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CALCULUS ON SUBCARTESIAN SPACES

CHARLES D. MARSHALL

Introduction

The notion of a differentiable subcartesian space is a generalization of that of
a differentiable manifold and includes arbitrary subsets of R" as special exam-
ples. In this paper we construct the category of differentiable subcartesian
spaces and develop the calculus of differentiable mappings, vector and tensor
fields, and exterior differential forms.

More precisely, a differentiable subcartesian space of class C* is a Hausdorft
space equipped with an atlas of local homeomorphisms into various cartesian
spaces R", each pair of which satisfies a condition of C*-compatibility similar
to that satisfied by charts of a C*-manifold. For the sake of simplicity we shall
restrict attention to the C~-case. The necessary modifications for other smooth-
ness categories are obvious for the most part, although the C*-theory, for
instance, is not without independent interest (see [4]). The calculus of differ-
ential forms gives rise to the de Rham cohomology of a subcartesian space,
and we shall introduce that theory in a sequel to this paper.

In brief outline, our results are the following. The category of C>-sub-
cartesian spaces possesses a tangent functor 7 sending each S into its tangent
pseudo-bundle T'S and each differentiable mapping f into the corresponding
induced mapping f,. As one would guess from the terminology, 7'S is not a
vector bundle but is a fiber space, the dimension of whose fibers may vary on
connected components of S. We introduce the notion of differentiable vector
pseudo-bundle and show how tensor products and other covariant differentiable
functors on the category of real vector spaces may be naturally lifted to vector
pseudo-bundles. Thus having the “contravariant™ tensors and ‘their fields, we
introduce the modules of covariant and mixed tensor fields and determine their
dual modules. We then introduce the Li¢ module of Lie derivatives.

In each case the idea is to lift classical objects and constructions (e.g., vector
fields and their Lie products) from the ambient cartesian spaces up to S via
charts. As in the special case of differentiable manifolds, this method always
requires one to check invariance under coordinate changes, but there are now
two more things to be checked. The constructions made in R" with local rep-
resentatives of objects on S must not depend on the choices of these local
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representatives, and the objects constructed with local representatives must
again be local representatives of objects on S. These problematic features are
clearly seen, for example, in the construction of Lie derivatives (§ 5).

In the last section we introduce exterior differentiation of alternating forms.
Here, the exterior derivative of a form is not invariant under change of local
representatives, and a multi-valued differential results. We proceed by consi-
dering residue classes of alternating forms modulo the indeterminacy ideal m
of the differential relation. This results in our definition of differential forms.
We then show that m is invariant under exterior, Lie and interior differentia-
tions, and establish several important classical identities relating these. Finally,
we establish a singular version of Stokes’ identity.

Subcartesian spaces were introduced by N. Aronszajn in the study of Bessel
Potentials. (See [3] and Subcartesian and subriemannian spaces, Notices, Amer.
Math. Soc. 14 (1967) 111.) This paper is in part a response to problems ex-
posed by Aronszajn in a series of lectures on subcartesian spaces in 1966-67
and is an outgrowth of [9]. (Also see The de Rham cohomology of subcartesian
structures, Notices, Amer. Math. Soc. 18 (1971) 203.)

The author wishes to express heartfelt thanks to N. Aronszajn and M.
Breuer for many illuminating discussions.

1. Structures and maps

A subcartesian space S is a Hausdorff space which is locally homeomorphic
to (not necessarily open) subspaces of cartesian spaces R",n = 0,1, .-.. If
¢ is one such local homeomorphism, then we denote its domain by U, and its
range space by R". A C=-atlas on S is a set U of local homeomorphisms
¢: S D U, — R™ satisfying the following two axioms :

(A1) The domains {U,|¢ e A} form an open cover of S.

(A2) For every ¢,V € ¥ and every p e U, N U, there exist C”-mappings
s extending v o ™' in a neighborhood of ¢p and ¢ extending ¢ o "' in a neigh-
borhood of p.

The elements of ¥ are called charts. Every C~-atlas on S is contained in a
maximal C=-atlas. A maximal C~-atlas is called a C>-subcartesian structure,
and S together with a C>-subcartesian structure is called a C~-subcartesian
space. When no confusion can result we shall denote the C~-subcartesian space
(S, %) by S.

For each 0 < m < n define i, , : R™— R" to be the injection (x,, - - -, x,) —
(X5 ++ 3 X, 0, -+, 0), and define 7, 1 R*— R™;(x;, - - -, Xp) — (X, « - -, Xp).
In the next section we shall show that (A2) implies

(A2) Forevery ¢, € % and every p ¢ U, N U, there exist neighborhoods
U of iy n,op(p) and V of iy n,¥(p) in RY, and a C~-diffeomorphism f: U —
V extending
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(iN,ﬂq, ° \1/) ° (iN,nP o SD)_IIU 1)

where N = max {n,, n,}.

Let S and S’ be C~-subcartesian spaces. A mapping f: S — S’ is of class C
if for every p € S, and every ¢ € Ug and + € A5, with pe U, and f(U,) € U,,
there exists a C~-extension of o fo¢~' in a neighborhood of ¢(p). The set of
such mappings is denoted by C=(S, S”). The set of C=-functions C=(S, R) =:
C=(S) is a ring with operations defined pointwise. The C~-subcartesian spaces
together with the C=-mappings form a category which we denote by C~. The
category of finite dimensional C~-manifolds (alternatively, with boundaries or
with corners) and C~-mppings forms a full subcategory of C*.

It is clear that with little or no modification, pseudo-groups /', or more
conveniently, smoothness categories % (cf. [12]) other than C* may be used to
structure subcartesian spaces, e.g., C¥, R-analytic, and Nash. Complex ana-
lytic structures can be treated similarly. (See [9] for a general axiomatic treat-
ment.)

If ¢ is a chart of a C~-subcartesian structure % and U is open in U,, then
oly € Us. If n > n,, then iy, 0peWs. If §” is a topological subspace of S,
then {p|s. | € As} is a C~-atlas on §’. The C=-subcartesian structure on S’
generated by this atlas is called the structure induced from S.

Example 1.1. LetS,={(x, ---,x,) e R"|x; e [n—1,m}and S = U n>,Sx.
Define ¢,: Ui, Sk — R" by ¢nly, = inxls,- Then {p,|n > 1} determines a
C=-subcartesian structure on S. Thus it may be impossible to model a sub-
cartesian space in any single R".

The category C= admits products. Let S and S’ be C=-subcartesian spaces.
Then

Bows :={o X y: U, X Uy > R X R |peUg, e Ug}

is a C=-atlas on the topological space S X S’. The product C=-subcartesian
space is S X 8’ equipped with the maximal atlas determined by ;... The
product functor has the usual universal property in C=.

Proposition 1.2. If S is a paracompact C=-subcartesian space and U is a
locally finite open cover of S, then there is a C=-partition of unity subordinate
tou.

Proof. Without loss of generality we may assume the elements of % to be
chart domains. Applying the shrinking lemma, let ¥~ = {V,|U € %} be an
open cover of § with ¥;; C U for each U. For each U ¢ % choose ¢ ¢ 2 with
U, = U, and let V, be an open subset of R*¢ such that V;, = ¢~'(V,). We
now use the well-known fact (cf. [11]) that every closed subset in R™ is the
zero set for some nonnegative real-valued C~-function. Choose g, ¢ C*(R")
such that g,(x) > 0 for x ¢ V, and g,(x) = O for x ¢ V,. Define f; ¢ C=(S) by
fu(P) = 8,0¢(p) for pe U and fy(p) = 0 for p¢ U. Define f = Yy, fy-
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Then f e C=(S) and f(p) >0 for all p e S. Define z, = f, /f. Then {z,|U e %}
is a C=-partition of unity subordinate to %.

