in a natural way.

Define differential operators

Dk: C°°(EM (x) F*M) -> COO(5A;(Γ*M) ® EM

by taking the composition:

(g) F*M) - ^ > C00 ^(g) Γ*M (g)

EM® F*M) .

Then rfc(Dfc) € Horn (5fc(Γ*M) ® EM ® F*M, S*(Ύ*M) ® EM ® F*M) is the
identity map.

3.4. Definition. Let E,F,G,H, be functors as in § 1.1. A natural dif-
ferential operator of type (£, F, G, H) on Riemannian (resp. oriented Rieman-
nian) manifolds assigns to each Riemannian (resp. oriented Riemannian)
manifold (M, g) a differential operator D(M, g): EM (x) F*M -» GM (x) # * M
such that if /: M —> M ; is a diffeomorphism onto an open submanifold (resp.
orientation preserving diffeomorphism onto an open submanifold) then D(M'',

3.5. Let (M, g) be a Riemannian manifold and let i b e a local coordinate
system on U c; M. Then x determines local bases of sections (^α)αe^? (fβ)βεB>
(gXecΛhδ)δζD for EM,F*M,GM,H*M as in §1.3. Let D:EM®F*M->
GM (x) //*M be a differential operator of order < k. Then locally we may
write
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D(s;ea ® f) = Σ aS'*-*- ^ lrgr ® h*
T — 0 OX (y^f

using the summation convention, where the functions aβr

δ

ίl'"ίr are symmetric
in /1? , ir (2 < r < k). We refer to the local functions aβ

a

ΐ

δ

ίχ""ίr as the coef-
ficients of D with respect to the coordinate system x. Note that locally:

a^ '^va

βίl...ίrgr <g> hδ .

3.6. A natural differential operator D on Riemannian manifolds (resp.
oriented Riemannian manifolds) is regular if the coefficients of D(M, g) in any
local coordinate system are given by universal polynomials in gij9 dla]gij/dxa (a
a multi-index \a\ < Λf, N large) and (det g^)" 1 (resp. (detg^)"*). The operators
Dk introduced in § 3.3 are examples of such operators. Note also that natural
bundle maps and natural tensor fields correspond bijectively, and are therefore
classified by § 2.5. Our main theorem says that in fact this classification also
works for natural differential operators.

3.7. Theorem. Let D be a natural differential operator of type (E, F, G,
H) and order k. Then there are unique natural bundle maps

tr: C~(Sr(T*M) ®EM® F*M) -> C°°(GM (x) H*M) (0 < r < k)

k

such that D = J] trDr, and the tr are regular if and only if D is.
r = 0

Proof. The result is proved by induction on k and is clear for k = 0.
Suppose that the result has been proved for operators of order k — 1, and let
D have order k. Then γk(D) is a natural bundle map which is regular if D is and
γk(D)Dk is a natural differential operator of order k. Since γk(D — γk(D)Dk) = 0
by the remark at the end of § 3.3, D — γk(D)Dk is a natural differential op-
erator of order k — 1, regular if D is. Setting tk = γk(D), the result follows
by induction.

4. Examples

4.1. Let D be a natural regular differential operator on Riemannian mani-
folds of order k and type (E, F, G, H) with the ranks of E, F, G, H equal to
a,b,c,d respectively. D is determined by natural regular bundle maps:

tr: C°°(Sr(T*M) ®EM® F*M) -» C°°(GM (x) H*M) .

If follows from the general theory in § 2.5 that if tr is homogeneous of weight
wr then

1) wr < a + d — b — c — r, and further
2) if a monomial appears in tr involving exactly jt terms WH (equivalently

P ' - Ή ) , 1 < I < i, 2 < ε, < ε l + 1, then
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Thus tr = 0 it wr > a + d — b — c — r, wr = a + d — b — c — r — 1 or
wr odd (by § 2.5). We say that D has maximal weight if it is homogeneous of
weight a + d — b — c — k.

The homogeneous natural regular differential operators of maximal weight
are of some interest since any differential operator between vector bundles over
Rn which is the evaluation of a natural regular operator is a sum of these.

4.2. Hence, if D in § 4.1 has order 1 and maximal weight, then D = σ o F,
where σ is a natural bundle map and V the Levi-Civita connection. Thus op-
erators of maximal weight and order 1 correspond bijectively with bundle maps.
It follows that the Levi-Civita connection on EM (x) F*M is the unique connec-
tion of maximal weight, which in this case is of weight 0 (cf. Epstein [4,
Theorem 5.6]).

