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EXAMPLES OF NONVANISHING CHERN-SIMONS
INVARIANTS

JOHN J. MILLSON

Introduction

In this paper we study the Chern-Simons invariants. These invariants of
(4Π _ l)-dimensional Riemannian manifolds first appeared in Chern-Simons
[1]. They are obstructions to conf ormal immersion of the Riemannian manifold
in Euclidean space in much the same way as the Pontrjagin classes are to
topological immersion. In Chern-Simons [1] a 3-dimensional example was given
whose Chern-Simons invariant was nonzero. However, no higher-dimensional
examples were given. Our first theorem gives a simple algebraic formula for
these invariants for a spherical space form. In particular, for the Lens spaces
L(p\ q19 q2, - , q2n) the invariants are expressible in terms of the elementary
symmetric functions of ql9 q2, , q2n modulo p. Using this and judiciously
choosing p and the q^s one can produce for each n, infinitely many Lens spaces
L(p; <Zi, q2, - , q2n) which immerse smoothly in Rin but not conformally in
R*n+2n~2. This is the "best-possible" non-immersion result obtainable with the
Chern-Simons invariants. For example, the 15-dimsional Lens space L(137; 1,
10, 100, 41, 136, 127, 37, 96) immerses smoothly in Rw but not conformally in
R22. As another application of our calculation for Lens spaces we give a residue
formula for the Pontrjagin numbers of a 4«-manifold admitting a periodic dif-
feomorphism of prime order. We give here the formula for the case where the
difϊeomorphism / has only isolated fixed points. Let Q{pλ, p2, , pn) be a poly-
nomial of the right weight in the Pontrjagin classes pt to obtain a Pontrjagin
number Q(M). Let m19 ra2, , mk be the fixed points of /. If p is the order
of /, then Q(M) = Σk

i=ι Res (/, raj, modulo p, where Res (/, raj is calculated
as follows. Since / leaves ra^ fixed, df maps the tangent space of M at mt to
itself. One can always (by averaging) assume / preserves a metric on M, so
dfinii) is a rotation of order p. Let θ19 θ29 , θ2n be its rotation angles; that
is, dfirrii) is similar to a block matrix:
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cos Θx — sin θλ

sin θx cos θλ

0

0

cos θ2n

sin θ2n

- sin θ2n

cos θ2n

Since df has order p we have θ = 2πq/p for some integer q which is de-
termined modulo p. Then

R e s ( / > m < ) = -

where σ* is the Mi elementary symmetric function. This formula was also derived
by Kosniowski [4] independently using a different method.

I would like to express my gratitude to James Simons, my thesis adviser,
for explaining his ideas to me, for making many useful suggestions and most
of all for showing me by example what is involved in doing mathematical re-
search. I would also like to thank George Cooke who taught me algebraic
topology and Madhav Nori who helped me with the number theory. Lastly I
would like to thank the Canada Council for the Arts for its generous support
during my years in graduate school.

1. Review of definitions

In Chern-Simons [1] the T forms associated to a Riemannian manifold M
were defined. The form Tpn is a (An — l)-form on the frame bundle of M
satisfying dTpn = π*pn, where π is the bundle projection and pn is the
Pontrjagin form associated to the metric. In the case pn = 0, Tpn defines a
cohomology class on the frame bundle whose R/Z reduction is the lift of a
class from the base. In this way, we associate R/Z cohomology classes to some
Riemannian manifolds. These classes have the defect that there is no way to
calculate them if M is not parallelizable. The work of Cheeger-Simons [2]
remedied this difficulty.

We will now give a review of the Simons 5-characters. A more detailed
treatment may be found in [1], [2]. They are the invariants of a geometric
vector bundle, that is, a vector bundle with a connection. We will emphasize
this notion throughout.