2. The tangent functor

Let S be a C~-subcartesian space and let p € S. The structural dimension of
S at p is the number ng,, = min {n,|p ¢ A5 and pe U,}, and ¢ e Ay is tan-
gential at p if n, = ng ,. The structural dimension function p — ng , is upper
semi-continuous.

Lemma 2.1. Let p e S and let ¢ € U be tangential at p. Let V be a neigh-
borhood of ¢(p) in R", n = n,, and let f,,f,e C* (V,R™). If fie@ly-1py =
f2°§0|¢—1(V)a then Df\(pp) = Df,(¢p).

Proof. Suppose first that m = 1. If Df,(p) # Df,(¢p), then f, — f, is of
maximal rank at p. By the implicit function theorem there is a C*-coordinate
system 6 around ¢(p) such that 4 sends U, N (f, — f,)7'(0) into the hyperplane
inn(R*™). Then z,_, ,0600¢ is a chart in ¥4 in a neighborhood of p and its
range space is R*~'. This contradicts the assumption that ¢ is tangential at p.
Thus Df,(pp) = Df,(¢p). For m > 1 the lemma follows by considering coordi-
nate functions.

Corollary 2.2. Axiom A2 implies A2’.

Proof. Suppose n, < n,. We first assume that + is tangential at p. Then
soltlyweavy = ldg™vlyw,nvy) and it follows from (2.1) that D(so)(yp) =
Idg»e. Thus ¢ is of maximal rank at v(p). Let E be a complementary subspace
to Image Dt(p) in R™.

Define

u: R X E— R™; (x,y) —»t(x) + y .

Then Du(yp) = Dt(yp) + 1d; is an isomorphism, and it follows that u is a
C=-diffeomorphism in some neighborhood of (¥p,0) = in,,n, ° ¥(p). Now let
v be arbitrary and let 6 e ¥ be tangential at p. There are then local diffeo-
morphisms u extending i,,,»,°of0c¢~" in a neighborhood of ¢p and v extending
Vo (in,,n, 0" in a neighborhood of iy, ., 6(p). Define w in a neighborhood
of in,,n,©0p by

w = in¢,n\g,°v°7fn.;,,n¢ + 7,

where F is a complement of i,,,, ,R" in R". Then wou is a local C=-diffeo-
morphism extending (i, © V) o' in a neighborhood of ¢p. q.e.d.

If ¢ and + € A are tangential at p, it follows that the linear map f,,,:
T,,R* —T,,R", n:=n, = n,, is independent of the choice of f among all
local diffeomorphisms extending v o ¢! near ¢(p). In the set of triples (¢, p, v),
where p e S, ¢ € U is tangential at p, and v € T,,R", we define the relation
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(o, p,v) ~ (Y, q,w) if and only if p=q and w = f,v for some local
diffeomorphism f extending o ¢! near ¢(p).

This is an equivalence relation. We denote the equivalence class of (g, p, v)
by [, p, v], and call p the footpoint of [p, p, v]. Now let S, be the set of all
equivalence classes of ~ with footpoint p. For each ¢ ¢ 9 tangential at p and
each X, ¢ §,, there is a unique v ¢ T,,R" with [p, p, v] = X,,. Thus for each
pesS and ¢ € Uy tangential at p, we have the bijection

Psp: Sp = TppR"; Pspllp, P, 0]) = v .

If 4 e Ay is also tangential at p, and f,: T,,R* — T,,R" is the unique linear
map induced by local diffeomorphisms f extending o' near ¢p, then
fx ©@sp = Vxp- Thus the bijections ¢, , and v, , induce the same vector space
structure on S,.

Definition 2.3. The tangent space of S at p is the vector space S,. We also
denote S, by T,S.

Proposition 2.4. If f: 5§ — S’ is a C*-mapping, p € S, ¢ € U is tangential
at p,¢’ € g is tangential at f(p), and F is a C=-extension of ¢’cfop™'ina
neighborhood of ¢(p), then F, ,: T, R" — T, . R induces a linear map

fan'= @yrp) o Fyypopup: TpS — TppS’

and this map is independent of the choices of ¢, 0, and F.

Proof. Let 0,6 and G be alternate choices of ¢, ¢’ and F, and let s and ¢
be local C~-diffeomorphisms extending 6 o ¢~ and 6’ o '~ near ¢(p) and ¢'(fp),
respectively. We have already seen that s, ,,00,, = 0., and t,,. ;p 0 0h;p =
O sp- Since Gosogp = toFogp in a neighborhood of p, Lemma 2.1 implies
(GoS)yp = (toF),,,. An easy computation yields

(s rp) 7 0 Guppolsp = (@hrp) ™ 0 Fyppo @p -

Thus f,, is independent of the choices of ¢, ¢’ and F. Linearity of f,, is ob-
vious. q.e.d.

For each f e C=(S,S") define f,: Upes TpS — Uges ToS” bY filr,s = fup-
If ¢,0 ¢ A have the same range space R*, pe U, N U,, and s is a local C~-
diffeomorphism extending fo¢~' in a neighborhood V' of ¢(p), then s, is a
C~-diffeomorphism extending 6., o (p,) " in the bundle neighborhood z~'(V),
where z: TR® — R" is the tangent projection. Now define T'S to be | J,es TS
equipped with the topology induced by the bijections ¢,,pe Ug. TS is a
Hausdorff space, and each bijection ¢, is a homeomorphism of TU, into TR"s.
Then Brs:= {p4|p € Us} is a C~-atlas on TS.

Definition 2.5. Define (TS, U,s) to be the C~-subcartesian space deter-
mined by B,s. Define z: TS — S to be the footpoint projection.

Restricted to the subcategory of C~-manifolds, T agrees with the classical
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tangent functor. Let 0: S — TS be the zero section. Then 0 is of class C~. If
¢ € Uy is tangential at p, then ¢, € Ay is tangential at Op. If X, ¢ T,S is not
zero, however, then ¢, need not be tangential at X, (see Example 2.7).

Theorem 2.6. The correspondence T: S — TS, f— fs in C* is a covariant
functor, and the footpoint map t: TS — S is of class C=.

Proof. The proof of functorality is straightforward. If ¢ e %, then the
tangent projection TR" — R™ is a C~-extension of porogpy!. Thus z¢
C=(TS, S).

Proposition 2.7. Let S,S’ be C>-subcartesian spaces. Then there is a
unique C=-diffeomorphism i: T(S X S") — TS X TS’ such that for every C*-map
f:8 -8 x4,

iof, = (projsof)y X (projs.of)y .

Proof. The product § — § X §’ — §’ gives rise to the product mapping
Projs. X projs.: T(S X §') — TS x TS'. Then

(projg« X projg.) o fy, = Projg«o fy X Projs.«ofy
= (projs o )y X (projs.of)y .

