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LOCAL PROPERTIES OF SMOOTH MAPS EQUIVARIANT
WITH RESPECT TO FINITE GROUP ACTIONS

EDWARD BIERSTONE

1. Introduction

In this paper we prove that a smooth (C°°) invariant function on a repre-
sentation space of a finite group can be written as a smooth function of a
(finite) set of generators for the algebra of invariant polynomials. This result
can be used to study local properties of equivariant maps between manifolds
with a finite group action. We show here that, generically, a smooth equivariant
map between Z2-manifolds of dimension two has a simple explicit form with
respect to suitably chosen invariant coordinates near any point in the source
and its image. The adjective "generic" will apply to a local property of maps
in some space of maps (usually the space of smooth equivariant maps between
manifolds with group action) a local property is generic if the set of maps
having that property at each point of a given compact set in the source is an
open dense set. Our manifolds and group actions will always be smooth.

In studying the singularities of smooth maps /: M —> N between manifolds,
one considers certain "singularity submanifolds" Σ1 of the jet spaces Jr(M, N).
These submanifolds were defined by Boardman [2], systematizing earlier pro-
posals of Thorn [8] and Whitney [12]. Thorn [7] proved that the r-jet map
fr — jrf: M —> Jr(M,N) induced by / is generically transverse to these sub-
manifolds. The transversality conditions translate into conditions on the partial
derivatives of /, which can be used (as least in simple, stable cases) to put /
locally into normal form (see, for example [12], [8], [4]).

In many situations giving rise to stability problems there are certain natural
symmetries which must be preserved, so that a study of generic singularities
of equivariant maps could be important to the solution of these stability pro-
blems. But such a study relates also to certain nonstable problems. Consider,
for example, the smooth map

R(x,y) ,

where the map R has order at least 3. This map has an unstable isolated
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singularity at the origin. One cannot in general make smooth local coordinate
changes near the origin of the source and target so that in the new coordinates
the map is (x, y) -> (x2 - y\ 2xy) (though by a result of Stoϊlow [6], [14] these
maps are topologically equivalent at the origin). We will see however that if
the given map is invariant with respect to the antipodal involution in the source
(or, in other words, R is even), we can make smooth equivariant corrdinate
changes to obtain the normal form (x,y) -» (x2 — y2, 2xy). The point is that
this map is stable at the origin in the space of smooth invariant maps.

One of the main obstacles in studying equivariant maps is the lack of a
transversality theory for manifolds with group action and equivariant maps.
We will see that an attempt to classify generic singularities of equivariant maps
involves notions of transversality of their induced jet maps to certain algebraic
subsets of the jet spaces, at singular points of these subsets. The case of
equivariant maps between 2-dimensional manifolds with involution already
presents some interesting features.

If M,N are manifolds with the action of a group G, and p is a point in M,
then we denote by Gp the isotropy subgroup of p, and by Q ( M , N) the space
of smooth equivariant maps from M to N (with the C°° topology). Every point
p in a Z2-manif old of dimension 2 has a (Z2)p-invariant neighborhood which is
equivalent to one of the three orthogonal Z2-spaces of dimension 2:

T: the space R2 with involution (x, y) —> (JC, y) (the trivial involution)

R : the space R2 with involution (JC, y) —> (—x, y) (reflection in the y-axis)

A : the space R2 with involution (JC, y) —> (—x, — y) (the antipodal map).

In other words, one of these spaces serves as an invariant local coordinate
system near p.

Theorem 1. Let M, N be smooth Z2-manifolds of dimension 2, and K a
compact subset of M. There is an open dense set Θ C Cz2(M, N) such that if
f e Θ, p € K, then in some neighborhood of p, f can be expressed in one of the
following normal forms (with respect to suitable (Z2)p-invarίant local coordinates
(x,y), (w, v) near p, f(p) respectively).

(Z2) -neighbor- (Z^-neighbor- Generic eαuivariant maos
hood of p hood of f(p) Generic equivariant maps

T

R

T

R

u = x,
U = X2,

u = —xy + x3,

u = x,

u = x,

u = — xy + x2,

v = y

v = y

v =y

v = y

v = y2

v = y
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(Z2)2>-neighbor-
hood of p

(Z2)ί?-neighbor-
hood of f(p)

Generic equivariant maps

A
T
A
T

R

R

A

A
A
T
R

T

A

R

u = JC,

u = 0,
u = x2 ± y2,
u = 0,
u = 0
U = JC2,

w = — x2y + ^

W = JC,

W = JC,

U = JC,

v = jv

v = 0

v = 2xy.