Let us begin by recalling the definition of these 5-characters. We will not
construct them in full generality but only in the Riemannian case. The universal
object in Riemannian geometry is BO(ή) (or rather some large finite skeleton)
equipped with the universal Levi-Civita connection on the canonical π-dimen-
sional vector bundle over it. We obtain its curvature Ω and the Pontrjagin
forms p(Ω) the natural globalization of Ω. Now given any smooth (4k — 1)-
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cycle M in G(n, N) (a finite approximation to BO(n)) either M or 2M bounds.
If M bounds, say M = dW where W is a smooth singular 4k chain, define

Sp(M) = [ p(Ω)
Jw

where denotes reduction mod Z. That this number is independent of the
choice of W is clearly true. If W1 is another choice with dWx — M then W — Wλ

is a cycle; hence, p(Ω) = p{Ω) — p(Ω) is an integer. If 2M
JW-W! JW JWx

bounds we have to be more careful. We choose an integral cochain u which
represents the integral Pontrjagin class and define

Sp(M) = ί\\ p(Ω)-u(W)\ .

It is easily seen that Sp is independent of the choices of W and u. Sp gives a
homomorphism from the additive group of (4k — l)-cycles to the circle, that
is, it is a character of this group. Moreover, it is natural with respect to con-
nection preserving bundle maps—as is easily seen from the definition.

Now given any Riemannian vector bundle (a vector bundle with a Riemannian
metric and an invariant connection) π: E —> M, it is classified by a map to
BO(ή) as a Riemannian bundle. That is, the connection on E is the pullback con-
nection from the universal connection in BO(ή). This follows from a theorem of
Narasimhan and Ramanan [6]. Using this classifying map we can pull back the
universal characters to M. Cheeger-Simons [2] showed that these characters
depend only on the Riemannian bundle and not on the choice of classifying map.

An easy computation shows that in BO(n), δSp = p(Ω) where δ is the R \Z
coboundary and p(Ω) is the R/Z cochain determined by the real Pontrjagin
form. From this it follows that Sp defines a cohomology class on M if and only
if the Pontrjagin form p(Ω) is zero. Moreover, the above formula also implies
that Sp lifts in the total space of the universal O(n) bundle to an R/Z primitive
for p (since this is already true on the base). Thus the lift of Sp and Tp are
cohomologous as R/Z cochains. In the case where p(Ω) vanishes, then the
R/Z class determined by Sp is the class whose lift is Tp.

For a constant curvature manifold, all the Pontrjagin forms vanish. We thus
have a host of (4k — l)-dimensional cohomology classes associated with the
Riemannian geometry of these manifolds. We now calculate these classes for
constant positively-curved manifolds.

2. The stability theorem

Theorem. Given an n-manifold M of constant positive curvature, there
exists a trivial line bundle L over M so that τ(M) 0 L admits a flat Riemannian
connection compatible with the original connection on τ(M). Moreover, the S
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classes of τ(M) 0 L with this fiat connection are the same as those of τ(M).
We say the connection F on τ(M) 0 L is compatible with the old connection

F on τ(M) if given any section of τ(M) 0 L of the form (s,0), s a section of
τ(M), its derivative Vs projected back into τ(M) coincides with Vs.

Proof. Let G be the fundamental group of Mn. Then G is represented as
a subgroup of SO(n + 1 ) . One obtains the Riemannian tangent bundle of M
by quotienting the tangent bundle of Sn by G. Now if N denotes the normal
field to Sn, then τ(Sn) 0 N has the flat Euclidean connection. This connection
and the orthogonal sum are preserved by G, and project down to M to give
the first statement of the theorem (L is the image of N).

Lemma A. The S classes for the flat connection θ on τ(M) © L are the
same as those for the Whitney sum connection θ 0 η on τ(M) 0 L where η is
the zero form as it takes values in SO(1).