Substituting the appropriate injections S — S x §’ and §* — S X §’ for f shows
PIOjg« X Projs.« to be surjective. Let ¢ € A5 and 6 € A, be tangential at p and
q, respectively. Since ¢ X 0 € g, 5, dim T, S X S < n, + n, =dim T,S X
T,S’, which together with surjectivity implies that projg. X projs. is bijective.
Thus dim T, ,,S X 8’ =dim T,§ X 7,5, and ¢ X @ is tangential at (p, q).
Let proj,: R"#*"* — R™ and proj,: R"¢*"? — R"’ be the obvious C*-maps.
Then a straightforward calculation shows

(Proj X proj,) o (p X )y = (o4 X 04) o (Projss X projs.s) .

Thus projg« X projg.« is of class C=. Similarly, (projs. X projs.) ' is of class
C~. Thus we take i:= projs« X projs.. The uniqueness of i is obvious.
q.e.d.
Let X, ¢ T,S, and ¢ e U be tangential at p. Let f e C(S) and let f, be a
C=-map extending foe~' in some neighborhood of ¢p. Then (¢, X,)-f, =
Df (op, 4 X,) € R is independent of the choice of f, by virtue of Lemma 2.1.
If 6 e Ay is also tangential at p, then (¢, X,)-f, = (0,X,)-f,. We denote this
real number by X ,-f. Each X, thus determines a real-valued derivation on the
ring of germs of C~-functions at p. Conversely, if D is such a derivation at p,
then there is a unique X, € T,S such that X,-[f] = D([f]) for every germ [f]
at p. (The proof carries over unchanged from the case S = R".) If D is a
derivation on C*=(S), then for every p € S, f — Df(p) is an R-valued derivation.
It follows as usual that this derivation factors through the natural map f — [f],
sending f into its germ at p. Then to each p ¢ S there is a unique X, ¢ T,S
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such that (Df)p = X,-f for every f e C=(S). Now if ¢ ¢ U5 and p e U,, then
define a* = D(x*o¢) e C=(U,), where x', - - -, x" is the standard coordinate
system on R". Let U be a neighborhood of ¢p on which there are local rep-
resentatives b* of a*,i = 1, - - -, n,. Then g — X, is smooth because

ny
0xXg = 2, bz(sm)%(goq) forall ge o™'U .
i=1

Thus, as in the case of C=-manifolds, each derivation on C=(S) can be realized
by a unique C~-vector field on S.

If g C>(S,R),fe C*(R) and X, € T,S, then (g, X,)-f = X,-(g*f), where
as usual g*f:= fog.

Example 2.8. Let S be the union of the x, y-plane and the positive z-axis
in R®. The inclusion is a chart tangential at (0,0,0) and determines a C>-
structure on S. Ag, 0,0 = 3, and Ag, 4,40 = 2 and ng, ., = 1 for all x,y,z
different from 0. The tangential dimensions of T'S at points X ,, p # (0,0, 0),
are 2ng ,. Let X = (9/0x)(0,0,0) and Z = (3/92)(0, 0, 0). Then nrg5, v, , = 3,
Nps,z = 4, Nps,x = 5 and Rrg,g0,0,00 = 6.

The structural dimension ng , clearly dominates the topological dimension
dim (U) of a sufficiently small neighborhood U of p. The difference, ng ,-dim (U)
however, can be arbitrarily large.

Example 2.9. Let g,: [0, 1] — R be continuous but nowhere differentiable,

and define g, ,,(t) = J[ gr(x)dx. Define S C R X R™*! to be the graph of ¢ —
0

(8)(®), + -+, 8n(). Then for every p e S, ng, = m + 2 while the topological
dimension of S is 1.

A differentiable subcartesian space S together with its sheaf of smooth func-
tions is a reduced differentiable space, [13]. When S is an analytic space, the
tangent space T ,S coincides with what Whitney calls the full or Zariski tangent
space, [16]. When a differentiable space § is a differentiable subcartesian space,
then its C,-tangent space coincides with T',S.

The construction of the C~-tangent functor can be similarly carried through
for other smoothness categories. If S is structured with €*, then TS is struc-
tured with €, e.g., if S is of class C**!, then TS is of class C*.

3. Contravariant tensors and tensor fields

The purpose of this section is to introduce contravariant tensors and tensor
fields on subcartesian spaces. Rather than repeat certain arguments for each
kind of tensor to be considered, we shall begin with a convenient common
generalization.

A C=-family of R-vector spaces is a pair of C~-subcartesian spaces B and
S, and a mapping = € C~(B, S) onto S such that for each p € S, z7'(p) has an
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R-vector space structure and such that the vector operations
+:BXgB—-B and -:RXB—B

are of class C*. A morphism (B, r,S) — (E, 7, R) is a pair f e C*(B, E) and
g € C*(S, R) such that rof = gor and such that f is linear along fibers. Since
f determines g, we shall often denote the pair simply by f. We shall also some-
times denote g by f,. As usual we denote the set of C*-sections in & = (B, x, S)
by I'é. If I'& +# @, then I'¢ is a C=(S)-module. If £ = (B, 7, S) and f € C*(R, S)
then the fiber space pull-back fi&¢:= (R X g B, ng, R) (cf. [5]) is a C=-family,
and R — R X g B — B is the pull-back of R — S« B in C*. As usual, we
denote z7'(p) also by &, or ¢? and f|,, by f, or f7.

Definition 3.1. A C~-vector pseudo-bundle is a C>-family of R-vector
spaces & = (B, w,S) such that %, has a subatlas B whose charts satisfy the
following two conditions :

(VPB1) Foreach fe®B, U, = n7'zU,.

(VPB2) Each §e B is a morphism U, — (R"s, Tnngs R™) of C»-families,
where n = n,.

Such an atlas B is called a pseudo-bundle atlas on B. If § is a C*-sub-
cartesian space, then (TS, 7, S) is a C~-vector pseudo-bundle, and {p, | ¢ € Ag}
is the maximal pseudo-bundle atlas on TS. Similarly, if & = (B, n,S) is an
arbitrary C~-vector pseudo-bundle, then B has a unique maximal pseudo-
bundle atlas 8,  UAp. If 8 e B,, then g, ¢ A, and foreveryp e Asand p e U,
there exists a 8 € B, with p e z2U, C U,. The zero section 0: S — B is of class
C>; thus for C=-vector pseudo-bundles &, I'é # (. Any family of subspaces
{€p, € &p|p e S} with the induced structure on | J,es{, forms a C=-vector
pseudo-bundle.

A morphism f: & —¢ of C>-vector pseudo-bundles is simply a morphism of
C~-families. The resulting category VPB contains as full subcategories the C>-
vector bundles over C~-subcartesian spaces and, more specially, the C*-vector
bundles over C~-manifolds. We denote by VPB(S) the subcategory of pseudo-
bundles over a fixed space S and morphisms f satisfying f, = Ids. Note that
VPB(S) is abelian without any additional conditions being imposed on the
morphisms. If fe C*(R,S), and & = (B, n,S) is a C~-vector pseudo-bundle,
then f'¢ is also a C~-vector psesudo-bundle.

Proposition 3.2. Let f: (B,xn,S) — (E, t,R) be a morphism of C-vector
pseudo-bundles. If a € B,p,,.5, and B € B g, With (U,) S U, andif pe U,
then there exist a neighborhood V of ¢p (where ¢:= ;) and a C=-vector
bundle map

F: (Rna, ﬂ'nwna, V) i (Rn;;’ ﬂn.;,,nﬁ, an,) s (\!’ = 131))

extending fofoa | ,-1 vynu,.

np,na
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Proof. There is a C~-extension g of fofoa™" in some neighborhood W of
ao0(p). Let V:= n(0(S)N W), and define F: V X R""" — R"™ X R"™~"¥;

(q,v) — (zg(q, 0), D,Po g, (V) ,

where P: R™ X R™~"v— R"~"+ and D, is the partial differential along R"="".
This F satisfies the requirements of the proposition.