v — y

v — x2 ± y2

v = y
[, v = y

v = xy

v = xy2

v = y2

Of course for given connected Z2-manifolds M, N of dimension 2, not all
these cases can occur. The maps listed are equivariantly stable at the origin:
any sufficiently close smooth equivariant map can be put into the same form
by making smooth equivariant local coordinate changes in the source and
target. The normal forms for the case T —> T were obtained by Whitney [13]
the singularities of maps (JC, y) —> (x2, y), (x, y) —> ( — xy + x\ y) at the origin
are called a fold and cusp respectively. The case T —> R is given by Morse
theory [5] since the whole source plane must map into the j-axis (the fixed
point set) of the target. In the case A —> T, the map (x, y) —> (x2 — y2, 2xy) is
just the complex map z —> z2, while the map (JC, y) —> (x2 + y2, 2xy) is a "double
fold" (equivariantly equivalent to the map (JC, y) —> (JC2, y2)) its singular set
(y = ± JC) and its image are illustrated in Fig. l(a). Fig. l(b) shows the singular
set (x = 0) U (y = 2x2) and image of the map (x,y) -> ( — x2y + x\y), for
the case R —> T.

Fig. l(a) The map (x,y)
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2 /3

' y = 2JΓ

x = 0

Fig. l(b) The map (-x2;y + x*,y)

The theorem follows from the corresponding local theorem:
Theorem 2. Take M, N orthogonal Z2-spaces of dimension 2 in the state-

ment of Theorem 1.
In § 2 we prove the result, mentioned at the beginning, on smooth functions

invariant under the action of a finite group:
Theorem 3. Suppose the finite group G acts linearly on Rn, and let

Φu ' ' ' >Φκ be a set of generators for the algebra of invariant polynomials. Then
the germ at 0 e Rn of any invariant C°° function can be expressed as a C°° func-
tion of the φ19 ,φχ.

Some aspects of singularity theory are recalled in § 3. The generic singularities
of equivariant maps between orthogonal Z2-spaces of dimension 2 are described
in § 4 in terms of general position of their induced jet maps to certain algebraic
subsets of the jet spaces, and corresponding conditions on their partial deriva-
tives. In § 5 these conditions and the result of Theorem 3, in the case of Z2-
actions, are used to obtain the normal forms of Theorem 1.

During the early part of the research for this paper, the author profitted
from many conversations with Felice Ronga at the Institute for Advanced Study.

2. Smooth functions invariant under the action of a finite group

If a compact Lie group G acts linearly on Rn, then there is a finite set of
generators for the algebra of polynomials on Rn which are invariant under the
action of G. In other words there is a finite set of invariant polynomials
φSX), , φκ(X) s u c n t n a t f°Γ a n y invariant polynomial f(X) = f(x19 •••,*„)
on Rn there is a polynomial h(Y) = h(y19 , yκ) such that

f{X) = h(φι(X), '-.,φκ(X))

(Weyl [9, p . 274]).
It is an open question whether any invariant C°° function / on Rn can be

written as a C°° function of the K basic invariant polynomials φ19 -9φκ,
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though an affirmative answer is known in certain cases1. If the map

has rank K on an open dense subset of Rn, the result follows from a theorem
of Glaeser on the composition of C°° functions [3] together with results of
Whitney on C°° approximation by polynomials [10]. This applies, for example,
to 0(ή) acting on Rn X Rn X X Rn (A copies) by the standard diagonal
action, as long as h < n. In Theorem 3 we establish the result (locally) for
the action of any finite group G.

Remark 1. The orbit space Rn/G is stratified by the subspaces correspond-
ing to the sets of points of Rn of a given orbit type. The invariant map
Φ: Rn —> Rκ induces an embedding Φ* : Rn/G —* Rκ which is C°° on each
stratum. The image of Φ is a semi-algebraic set: it is contained in the algebraic
set of zeros of the ideal of algebraic relations among the φ19 -,φκ, but is
only a part of this algebraic set given by certain invariant inequalities involving
the φt. Theorem 3 shows that φ19 , φκ in some sense serve as smooth local
coordinate functions at the point 0 e Im Φ of the orbit space.

Remark 2. The result of Theorem 3 was first obtained in the case of Z2

acting on the real line by Whitney [11], and in the case of the symmetric group
on n symbols acting on Rn by permutation of the coordinates by Glaeser [3].
John Mather has informed the author that he has also obtained the result of
Theorem 3, and it has recently been proved independently by Sandor Straus.
Using Mather's division theorem it can, in fact, be proved for invariant func-
tions rather than just germs, though we need only the local case.

The theorem is proved using the Malgrange preparation theorem [4]. We
denote by i n the ring of germs at 0 in Rn of C°° functions, and by £* the ring
of formal power series in n variables. The map Φ:Rn—>Rκ defined by
Φ(V) = (φx(V), , φκ(V)) induces a morphism u: Sκ -+ Sn of differentiate
algebras over R, given by u(h) — hoφ.