Proof. Join the two connections by a linear family of connections (1 — t)θ
+ tθ = θt. Then the variational formula from Cheeger-Simons [2] gives us

Sp(θ) -Sp(θ)= Γp{θ't,Ωt, - ,Ωt)dt ,
Jo

where fft = dθt/dt. We will show that the integrand is identically zero. Now
p is a polynomial in terms of the type fft Λ Ω\~x, since any invariant polynomial
of degree m for 0(ri) is expressible as a polynomial in terms of the type trace
X1, I < m. We will show all such terms are zero. Our computations will be
made on the principal bundle F of frames in τ(M) 0 L. This bundle contains
the subbundle F of split frames {m, e19 e29 , en9 N} so that e19 e2, , en is a
frame for τ(M, m). If we can prove that p(θf

t, Ωt, , Ωt) = 0 on this sub-
bundle, then the result will follow because p is equivariant.

First note that restricted to F, θ has the form

0 0

We say such a matrix is of type ϊ. θ has the form

where p is a 1 X n matrix. Thus fft = (— ?—). We say matrices of the
V — p 0 /

form of fft have type p. Now let a = θ — θ = θ[. Then we have

θt = θ + tot ,

Ωt = dθi + \\θt, θt] = dθ + tda + $[θ + ta,θ + ta]

]} + l<x«]- dθ + i-[0, t{da
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Codazzi equation: da + [#, a] = 0.
Proof, θ is a flat connection hence

Writing 0 = 0 + # (a direct sum ϊ 0 p) we obtain the direct sum splitting of Ω

Ω = dθ + $[θ, 5] = dθ + da + \\θ + α, θ + a]

= dθ + $[θ, θ] + £[*, α] + da + [θ, a]

Setting the p component of Ω equal to zero gives

da + [θ, a] = 0 .

Returning to the formula for Ωt, setting da + [θ, a] = 0, and noting [a, a] is
of type k, we see Ωt is of type ϊ, and hence Ω\~ι is also of type ϊ. But this
means fft Λ Ω\'λ is a matrix of type p (it is a product of a matrix of type ϊ
with a matrix of type p) hence its trace vanishes, that is,

trace fft A Ω\~λ = 0 .

We have shown that the 5-characters for τ(M) 0 L equipped with the Euclidean
connection are the same as for τ(M) 0 L with the Whitney sum connection.
Now L is a trivial Riemannian line bundle. It is clear from the definition of
the S classes that τ(M) 0 L with the Whitney sum connection and τ(M) have
the same invariants.

Remark. This theorem is a special case of the Whitney-sum theorem of
Cheeger-Simons [2]. We arrived at our theorem independently.

3. Calculation of the Simons invariants for spherical space forms

We now compute the invariants for the flat bundle τ(M) 0 L in terms of
the characteristic classes of the holonomy representation p. For more on the
characteristic classes of group representations see Atiyah [1].

The representation p: G-+SO(n + 1) induces a map 2?,: BG—>BSO(n + 1).
There is a CW decomposition of BG so that M is the ̂ -skeleton indeed, we
have skeletal maps

Mn > BG .

Proposition. The classifying map for τ(M) 0 L is Bpoi.
Proof. Observe that τ(M) ® L = Sn X pR

n+\
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Theorem. The S invariants of τ(M) are given by

SPί(M) = -i*β-ιPi(p) ,

where Pi(p), the zth Pontrjagin class of the representation p, is given by pt(p)
= {Bp)*Pi, and β is the Sι Bockstein homomorphism.

Proof. Let K be an Λ/-dimensional skeleten of BG, N > n + 2, obtained
by attaching cells to Mn. If ψ = Bp\K, then ψo i still classifies τ(M) φ L.

It is clear from their definition that the inverse Bockstein of an S class is the
negative of the corresponding integral Pontrjagin class. Since the Bockstein
β: H%K, Sι) -> Hί+ι(K, Z) is an isomorphism for 0 < i < n, the S-classes of
the bundle over K are just — β~ιPi(ρ). The theorem follows by naturality.