Proposition 3.3. A C~-mapping y:S— B belongs to I'(B, =, S) if and only
if for every B e B, s, and every p e zU,, there exists a local section ¢ in
(R*, Tn,ny> R, where n:= n,,, extending BoyoB;' near B,p. o is called a
local representative of y relative to 8.

Proof. Sufficiency is clear. To show necessity, let f be any C~-mapping
extending 8oy o ;" in a neighborhood of 8,p. Then o : g — (g, P o fq) is a smooth
local section extending foyo f;! near §,p. q.e.d.

Combining the arguments of Corollary 2.2 and Proposition 3.2 we see that
if @, B € B, take their values in the same trivial bundle (R", 7,,,,, R™), then the
connecting map «o ™' admits local extensions which are C=-vector bundle
isomorphisms. With this observation the proof of the following theorem be-
comes routine, following as in the case of differentiable vector bundles over
differentiable manifolds (cf. [8]).

Theorem 3.4. Let A be a C*-covariant functor of k arguments on the cat-
egory of finite dimisional R-vector spaces. There is then a unique functor A
on VPB satisfying the following conditions :

(i) Forall Se C~, A(VPB(S)) < VPB(S).

(ii) For all SeC~ and &, e VPB(S),i =1, .--,k, and every peS,
A(El’ c "Ek)p == Z(Ef’ t '95%)'

(ili) Foranyfi:&;—;in VPB(S),i=1,.-.,k, andeverype S, A(f', - - -,
o = Afps -+, 13)

(iv) If &,i=1, .-, k, are the trivial bundles S X R™, then A(&,, - - -, &)
is the trivial bundle S X A(R™, ..., R™).

(v) IfheC>(R,S), then A(W'E,, - -+, h'&) = WAE, -+, &).

Further, if 2’ is another such covariant C*-functor, and t: 1 — 2’ is a natural
transformation, then the mapping T: A — /A’ defined on each fiber by

T(EU D] ‘Sk)p = t(ff, ) S;c))

is a natural transformation of functors on VPB(S).

Let S ¢ C. In view of the previous theorem we have the C~-vector pseudo-
bundles ®* TS, AN* TS = Alt @* TS (the pseudo-bundle of k-vectors), OF TS
= Sym ®* TS (the pseudo-bundle of symmetric tensors of rank k), and their
modules of sections 7 4(S), Z*(S), and #*(S). Alt and Sym are the obvious
natural transformations. If f € C=(S, R), we shall often write simply f4 for any
of the induced maps ®*f,, etc. The externally graded modules .7 (S) =
(TS [k > 1}, Z°(S) = {Z*(S) |k > 1}, and L(S) = {F*(S) |k > 1} with the
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point-wise defined operations (i.e., as provided by the theorem) form graded
C=(S)-algebra with the obvious symmetry properties. In contrast with the case
of differentiable manifolds, these algebras need not be generated locally by
Z(S):= Z'(S), nor need the homogeneous submodules be locally free, nor
locally of finite type. These facts are born out by the following two examples.

Example 3.5. Let S be the space of Example 2.8. Then every X ¢ Z'(S)
vanishes at (0,0,0), every Y ¢ £*%S) vanishes along the z-axis, and every
Z e Z*(S) vanishes identically. Every X ¢ Z(S) A\ Z(S) € £%S) has a zero of
order 2 at (0,0, 0), but x3/0x N d/dy e Z*S) has a zero only of order 1 at
(0,0,0).

Example 3.6. Let S C R be the closed left half-line together with the points
{1/n|n e N}. Leti={[f], e C~(S),|f(1/n) =0, vn e N}. Then Z(S), = i[d/ox],
is neither free nor finitely generated over C*=(S),. Since C*(S), has a unique
maximal ideal, it follows from a theorem of Kaplansky [6] that Z(S), cannot
be projective, contrasting further the difference between vector bundles and
vector pseudo-bundles.

4. Covariant tensor fields and alternating forms

Definition 4.1. Let § = (B, r,S) be a C~-vector pseudo-bundle. Define
F (&) = VPB(S)(§,S X R), that is, the C*(S)-module of footpoint-preserving
morphisms of & into the trivial line bundle over S. Let P: § X R — R be the
principal part projection. We write F*(S) for F(®*TS), FE.(S) for
F(NFTS), FEu(S) for F(OF TS), and F°(S) for I'(S X R). The elements
of FE.(S) are called k-forms.

We could equivalently define % (§) to be the smooth functions on B which
are linear along fibers.

From Proposition 3.2 it follows that ¢ € & (£§) if and only if for each g ¢ B,
with ¢:= B,, and each p e U,, there exist a neighborhood V' of ¢p and a C~-
section

weI'(V X (R"#~"9)*)

such that @ o 8l.-xz,np-17) = Ble-1wonp-17)- Such an w is called a local represen-

tative of ¢ relative to g (on U, N ¢~'V). From Theorem 3.4, ¢ ¢ #(4¢) if and

only if w can be chosen from I'(V X (AR™#~"¢)*). Thus, for example, ¢ € F},(S)

if and only if it has local representatives which are alternating forms of rank k.
Condition (iii) of Theorem 3.4 defines

A(¢15 .t '7¢k) ¢ VPB (S)(/-l(él’ - 'aék)’s X ZR) .
Equipped with the obvious corresponding operations, % (S) : = {# *(S) | k > 0},

F a8 :={FE(S) |k >0}, and F .(9):= {FE.(S)|k > 0} are graded
C=(S)-algebras. As with the contravariant tensor fields, the modules of germs
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F(S), need not be free (see Example 4.6). In distinction with the contra-
variant case, however, the modules % (S), % ,,(S) and & ,,.(S) are locally gen-
erated (in positive degrees) by Z'(S).

If fe VPB (&, (), then

FrFQ— F©&);  fré=gof
is a functorial homomorphism of R-algebras. From Theorem 3.4,
(4.2) FRA(G, - - 89) = A(f*G', - - -, f*69) .
If g € C*(S, R), then
(4.3) (18,)*D)X = ¢(Ag,X) , e FUTS), XeATS.

We shall usually write simply g* for (A4g,)*.

Lemma 4.4. Let ¢ = (B, x,,S) and { = (B, n,, S) be C=-vector pseudo-
bundles. Let 1 B, — B, be linear along fibers and satisfy n o p = =n.. Then a
necessary and sufficient condition for y to be a VPB (S)-morphism is that o p
be smooth for every w ¢ F({).

Proof. Necessity is obvious. To prove the converse, it is sufficient to con-
sider only the case S C R", B, C R" X R*, B, C R" X R™. The proof then
follows by a straightforward use of local coordinates.

Proposition 4.5. Let £, ¢ VPB (S). Suppose that for every p e S there is
a B efB, withpeU, and dim{, = n;, — n,, where ¢o:= B,. Then the natural
map

£ VPB ($)(§, Q) — Homge s, (F (), F(£)); kp = p*

is an isomorphism of C=(S)-modules.

