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MAPPINGS OF BOUNDED DILATATION
OF RIEMANNIAN MANIFOLDS
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1. Introduction

Let M and N be Riemannian manifolds of dimensions m and n, respectively.
Recently, two of the authors introduced the concept of a quasiconformal
mapping f:M—*N and applied it to obtain distance and (intermediate) volume
decreasing properties of harmonic mappings between Riemannian manifolds of
different dimensions [2], [3]. In this paper the concept of a mapping f:M-+N
of bounded dilatation is introduced which is more general and natural than that
of a ^-quasiconformal mapping when m and n are greater than 2. An example
of such a mapping which is not K-quasiconformal is given which is even
harmonic. In § 5 , generalizations of the Schwarz-Ahlfors lemma as well as
Liouville's theorem and the little Picard theorem are given for this class of
mappings.

Let / : M —• N be a harmonic mapping of bounded dilatation of Riemannian
manifolds. If the upper bound || /* ||2 of the ratio of distances attains a maximum
at x e M, then under suitable conditions on the bounds of the sectional curva-
tures at x and f(x), f is distance decreasing.

If M is a complete connected Riemannian manifold of constant negative
curvature —A, in particular, if M is the unit open m-ball with the hyperbolic
metric of constant curvature —A, then the condition on \\f#\\ may be dropped
by virtue of the technique employed in § 5. Indeed, let N be a Riemannian
manifold with sectional curvatures bounded above by a negative constant de-
pending on A. Then, if / : M —> N is a harmonic mapping of bounded dilata-
tion, it is distance decreasing.

The technique employed to prove this statement also yields the following
fact.

Let M be a complete connected locally flat Riemannian manifold and let iV
be an n-dimensional Riemannian manifold with negative sectional curvature
bounded away from zero. Then, if / : M —> N is a harmonic mapping of bounded
dilatation, it is a constant mapping.
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2. Mappings of bounded dilatation

Let V be a Euclidean vector space of dimension m and let V* be its dual space.
Let {e19 , em) be an orthonormal basis of V with dual basis {ω1? , ωm}.
A quadratic function on V is an element of (F(x) F)*, so since (V ®V)* is
canonically isomorphic to F* (x) F*, a quadratic function on F may be written
as / = Σfijωi^ωj. If / is symmetric and positive semidefinite an orthonormal
basis {et} can be chosen so that ftj = 0 for / ψ j and fu = γ\ > 0 for / == 1,
• , k < ra, where k = rank /.

Let W be a Euclidean vector space of dimension rc with inner product h,
and let F: F —> W be a linear mapping of rank £ < min (m,n). We choose an
orthonormal basis {βj of V so that

The vectors ηt = (l/γ^Fβi, / = 1, , k, form part of an orthonormal basis
of W. (If all of the γt vanish, F = 0.) Let X = Σ^x^ be a vector of unit
length and assume F ψ 0; thenFZ = Σy%, where JC* = yi/γi. Consequently,
if F is of rank k, it maps a unit (k — l)-dimensional sphere of F to a (k — 1)-
dimensional ellipsoid of W with semiaxes of lengths γλ > γ2 > > γk > 0,
where ^ = ^, / = 1, , k, are the eigenvalues of ΨF: V —> F'.

Definition 1. The ratio

h = ϊi/ϊs+i , s = 1 , >,k — 1

will be called the s-th dilatation of F.
The mapping F.V-+W induces a mapping /\PF: /\p V-+ f\v W, p<

min(m, ή) given by

/\pF(etl Λ Λ eίp) = Feiχ Λ Λ Feip ,

where 1 < ix < i2 < < ip < min(m, n). We define the norm || /\pF\\ by

| |/\PF| | 2 = Σ (f\pF(eu Λ •• Λ e^), /\p F(etl/\ Λ βip)> .

Thus

= Σ

Iil<P<q<s<k and ls < K, the following fact is easily established.
Lemma 2.1.

'FW'Ύ"l Λ p ^ l ί

0
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We shall require an inequality reversing that in Lemma 2.1. We put μQ = 1

and μp = Σλtl hpl\S)i 1 < *Ί < * * * < ip < k. Since λt > 0, by Newton's

inequalities we have μp_λμp+ι < μ% and therefore μx > μ\/2 > > μ\/k. These
inequalities imply

In the sequel, it is assumed that M and N are Riemannian manifolds of
dimensions m and n, respectively. Let f:M—>N be a C°° mapping, and
(/#)* TX(M) —• Tf(x)(N) be the induced mapping of tangent spaces at *.