Remark. Since BG is formed from M by attaching cells of dimension
greater than n, i induces an onto map in ^-dimensional integral homology and
isomorphisms in lower dimensions. Thus i is injective on Sι cohomology of
dimension n and an isomorphism for dimensions less than n. Since β~ι is an
isomorphism we have

Corollary. Spt(M) vanishes if and only if Pi(p) does for 4i — 1 < dim M.
Recall the definition of the Lens space L(p\ qx, > - >,qn). U(ή) acts on

/λqi 0\

S271-1 (ZCn. Zp is represented in U(n) by p(l) = \ ' _ where λ = e2πί/p.

\0 W
The quotient of S2^"1 by this subgroup of U(n) is the Lens space L(p q19 , qn).
By convention we assume p and q are relatively prime and the g's have no
common factor. We assume p is odd for convenience. We denote by q\ the integer
between 0 and p which represents the multiplicative inverse of qt modulo p.

Given (q19 q2, , qn) we construct a model of BZP (which is the one we
will use from now on) whose (2n — l)-skeleton is L(p; q19 q2, , qn). First
recall the definition of the infinite sphere S°°:

S- = ί(z19 z2,- '):Zi€C, almost all zt = 0 and Σ M = l ) .

I ί = l J

Choosing a generator t of Zp we let t act on 5°° by

t {Zι j Z2 ? * " * ? Zn ? Zn +1, ') == yλ Z\ -> A Z2 ? * * * ? Λ Zn, ΛZn + \ ? )

The quotient space is the desired model. By representing Mn £/(l) as e2πί/p we
obtain a bundle over BZP which we will call H. The Chern class of H we will
call the canonical generator of H\BZP, Z) (adapted to the g/s) and will label x2.

Proposition. The Pontrjagin classes of p are given by

Pi(p) = σi(ql •', ql)x\ ,

where σι is the /th elementary symmetric function.
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Proof. Note that p is already complex and diagonal. The bundle over
BZp{qx, , qn) is easily seen to be HQl φ Hq* © © Hq*. By definition
c(H) = 1 + x2. Hence c{Hqί) = 1 + qtx2 and pλ{Hqi) = cλ(Hqi © C) =
c^ff" © J7«*) = 1 - q\x2.

The result follows from the Whitney sum formula (there is, of course, no
2-torsion in the cohomology of BZP, p odd).

For later use we will need the 5-numbers of L(p9 qλ, , qn). For this we
need a {An — l)-dimensional manifold, that is, an even number of q^s.

We now compute the S-number corresponding to the top Pontrjagin class
Spn{L{p; <7i, , q2n)> Computations of the other numbers follow easily from
this as will be seen.

Over L{p\ q19 , q2n) we have the Hopf bundle H, the restriction of the
bundle H over BZP. Alternatively it is the line bundle associated to the principal
bundle Zp —•> Sin~ι —> L(p q19 , q2n) by using the representation which sends
the generator of Zp to λ = e2πί/p. Thus the Chern-class of H is the restriction
of x29 the canonical generator of H2{BZP, Z), to L{p q19 , q2n). This restric-
tion we will also call x2. Now we have seen that the calculation of Spn for the
tangent bundle of L(p; qλ, , q2n) which we denote Spn{L{p; qλ, , q2n))
is reduced to calculating:

<σn(q\9 ql , q\n)β~ιx2 U x\n~\ L{p q19 . , (72W)>

„- (rfi n1 s,2 Λ/O-lv I I v 2^-l . T (TΛ . n n W
— ί n W D ^2? * ' * •> q2n)\P X2 U ^2 ? ^ I P > ̂ I ? * * ' ? ̂ 2wJ/

But the quantity inside the brackets is merely S/?w for the bundle H®H®
- > - (B H (taken 2n times) over L{p qγ, -, q2n)

We simplify the calculation still further by noting that there is a degree
q{q'% - - - q'2n map from L(p; <?1? , q2n) to L(p; 1, 1, , 1) obtained from

(z19 z2, - - -, z 2 n ) > (zfs z?a, , zSίn) Moreover, ψ can clearly be covered by
a bundle map from the bundle H over L{p g1? , g2w) to the bundle H over
L(p; 1, 1, , 1). Thus φ*x2 = x29 and we obtain

1, 1, — , 1)>

——(β~ιx2 U xln~ι,φ*L{p; q19 , q2n)y

y-(β ιφ*x2 U φ*x\n \ L{p; q^ , q2n)

We then see that

Spn(L(p; q19 •- -,q2n))

= -qW, ri»*«teϊ, , ̂ »)<j8-^2 U xψ~\ L(p 1,



596 JOHN J . MILLSON

where q[ is an integer whose residue mod p is the multiplicative inverse of that
of qt mod p.