Similarly the exterior derivative on forms and its adjoint are unique of
maximal weight, in this case weights 0 and — 2 respectively, up to multiplica-
tion by constants.

Finally note that it follows from § 4.1 that there are no natural vector fields
homogeneous of weight greater than —4.

4.3. Having seen that the Levi-Civita connection is unique of maximal
weight, we move on to consider the Laplacian on forms. Again we consider
the unoriented case. The situation is not as simple as in the order 1 case, but
we can say the following.

Let σ19 σ2: C°°(/\ T*M\ -> C°°(}\ T*M j be the bundle maps defined by:

a,(dxu Λ Λ dxίr) = ΣΣ RjUdxiι Λ Λ dx1^

Λ dxj A dxu+1 Λ Λ dxίr ,

σ2(dxu Λ Λ dxίr) = Σ Σ Ri'ίtJkdxίl Λ Λ dxu~*
l<s<t<r j,k = l

Λ dxj Λ dxίs+1 Λ Λ dxu~x

Λ dxk A dxίt+1 A - - Λ dxir ,

where R^ is the Ricci tensor, Rij

kt is the curvature tensor with second index
raised and dim M — n. Then σx and σ2 are self-adjoint. Let R be the scalar
curvature, d the exterior derivative, d* its adjoint and V the Laplacian. Let

D:c(j\ T*M\ - > c ί / \ T*M\ be a natural regular differential operator of

maximal weight, —2 in this case, and order 2. Then:
1) D = aΔ + cR, if p = 0 or π,
2) D = aλdd* + a2d*d + bσx + cR, if p = 1 or n - 1,
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3) D = aλdd* + a2d*d + bισι + b2σ2 + cR, if 2 < p < n — 2,
where a, aλ, a2, b, b19 b2, c are uniquely determined constants. Further, if D is
self-adjoint then ax = a2 = a so that:

2) D = aΔ + bσλ + cR, if p = 1 or rc — 1,
3) Z> = tf J + V i + V 2 + cR, if 2 < p < n - 2.

5. Appendix

5.1. Proof of part (ii) of the lemma in § 2.4 for V = Rn, O(V) = SOn.

Note that Z2 = On/SOn acts on Horn ((g) Rn,Rj splitting it as the direct

sum of HomO n ί ® Rn, Rj and the —1 eigenspace Λ. If / € Λ, then define

/ e Hom0n Γ® Rn, R\ by

J(Vi ® ® Vk + n) = f(Vλ ® (X) Vk) Σ

so that f(vι (g) (x) vfc (8) eλ ® (g) en) = /(Vj ® (g) v j . Hence

f(vx ® -" ®vk) = Σ cπvπan vκ{n)nζvκ(n+1), vπin+2)}
S

for some constants cπ if k — n is positive and even, and /(t^ (x) (x) vk) is
zero otherwise. But μe Sn determines an element μeθn of determinant ε(μ)
by permuting coordinates. Thus

f(vx (X) (X) vfc) = ε{μ)f{μvι ® - ® ^ f c ) = Σ ε(/i)c

Since / e Λ , we have

' * * / y π ( 7 l ) / i ( r z ) \ / ^ π ( n + l)> ^ f f ( 7 Z + 2 ) / * * \ ^ j r ( f c - l ) > ^ J Γ ( Λ ) /

if /: — n is positive and even, and /f̂  (x) ® vk) is zero otherwise.
5.2. Lemma. Any rational function f on GL(n, R) invariant under the

action of SO(n, R) by right multiplication is of form:

f(A) = F(AAι) + (det A)-ιG(AAι) , A e GL(n,R) ,

where F, G: SM(n, R) —» R are rational functions on the space of symmetric
matrices.
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Proof. Consider the space of rational functions

/: GL(n, R) -> R

invariant under right multiplication by elements of SOn. Again Z2 = On/SOn

acts on this space, splitting it as the direct sum of the On invariant maps and the
- 1 eigenspace Λ. If / e Λ, then h: GL(n, R)->R: X ^ (det X)f(X) is On

invariant and hence f(X) = (det X)~ιh{X). The required result then follows
from Appendix 1 of [2].
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