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Introduction

Let M be a compact smooth d-dimensional Riemannian manifold without
boundary. Let X = (X3, - - -, X,;) be a system of local coordinates centred at
x,. The metric tensor is given by

ds* = g;;dX; ® dX;  (summed overi,j=1,.-.,d) .

We adopt the convention of summing over repeated indices except wher€
otherwise indicated. Let (g*%) denote the inverse of the matrix (g;;).

Let V be a smooth vector bundle over M and let D be a second order dif-
ferential operator on V. Let e = (e, - - -, €,) be a local frame for V' defined
near x,. The coordinate system and frame e comprise a local system which
identifies a neighborhood of M with R? and a portion of V with R? X R".
Using this local system, we express the operator D :

d d

D = ‘—<hl] ai b) })
dx;dx; + dx; +

where A/, a;, and b are square r X r matrices. Let & ¢ T*M and define

aZ(x, 5) == h”&z&j ) al(xy {:) = _iazS'L s aO(x, 5) == _b .

The leading order symbol of D is a*, which is defined invariantly. The lower
order terms depend upon the local system chosen.

For the rest of this paper, we assume that the leading symbol is given by the
metric tensor, i.e., that A% = g¥] = g%  which implies a*(x, &) = |€]>. We
omit multiplication by the identity matrix on ¥V, and apply the functional
calculus to define the operator exp (—tD) for ¢ > 0. Exp (—¢D) is an infinitely
smoothing operator from L*(V) — C=(V). It is defined by a kernel function
K(t, x,y, D) such that:

exp (— tD)u(x) = f K, x, y, Dyu(y)d vol () ,

K(t,x,y,D) maps V, to V,, d vol(y) is the Riemannian measure. Seeley [8]
proved that K(¢, x, x, D) has an asymptotic expansion as ¢ — 0 of the form:
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K(t,x,x,D) ~ 3 E,(x, D)Y®=0% | ¢ 0" .
n=0

The E,’s are certain endomorphisms defined on the fibre. They vanish for odd
nsince D is a differential operator. Although the defining relation is global, we
can compute them in terms of the derivatives of the symbol of the operator.
They are local invariants of the differential operator D. In the first section we
review the work of Seeley [8] to obtain explicit combinatorial formulas for E,,.

In the second section we apply invariance theory to investigate the form
which E, has. We will express E, in terms of noncommutative polynomials in
the covariant derivatives of certain tensors. By using H. Weyl’s theorem [9],
this will express E, as a sum of various contractions of these tensors with
unknown coefficients. In the third section we will evaluate these coefficients to
determine E,, E,, E,, E;,. In the final section we apply these results to the
Laplace operator acting on functions.

Let ¥V have an inner product (, ) and suppose that D is self-adjoint. Take
a spectral resolution of D into eigenvalues 2; and corresponding eigenfunctions
¢;. Let

K(tax’ y7D) = Z exp(_tll)¢z(x) ®¢z()’) .

Let B,(x, D) = Trace (E,(x, D), B,(D) = jBn(x, D)d vol (x). Then

Tr (K(t, %, %, D)) = 3 exp (—12)(gi $(x) ~ 3, Balx, D™~ 0% .

We integrate both sides of this expansion. The ¢; were an orthonormal basis
so they integrate to 1. Consequently

exp (—14;) ~ io (IM B,(x, D)d vol (x))t““‘“” ~ i}an(D)ﬂ"'d’” .

The numbers B, (D) are invariants of the differential operator, which depend
only on its spectrum.

Let D be some Laplacian of differential geometry. The invariants B,(x, D)
will be certain expressions in the derivatives of the metric. We suppose that
D, is the Laplace-Belltrami operator acting on p-forms. Sakai [7] has computed
a formula for Bg(D,). Using this formula, he proved

Theorem (Sakai). Let M, M’ be compact, connected orientable Einstein
manifolds of dimension 6 which have the same Euler characteristic. Suppose
that the spectrum of D, is the same for both manifolds. Then M is symmetric
if and only if M’ is symmetric.

Donnely [2] has been able to improve this result as follows : his major con-
tribution has been to remove the restriction that d = 6.
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Theorem (Donnely). Let M be an Einstein manifold which has the same
spectrum for all the operators D,,p = 0, - - -, d, as a symmetric space N. Then
N is Einstein and M is symmetric.

Donnely’s proof goes as follows: he applied a theorem of Patodi’s [6] to
show under these assumptions that N is Einsteinian. This result uses the com-
putation of Patodi of the invariants B,(D,). Let P denote the Pfaffian in
dimension 6. P can be defined for all values of d. Then it was shown in (3, 5)
that if d = 6,

P = 3(—1)?By(x,D,) .