The group G is a finite group of linear transformations Aia), a = 1, , q
(say with Aω the identity). For V = (x, y, ,z) e Rn, denote by V(a) —
(•*(«)> 3\«)> > *(«)) the image A(a)V of V under A(a) (so in particular Va) — V).

Lemma 1. The ring $* of formal power series in n variables (xy y, , z)
is generated (as a module) over the subalgebra generated by the φu , φκ,
by the polynomials

, -j x Λ ( i ) ^ d ) ^(i) Λ (i)>(2) < (2) x(q_1)y(^_1) Z(J_D ,

0 < at + βi + + γi < q - i .

Once we have Lemma 1, we deduce from the preparation theorem (see [4,

1Since the acceptance of this paper, G. W. Schwarz has proved this result for compact
Lie groups [Topology 14 (1975) 63-68].
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Cor. 4.4, p. 77]) that the monomials (1) generate £n over the subalgebra of
germs of difϊerentiable functions of φ19 -,φκ. Thus, if / e i n is invariant
under G, we write / as a sum of products of a polynomial of the form (1) with
the germ of a function of φl9 , φK9 and see, by averaging over G, that there
exists h e δκ with

/(*, y, , z) = h(φ19 , φκ) .

To prove Lemma 1 we use an explicit construction of a finite generating set
for the invariants of a finite group due to Noether (see [9, p. 275]). Recall
that for a polynomial f(X) = f(x19 , xq) of q variables xi9 the polarized poly-
nomial Dγχj with respect to Y = (y19 , yq) is defined by

Dτxf = Jj-yi + ... + JL.yq .
dxx dxq

If f(X) = /(x1? , xq) is a homogeneous polynomial of degree r in the <?
variables xi9 a multilinear form F(X, Y, - ,Z) depending on r vectors
X, Y, , Z is obtained by complete polarization:

F(X, Y, ..,Z)= DXUDYU Dzuf(U) .

Full polarization of the elementary symmetric polynomials σ19 -9σq in q
variables yields (up to multiples i!):

ψ2(t/, F) = Σ

ψ Q ( t / , V 9 ' " 9 W ) = Σ utVj -"Wk (/, /, , Λ a r e a l l d i s t i n c t ) .

Now consider a finite group G of linear transformations A ( β ), a = 1, , q,
acting on vectors V = (JC, y9 , z) e I?71 as before. Any invariant polynomial
/(F) can be written as

( 3 ) KV) = - Σ /(F ( β ))

The right-hand side of (3), considered as a function of n vectors

V ίγ γ \

( 4 )

is invariant under the symmetric group on q symbols acting by permutation of
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the coordinates in each vector. It is thus expressible as a polynomial in the
polarized elementary symmetric functions. We conclude that a finite set of
generators φ19 , φκ for the algebra of polynomials invariant under G is
obtained by substituting the n vectors (4) for the arguments U,V, , W in
(2) in all possible combinations, including repititions.

Proof of Lemma 1. We must show that every monomial

γaΛ)β . . . ΎT — γa Λiβ . . . ΎΪ
Λ y <> — •/V(i)./(i) * u)

is a sum of terms θφ, where θ is a polynomial of the form (1), and φ is an in-
variant polynomial.

Consider the monomial

/([/) is a sum of terms

( 5 ) «ί'Hί «;«_γr,

where 0 < pt < q — i, and τ is a symmetric polynomial. Form the polarized
polynomial

DiσD>rσ • • • Dr

Zϋj = F{X, Y, • • •, Z) ,

where X, Y, • •, Z are the vectors of (4). Then

F ( X , Y, • • , Z ) = ( a + β + • • • + γ)\ x"y* •••ϋ

is a sum of terms formed by successive polarizations of terms (5) with respect
to Z, , y, X, that is, a sum of terms θφ, where θ is a polynomial of the
form (1) and φ an invariant polynomial.

3. Singularities of smooth maps

We recall that in studying the singularities of a smooth map f:Rn—>Rm,
we classify the points p of Rn according to the rank of / at p: p € Σu(f) if the
kernel of dfp, the differential of / at p, has dimension ix. If Σu(f) is a manifold,
we can then consider the restriction /1 Σu(f): Σu(f) -> Rm, and define ΣilM(S) =
Σί2(f\ΣHf))> In general, for any decreasing sequence / : ίλ>i2> > ik

of nonnegative integers, the set ΣT(f) is defined by induction: if 2 f ί l i'" ι ί*-1(/)
is a manifold, then

The subspaces Σ\f) need not, of course, be manifolds, but they are for a
dense set of smooth maps /. Consider the spaces Jr = Jr(n, m) of r-jets at 0
of germs of C°° maps /: Rn -> Rm with /(0) = 0, i.e., Jr = (&r

k=1L
k

s(Rn Rm),
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where Lk

s(Rn Rm) denotes the space of symmetric ^-multilinear maps from
Rn to Rm. A smooth map f:Rn->Rm induces the r-jet map fr = jrf: Rn -> P,
given at each point by the partial derivatives of orders 1 through r.