Definition 2. If either ( / ^ = 0 at each point x e M or any one of the
dilatations li(x), i = 1, , k — 1, is bounded on M, then / is said to be of
bounded dilatation. For a nonconstant mapping of bounded dilatation, lλ{x) is
always bounded. In this case, K will denote the l.u.b. of lx(x) and / will be
said to be of bounded dilation of order K.

Remark. Since lt(x) < lό(x) for i < j < k, a K-quasiconformal mapping in
the sense of [2] and [4] is a mapping of bounded dilatation. If m = n = 2 the
two notions are identical. However, for m and n greater than 2, a mapping of
bounded dilatation is not necessarily quasiconformal as the following example
shows.

Let U be the open submanifold of E3 given by {(x, y, z) e E3 \ x2 + y2 >
1/(0 + I)2, a Φ -1} and let / : [ / - > £ 3 be denned by

Then the eigenvalues of %f# are λx = 9(JC2 + / ) , ^2 = x2 + y2 and ^3 =
II{a + I) 2. Consequently /t(x, y,z) = 3 and /2(x,y,z) = 3(α + 1)U2 + / ) 1 / 2 .
Observe that / is also harmonic (see § 3).

In the sequel, a mapping of bounded dilatation will be assumed to have the
same rank k at each point of M.

Lemma 2.2. A C°° mapping f: M —> N is of bounded dilatation of order
K if and only if

II 4 I I 2 ^ lr Tfl || Λ 2 4 II

II7* II < K K \\/\ ^n .

Proof. The necessity follows from Lemma 2.1. For the sufficiency suppose
that I, = (λι/λ2)

ι/2 is unbounded. Then
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= ίΛ. + 1 + A . + . . . + _h\ /YA_ + terms < -AY
\ Λ2 A2 ΛJ / ' \ /j ^2

so | |/*| |7IIΛ 2/*II is unbounded.

3. Harmonic mappings

In this section, the conditions for a harmonic mapping / and a formula for

the Laplacian of | |/*||2 are given. By the method of moving frames we write,

locally, the metric ds2 of a Riemannian manifold M of dimension m as

ds2 = ω\ + + ωl ,

where the ωt are linear differential forms in M. The structure equations are

dωt = Σ ωJ A (Oji , ω o + ωH = 0 ,
y

dcύfj = 2 ωίfc A o)fej + β^j , βί<7 + Ωji = 0 ,
k

where the ω^ are the connection forms and the Ωiό are the curvature forms.
If {βi} is the orthonormal frame dual to the coframe {ωj}, the connection D in
the tangent bundle is given by

The Ωu may be expressed as

Λ ωj ,

where the functions i?ίjA;z are the components of the curvature tensor. The
Ricci tensor R^ is denned by

~ ΣΣ
k

and the scalar curvature R by

Let N b e a Riemannian manifold of dimension n (not necessarily that of M)
and let /: M —> N be a C°° mapping. Corresponding quantities in Λf will be
denoted with an asterisk. Thus the Riemannian metric ds*2 of TV is given by
ds*2 = Σω*2. (In the sequel, we will use the convention i,j,k, = 1, , m



MAPPINGS OF BOUNDED DILATATION 623

and a, b, c, = 1, , n.) Under the mapping / a tensor field with com-
ponents Af is defined by

(3.1) /*ω* = ΣΛΐωt .
i

Later on we will drop /* in such formulas when its presence is clear from
context. Taking the exterior derivative of (3.1) and using the structure equa-
tions in M and N, we get

« A ωt = 0 ,
ί

where

(3.2) DA* = dAf + Σ Aa

kωkί + Σ A\ω*a = Σ Afjωj (say) ,
k c j

Aa — Aa

The mapping / is said to be harmonic if

ΣM?* = o .