By applying the functorial properties of these invariants, this implies that P
must be a combination of the invariants By(x, D,) for any d > 6, and therefore

that the number I P is a spectral invariant for any d. Donnely used this obser-

vation together with the computation of Sakai to complete the proof.

In this paper, we derive a general formula for the endomorphism E. In the
last section, we use this to derive Sakai’s formula for By(x,D,). In a later
paper, we will apply this formula to determine By(x, D,) as well as to determine
B; for other second order operators which occur in geometry. We hope that
these additional computations will enable us to remove the hypothesis that M
is Einsteinian and therby show that the property of being a symmetric space
is determined by the spectral geometry of the manifold.

Some of the computations in the determination of E; are long and com-
binatorial in nature. In an earlier paper [4], we computed the endomorphisms
E,, E, and E,. We would like to express our appreciation to B. Galvannoni
and M. Freidman at the IBT-CO for making computer time available us for
use in the computation of E;.

1. In this section, we derive a combinatorial formula for the endomorphisms
E, in terms of the derivatives of the symbol. We assume that the reader is
familar with the calculus of pseudo-differential operators depending upon a
complex parameter which was developed by Seeley [8]. Our arguments will be
purely formal since the questions of convergence have already been dealt with
by Seeley.

Let D be as described in the introduction. The symbol of D is given by :

o(D)(x, &) = d(x, &) + a'(x,§) + a'(x) ,
a(x, &) = &, a'(x, &) = —iaé;, a(x,8) = —b,
a? d

D= —(g¥ - b) ,
(g dx;dx; T dx; *

where the @’ are homogeneous of order j in the dual variable &.
We introduce the following notational conventions :
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a = (a, -+, ay) is a multi-index ,
la| = a; + -+ + a, is the order of « ,
a!l =a! ay!,

d; = (d/d§)™ - - - (d]dEa)™ ,
Dy = (—i)*\d]dx)" - - - (d]dx,)™ .

Let ¢ be a matrix or function. Let ¢,, = d%(c). We will also use the notation
Criyoniy = dfdx; - - - d]dx;(c). We introduce the following notation for the
formal derivatives of the symbol of the operator:

8ijs = d3(g;;) is defined to have order |«| ,
a;,, = di(a;) is defined to have order 1 + |«| ,
b,, = d:(b) is defined to have order 2 + |a] .

Let P denote the noncommutative algebra in these formal variables and let P,
be the linear subspace of all polynomials which are homogeneous of order n.
For P in P,, define P(X, e, D) by evaluation in the local system (X, e) on the
symbol of the operator D. If the endomorphism defined by P is independent
of the particular local system chosen and depends only on the differential
operator D, then P is said to be invariant. Let Q be the subalgebra of all in-
variant expressions in the derivatives of the symbol. Let Q,, denote the subspace
of invariant polynomials of order n. We will study Q, in detail in the next
section.

The leading symbol of D is self-adjoint, positive, nonzero. Let ¢ > 0 be
given. The spectrum of D lies in a cone C of slope ¢ about the real axis. Let
P be a path about the cone C with slope 2¢ outside some compact set. For 2
on P, the operator (D — A)~! is a uniformly bounded compact operator from
L*(V) — L¥V). The integral

—-1—j exp (—tA)(D — )7'da
2ri Jp

converges absolutely for # > 0 and defines the operator exp (—¢D).

path P slope 2¢
/ slope ¢
MPectrum D] cone C
stm .
\slope —2¢

We construct a pseodo-differential operator to approximate the resolvant




SPECTRAL GEOMETRY 605

(D — 27! as follows: let b(x,&,2) ~ by(x,&,2) + -+ + b (x, &2 + ---.
Let the complex parameter 2 have homogeneity 2. Let the b; be homogeneous
of order —2 — i in the variables (&, 2). This infinite sum defines b asymp-
totically. The symbol of the composition of the operator defined by b is given by

a(B(D — D) ~ 3] (d:b)-(D3(a(D — ))/a! .

Define

@ =|f -2, @ =ada=—ias;, @=a=—b.

Decompose this sum into orders of homogeneity :

oBD = ) ~ T (Zapuyerer (i) (D2a) )

The sum is over terms which are homogeneous of order —n. We wish to define
b so that

oB(D — ) ~1.

This yields the equations

I= % (db)Diay/al =bF -2,
0= ¥  (db)(D3dr)/a!

n=j+|al+2-k

=b.(F =D+ X | (deb)(Dsa) ! .

n=j+|al+2-
<n
These equations define the b, inductively. In the sum in the second equation,
if k = 2 and j < n, then |«| = 0. Consequently we replace d, by a,. Define

by = (& — D7, b= —b (]Z]n (d:b)(D3az)/at)
forn=j+ |a| + 2 — k.