Boardman [2] defined the singularity submanifolds Σ1 of Jr, where
I h > * * > 4 is a decreasing sequence of nonnegative integers with k < r.
By Thorn's transversality theorem [7], the r-jet map fr of a smooth map
f:Rn-+ Rm is generically transverse to the submanifolds 2 7 , so that 27(/) =
(/r)"1(2T/) is a submanifold of Rn of codimension equal to the codimension of
Σ1 in P. The 27(/) are the same as the subspaces given above.

In the low dimensions we work with in this paper, it is convenient to use a
more naϊve approach to the subspaces 27(/) due to Whitney [12]. Let
v = inf (w, m), and Σ\ c P = L(i?n, i?m) be the subspace of linear maps of
rank y — z. Then 2"} is a submanifold of codimension /(|n — m\ + z), and
C/(2Ό = U {2/ I / > ϊ] {Cl = closure) is an algebraic set with singular set
Cl(Σi+1). The 1-jet map f of a smooth map f:Rn-^Rm is generically
transverse to the submanifolds Σ\, so that 2*(/) = (f)~\Σi) is a submanifold
of Rn of codimension i(\n — m\ + z).

Let Σ\ — (πD'^Σl), where π\: P —> Z1 is the natural projection. For a smooth
map f:Rn—>Rm,to say that f(p) € 2^ and f1 is transverse to Σ\ at p is to say
that the 2-jet f (p) of / at p belongs to a certain subset Σ%2 of 2j . The subset
Σ%2 splits into manifolds Σ%2 = i;^0

2 U 2V2 U denned as follows: f (p) € 2 ^
if the kernel of d(f\Σ\f))p has dimension /. Then ΣiJ(f) = (f)-\Σ%i)' We
likewise define submanifolds Σ%{'k of J3, and so on.

We now consider Theorem 2 in the case M = N = T, the trivial Z2-space
of dimension 2, studied by Whitney [13]. Let Ω be an open subset of Γ, and
K a compact subset of Ω. We first note that the subspace Θλ C C°°(β, T) of
maps of rank at least 1 throughout K is open and dense. In fact the subspace
Σ\ of linear maps of rank zero in 71 = L(R2, R2) has codimension 4, so that
the 1-jet map of a smooth map generically misses it.

Now suppose / e 015 so that taking Ω sufficiently small and changing variables
in the source and target we can assume f(x,y) = (u(x,y),y). The 1-jet map
is given by the matrix of partial derivatives

_ (ux uΛ

-\o 1/

Let p be a singular point of /, i.e., f (p) e Σ\, or equivalently ux(p) = 0. Then
f is transverse to Σ\ at p if and only if uxx(p) Φ 0 or uxy(p) Φ 0. Generically
Σ\f) = (ux = 0) is a 1-manifold (here (ux = 0) denotes the solution set of
iιβ = 0). In this case f(p) ε 2 ^ if and only if uxx(p) φ 0; 21'°(/) = (f)-1(21^)
is the set of regular points of f\ (ux = 0). On the other hand, the conditions
on the partial derivatives of / at p for f(p) e Σ]^\ are ux(p) = 0 and uxx(p) = 0.
Hence f is transverse to 2 ^ at this point p if and only if the matrix
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uxx uxy \

W a s Uxxy)

has rank 2 at p\ i.e., uxy(p)uxxx(p) Φ 0. Since Σ)$\ has codimension 2 in J2,
Σhl(J) consists of isolated points in (ux = 0).

Let Θ C C°°(Ω, T) be the set of maps / which can be written near any point
of K as f(x, y) = (u(x, y), y), where if p e K is such that ux{p) — uxx(p) = 0,
then uxy(p) Φ 0 and uxxx(p) Φ 0 (we will call such singularities "Whitney
singularities"). We conclude from the transversality theorem that Θ is open
and dense.

4. Generic singularities of equivariant maps

In this section we begin the proof of Theorem 2. There are nine cases depend-
ing on the choice of M, N among the three orthogonal Z2-spaces A,R,T denned
in § 1. In each case we let Ω be an invariant open neighborhood of the origin
in M, and K a compact subset of Ω. We will describe an open dense set Θ of
maps / e Cf2(ί2, N) in terms of general position of their induced jet maps to
certain algebraic subsets of the jet spaces, and corresponding conditions on
their partial derivatives (throughout K). The case T —* T has already been
considered in § 3. Theorem 2 in the case T —> R is given by Morse theory,
while the case T —> A is trivial: there is only one equivariant map f(x, y) = 0.