To evaluate the quantity in parentheses we can use several different methods.
The quantity ζβ~ιx2 U x2

2

n~\L(p; 1, 1, , 1)> is just the linking number
of the Poincare duals of x2 and x2

2

n~ι (see for example Seifert and Threlfall,
L e h r b u c h d e r T o p o l o g i e , p p . 2 7 7 - 2 8 0 ) . L e t [ z l 9 - , z 2 n ] , Z i ^ C a n d \zλ\

2 +
|£21

2 + + \z2n\
2 — 1 be the "homogeneous coordinates" in the Lens space

L(p; 1, 1, , 1); that is, [zλ9z2, -9z2n] is the equivalence class of (zl9z29

• *, z2n) e C2n under the diagonal Zp action, then the Poincare dual of x2 is
represented by the sub-Lens space {[z19 z29 , Z2n-ι, 0]} = L(p 1, 1, , 1)
where this time there are (2n — 1) Γs. The Poincare dual of x\n~ι is the sub-
Lens-space (actually a circle) [0,0, •• ,0 ,z 2 n ] . p times this later manifold

bounds the singular disk j 10, 0, , cos — , sin — z 2 n l > \ z 2 n I = 1 > 0 < t < l | ,

Since the Poincare dual of x2 intersects this disk at one point we find \\p for
the desired linking number.

Finally, then we obtain

Spn(L(p ql9 q2, . . ., q2n)) = - g w ( g l > ' ' ' ? ^w )-gi^ $ί« mod Z

= - ^ - ' A ) modp.

Note the previous proof also gives that: for any polynomial Q(tl912, , /n)
of weight n (i.e., for each monomial t*%* t^n occurring in Q we have
ax + 2a2 + + nan = ή),

SQ(pl9 A, , pw) = - g f a ( ^ - - - > ^ ) > - ' - > ^ ( ^ - - - ^ » ) ) . m o d p .

4. Application to comiormal immersions

To coαstruct the manifolds promised in the introduction we construct Lens
spaces so that all ^-classes but the highest are zero. Recall that for L(p; qx,

Spi = 0 <=Φ σtiql, , q\n) = 0 mod p .

Also assume for convenience that p is an odd prime.
Thus to construct a Lens space whose only nonvanishing *S-class is the top

class we must solve the following number theory problem. Given an even
number In, find a prime p and a 2n-tuple [ql9 q2, , q2n) so that for 1 < n
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<*i(<i\,qh --,Qln) = o m o d p ,

σΛql, ql,--> Qln) 3Ξ 0 m o d p .

We now find a sufficient condition which the q^s themselves must satisfy in
order that the qfs satisfy the above equation. Suppose we have solved the
equations

* σi(q19 , q2n) = 0 modp, 1 < i < In ,

with none of the qt\ zero mod p .

0i(<l2i, j Qln) is a symmetric function of the g/s and therefore a polynomial
in σk(qi, , q2n) Now, if 1 < n we must have k < 2n. Hence for the g/s
which are solutions of * we have Oi(q\, , qln) = 0, mod p for i < n. Now
the expansion of σn(ql, , ̂ 2n)» the only term of which does not give zero
when evaluated at our special #/s, is σ2n(qι, , q2n). This appears multiplied
by a universal constant which we evaluate

σn(Xl, , X2

2n) = Cσ^iX^ , X>n) mod lower terms.