It is clear that b, is a scalar matrix.
Lemma 1.1.
(1) by = 3 b, (0)EbE™ for k(n, @) = ¥(|la| + n + 2) is an integer,

(2) the b, , belong to P,.

The proof of this lemma is by induction. It follows immediately from the
inductive definition given of the b,. The fact that a, is a scalar matrix is essential
in order for us to express the dependence of b, upon the complex parameter
in this fashion. This assumption fails when we consider the ETA invariant
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defined by Atiyah-Patodi-Singer. It is this fact which makes the computation
of the local pole of the ETA function at zero so dificult.

Our final formula will express E, in terms of the matrices b, ,. This will
imply that E,(x, D) lies in P,. Since E,(x, D) is independent of the particular
local system chosen, it is invariant. We will exploit this invariance in the next
section. »

We use this approximation to the resolvant to define an approximation of
exp (—tD):

en(x, &, 1) = —»21;; f exp (—1)ba(x, & DdA .

Let E(t) have symbol ¢, + .- + e, + --.. E(?) is a pseudo-differential ap-
proximation of exp (—tD). Let H; denote the Sobelev space defined as the
completion of the smooth functions in the s-norm to measure L* derivatives.
Let 4 be any pseudo-differential operator. Define |A4[, ;. to be the operator
norm (possibly infinite) of 4 as a map from H, to H,.. The following estimates
were proved by Seeley :

|E(t) — exp (—tD)|; s < C(s, 58, k)t* ast— 0.

The constants C(s, s, k) are finite for all s, s”, k. Consequently, the difference
of these two operators is an infinitely smoothing operator. The diference has
a kernel function which dies to infinite order as ¢t — 0. Consequently, the
asymptotic behavior of the kernel function of the operator exp (—tD) is the
same as that of the kernel function of the operator E(7).

The kernel of a pseudo-differential 4 is given by the equation:

K(x,y) = jexp - (x — YA, )de - (27) 7

provided that this integral converges absolutely. The normalizing constant

(27)~¢ arises from the reverse Fourrier transform. We compute the kernel of
E@®:

enx, &, 1) = ——2;7 f  ba(x,&,2) exp (— 1042

= — L 5[ @bl exp (—12dz
271'1 a P

Il

D087 | 8 — e exp (i)

We evaluate this countour integral using Cauchy’s formula. This yields:
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en(x, &, 1) = 2b, () 1* " exp (—1[€f)/(k — DI,

where k = k(n, ). This function dies exponentially as the dual variable tends
to infinity. It therefore defines a smooth kernel function. On the diagonal, we
compute

K, (t,x,x) = 33 b, ()" —exp (—#E[)EdE .

1
.[ QCr)ik — 1)
We change variables in the integral. This gives rise to the formula

Kn(t3x7 x) - Z bn,a(x)tk—l—lal/z—d/zcd,a/(k - 1)! ’
Can = j@%s exp (—|EP)de .

Since k(n,a) — 1 — ia| = }n, this proves that

K,(t, x,x) = t"=22 3 ¢, b, ()] (k —1)! .

Since the kernel function for E(?) is given by K, + --- + K, + ---, and the
kernel function for E(f) asymptotically approximates the kernel function for
exp (—tD), this proves the convergence of the series given in the introduction
and shows that

Ey(x,D) = 3 b, [(X)c,q/(k — D! .

To complete the formula for E,, we must evaluate the harmonic integral
defining ¢, ,. Let « = (a;, - - -, ;). If any of the «; is an odd integer, this
integral vanishes. Consequently, we may suppose that « = 28. Since
n =2k — |a| — 2, E, is zero unless n is even.

Lemma 1.2. ¢, , = (4n)~%*(2p)!/(B! 4'7).

Note that this formula agrees with the formula given in the author’s thesis,
which was, however, expressed differently.

Proof. The identity

Vo= J: exp (—n(r)® = r exp (—rddr

implies that

J‘i’ r’t exp (—rd)dr = f: r%=-9exp (—r)dr = (k — 5)(k — 1.5 --- (V'
=7k — )2k —3) .- (1)/2¢
=V 2Rk —1)--- (/22K — 2) - -+ (2)2%)
=« & (2k)!/(k! 4%) .
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Consequently

_ 1 o CemyaE — T
cd”‘"j @rye* P ende =11 | @

= (@)(2P)! /(B! 4712n)%) = (4m)~2(2)! /(B! 4'#) .

1 284 2
i € exp (—eDde) .

We summarize our conclusions in

Theorem 1.3.

(1) Define b, = (&| — D) and b, = —b,3(dsb,)Dsay)/a! for n=j + |al
+2—k j<n.