Proof. Evidentally, £ is a monomorphism. Let 2 ¢ Homge g, (% (£), F (£)).
It ¢ e F() satisfies ¢, = O for some open U C S, then (h¢)|, = 0,1i.e, h is
local. We show that # is punctual. Let pe S, ¢ e F() with ¢p = 0, and
Be®B, with ¢:= g, and n, = n, + dim{,=: n, + m. Then there exist a
neighborhood U of ¢p and a local representative w ¢ I'(U X R™)* of ¢ rela-
tive to 8. Writing w = )7, a,e’, where a; e C*(U) and e’ is the canonical
i**-coordinate section in (U X R™)*, we have for each g e ¢~'U

(g o), = 3] ailpa)hg*e), .

Since dim {, = m, it follows that a,(¢,) = 0,i =1, - . ., m. Thus (hg), = 0.
Then for each p € S there is a unique linear map £,,: ,* — &,* such that for
all ¢ € #(0), (h$), = h,(é,). For each pe S, define p, = h,*: &, - ,. To
show that p — g, is smooth, it suffices to show that p — ¢ o u, is smooth for
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cach ¢ ¢ #({) (Lemma 4.4). But ¢op, = h,(¢,) = (h¢),. Thus p: p > p,
belongs to VPB (S)(&,(), and kpx = h.
Corollary 4.6. Let & ¢ VPB (S). Then the natural map

K F‘E - Homcm(S) (3;(5), Cw(S))

is an isomorphism of C(S)*-modules.

The dual module of "¢, however, need not be F(§) (cf. Example 4.9).
Trivial examples show that in general the dimensional hypothesis in Proposi-
tion 4.5 cannot be avoided.

Example 4.7. Let S = {0} U {1/n|ne N} C R' be equipped with the in-
duced C~-structure. Then ng, = 1 and ng,,,, = 0. If i is the inclusion S G R,
then i*dx generates #'(S), and i*dx is nonzero only at 0. If x ¢ C*(R) is the
identity map, then the germs [i*x], and [i*dx], are nonzero, but [i*x],[i*dx],
= 0. Thus #(S) is not free.

Example 4.8. LetS be as in Example 3.5, and i: S G R®. Then i*(dx + dz)
is nowhere 0 on S, i*(zdx A dy) is identically O on S, and i*(dx N dy A dz) is
nonzero only at (0,0,0). £3,(S) is generated by i*(dx A dy A dz), but

*(x*+ Y+ Ddx N\ dy N\ dz = 0.

Example 4.9. Every ¢ ¢ # (&) gives an element of Hom,-.. g, (I'§, C*(S)),
but the converse is not true. Let S be the space of Example 3.6. Define w(x)
= (1/x)dx for x < 0 and O otherwise. Then i*w maps Z'(S) into C=(S) linearly
but is not an element of % (S).

Let f: & — { be a morphism in VPB(S), a« € B,, g € B, with ¢: = «, = b,
m:=n, —n, and n:= n, —n,. Let pe U, let U be a neighborhood of ¢p,
and suppose F: U — Hom (R™, R") extends g — Bofoa;', qe U,i.e., Fisa
local representative of f relative to a and . Then with the usual interpretation
we write F = )y, @ x/, wherei=1,.---,n,j=1,.--,m,y, e C>(U, R"),
and x7 ¢ C*(U, R™). When & = ®* 5, { = ®" 5, we have

F=3%5%8  Qy,0x®. . - ®x*,

where y,, € I'(U X R*) and x* ¢ ['(U X R™)*. Applying the contraction Cj,
we obtain

Ci(fp) = @718, 1o CiF o @y,

Thus Cif: ®* 15 — ®'"'yis a VPB (S)-morphism.

Definition 4.10. Let F%(S) denote the C~(S)-module VPB (S)(®* TS,
®™ TS). We call #*(S) the module of tensor fields of type (k, m). We shall
also denote F*(S) by FE(S).

Clearly, Ci: F%(S) — F42(S) is a natural homomorphism of C=(S)-
modules. If @ ¢ #%,(S) and X e Z(S), then as usual we define
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%CiX@w, k>1,

in ==

Thus for X,, - - -, X, € T,S,
ixo(P)X, A -+ A X)) = o(@XD) N Xy --- N Xy)

Definition 4.11. Let & be a vector pseudo-bundle. Define & to be the vector
pseudo-bundle whose fibers are

E,i={y(p) e &,y e [TE],)

and whose total space structure is that induced from the total space of £.
For any C~-functor 2 on the category of R-vector spaces,

A, -, &) S (AE, -+, ED)Y .

Proposition 4.12. Let &, VPB(S),i=1,.--,k. Then

If all &, = &, then
NEE = (N\*E)V.

k
Proof. Let Xel R é&; and peS. Assume without loss of generality that
i=1

Xp=XP® --- ® X2, where X? ¢ £€2. For each i, let ¢* € F(§;) be such that
¢,X? = 1, and define

k
PiQa g WII® - @YD = (T 4¥i)ry,
Yiegl, geS.

It is routine to show that each +/ is a VPB (S)-morphism. Thus /X e I'§;
for each j. Since V' X ® - - - ® V*X(p) = Xp, the first part is proved.
To see the second, note that for each p € S, (A * §)) C ®* £ »» and that each
element X, of the former is alternating. Then X, ¢ Alt &, = A* &,
Example 4.13. It is not generally true that a morphism f: & — ¢ will map
£ into & . Let S be the space of Example 4.8 and let j: R* G S be the obvious
inclusion. Then ’
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i T oo R = 9 0,0,0), 9.0,0,0\ € Ty,08
Jsed (0,008 = Spang a—x( ,0,0), -37( ,0,0) C 0,0,00°0 >

while 7' ,,,S = 0.

There seems to be no theorem analogous to Theorem 3.4 for contravariant
functors F. The trouble is that for each g € 8., F(8) maps in the wrong direc-
tion in order to be a chart on (_J,.« F&,, and it may not be fiber-wise invert-
ible (e.g., when F is the dual-space functor). When S is paracompact, there
exist Riemannian metrics on &, and one of these may be used to equip
Upes §F = &* with a VPB-structure. Then §* = & and I'¢ = ['¢* C Z(§),
where as in Examples 3.5-4.8 the inclusion may be proper. The module ['&*
is, however, unsuitably small for the applications which follow.

5. Lie derivatives of tensor fields

We first consider Lie derivatives of contravariant tensor fields. Let X e Z(S)
and Y € I 4(S). Let p € A, p e U, and suppose X, and Y, are local represen-
tatives relative to ¢ of X and Y in some neighborhood V' of ¢p. We shall show
that ¥ Y, is a local representative of some W ¢ .7 (S) on V relative to ¢,
and that W, is independent of the choices of ¢, X, and Y.

We first show that %, Y (pp) is independent of the choices of the local
representatives X, and Y. Suppose Y vanishes on ¢~'V. Writing

we have
LxYiop) = T Kilor)-a) L ® - ® % (op)
(.1) . “"(Sop)a”zE@ ®[X"5,%]® ®aiak(¢p) :

The second term on the right vanishes because a* vanishes on U, N V, and
the first vanishes by virtue of Lemma 2.1. Thus % Y (¢p) is independent of
the choice of Y.