The simplest case is a smooth mapping / = (f19 - - , f n ) : Em -> En. Then
/^ — ΣAfdXi (g) d/dya, where xt and ya are the coordinates in Em and En re-
spectively and Af = dfa/dXi. Hence

Df* = Σ Λΐjdxt (x) dxj (8) d/dya ,

where Afj = 32fa/dXjdXi. Classically, / is harmonic if and only if

V Aa yi O fa A n I „

Differentiating (3.2) and using the structure equations in M and N, we get

fj A ωj = Σ A^Ωjt + Σ

where

(3.3)
= Σ ^fy^fc (say) .Σ

For a C°° function φ on M the Laplacian J ^ is defined in terms of the
covariant differential V in M by
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Applying this definition to ψ = \\f# ||2 = (ΣAfωi (x) e*, lAfoi ® e*> and using
the Leibnitz rule, we have

Vψ = 2<Σ DAfωi <8> e*9 Σ ^>i ® e*> = 2 Σ
a,i a,i α,i

F2φ = 2 Σ φAfDAf + AfDΆϊ) ,
a,i

the latter becoming, by (3.2) and (3.3),

ί7211/* II2 = 2 Σ G4?Aα* + AΐAϊjJωj (8) ω4 .
α,ϊ,.7,fc

Consequently

(3.4) iJH/JI2 = Σ U?,^?, + ^M&y)

From (3.1) and (3.3), we get

Σ DAfj A ωj = Σ Ah*** Λ °>i
j Jk

Σ ( Σ ^ « ^ ) Λ ωik - Σ {Σ^>i) Λ ω*a

ω , - i Σ ΛδKίαcdωc* Λ ωj

= - i Σ [ Σ ̂ ?ΛJiM + Σ Λf.^MMflω* A
k,l L j δ,c,d J

which implies

(3.5) A%jk — A%kj = — Σ AϊRιikj — Σ AiA\AjRhacd .
I b,c,d

In (3.4)

2_j ί j j jj

(3.6)

a,i,j a,i,j a,ί,j

Observing that A%jk = Aa

jik and taking into account (3.5) and (3.6), we can
write the formula (3.4) for the Laplacian as

έΛU/*H2= Σ ( ^ ) 2 + Σ RtjAΐAΐ
a,i,j a, i, j

w 7) γ i D # JaJb Ac Ad _ι_ y JaJa

a,b,c,d a,i,j

ij

If / is harmonic the last term in (3.7) vanishes.
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4. Harmonic mappings of bounded dilatation

Let Λa = Off, , A£) and At = (A\, , Af) be local vector fields in M
and N, respectively. Then locally

Σ I M l l Σ l l i ! l ll/*ll
α = l ΐ = l

If there are constants Cx and C2 such that

Cx < the sectional curvature of M < C2 ,

then at x we have

(4.1) ( m - Ό C J / J I 2 ^ L V M ? < ( « - D 2̂11/*II2

where H/̂ H2 = i / ^ f ) 2 . Similarly, if the sectional curvatures of N at f(x) are
bounded above by a constant C, then

(4.2) Σ R*bcdA«A»A*A« < 2C\\ Λ% \\2

Theorem 4.1. Lei M and N be Riemannian manifolds of dimensions m
and n respectively, and let f:M—>N be a harmonic mapping of bounded
dilatation {of order K). Then

(4.3) £ H U 2 < m ~ l VK*A ,

if \\f*\\2 attains a maximum at x <z M,
(a) the sectional curvatures of M at x are bounded below by a nonpositive

constant —A, or M is an Einstein manifold with the scalar curvature R at x
satisfying R > —m(m — I)A, and

(b) the sectional curvatures of N at f(x) are bounded above by a nonposi-
tive constant —B.

Proof. Since \\f*\\ attains its maximum at x, Δx | | /J | 2 < 0. Applying (3.7)
we have

(4.4) - Σ Rt^AiAWA* < - Σ RijA«A»

at x. Condition (a) together with (4.1) gives

(4.5) - Σ RijAfA* <(m~ \)A ||/J|i .

Similarly, condition (b) and (4.2) imply

(4.6) IB || Λ2/* II2, < - Σ Rt^

From (4.4), (4.5) and (4.6) we obtain
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2B\\/\2fJl<(m- l)A\\U\\l.

Finally, from Lemma 2.2 it follows that

which proves the theorem.
Corollary 4.1. // M is locally flat and the sectional curvatures of N are

bounded above by a negative constant —B, then either \\f^\\ does not attain
its maximum or f is a constant mapping.