(2) b, = X b, 5b5™ for k(n,a) = 32 + n + |a)).

(3) E,(x,D) = (4m)~423b, 5,(x)(2p) ! [ (B! 4 !(k — 1)1).

4) E,(x,D) belongs to Q,,.

2. In this section, we will exhibit a basis for the vector space Q,. We have
previously constructed bases for Q,, Q,, Q, in [4]. Let D be as in section one
and let // be any connection on V. In a local system, we express V;(e) =
V4,4:,(€) = w;(e) where w; is an r X r matrix called the connection form.

Since M is a Riemannian manifold, let /'” be the Levi-Civita connection on
TM. The Christoffel symbols I';;* are defined by the equation

Vi(d]dx;) = ST,4d)dx, .
We extend the connection to 7*M in the natural way. Then
Vidxy) = — ; 'y 7(dXy) .

The connection on TM and V induce connections on the complete tensor
algebra. The metric tensor is a map from T*M @ T*M to R. We define the
operator D, by

D,: c=(V) > (v @ T*M) 7> C*(V @ T*M ® T*M) 28 c=(v) .
In polar geodesic coordinates, D is given by the formula

Dy(s) = 3, — g7 (s) ,
1,7
where s is any smooth section to V.
We determine a unique connection from the differential operator D as follows.
The operator (D — D)) is a first order operator for any connection. The leading
symbol of this operator is

o(D — D)) (x, &) = J&(a; — 28%w; + g'*I";") + zero order terms.
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The first order part is invariantly defined. We define the connection uniquely
by requiring that (D — D;) is a 0-th order operator. This defines the w; by
the equations

a,/—zglJWj"l—g]ijk’L:O fOI‘i:l,-~-,d.

We fix this invariantly defined connection henceforth.

The connection was defined so that E = (D — D)) is an invariantly defined
0-th order operator. This implies that E is an endomorphism.

Theorem 2.1. Let D be given. There are a unique connection V on V and
a unique endomorphism E of V such that D = D, + E.

The derivatives of the symbol of D can be computed in terms of the deriva-
tives of the metric, the derivatives of the connection form w;, and the en-
domorphism E. Let X be geodesic polar coordinates at x,, and e(x,) an arbitrary
frame for the fibre at x,. Extend e to a smooth frame near x, by parallel
transport along the geodesic rays from x,. If we require that g;;(x,) = d; ;, then
this choice of coordinates is unique up to the action of 0(d), and the choice
of frame is unique up to the action of GL (dim (V)).

Let

Rijum = GV V; — V,lV,)d]dxy, d]dxy,) ,

Wi; = Wi — Wy + wiw; — ww,,

where R,y is the curvature tensor of the Levi-Civita connection on TM, and
W,;is an r X r matrix giving the curvature tensor of the connection on V. We
covariantly differentiate these tensors and the endomorphism E to form the
tensors

Rz‘jlcm;il---ig s Wij;il---is s E;il---is .
These tensors are of order 2 + s in the derivatives of the symbol of the
operator. The notation ““;” denotes covariant differentiation.

Since X is a system of geodesic polar coordinates, we can express the or-
dinary derivatives of the metric tensor in terms of the R ;... tensors at x,.
Furthermore, we can express the ordinary derivatives of the connection form
w; at x, in terms of the values of the R; ;... and W,;.... tensors at x,. Finally,
it is clear that we can compute the ordinary derivatives of the endomorphism
E in terms of the E.... tensors and the derivatives of the metric and connection
forms. (A proof of these facts is to be found in the appendix to [1]). Con-
sequently, we can express any element of Q, in terms of the tensors listed
above.

Since we are considering endomorphism valued invariants, the action of
GL (dim (V)) on the choice of frame can be ignored. We apply H. Weyl’s
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theorem [9] on the invariants of the orthogonal group to deduce that every
element of Q, can be constructed in terms of contractions of indices. Since the
algebra of invariant polynomials is noncommutative, we must consider con-
tractions of all possible noncommutative expressions. This proves

Theorem 2.2. A basis for Q, can be constructed, which consists of con-
tractions of various noncommutative expressions in the tensors listed above
which are of order n. We contract these tensors by summing over repeated
indices.

We first consider those invariants which depend on the metric tensor alone.
Donnely [2] has computed all the invariants of the metric tensor, which are
of order 6. These are listed in the first column of table I of the appendix. Next,
we consider those invariant expressions depending only on the metric and con-
nection curvature tensors. After reducing by the Bianchi identities, there are
a total of 11 such expressions which are listed in the third column of table I.
Finally, we consider those invariants which involve the endomorphism E. There
are 18 such expressions which are listed in fifth column of table I. The com-
putations showing that these 46 invariants are linearly independent and span
Q, are routine in nature and are therefore omitted. In the next section, we
express E; in terms of these 46 invariants.