Now suppose that X vanishes on ¢~'V and Y is arbitrary. Since £ Y, is
invariant under diffeomorphisms, we may assume without loss of generality
that U, N V C inMR" C R™, where n = ng , and V is chosen sufficiently
small. From (5.1),

LrYion) = X D a@n.l @ 0|x, i] ® - ®-Lip),
i ox« ox~i ak

ox
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where a*(pp) = O for every « having some «; > n. Then

P[Xl, 9 ](gop) =9

PX ,
ox®i 0x** op)

where P is the principal part projection. Since

PX,|,y,v =0 and a%_i(gop) ¢ 0 T,S

for all of those & with a*(pp) # 0, Lemma 2.1 implies #x,Y,(pp) = 0. Thus
Zx,Y (pp) is also independent of the choice of X.

Before continuing, we remark that when X = 0 in a neighborhood of p, then
the above argument shows that

(5.2 (Zx,ZL)pp =0

for any Z e 7 ,(R") satisfying Z(pp) € ¢, ®* T,S.

Having shown #; Y ,(¢p) to be independent of the choices of X, and Y, for
fixed ¢, we now show coordinate invariance. For any n > n, and any local
representatives X, and Y, relative to i, , o ¢, and for any local extensions X,
and Y, of In,nge© Xy 0ln,n, " a0 iy g0 Yloi,,,%“ in R*, X, and Y, are also
local representatives relative to i,,,, o ¢, and so it follows that

ngYZ(in,n,‘, o So)p = cg.«’f:;ys(in,n,p o §0)p = in,ny,*gXlYl(SDp) .

Thus it is sufficient to consider only those 6 ¢ Ag with p ¢ U, and n, = n,. Let
f be a connecting diffeomorphism defined in a neighborhood of ép, and let X,
and Y, be local representatives of X and Y relative to 6 in some (sufficiently
small) neighborhood of #p. Then f,ocX,of™" and f,oY,of" also are local
representatives of X and Y relative to ¢. Thus

f*angYz(oP) = gf*ngof—lf* o Yzof—l(ﬁﬂp) = $X1Y1(¢'p) .

Finally we show that Zx,Y (¢pp) € ¢, ®*T,S. Choose ¢ so that pU, C iy, .R"
and choose local representatives X, and Y, of X and Y relative to ¢ in a
neighborhood of gp such that

n¢ X a
X, =2 bt
i-1 ox*
with b* = 0 for { > n, and
0 0
Y, = a“ N
’ %: ox~i 0xe*
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with a* = 0 for any « having some «; > n. Then

$X1Y1(90p) = ngYz(GDP) € Py ®* TpS .

We may thus make the following definition.

Definition 5.3. Let X ¢ 2(S) and Y € 7 4(S). Define £,Y ¢ 7 ,(S) by
setting

LxY (D) = ¢ 0 Lx, Y 00(p)

for each pe S, any ¢ € Us with p e U,, and any local representatives X, and
Y, of X and Y relative to ¢ in a neighborhood of ¢p. When Y e Z'(S), write
[X,Y]:= £,Y. When f e C(S), set Lxf:= X-f.

For each X e Z'(S), £ is a type-preserving derivation in 7 (S) which com-
mutes with Alt and Sym and satisfies

LxfY = X-NDY + &Y, [eC(S),
[gXﬂgZ]:'g[X,Z]} ZG%(S).

For every R e C~, p € S, and every C~-diffeomorphism f: § — R,

f*gXY(p) = gf*uXuf—lf*OYOf—l(fp) .

With the bracket product, Z'(S) is a C=(S)-Lie module (cf. [10]).

We now consider Lie derivatives of covariant and mixed tensor fields. If
peFil8),X eZ(5),Y e ®T,S, and if » and X, are local representatives of
¢ and X relative to ¢ € U in some neighborhood of ¢p, then an obvious candi-
date for Zu(Y) is (p* L4,1)Y. This, however, is not generally well-defined.

Example 5.4. Let S, C R® be the set

(G, k/2%) | x e [—1/27,1/27], k odd and 1 < k < 27},

and let i: S G R* be the set
{0,y e [0, 11} ugsn .

Then 3/0x ¢ Z(R?) represents a vector field X e Z(S), and i*(xdy) =
0e Z#(S). But

i* L, xdy = i*dy # 0 ¢ FXS) .

Lemma 5.5. If #y u(p,Y) is independent of the choice of p,, then for
any other 6 e g with p e U,, any local representative p, of p relative to 6 in
a neighborhood of Op, and any connecting map f with fop = 6 near p, we
have
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foZ i@y Y) = Ly p(0,Y) € 0, @™ TS .

Proof.  First suppose n, < n,. Without loss of generality assume that f is an
imbedding (Axiom A2’). Let X, e £(R") be a local extension of f, o X, of™!
near fp. Then W|,;, = 0, where W:= X, — X,. Let Ze I (R") satisty
Z(6p) = 6,Y. Then

(5.6) Lw0,Y) = Lyl Z0p — {pty LwZ)0p .
From remark (5.2) it follows that both terms on the right side vanish. Thus
L (0,Y) = Lay(0,Y) = f1(L 5, (1) (0, Y)) .
By hypothesis, however,
Lx,(F )@ Y) = Lx e, Y)

Thus f*(glell(SD*Y)) = ,?szz(ﬁ*Y).

Now assume that ¢ is tangential at p. Then £z u,(¢,Y) € o, ®™ T,S, and
SO fo (L x (e, Y)) € 0, @™ T,S.

The case n, > n, follows similarly. q.e.d.

Lemma 5.5 then reduces the question of well-definedness of % ,x(Y) to that
of whether for some ¢ and X, ¥ (¢, Y) is independent of the choice of .

Theorem 5.6. Each of the following conditions is sufficient for the well-
definedness of ¥ zp(Y):

(i) Y e(®*T,S)Y, where p = ®* Y.

(ii) X has a local flow in some neighborhood of p.

(i) X(p) = 0.

(iv) The structural dimension of

{geS/ng,, =ng,} S

with the induced structure is ng ,.

Proof. (i) LetY e Z #(R™) be a local representative of a tensor field in
7 (S) near ¢p such that Y(pp) = ¢, Y. If y, represents 0 ¢ #£(S) near ¢p,
then

(57) gXuUl(ﬁD*Y) = fxlﬂl(ff(SDP)) = gXl(#l o Y)(SDP) - #1($X1?(S0p)) .

From the previous results on Lie derivatives of contravariant tensor fields it
follows that each term on the right side of (5.7) vanishes.

(ii) Let @ be a local flow of X. Define y(f) = (®* @.)Y, |t sufficiently
small. Then 7 is a C*-curve in ®"* TU,. Thus #(0) ¢ T, ®"* TS, and

ZLalpsY) = (04570 -y = 0,
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the last equality following from Lemma 2.1.

(iij) Let ¢ be tangential at p. Then ¢,T,S = T,,R", and consequently
(®* ¢,) T,S = ®*T,,R™. Let X, be a local representative of X relative
to ¢, and let @ be a local flow of X, near gp. Since X(p) = 0, X,(pp) = 0
and 9.(T,,R*) < T,,R". Thus, if 7(#):= Q* 0,(¢,Y),Y € @ T,S, then
7(0) e ®*T,,R". It follows that #(0) e (®* ¢,), Ty ®* TS with the same result
as in (ii).

(iv) Assume without loss of generality that ¢ € % is tangential at p. Be-
cause of (iii), we need only consider the case X(p) # 0. We may then assume
that X, is constant in some neighborhood of ¢p, say X, = d/ox' (by com-
posing ¢ with an appropriate straightening diffeomorphism). Writing

yl:Za"'ﬂdx‘“@...@dx"k@ai@...@ a_
X

81 axﬂm

we have

W @ Qdr R Q.. QO

Lo = L ax! oxP dxbn
If y, represents 0 € F%(S) relative to ¢, then a*?(pq) = O for every « and g,
and every g ¢ S such that ng , = n,. Condition (iv) and Lemma 2.1 now imply
©@a=*#[0x")(pp) = O for all a, 8. Thus L, p(pp) = 0.