The following generalizes Theorem 5.3 in [3].
Corollary 4.2. Let f: M —> N be a harmonic mapping of bounded dilata-

tion of order K with the function \\f*\\ attaining its maximum on M. If
(a) the sectional curvatures of M are bounded below by a nonpositive

constant —A, or M is an Einstein manifold with scalar curvature > — m
(m — l)/4, and

(b) the sectional curvatures of N are bounded above by a negative constant
— B, then

ιι ΛP/*II 2 / P < k { k ) υ P j 7 L γ ^ ^ K A ' ! < / > < * •
Proof. Since (4.7) holds at every point of M, the result follows from (2.1).
Corollary 4.3. Under the assumptions of Corollary 4.2, /'/ B > \{m

— l)k2K4A and M is connected, then the mapping f is distance decreasing. If
m = n and B > \n(n — l)K4A, then f is volume decreasing.

Proof. From (4.7) we get

Corollary 4.4. Let M be a compact locally flat Riemannian manifold, N
a Riemannian manifold of nonpositive constant curvature, and f:M—>N a
nonconstant harmonic mapping. Then N is locally flat.

Corollary 4.4 is well known (see [1], [5]).
Proof. Since M is compact the inequality (4.7) holds at some point x.

Hence, since / is not constant, A = 0 implies B = 0.

5. Generalizations of the Schwarz-Ahlfors lemma, Liouville's
theorem and the little Picard theorem

Let ds2 be a Riemannian metric of M conformally related to ds2. Then there
is a function p > 0 on M such that ds2 = p2ds2. In the sequel, the elements of
M referred to ds2 will be distinguished with a tilda. The notation otherwise
being as above, we have
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(5.1) Λf = qA% , ώi = poύi , ώij = ωi3 +

where q = p~\ dp = Σpiώi9 dq = Iq^t and / ^ = —qpi. From (3.7) it
follows that the Laplacian Δ of w = Σ(Af)2 with respect to ds2 is

(5.2) μ β - Σ W + Σ *,^?4 α - Σ Λ*6cdifijiίij + Σ 4αi?*

By (3.2) and (3.3) we obtain

(5.3) Σ (Σ ΛjJk)ώk = d (Σ A],) + Σ ( Σ Λ)j)ω*a .

On the other hand, (3.2), (3.3) and (5.1) imply

(5.4) Afj = 2A«qj + q2A«j - Σ Aiqk , /: not summed.
k

If / is harmonic with respect to ds2, then

(5.5) Σ^h = (2-m)

Substituting (5.5) into (5.3) we get

(5.6) Σ Aa

jjk = (2 - m)q Σ i^qjk + qsA%) ,
j J

where qjk is defined by

dqk + Σ Qjωjk = ΣΣ jj Σ

By (5.6), the last term in (5.2) becomes

(5.7) Σ AϊAbi = (2- m)q2 Σ (AfA^q^ +

If ύ attains a maximum at x e M, then

Σ A«A% = Pj Σ (A«y

at x. Formula (5.7) then becomes

(5.8) Σ MA«H = (m - 2)q2 Σ A«A«(Qδi3 - qtj) ,

where β = Σ iPQif
i

From (5.2) and (5.8) the following lemma is immediate.
Lemma 5.1. Let j be harmonic with respect to {ds2, ds*2), and let ύ attain

its maximum at x e M. If the symmetric matrix function

Xij = Q<*ij — Qίj
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is positive semidefinite on M, then

— Σ RabcdΛ-iAjAiAj < — Σ RijAfAy

at x.