R->T. We first note that the set φ1 C Q 2 ( β , T) of maps of rank at least
one throughout K is open and dense. It is clearly open. Given f(x,y) =
(u(x, y), v(x, y)) in Cj 2(β, T), consider f = (u', v') defined by

uf — u + aj , vf = v + βj .

By Sard's theorem a19 βλ can be chosen arbitrarily small so that (/01 avoids Σ\
on (x = 0). Now consider the equivariant map ]" — (uh', vfr) given by

u" = ur + a2y + γx2 , v" = v' + β2y + δx2 .

Again using Sard's theorem, a2, β2, γ9 δ can be chosen arbitrarily small so that
(fO1 now avoids Σ{ throughout K. This establishes the denseness of Θλ.

Now suppose f € Θx. Near any point p outside (x = 0) we can treat / as in
the case T —> T considered in § 3. On the other hand, taking Ω a sufficiently
small invariant neighborhood of a point p on (x = 0), and changing variables
equivariantly in the source and target, we can assume f(x, y) = (u(x, y),y)
with u(—x,y) = u(x, v). Note that equivariance dictates the form of /: since
(x, y) —> (y, x) is not an equivariant coordinate change, we cannot write / in
the form (x, v(x, y)). The 1-jet map fotf = (w, y) is given by the matrix of
partial derivatives
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r " Vo i )

Recall from § 3 that the 3-jet of a map f(x,y) = (u(x,y),y) at a singular
point generically belongs either to the submanifold Σ]$ of P given by ux = 0,
uxx φ 0, or to the submanifold Σ1^0 of P given by ŵ  = 0, uxx = 0,
uxyUxxx φ 0. But in our equivariant situation, along (x = 0) 3-jets which do
not lie in Σ)$ can belong only to the frontier of Σ1^0, i.e., the cone

C: ux = 0 , uxx = 0 , uxyuxxx = 0 .

Fig. 2 shows the subspace of /3 spanned by the w^-, uxy-, and w^-co-
ordinates. Since u is even in JC, the image of (x = 0) in this subspace lies along
the w^-axis, so that the 3-jet of / at a point p along Qc = 0) with uxx(p) = 0
is trapped by equivariance at the origin of the cone C. But by a small equiv-
ariant deformation we can make the tangent map of f at p span a plane in
general position with respect to the tangent cone of C at the origin, i.e., a
plane which intersects the cone only at its vertex (as shown in Fig. 2). In fact
the tangent map of (uxx, uxy, uxxx) is given by the matrix of partial derivatives

Since uxxx, uxyy, uxxxy vanish at p by equivariance, the image of the tangent
map is the linear space spanned by the vectors

(0, uxxy(p), uxxxx(p)) , (uxxυ(p), 0, 0)

this space is a plane in general position with respect to the tangent cone of C
if uxxy(p) Φ 0 and uxxxx(p) Φ 0. It is easy to check that such points p are
isolated on (x = 0), and that nearby singular points are of the usual Whitney
type.

Given / = (w, y) e C^2(β, T) there is an equivariant map arbitrarily close to
/ displaying singularities of the above type on (x = 0) Π K, and singularities
of Whitney type elsewhere in K. In fact, let

uf = u + a,x2 + β,x2y + n* 4

By Sard's theorem we can choose al9 β19 γλ arbitrarily small so that at each

point p of (x = 0) :

( 6 ) If ι/xx(p) = 0, then i/xxy(p) φ 0 and u?xxxx(p) Φ 0 .

Then let
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u" = u! + a2x
2 + β2x

2y + γ2x
A + δx6 .

Again using Sard's theorem we can choose a2, β2, ΊΊi δ arbitrarily small so that
(6) still holds along (x == 0) Π K, and at at any point p outside (x = 0), if
u%(p) = 0 = w^(p), then w"y(p) =£ 0 and u%xx(p) Φ 0. We have now shown
the following:

Lemma 2. Let Ω be an invariant open neighborhood of the origin in R,
and K a compact subset of Ω. Let G be the set of maps f e Cz2(Ω, T) which
can be written in invariant coordinates near any point p of K as f(x, y) =
(u(x, y),y), where if p <ε (x = 0) then u satisfies (6), and elsewhere in K, f dis-
plays only Whitney singularities. Then Θ is open and dense.