Definition 5.8. Define (S) € Z'(S) to be the set of vector fields X such
that #,p is well-defined for every element g in the bi-graded algebra
F.(8):={FpS) |k, m > 0}.

Since #,Y is well-defined for every Y ¢ 7 (S), X ¢ &(S) if and only if £ ;¢
is well-defined for every ¢ ¢ #(S). Since F(S) is locally generated by F#'(S),
X e &(S) if and only if # ;¢ is well-defined for every ¢ ¢ F'(S).

Theorem 5.9. (S) is a Lie submodule of Z'(S). For each X ¢ (S), L is
a type-preserving derivation in F . (S) which commutes with Alt, Sym and
every contraction Ci. For any X, X’ e (S),

[fx, gX’] == g[x,x']

(as derivations on F.(S)). If Re C*,fe C>(S,R), and if pe FXS) and
v e F™MR) satisfy vof, = fyop, and if X e Z(S) and Y ¢ Z(R) satisfy Y (fp)
= f.Xp forallpesS, then Lyvof, = f,0 Lxp.

The proof is elementary and we omit it.

Proposition 5.10. Let D be a type-preserving derivation on Z . (S) which
commutes with contractions. Then there are unique X ¢ {(S) and pe F1(S)
such that D = ¥y + p. (Recall the parlance of [7, p. 30].)

Proof. There is a unique X ¢ Z(S) such that D|;, s, = X. As in the case
of manifolds it follows that D is local. To show that X ¢ 2(S), let p ¢ S and
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let p € A5 be tangential at p. Let v = 3 a,dx? be a local representative of
0e #(9) relative to ¢ near pp. Then a,(pp) =0 for i =1, ---,n,. Let X,
be a local representative of X relative to ¢ near pp. Then

e
0 = D(g*v)p = ( % (X-a oso)so*dxi)p = (L) -

Thus % 0 is well-defined for every o € #(S), and it follows that X e 2(S).

Now K: = D — %, is a type-preserving derivation on £ (S) which com-
mutes with contractions and vanishes on Z°(S), i.e., is C=(S)-linear. From
Proposition 4.5 it follows that

K1) = kp

for a uniquely determined g e Z1(S). Since £ (S) is generated by #°(S) and
FNS), it follows that D|, 5, = Ly + kp.

The standard argument with coordinates shows that K is punctual. From
Proposition 4.12 it follows then that K is completely determined by xx and its
point-wise actions K|35, p € S. Since K commutes with contractions,

0 = KCj(v* ® v) = Ci(kp,(v*) ® v + v* ® Kv)

for every v* e T,S* and v ¢ YV"pS . It follows that K|ys = p|ys. Thus with the
traditional abuse of notation we may write D = %, + p.

6. Exterior differentiation and differential forms

If we F5,(5), p € U, and p is a local representative of o relative to ¢ de-
fined in some neighborhood V of ¢U,, then ¢*dp ¢ #%;*(U,). This form on
U,, however, is not always uniquely determined by w. For example, consider
the space S of Example 4.8 and let w = i*(zdx N dy). Then w = 0, but
i*(dz N\ dx N dy) #+ 0. This phenomenon motivates the following definition.

Definition 6.1. Let w ¢ F5;(S) and § ¢ F¥,(S). Then 6 is an exterior dif-
ferential of w if for every p e S there exist ¢ € g with p € U, and representa-
tives w, and @, of » and @ relative to ¢ in a neighborhood of p such that dw,
= 0,. For each k > 1 we denote the set of exterior differentials of 0 € F;'(S)
by m*(S), and we define m°(S) = {0} and m(S) = {m*(S) |k > 0}.

Note that m*(S), k > 0, is local, that is, if p|, € FE£,(S) satisfies p|, € m*(U)
for every element U of some open cover of S, then x e m*(S).

Proposition 6.2. (i) If 6 is a differential of , then r6 is a differential of
ro for all r e R. If 6, is a differential of w; ¢ F¥5,S),i = 1,2, then 6, + 0, is
a differential of w, + w,, and 6, \ w, + (—1)*w, A\ 8, is a differential of
o, Nw,. If 6, and 6, are differentials of w € F;X(S), then 6, — 0, € m*(S).

(ii) For each k, m*(S) # @. m'(S) = {0}. m(S) is a homogeneous ideal in
F oS). If e m(S), then the set of differentials of p is m**X(S). If 6 is a dif-
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ferential of we FE.US), then the set of differentials of w is 8 + m*(S), and
the set of differentials of 0 is m**'(S).

(iii) Let f e C=(S,S’), and let 6 be a differential of w e F ,(S"). Then {*0
is a differential of f*w. In particular, f*m(S’) C m(S).

Proof. The proof of (i) follows directly from the definition and the prop-
erties of the exterior differential operator.

(ii) For each k,0 ¢ #% (S) is an element of m*(S). Let p ¢ S and assume
that ¢ is tangential at p. Let § ¢ m'(S), and 6, and w, be local representatives
of # and O relative to ¢ such that §, = dw,. Lemma 2.1 implies dw,(pp) = 0.
Thus 6(p) =0, and it follows that m'(S) = {0}. Let € F%,(S) and p e m™(S),
let w, and ¢, be representatives of w and g, and let ¢, be a representative of
0 e #3,71(S) relative to ¢ with p, = d{,. Then

o*¢, N o) =0e FEim'(U,) , o*(, N\ dw,) =0e Fii™U,) .
Thus

o*(p, N\ ) = o*(d(C, N 0,) — (=D, A do,) = ¢*d(C, N\ 0,) .

It follows that p A @ e m**™(S). Thus m(S) is an ideal in £#,,(S) and is
evidently homogeneous. Since dp, = dd{, = 0, 0 ¢ F7/(S) is a differential
of . From (i) it now follows that the set of differentials of xe m™(S) is
m™*(S). Similarly, if o e FE;'(S) has a differential 6, then the set of all dif-
ferentials of w is § 4+ m*(S). Since 0 ¢ m**'(S) is a differential of 4, m**'(S) is
the set of differentials of 4.

(iii) Let pe S, and let w,. and 6, be local representatives of w and @ rela-
tive to ¢’ € Ag., where f(p) e U,., and do,, = 0,.. Let ¢ ¢ Ag with pe U, and
f(U,) < U,., and let F be a local C~-extension of ¢’ fo¢e~'. Then F*w, and
F*@,, are local representatives of f*w and f*¢ in a neighborhood of ¢(p), and
dF*w, = F*dw, . Thus f*¢ is a differential of f*w.

Definition and Corollary 6.3. Let 2%(S) be the submodule of F¥,(S) of
forms having differentials, and let 9(S) : ={2*(S) |k > 0}. Part (ii) of the pre-
vious proposition shows that if @ is a differential, then 6 € 2(S), and in particu-
lar, m(S) € 2(S). Define & (S) = 2(S)/m(S), i.e., Z(S) = {KL*S)|k > 0},
where 2/%(S) = 2%(S)/m*(S). The elements of <7/*(S) are called differential k-
forms. For each k > 0 define d : 2%(S) — «/**(S) by dw = § + m**'(S), where
@ is any differential of w. Then d satisfies

(1) dw AN o) =do Ao + (=D N do’, 0 € 2%(S), o’ € D(5).