Theorem 5.1. Let Bm be the m-dimensional unit open ball with the metric
ds2 = 4A~ι(l — rΐ)~2Σdx\ of constant negative curvature —A, and let N be an
n-dimensίonal Riemannian manifold with sectional curvatures bounded above
by a negative constant —B. If f: Bm —• N is a harmonic mapping of bounded
dilatation of order K, then

(5.9) HΛP/*II2/P < k(kYPjrL~L-^rκi > i < P < k

\ p I 2 B

Proof. Let Ba be the open ball of radius a ( < 1). In Ba we take the metric
ds2 = AA~ιa\a2 — r2)~2Σdx\ with constant curvature —A. Then ds2 = p2ds2

in Ba, where p = a{\ — r2)/(a2 — r2) and r2 = Σx\. The matrix Xi5 is then
given by

2a\\ — ry a\a — ry

Clearly, Xtj is positive semidefinite. The function

u = Σ (Λα)2 = \~2 ~ r<λ Γ Σ U?)2

L α(l - r2) J

attains its maximum on the closure Ba of Ba. But ύ vanishes on the boundary
of Ba. Hence it attains its maximum at a point x e Ba. Applying Lemma 5.1
we get -ΣR*hcdΆ<iΆ)Ά\Ά] <(m - l)Au, for Rυ = -(m - l)AδtJ. Let
II /\p /* ||(«) denote the norm of /\p f* with respect to ds2. Then, as in the proof
of Corollary 4.2,

2B\\/\2fJl)<(m-l)A\\fJl

at x. Applying Lemma 2.2 gives

II 1 112 ^ Ml 1 79 Ά Ίyi

everywhere on Ba. Since the preceding inequality holds for every a, and

lim H/Jfco = H/ l̂l2, we conclude that
α - l

\\U \2
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Corollary 5.1. Under the conditions in Theorem 5.1, if B> \{m — l)k2AK\
the mapping f is distance decreasing.

In the case where M = Em with the standard flat metric, Corollary 4.1 can
be improved as follows.

Theorem 5.2. Let N be an n-dimensional Riemannian manifold with nega-
tive sectional curvature bounded away from zero, and let f: Em —> N be a
harmonic mapping of bounded dilatation. Then f is a constant mapping.

Proof. Let Ba be the open ball of radius a with metric ds2 = a\a2 —
r2y2Σdx\. Then ds2 = p2Σdx\ where p = a2/(a2 - r2). In this case,

y 2(a2 - r2) 4 ( 2 .
1

or

so it is also positive semidefinite. Since the function ύ = H/̂ H )̂ = q2Σ(A%)2

attains its maximum on Ba and vanishes on the boundary of Ba, it must attain
its maximum in Ba. Since the sectional curvature of N is bounded above by
— ε for some constant ε > 0, from the inequality (4.7) it follows that

e\\fJ2

(a)<2a-2(m- l)/c2£4 .

encell/Jl^limll/JIJ.^0.

If 7r: S —• M is a Riemannian covering we have easily
Lemma 5.2. Let f: M —> N be a C°° mapping and f = / o π. Then

If M is a complete connected Riemannian manifold of constant curvature
c, then its universal covering space is

Sm for c > 0 , E m for c = 0 and £ m for c < 0 ,

where Sm is the m-sphere of constant curvature c ( > 0), and Bm is the unit
open m-ball with the metric ds2 = — 4c~1(l — r2)~2Σdx\ of constant curvature
c«0).

Hence by Proposition 4.1 of [3], Theorems 5.1 and 5.2 and Lemma 5.2
above, we get

Theorem 5.3. Let M be a complete connected Riemannian manifold of
positive constant curvature and let IS! be a manifold with nonpositive sectional
curvature. Then a harmonic mapping from M into N is a constant mapping.

This fact is well known [1].
Theorem 5.4. Let M be a complete connected Riemannian manifold of

constant negative curvature —A and let N be a Riemannian manifold whose
sectional curvatures are bounded above by a negative constant —B. If f: M —> N
is a harmonic mapping of bounded dilatation of order K, then the inequality
(5.9) is satisfied.
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Thus, if B > \(m — l)k2KΆ, the mapping / is distance decreasing. In the
equidimensional case, if B > \n(n — l)K*A, f is volume decreasing.

Theorem 5.5. Let M be a complete connected locally flat Riemannian
manifold and let N be a Riemannian manifold with negative sectional curvature
bounded away from zero. Then a harmonic mapping of bounded dilatation
f\M-^Nisa constant mapping.

Theorem 5.5 generalizes Liouville's theorem and the little Picard theorem.
For, in the first case, a bounded domain in the complex plane C is contained
in a disc which has constant negative curvature with respect to the Poincare
metric, and in the latter case, C — {2 points} carries a Kaehler metric of
negative curvature bounded away from zero.
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