3. In an earlier paper [4], we computed that

E, = (4m)~"I ,

E, = (4r)""*(E — §R:15) ,

E, = (4n) "((—55Rsjijen + 72RijijRimim — TooRijinRujne

+ Té_GRijknRijkn) - %—R‘sz]E + %EZ + 'II?WZ]W'L] + %E,kk) .
We sum over repeated indices in any orthonormal frame for TM. The R, jim...
tensor acts on V by scalar multiplication.
The formula for E; involves 46 terms and is much more complex. A basis

for the invariants of order 6 is given in table I. Suppose that these invariants are
denoted by P,, - - -, P,s. Since E; is an invariant of order 6, we can express

E = c,P, + - -+ + c4E, where the ¢;’s are certain universal constants. These
constants are listed in table I. Thus our formula reads

E, = (47) Y (=38! Ryjijinunn + -+ + 150ER jenRijin) -
The remainder of this section is devoted to the determination of the constants
c;. They are determined by considering the following special example: let M
be the d-dimensional torus for some d > 6. Choose a metric of the form

ds® = gidx;® .

Suppose that g;,; vanishes identically. Let h; = g;”" be the inverse function.
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The Christoffel sumbols /7; ;% vanish identically unless exactly two of the indices
are equal. We compute that

I'y? = $hhi?hy, Iyt =Tyt = —3hithy,; .

The curvature tensor tensor Rj;;, vanishes unless at least two of the indices
agree. We compute that

Rijiy = §(hi*(hiy)* + h3*(hyn)* — 3(hihaygy + B5%hy0)
+ i 2 hithihiphg
k#i,j
Rijix = 3(h*hy5hin) — 3(hi Ry
— 2(h; hyhey; + hitheg P forj# k.
In these two formulas, we do not sum over repeated indices. The other nonzero
curvatures can be obtained from these two by using the symmetries.
LetV =M X R", and leta,, - - -, a; and b be r X r matrix valued functions.

We suppose that a; is not a function of x,—i.e., a,,; = 0. Let D be the dif-
ferential operator

D = —(hd*/dx: + a;d/dx; + b) summed over repeated indices.
This differential operator defines a connection on V. The connection form is
w; = $hi(a; + ; hl;9) = thi'a, + % 4:‘_‘ hi'hy,,

The sum over k ranges over k = i since h;,; = 0. The curvature form is
Wiy = thi'hiiaa; — a;a) + $hita, — 3hia,,
— thi*hia; + 3hithya; .
The endomorphism E defined by the operator D is given by
E=b—-1 ; hi'al + lzl;c (—2hithihy ) + Sshi*ha(hy)?

+ 2 X $hithithyhe

i j<k

These formulas together with the formulas for differentiating tensors enables
us to express all the invariants listed in table I in terms of the ordinary deriva-
tives of the functions 4; and matrices a; and b.

By using the combinatorial formulas obtained in the first section, we can
express the endomorphism Ej for this operator in terms of the ordinary deriva-
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tives of the functions /; and matrices a; and b. We have the identity £ = c,P,
+ -+ 4+ c,Py. This gives rise to a certain system of equations in the deriva-
tives of these functions and matrices. This system is given in tables I-A and
following. It is invertible and enables us to determine the c;’s.

We illustrate this method as follows: we apply the formula of the first sec-
tion to compute that the coefficient of the monomial b, in E; is §5. The
only invariant of table I which contains the term b,,,, is E.;;;;. Furthermore,
the coefficient of b, in E,;;;; is 1. This implies that the coefficient of E.;;;;
in the expansion of E; must be 5 which is indicated in the sixth column of
table I. The determination becomes more complicated for the other invariants.
We are solving an upper-triangular system of equations which is very sparce.
In tables I-A through I-H, we carry out the computations to determine the
coefficients which are given in table 1.

We consider a very special example in which the computations are particularly
simple. This example gives us enough information to determine the coefficients
¢;’s and hence to determine E; for a general operator.