To evaluate C we choose Z : = 1, Z 2 == f, -,X2n = f271"1 where £ is a
primitive (2n)th root of unity. σ2 n(l,f, ,f27ϊ"1) = 1. On the other hand,
σn(l,ξ\ -,ξ'n~2) = ( - 1 ) " + 12, as one sees easily.

Since p is odd, σ27ϊ(<?i, , q2n) = qλ q2n ^ 0, mod p => σnte;, , q\n) ^
0, mod p. From this we see that it is enough to find q19 , q2n which satisfy *.
In order that * be satisfied it is sufficient that

(X - qλ){X - q2) (X - q2n) = X2n - 1 mod p ,

that is, the polynomial X2n — 1 splits completely over the field Zp. For this
it is enough that Zp contain a primitive (2n)th root of unity, that is, Z* have
an element of precisely 2n. Since Z* is cyclic (recall p is prime) this is equiva-
lent to In I (p — 1), that is, p = Ink + 1. The existence of an infinite number
of primes of this form is guaranteed by the Dirichlet prime theorem. An ex-
ample is 2n = 8, p = 137, ξ = 10, for which the resulting Lens space is

L(137 1,10,100,41,136, 127, 37, 96) .

Now recall that modulo 2 torsion the normal Pontrjagin classes of a bundle E

are defined recursively by:

Pi = -Pi - Pi-iPi - - ptiPi -

Whitney duality theorem tells us that the classes pj- are precisely the Pontrjagin
classes of the stable inverse bundle E1-. Cheeger-Simons [2] have shown that
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precisely the same situation holds for the ^-classes, that is, the S-classes of the
Riemannian inverse bundle EL are just the 5-classes obtained from the original
bundle E by applying the ^-construction to the pair (pt(Ω), uj-) where w 1 is
an integer cocycle representing p±.

Thus, is Sp^(E) does not vanish, then E does not admit a Riemannian
inverse bundle of dimension less than 2m. In the case where E is the tangent
bundle of a Riemannian manifold, this gives a lower bound on the codimension
of an isometric or conformal immersion.

Now for Lens spaces of dimension An — 1 all the ^-classes except for Spn

are just minus the inverse images of the corresponding integral Pontrjagin
classes under the Bockstein homomorphism. For the Lens spaces we have just
constructed Spi = 0, / Φ n, and Sp^ Φ 0. Indeed, Sp± = β~ι(pl) = β (pύ
+ β~\Q), where Q is a polynomial in pj-,pj,j < /, which we can assume is
zero by induction.

It follows then that these Lens spaces do not immerse isometrically in codi-
mension In - 1. ForL(137; 1, 10, 100,41, 136, 127,37,96), Spi Φ 0, hence
it does not immerse isometrically in codimension 7. Since this Lens space is
15 dimensional, it does not immerse isometrically in R22.

We still must show that we can find special Lens spaces which satisfy * and
immerse smoothly in codimension 1. By standard immersion theory it is enough
to construct special Lens spaces with stably-trivial tangent bundles. That this
can be done follows immediately from the following fundamental lemma of
Kervaire [4]:

Let τ be a stable SO(m) bundle over a complex K (i.e., dim K < m), and
S a cross-section of τ \ Ku~\ Then the obstruction Ot{τ, S) e HU(K, πa-ι(SO{m)))
is related to the Pontrjagin class pt{τ) by

Pί(τ) = ^(21- l ) !0 4 i (r,5) ,

where at = 2,1 odd; aι — 1, / even. Since the special Lens spaces which we
have constructed have the property pt = 0 for all /, by choosing the prime p
sufficiently large (so that p > (2/ — 1)! for all possible /) we can ensure

0;(τ, S) = 0 for all / .

If the Lens space under consideration has dimension An — 1, then the last
obstruction occurs in dimension An — A so that I — n — 1. Thus p > (2n — 3)!
will guarantee all obstructions to stable trivialization vanish.

Note that 137 > (8 - 3)! = 5! = 120. Hence L(137; 1, 10, 100, 41, 136,
127, 37, 96) immerses smoothly in R16.