Fig. 2

A —> T. For any f(x, y) = (u(x,y), v(x, y)) in C|a(fl, Γ), the coordinate
functions u and v are both even in (JC, y). The 1-jet map is given by the matrix
of partial derivatives

so that f(0) = 0. In the space of 1-jets J\ the closure of Σ\ is a quadratic
cone uxvy — uyvx = 0. Recall that in the case T —> T the 1-jet of a smooth
map generically hits this cone only in nonsingular points (i.e., avoids the vertex
Σf), and is transverse to the cone at these points. But in the case A —> T
equivariance traps f(0) at the vertex of the cone. That f be transverse to the
cone at the origin means that the tangent map of f at 0 e A spans a plane L
in general position with respect to the tangent cone C at the vertex of Cl(Σ{)
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i.e., L Π C contains either 2 linearly independent directions or the zero vector
only.

It can be checked that this situation is equivalent to looking at the space of
quadratic forms aξ2 + 2bξη + erf in 2 variables (f, η), and considering the
linear subspace L spanned by

n"(0) = ) , uxy(0), uyv(0)) , v"(0) =

in relation to the quadratic cone C: b2 — ac = 0. Given f = (u,v) e C^Ω, T)
we can add quadratic terms with arbitrarily small coefficients to u and v so
that L is a plane in general position with respect to C. In this case singular
points of / nearby the origin are of Whitney type. Planes in general position with
respect to C are shown in Fig. 3.

C: b2 = ac

Fig. 3

Lemma 3. Let Ω be an invariant open neighborhood of the origin in A,
and K a compact subset of Ω. Let Θ C C | 2 (β, T) be the set of maps f = (u,v)
such that the quadratic forms u"(0), v"(0) span a plane in general position
with respect to the cone b2 — ac = 0, and f has only Whitney singularities
throughout K — {0}. Then Θ is open and dense.

R —> R, A —> A, A —> R. In these cases only singularities of Whitney type
occur generically, and equivariance restricts their positions.

In the case R -• R first note that the subset Θγ C Q 2 ( β , R) of maps / of
rank at least one throughout K is open and dense. In fact given / = (u, v),
the map f = (u', v*) defined by
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uf = u + ax + γxy , v' = v + /3v

for suitable arbitrarily small a, β,γ has rank at least one at every point. If
/ e Θx, and Ω is a sufficiently small invariant neighborhood of a point on (x = 0),
then we can assume either /(x, j ) = O, v(x, y)), with v( — *, y) = v(x,y), or
/(x?iy) = (u(x,y),y) with w(—*, y) = —u(x,y). In the former case, by an
equivariant deformation of the form

v' = v + ay + βy2 + γx2y + δy3 ,

with a, β, γ, δ arbitrarily small, we can arrange that vy(p) and vyy(p) are not
both zero for p e (x = 0), and that /' = (*, #0 displays only Whitney singu-
larities elsewhere. In the latter case uxx — 0 throughout (x = 0), but by a
deformation

w ' = w + ax + βxy + γx3 + δx5 ,

a, β, γ, δ aritrarily small, we arrange that ux(p) and uxy{p)uxxx(p) are not both
zero for p e (x — 0), and that /' = (V, y) displays only Whitney singularities
elsewhere in Ω.

In the case A —> A, if f(x, y) = (u(x, y), v(x, y)) is in C | 2 (β, A), then u, v
are both odd in (x, y). Since Σ\ C P has codimension one, we can add linear
terms with arbitrarily small coefficients to w, v, making / nonsingular at the
origin. By a subsequent equivariant deformation the map can be made to display
only Whitney singularities elsewhere.

On the other hand, in the case A —> R an equivariant map / = (w, v) must
be singular at the origin. Let Θ be the set of maps / e Cz2(Ω, R) which can be
written, in suitable invariant coordinates near the origin, as f(x, y) = (x, v(x, y))
with vyy(P) Φ 0 (vy(P) = 0 sίπcQ v( — x, —y) = v(x,y), and which displays
only Whitney singularities elsewhere in K. Then Θ is open and dense.

R —» A. Again the set Θx C Cz2(Ω, A) of maps of rank at least one throughout
K is open and dense, and we can assume / e 01 is of the form f(x, y) — (x, v(x, y))
with v( — x,y) = —v(x,y). Then 1-jet map of / is given by the matrix of
partial derivatives

Along (x = 0), the 3-jet of / belongs only to the frontier of Σι£\ i.e., the cone

C:vv = 0, vyy = 0, vxyvyyy = 0 .

The image of (x = 0) under the 3-jet map lies along the i^-axis of the
(yy,vyy,vxy,vyyy)-cooτά\naXz subspace of P. In this equivariant situation,
general position of f with respect to C at points p on (x = 0) means that either
Vχy(p) Φ 0 or vxyy(p) Φ 0: In either case the image of the tangent map of f
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at p contains a direction which does not lie in the (vxy, i^^-plane. Fig. 4
shows the space of (yyy, vxy, vyyy)-coordmatQS and the image of the tangent
map in general position at a point with vxy = 0.