4. In this section, we apply the formula of table I to obtain Sakai’s formula.
Let D, be the Laplace-Beltrami operator acting on functions. For this operator,
the connection // on the vector bundle M X R is flat. The endomorphism E is
zero. Consequently, E (x, D,) is given by summing over the first column of
table I with the indicated coefficients. Since the vector bundle is 1-dimensional,
By(x, Dy) = E4x, D,). In order to obtain Sakai’s formula for the integral of
By(x, D,), we must integrate by parts. We use the relations:

IRijij;kkmm =0 )

jRijij;anmkm;n + Rz’jinkmkm;nn =0 )
~l‘Izijik;nlz'mj'mk;n + Rijikijmk;nn =0 )
JRijik;anjmn;k + RijixRmjmnien = 0,

jRijik;anjmn;k = I%Rijij;anmkm;n + RyjiuRmjmpRarqn
- RijilcRmpquJ'qu ’
jRijknRimkpijnp - j - %Rijij;anmkm;n + Rijilc;anjmk;n
- %Rijkm;nRijkm;n - RijikRjnmanpmp

'I‘ RijikRnpmpRjnkm + %RijikRjnmkanmp

1
- ZRijknRijmkanmp .

We use these relations together with table I to prove
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Theorem 4.1.

(47r)

(1) Bs(x, Do) = (_ 18R‘L]Z] kkmm T 17Rz]z] kRmnmn k

— 2Rijilc;anjmk;n — 4Ry 540 R mjmniie + IR jkm;nRejkmn
+ 28Rijinkmkm;nn - 8Rijilcijmk;nn + 24R1IjikR1njmn;kn
+ 12R,jknRijkminn — B2R; ;i RmnmnRpapg

+ ITA”Rijinmnm;qunqp - L:%iRijinmnqumnpq

+ 28R, ik R jnmnRipmp — SR 1 RupmpRjnim

+ lfs‘RijikRjnmkanmp - AQARijknRijmkanmp

- §9_0'RijlcnRz'mkpijnp) .

@ By(Dy) =j By(x, Dy)d vol (x)

4r)=2r

= ( ) ( —21E2R sk Rmnmnse — %P RijikinRmjmiin
- %Rijkm;nRijkm;n - i&)iRijinmnmanqpq

1 14

YR 51 RmnmpRanap — 5 RijijRmnpeRmnpq

4R;jikR jumnRipmp — % RijieRupmpR jmim

$RijuR jumpRunmp — %Rz‘jknRijmka"mP)d vol .

+ 4+ +

In these formulas we sum over repeated indices. This answer agrees with the
formula given by Sakai for By(D,). In a later paper, we will apply the formula
in table I to compute By(D,) as well as for the reduced Laplacian (—gF,F;)
acting on tensors of all types.

Table I

Polynomial Coeff. ‘; Polynomial ; Coeff. \ Polynomial } Coeff.
Rijigsiemm —18/7! s WijieWijsk 1745 | Eauyy 1/60
RijijieRnmnm;k 17/70 || WisiWaksk 1/180) EE;y; 1/12
Rijik;nRmjmicsn —2/7" | WijnaWis 1/60 f E.E 1/12
Rijir;nRmjmn;k —4/7! ‘ WiiWijikk 1/60 || EE;; 1/12
Rijim:nRijimin 970 | WiiW Wi —1/30 | E3 1/6
RijijRimkm;nn 28/7! || RijkaWijWin —1/60 | EW;i;W; 1/30
RijitRmjmiinn | —8/70 | RijixWinWin 1/90 ‘ Wi;EW.; 1/60
RijicRmjmnien | 24/7! \ RijiiWiaWin 12| WiWiE 1/30
RijkmRijkm;nn |12/ ‘ RijixWinsng 0 ‘I Riji;E;kx —1/36
Rtjlijnmn PgPq ’ 5/97, 1‘ Rijij;kan;n 0 ‘ RijikE;jk —'1/90
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Table I (Continued)

Polynomial Coeft. Polynomial Coeft. Polynomial Coeft.
RijijRmnmpRangp | 14/3.7! | Rijin;nWijik 0 RijijikEsx —1/30
RijijRmnpgRmnpq |—14/3.7! E;jWijii —1/60
R;jixRjnmuRipmp | 208/9.7! WijiEsj 1/60
RijixRupmpRjnim | —64/3.71 EERq;;; —1/12
RijixRjnmpRinmp 16/3.7! ER;jijixr —1/30
RijknRijmpRinmp |—44/9.7! ER;jijRinicn 1/72
RijknRimkpijnp —80/9.7! ERijikannk —1/180

ER;jxnRijkn 1/180

The 46 invariants in this table are a basis for Pgt. The coefficients next to each in-
variant should be multiplied by (4r)-¢/2 and summed to give ES. Each invariant is to
be summed over repeated indices for any orthonormal frame for the tangent bundle.