In summary, for each n we have constructed infinitely many Lens spaces of
dimension An — 1, immersing smoothly in R4n but not conformally in R^+2^-2

t
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5. Zv actions on 4/c-manifolds and characteristic numbers,
and the residue formula for isolated fixed points

Suppose an oriented 4π-manifold M admits a periodic diffeomorphism /
with isolated fixed points m1? m2, , mk. Choose a metric on M so that / is
an isometry for that metric, df maps the tangent space at the fixed point to itself
and, relative to some basis, may be written in rotation blocks:

COS — sin

sin cos

P

2πqλ

For each fixed point ra* we get 2n rotation angles 2πqjp, 2πq2/p, , 2πq2n/p.
Now let Q(tλ, , tk) be a polynomial of weight n. Then corresponding to Q

there is a Pontrjagin number Q(pλ, ,pk) = Q([M]) where pt denotes the
J M

/th Pontrjagin class, and our theorem implies

Q([M])= - Σ
fixed points

', σk(ql , q\n))

Q1Q2 Q2U

mod p

Proof. We replace the metric by a metric which is flat around each fixed
point and for which / acts isometrically. The procedure is the same as flattening
a polar cap of the sphere to get a flat metric around the north pole. Formally,
one proceeds as follows. Let mQ be a fixed point and U(m0) a neighborhood so
that the exponential map is a diffeomorphism from some open set in T(M, mQ)
onto U(m0). Define a new metric (( )) in U(mQ) as follows. If V and W are
two tangent vectors at m e U(m0), ((V, W)) — (exp-^F, exp-^JF) where ( , )
denotes the inner product in Γ(M, ra0). We interpolate between this metric and
the original metric in some annulus around boundary Uo using a function of
the geodesic distance from the fixed point. Do this for all fixed points ra*.
Since / was an isometry of the original metric it commutes with the exponential
map. From this it is easy to deduce that / is an isometry of (( , )). Now if Ω
is the curvature form of ( ( , ) ) , then

β([M]) = ί Q(Pι(Ω), , PΛΩ)) = ί k Q(pλ(Ω), , P
J M J M-w U {mi}

since the integral is not changed by removing a set of measure zero. If
is the ball of radius r around the fixed point m ί ? we obtain
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β([Λf]) = lim f t Q(Pι(Ω), ,pk(Ω))

k

Now, M — U Bί(f) is a manifold with boundary a disjoint collection of {An
ί = l

— l)-spheres. Choose r so small that each sphere S^1'1 is contained inside the
neighborhood Uinii). Each sphere admits a fixed point free isometric Zv action

obtained by restricting /. Taking the quotient of M — (J Bt(r) = W we obtain
i = l

a manifold W with boundary a disjoint collection of Lens spaces Lt{p\ q19

* * J #2w) The qt's are of course determined by the rotation angles of df. Now

f β(PiΦ), , P*(β)) = - f _β(Pi(fl), , (Pi(Ω)) = SQ(T(M)\ U Li), mod

Z. By the construction of our metric, the bundle T(M) \ Lt is just the locally
flat Euclidean bundle of § 2 whose S invariants we calculated. The theorem
follows by passing to the limit as r -> 0.

Remark. One can obtain a formula for smooth Zp actions with general
fixed point sets by computing the 5-characters of Lens space bundles in terms
of the 5-characters of the fiber and characteristic classes of the base, according
to the Simons-Cheeger product formula. (See Cheeger-Simons [2].) Also, one
can deduce congruences corresponding to polynomials of degree less than 4k.
We will do neither of these and we refer the reader to the paper of Kosniowski
[5] for these formulas.

We had wondered if the Atiyah-Hirzebruch theorem that a spin-manifold
admitting any nontrivial S1 action has vanishing A genus generalized to the
mod p case. However, Nigel Hitchin pointed out that the quartic surface 4 +
zt + z$ + zi = 0 in CP3 is spin, has A genus 2, and admits a Z3 action (in
fact an 54 action as permutations of the coordinates).
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