Fig. 4

Lemma 4. Let Ω be an invariant open neighborhood of the origin in R,
and K a compact subset of Ω. Let Θ be the set of maps f e Cz2(Ω, A) which
can be written in invariant coordinates near any point p of (x = 0) Π K as
f(x, y) = (JC, v(x, y)) with vxy(p), vxyy(p) not both zero, and which display only
Whitney singularities elsewhere in K. Then Θ is open and dense.

In fact, given f(x, y) = (x, v(x, y)) in Cj2(£?, A) we can choose a, β, γ, δ
arbitrarily small so that with

v' = v + axy + βxy2 + γxy3 + δx3y ,

the map /' = (x, v') satisfies the conditions of the lemma.

We remark that f(x, y) = (JC, v(x, y)) can be written as f(x, y) = (x, xV(x, y))
where the map g(x,y) = (x, V(x,y)) belongs to Cz2(Ω,R). Hence Lemma 4
can, in fact, be deduced from the discussion of the case R —* R above.

5. Normal forms for equivariant maps

In this section we complete the proof of Theorem 2, using the generic con-
ditions of § 4 to obtain explicit normal forms. Only the cases A —> T, R —• T,
and R —> A will be discussed. The cases T —•> A, T —> R have already been
completed, while the remaining cases can be handled in the same way as
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R-^T below (see also [13], [4] for the Whitney case T -> Γ). It will suffice,
in each case, to consider an equivariant map / taking 0 into 0, and find a normal
form for / in an invariant neighborhood of the origin. Again Ω denotes an
invariant open neighborhood of the origin in the source.

A —> T. If f(x, y) = 0 0 , y), v(x, y)) is a map in C^2(Ω, T), then by Lemma
3 the quadratic forms w"(0), v"(0) generically span a plane in general position
with respect to the cone b2 — ac = 0 in the space of quadratic forms aξ2 +
2bξη + cη2 in 2 variables (£, η). We can write

u{x, y) = x2uλ{x, y) + 2xyu2(x, y) + y2u3(x, y) ,

v(x, y) = x2vx(x, y) + 2xyv2(x, y) + y2v3(x, y) ,

where ui9Vi, i = 1,2,3, are smooth functions which are even in (x,y). Then

κ"(0) = (Ml(0), κ2(0), «3

In the following we use the fact that in the space of quadratic forms in 2
variables, the way in which the linear subspace spanned by 2 quadratic forms
intersects the cone b2 — αc = 0 is invariant under the natural action of
GL(2, R) x GL(2, R) on pairs of quadratic forms (see [1, § 3]).

We begin with some preliminary transformations used to rewrite / in the form

( 7 ) u = x2 ± y2 + R(x, y) , v = 2xy ,

where R( — x, —y) = R(x, y), and R is of order at least 4. First, making linear
coordinate changes in the source and target, we can assume v"(0) is a vector
outside the cone b2 = αc. Then changing coordinates near the origin of the
source as in the proof of the Morse lemma [5, Lemma 2.2], we put / in the
form u = x2uλ + 2xyu2 + y2u3, v = x2 — y2, and, with a subsequent linear
change of variables, in the form u = x2uλ + 2xyu2 ± y2u3, v = 2xy, with
^i(O), w3(0) > 0. The + or — sign occurs according as the plane spanned by
w"(0), v"(0) intersects the cone b2 = αc in 2 linearly independent directions,
or in the point 0 alone. Further equivariant coordinate changes

x' = x(Ul(x, y)/u3(x, yψ* , / = y(u3(x, y)lux(x9 v))1/4

in the source and

u> = (U _ w2(O)vK(O)-1/2ii3(O)-1/2 , v' = v

in the target, now put / in the form (7).

The polynomials x2 + y2, x2 — v2, 2xy generate the algebra of polynomials
in (x, y) invariant under the antipodal map, so with / in the form (7) we use
Theorem 3 to write
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u = x2 ± y2 + S(x2 + y2, x2 - y2, 2xy)

near the origin, where S is a smooth function of order at least 2. Consider
the case u = x2 — y2 + S; the + case is similar. We will use the algebraic
relationship among the invariant polynomials x2 + y2, x2 — y2, 2xy to write

S(x2 + y2,x2-y2,2xy)

= θ{x2 -y2 + S, 2xy) + (x2 + y2)φ(x2 - f + S, 2xy) ,

where θ and φ are smooth functions (of orders at least 2 and 1 respectively).
With S in this form, the equivariant coordinate changes

x' = x(\ + φ)w , / = y{\ - φ)w ,

u' = u- θ(μ, v) , v7 = v(l - ^2(w, v))1/2

near the origin of the source and target, put / in the normal form: uf = x'2 — y'2,
v' = 2x'yf.