The notation R;jkn;..., Wij;..., and E.... is explained in section two.
Table I-A
: B3 Bm Apass | Ao Ao
Polynomial | Coefl. | B | BB | B/ubB ‘Hss | -Hssm Aspn | -Axjess | -Hssm
E.iij; 1/60 1 0 0 0 —1 0 0 172
EE.; 1/12 0 1 0 —1/4 —1/4 0 0 1/8
E.wE 1/12 0 0 1 —1/4 —1/4 0 0 1/8
RijiEspr —136, 0 | 0 | 0 | —1 | —1 0 0 12
RijikEs ji ~19% | 0 | 0 | 0 0 | —12] o 0 1/4
WijiixWij 1/60 | 0 0 0 0 0 —172 0 0
WiiW i 160 0 | 0 | 0 0 0 0o | —121 o
RijicWiensng 0 ol o | o 0 0 0 0 | —1/4
Es 1 | 1/60 | 1/12 ] 1/12 ‘ —1n } —1/40 i—1/120 —1/120| 1/80
Table I-B
. By | Bn B, | Ay Ajjes Az Az A1z
Polynomial | Coeff. -B1 |-Hssj| - A1y -Bn | A | -Auss | -Hssjun| -Hsspu
Euiijs 160 | 0 | —12] —1 | 1 2 | —12] o 0
E.E.; vz |1 | —12] o 0 0 0 0 0
RiijxEse | —1/30| 0 | —1 | o0 0 0 0 0 0
E. Wi —1/60| 0 | 0 | 12| o0 0 0 0 0
WijiE.j 160 | 0 | 0 | 0 | 12 0 0 0 0
WiixWijx 1/45 0 0 0 0 1 0 0 0
Wi Wik | 1/180 | 0 0 0 0 0 1/4 0 0
RijijsxWinin 0 0 0 0 0 0 0 1/2 172
R;jkn;nWijik 0 0 0 0 0 0 0 —1 0
E, 1y —1/60'—1/40}\ 1/40 | —1/90 | —1/144| 0 0
|
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Table I-C
|
il | BAyja| Aip | A |ArpAas| AvysAsn | Aipden | AseAess

Polynomial | Coeft. | B? Asn | BAsy | A:pnB Asn | Hszyn | Hszu | Hssm
E3 1/6 1 0 0 0 0 0 0 0
EW, Wy 130 0 |—12] o 0 0 18 | 1/8 | 1/8
Wi ;EW;; 1/60 0 0 —1/2 0 0 1/8 1/8 1/8
Wi iWi;E 1/30 0 0 0 —1/2 0 1/8 1/8 1/8
WiiW W |—1/30 0 0 0 0 —1/8 0 0 0
WiiWijikk 1/60* 0 0 0 0 0 3/2 0 0
WigaWis 1605 0 | 0 | 0 0 0 |-112 0 0
R;jinWiijWin |—1/60 0 0 0 0 0 172 0 0
RijiWmWin | 1/9 | 0 | 0 | 0 0 0 14 | 1/8 0
RijijWinWin |—1/721 0 | 0 | 0 0 0 12 | 12 | 122
Eg 1 1/6 |—1/601—1/120{ —1/60 | 1/240 | 7/480 | 7/1440 | 1/288

*_see preceding tables for determination of the coefficients of this polynomial in Eg.

Table I-D

Polynomial | Coeff. | B2H11/22 | BH11/2222 | BH11/22H11/25 | BH11/33H 32733 | BH11/20H 33/44
EE.;;** 1/6* 0 —1/4 7/8 1/4 0
E3 1/6* —3/4 0 3/16 3/8 3/8
E%R;ji; —1/12 —1 0 172 1 1
ERijijre | —1/30 0 ~1 4 1 0
ERiji;Rinin | 1/72 0 0 2 2
ERyjixRopme | —1/180| 0 0 12 1/2 0
ER;jxnRijin 1/180 0 0 1 0 0
Eg 1 —1/24 —1/120 3/160 1/80 1/44

*-see preceding tables for determination of this coefficient.

**.we have combined the entries for EE;; and E,E.

Table I-E
Polynomial |Coeff.**| Hasi11111 |HasprssHoe/111 i Hos/133H 327111 | H11/345H 22/345) H11/345H 117345

E.iij 8 | _1/4 12 | e 3 15/2
E.E.; 140% 0 18 1/8 0 0
RijijiEk —se<| 0 | 12 12 |0 0
Ry jijsienn —6 —1 2 |15 2 | 36
RijijxRpmnmir | 17/3 0 2 1 2 0 | 0
Rijik;nRmjmi:n 1 -2/3 0 0 3 172 3 3/2
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Table I-E (Continued)

Polynomial |Coeff.**| Hayminn |HaajrssHazy11|HaopnssHozyn | HiiysasH 2305 H11/345H11/345
Rijik;anjmn;lc —4/3 0 0 0 3 3/2
Rijkm;nRijkm;n 3 0 0 0 0 6
Eo 1680 -1 17/6 ’ 1772 6 9

**-We have multiplied the coefficients by 1680 to reduce the fractions involved. Thus
the actual coefficient of E;E,;, for example, is 140/1680.
*-see preceding tables for determination of this coefficient.