Because dm*(S) = 0 e «/**!(S), d factors through the R-linear map d: <Z/(S)
— Z(S); dlo + m¥(S)) : = dw for v ¢ 2%(S). Then d satisfies

(i) do/*(S) & A*H(S),

(i) do N\ o) =do N\ o + (—D*o A do’, v e Z*S), o’ € (),

(iv) ddo = 0 e Z*%(S), w ¢ HL*(S),

(v) IffeC=(S,S, then f*: F,,(S) — ZF,.(S) induces a map «(§") —



CALCULUS ON SUBCARTESIAN SPACES 571

#(S), also denoted by f*, and dof* = f*od.

Proposition 6.4. A sufficient condition for w € F%,(S) to belong to 2*%(S)
is that the support of w have a paracompact neighborhood in S. Thus 2(S) =
& (S) if S is paracompact.

Proof. Every we FE5,(S) has differentials locally. The proof follows by
routine use of partitions of unity.

Remarks 6.5. Whether 2(S) = % ,,(S) for arbitrary S is an open question.

Neither the k-forms of § 4 nor the differential k-forms of this section coin-
cide with any of the three notions of differential forms introduced in [14]. In
Example 4.8, zdx represents 0 e #'(S), hence 0 e &'(S), but [zdx]y,,, ¢
J3(S).

We now establish analogs of some classical identities involving £, iy, and
d. The main lemma is the following.

Lemma 6.6. Let X ¢ 2(S), X; ¢ £(S),i =1, .-+, k, and p e m*¥(S). Then
pX, N oo AN X)) =0, ixp e mFN(S), and L xp e mE(S).

Proof. Let peS, ¢ € Ug be tangential at p, and let Y, Y, be local repre-
sentatives of X, X, relative to ¢ in some neighborhood U of gp. Let v be a local
representative of 0 e & %;'(S) with respect to ¢ in some neighborhood U of ¢p,
without loss of generality, such that p|,-,, = ¢*dv. Since u(Z,, ---,Z;_)) =0
for all tangent vectors Z; ¢ T,,R"¢, we have

wPYX? N - A XD) = dulep)(Yi(gp) A -+ A Yilep))
= 5D p Y A AT A AT
=0

by Lemma 2.1.
Since p*y = 0, then ¢*iyy = iyp*y = 0, and

0 = Zyo*y = o*Fyv = o*(diyy + iydy) ,
where ¢*diyy € m*(p~'U). Thus
ixptly-1y = ixp*dy = @*iydy e m¥(p~'U) .

It follows that iyp e m*(S).

Finally, Lxul,-1yg = ¢*Frdv = ¢*dFyv. Since ¢*Fypy =0, ¢*dLyv e
mk(p~'U). It follows that & ,u e m*(S). q.e.d.

Of course it is not generally true that {w(p), X, is single-valued for w ¢ m(S)
and X, € A T,S. From Lemma 6.6 and Proposition 4.12, however, we have
the following.

Proposition 6.7. Let X ¢ Z%(S) and we Z*(S). Then {w,X) e C=(S).
In other words,
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(6.8) WHS)(P):= {up)|pe MO} S (A T,8)-, forallpes.

The following example shows that the inclusion in (6.8) can be proper.

Example 6.9. Let S be the space of Example 4.8. Then A? f(o,o,o)S = 0.
On the other hand,

mi(S) = spang.s, {i*dx N\ dz,i*dy N dz} .

Thus m*(8)(0,0,0) & (A2 T ,0,00)* = (A2 T g,0.0,5)"

In view of Lemma 6.6, the following proposition is routine.

Theorem 6.9. Let X,Y e X(S). Then as operators on (S), Ly, iy, and
d satisfy the following identities

(1) KLy =lixod + doiy,
(ii) dogx = Zxod,

(iii) i[X,Y] — gxoiy _— iyogx .
If X; e Z(S),i =0, ---,k, then

(iv) do(X, N\ -+ N\ X3)

M&

(—l)iXi-w(XO VANERENVAN Xz AN /\Xk)

1

+ (D" X, X0 AN Xy AN oo A X, A

i<j

Il
=

e ANXGA A X

As in the classical case, we have the following.

Proposition 6.10. Every derivation D on </(S) of degree O which commutes
with d is equal to &y for some X e (S).

Finally, we have the following singular version of Stokes’ identity. As stated,
the theorem is far from the best possible, but we shall defer a more careful
examination of the facts until later.

Proposition 6.11. Let A" be the standard closed n-simplex and let g : 4" —
S be of class C*. Then for every u e m™(S),

(6.12) j o= 0.
4an
Thus for each w € L™(S) and each 6 ¢ F7(S) with 6 + m"(S) = o,

f a*w::f a*f
an an

is well-defined. For every w ¢ /" \(S),
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(6.13) I d*dw =I dto .
an adqn

Proof. By using a simplicial subdivision of 4, the proof is reduced to the
special case g(4™) C U,, where ¢ € U satisfies the following: there exists a
local representative v of O relative to ¢ in a neighborhood of ¢U, such that
ply, = ¢*dv. Then o*p = g*p*dy = (po0)*dv is exact, yielding (6.12).

Now suppose that 8 ¢ F7;(S) has a local representative ¢ relative to ¢ in a
neighborhood of U, and that § satisfies ¢ + m*» (S) = w. Then

J o¥dow = I g*df = .[ c¥p*dg = J (poo)*ds ,
4n qn 4n an

which by the classical singular Stokes’ identity is

f (poo)*¢ = I o*6 =I o .
adqn adqn a4n

References

[1] R. Abraham, Piecewise differentiable manifolds and the space-time of relativity,
J. Math. Mech. 11 (1962) 554-592.

[2]1 ——, Foundations of mechanics, Benjamin, New York, 1967.
[3]1 N. Aronszajn & P. Szeptycki, Theory of Bessel potentials, Part IV, to appear.
[4]1 ——, General theory of subcartesian spaces and structures, to appear.

[51 A. Grothendieck, 4 general theory of fiber spaces with structure sheaf, Technical
Report, University of Kansas, Lawrence, 1958.

[ 61 1. Kaplansky, Projective modules, Ann. of Math. 68 (1958) 372-377.

[71 S.Kobayashi & K. Nomizu, Foundatious of differential geometry, Interscience, New
York, 1963.

[ 81 S. Lang, Introduction to differentiable manifolds, Wiley, New York, 1962.

[9]1 C. Marshall, The de Rham cohomology of subcartesian structures, Technical Re-
port, University of Kansas, Lawrence, 1971.

[10] E. Nelson, Tensor analysis, Math. Notes, Princeton University Press, Princeton,
1967.

[11] R. Palais, Lectures on the differential topology of infinite dimensional manifolds,
Brandeis University, Waltham, 1965.

[12] , Equivariant, real algebraic differential topology, Brandeis University, Wal-
tham, 1971.

[13] K. Spallek, Differenzierbare Rdume, Math. Ann. 180 (1969) 269-296.

[141 ——, Differential forms on differentiable spaces, Rend. Mat. (2) Ser. VI, 4 (1971)

237-258.
[15] M. Spivak, Differential geometry, Publish or Perish, Waltham, 1970.
[16] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965) 496-549.

UNIVERSITY OF MARBURG