It remains to establish (8). Consider the equality

( 9 ) (X2 _ y + Sy + (2xyf = (x> + yy + 2(x2 - y2)S + S2 .

Let

/(£, ̂  0 = ξ2 + 2^(f, 7, ζ) + S\ξ, ̂ , ζ) ,

S(£,?,C) = ? + «£, ?,0 ,

Λ(f, η, 0 = ζ

By the preparation theorem [4, Cor. 4.4, p. 77], the ring <f3 of germs at 0 of
C°° functions in 3 variables (f, 57, ζ) is generated, over the subalgebra of germs
of C°° functions of /, g, h, by 1, f. Hence there exist θ , Φ € *f3 such that

S(£,?,O = θtf,S, A)+ £#(/,*, A)

Put f = x2 + / , 95; = x2 - y2, ζ = 2xy. Then / = g2 + h2 by (9), so that
S(x2 + v2, x2 - / , 2xy) takes the form (8).

R^T. By Lemma 2, a map / <= C| 2 (β, Γ) is generically of the form
j(x,y) = (u(x, y), y) with u(—x,y) = u(x,y) in suitable invariant coordinates
near 0, where if ^ ( 0 ) = 0 then uxxy(0) Φ 0 and ^^ .̂̂ ^(0) Φ 0.

First suppose uxx(0) Φ 0. By Theorem 3 or [11], there is a C°° map £/(£, rj)
defined near 0 so that u(x, y) = t/(x2, v). Then t/(0) = 0 and E/e(0) 9̂  0. By
the preparation theorem, the ring S2 of germs at 0 of C°° functions in 2 variables
(f, 27) is identical to the subalgebra of germs of C°° functions of U(ξ,ή),η.
Hence there exists Φ e £2 such that ξ = Φ(U(ξ, ή), η), so that JC2 = Φ(M(JC, V), y).
We check that
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Uf — Φ(U, V) , Vf — V

is a coordinate change near 0 in the target in these coordinates / takes the
normal form (x, y) —»(x2, y).

Now suppose f(x, y) = (u(x, y),y), with

uxxφ) = 0 , uxxv(P) Φ 0 , uxxxM φ 0 .

Again there exists U e i2 with u(x, y) = U(x2, y), so that

(10) C/e(0) - 0 , E/«(0) =£ 0 , Uζη(0) φ 0 .

By the preparation theorem there exist Φ, Ψ 6 S2 such that

(11) f2 - Φ(C/(£, η), η) + ξΨ(U(ξ, η), η) ,

so that

x* = Φ(u(x,y),y) + χψ(u(x,y),y) .

Clearly Φ(0) = ?Γ(0) = 0. Using (10), (11), we check that the following are
equivariant coordinate changes at the origin of the source and target respec-
tively :

x' = x, y' = ¥(u{x,y),y) ,

u' = Φ(u, v) , v' = Ψ(u, v) .

In these new coordinates (dropping primes), / takes the normal form (x, y) ->
(-x2y + x\y).

R^>A. By Lemma 4, / e C|2(β, A) is generically of the form f(x,y) =
(x, v(x, y)) near 0, where vxy(0), vxyy(Q>) are not both zero. Since v(—x, y) =
— v(x, y), there is a C°° function V(ξ, η) with ^( c, j) = xV(x2, y).

If â yίO) Φ 0, so that ^(0) Φ 0, then the equivariant coordinate change
xf = χ9 y' = V(x2, y) at 0 in the source puts / in the normal form: u = x\
v = x'y'.

When vxy(0) = 0, vxyy(0) φ 0, i.e., 7,(0) = 0, Vηv(0) φ 0, we can argue
as in Whitney [13, § 15]. Since Vηη(0) Φ 0, we can solve the equation
Vv(x2, y) = 0 near the origin using the implicit function theorem, obtaining an
even function y = ψ(x). Consider the equivariant coordinate changes

x1 = x , y = y - ψ(x) ,

uf — u , v/ = v — uV(u2, ψ{ύ))

near the origin of the source and target (respectively). In the new coordinates
uf — x/ and vr = x'Φ{xf, yf), where
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Φ(x',y') = V{xf\yf + ψ(*0)

Then Φ(x', 0) = 0, Φy,(x'9 0) = 0, but Φrr(0, 0) φ 0, so that using Taylor's
formula we can write Φ(x\ / ) = y'Ψ(x'2, y') with Ψ(0) φ 0. A further equiv-
ariant change of variables

jt* = x' , y* = /[ΪPXz'2, /)] 1 / 2

in the source puts / in the normal form: u' = x*, v' = x*y*2. This completes
the proof of Theorem 2.
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