Table I-F
Polynomial Coeff. | HuyssssHoojas | HuyoooaHuiyss | HiyssssHozyss | HiiyoossH1i o0
E.ij 28+ 0 3/4 3/4 9,2
Rijijikknn —6%* 0 3 3 20
EE.; 280%* 1/16 1/16 1/16 1/16
Riji;E kx —140/3* 1/4 1/4 1/4 1/4
RijijienE —56% 1/4 1/4 1/4 1/4
RijikE; jx —56/3% 0 0 1/8 1/8
R;jijRimiminn 28/3 1 1 1 1
R;jixRmjmi:nn —8/3 0 1/4 1/4 1/2
RijixRmjmn;kn 8 0 0 1/4 1/4
Rijkaijkm;nn 4 0 0 0 1
E 1680 7/6 72 19/6 1 19/2
|

*.see preceding tables for computation of this coefficient. All coefficients have been
multiplied by 1680 to reduce the number of fractions involved.
#*.we have combined the terms in EE.;; and E;;E.

Table 1I-G

Polynomial ‘} Coeff. Hss/66H11/14H 20/55 | Hase6H 11/45H 22/45 | H3s/66H11/45H 11/45
EE;; 280%* 0 —1/8 —5/16
RijiiE ke —140/3* 0 —1/2 —5/4
Es 280* ~3/32 0 0
E?R;ji5 — 140% —3/8 0 0
ER;jijikk —56% 0 —1,2 32
ER;j;jRimim 70/3% —32 0 0
ER;jikRmjmr —28/3% 0 —1/4 18
ER;jkmRijem 28/3* 0 0 1
Rijinkmkm;nn 28/3%* 0 -2 _6
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Polynomial ‘ Coeff. Hss/e6H11/44H 32/55 | HssyeeH11/45H 92/45 | Hs66H 11/45H11/45
RijijRmnmnRopop —35/27 -6 0 0
Rijinmnmoanpo 14/9 0 -1 _ 1/2
RijinmnopRmnop —14/9 0 0 _2
Es 1 1680 —35/36 _14/9 _13

*.see preceding tables for computation of this coefficient.

multiplied by 1680 to reduce the number of fractions involved.
#%.we have combined the terms in EE;; and E;;E.

All coefficients have been

Table I-H
Polynomial | Cosfl. | || o | Hae

Ejuij5 28 —3 —3/4 218 | —7958 | —3/4
Rapaviceda —6* —12 -3 —11 —46 -3
EE;; 280%* —3/8 —3/16 —9/32 —7/32 3/16
R;jiiE;kx —140/3%  —3/2 —3/4 —9/8 —7/8 3/4
R;jiE; i —56/3* 0 —1/8 —9/16 —7/16 3/8
RijijixnE —56% —3/2 —3/4 —5/4 -1 3/4
RapasRijij;kx 28/3% -6 -3 _5 _4 3
RavacRivic; jj —8/3% —6/4 —1/2 —5/4 —2 3/4
RapacRivijici 8* 6/8 —4/8 —9/8 —1 0
RgpcaRaved;ee 4% 0 0 0 —4 0
E3 2807 —3/32 —3/32 ~3/64 —1/64 —6/64
E2R;j;; —140%* —3/8 —3/8 —3/16 —1/16 —6/16
ER;jijRavas 70/3%  —3/2 —3/2 —3/4 —1/4 —32
ERgpacRavac —28/3% —3/8 —1/4 —1/4 —1/8 —6/16
ERascaRapea 28/3* 0 0 —1/4 —1/4 0
R;jijRapasReaca | —35/27* —6 —6 -3 -1 _6
R;jijRavacRavac 14/9%  —-3/2 —1 —1 —12 —6/4
R;jijRabcaRabea —14/9% 0 0 -1 —1 0
RijikR jnmnRicpmp 208/27, —6/8 0 —3/8 —2/8 0
RijisRupmpRinkm | —64/9 0 —1/4 —1/4 —1/4 —6/8
R;jixR jnmpRinmp 16/9 0 0 —1/4 —12 0
RijinRijmpRinmp | —44/27 0 0 0 1 0
RijinRimikpRjmnp | —80/27 0 0 0 0 —6/8
Eg 1680 | —175/12 —21/4 —61/8 —305/24 —3/4

*-gee preceding tables for computation of this coefficient.

multiplied by 1680 to reduce the number of fractions involved.
**.we have combined the terms in EE,; and E;E.

All coefficients

have been
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