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HIGHER ORDER ANALOGUES OF CLASSICAL GROUPS

R. H. BOWMAN & R. G. POND

1. Introduction

In [2] and [3] one of the present writers introduced a notion of canonical
tangential resolution (*M) (k = 0,1,2,...) for an arbitrary real C* finite-
dimensional manifold M. Subsequently, various aspects of the higher-order
terms of such a sequence have been investigated (see [4], [5], and [6]). While
the local origins of the theory are to be found in the formalism of extensor
analysis (see [7] as a general reference), the categorical context is co-equaliza-
tion in the general theory of cotriples, the basic cotriple being the zero-section
and the tangent functor in the category of C* manifolds (see [9]).

The present paper concerns the resolution (*G) of a Lie group G and the
resolution (¥*¢) of a differentiable action ¢ of G on a manifold. The principal
results are the theorems in § 2 establishing matrix realizations for each *G and
its associated Lie algebra #(*G) and interpreting the relevant exponential map
in the case where G is a Lie subgroup of some general linear group. The in-
formation developed here yields the foundation for a general theory of differ-
entiable fiber bundle resolution and its interpretation, a systematic treatment
of which will be given in later papers. The remainder of the introduction ex-
plains the notational conventions and special identifications used in the sequel.
All manifolds are modeled on real Banach spaces and are at least of class C~.
The notation is intended to conform as closely as possible with that currently
employed in such a context (see [1], [8], and [11]).

Let M be a manifold modeled on the Banach space B. An element of the
tangent bundle T(M) will be viewed as an equivalence class [, b],, where
be B, xeM, and ¢ is a local coordinate map about x. Thus, if ¢: M — N is
a differentiable map, its associated tangent map 7(¢) : T(M) — T(N) is described
locally by

(1) T(9)([6, bl,) = [¥, D(Yro g0 67)(6(x))b], ,

where y = ¢(x), ¥ is a local coordinate map about y, and D(v o ¢ o -1 (6(x))b
is the total differential of yro ¢ o 6~" at the point §(x) evaluated at the vector b.
When V is an open set in a Banach space C, T((V) will be viewed as the direct
product V' x C with (v; ¢) denoting a tangent vector ¢ e C located at the point
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v e V. In particular, given 4 as above, T(6)([6, b]l,) = (6(x); b), i.e., T(f) is
the usual lift of 6 to a local coordinate map on T(M). If M is a direct product
K X L, T(M) will be treated as T(K) X T(L). In particular, if ¢: M — N is
a differentiable map, let ,¢: L — N and ¢,: K — N be given by

«P) = ¢(u, v) = ¢,(u) for each (u,v) e M .

In this case formula (1) becomes

T(#) [z, alu, [, dlo) = T(g.)[z, al) + T(up)ly, dl,)
= [, D(yro g, 0™ )z(W)a + D(roudon ) (n(w)dl, ,

where [z, al, € T(K) and [y, dl, e T(L).

Following [2], the tangential resolution (*M) for a manifold M can be specified
inductively. Let ‘M = M, ‘M = T(M), I = the identity map ‘M — T("M).
For k > 0, suppose M and **'M have been defined together with an embedding
oI ¥ "M — T(*M). Let z*: T(*M) — *M and z**': T(**'M) — **'M denote
the usual projections and let ,z# = zn*o,[l. Then **?M is defined as the set of
all points in T(***M) where [ o n**! and T(;n) agree and ,,,/: ***M — T(**'M)
denotes the inclusion map. With tangential resolutions of manifolds thus
defined, let ¢: M — N be any differentiable map. The tangential resolution
(*¢) for ¢ can be specified as follows: let °¢ = ¢ and, assuming *¢: *M — N
has been defined, let ¢**': **'M — ¥*IN be ,J 'o T(*¢) o ;I where [ and ,J
are the embeddings of **'M and **'N in T(*M) and T(*N), respectively. It
is readily seen that the resolution process for manifolds is functorial at each
level k.

When V is an open set in a Banach space C, **'V will be treated as the direct
product V' x C**! with the embedding map **'V — T(¥V) = (V X C¥) x C¥*!
given by sending (v,, « -+, Vg, ) to (Vy, « -+, Vi3 Uy, -+ -, Vy,y). Local coordinati-
zation of the point-set **'M is achieved through functions of the form **'¢
where 6 is a local coordinate map for the manifold M. If M is a direct product
K X L, **'M will be treated as **'K X **!L. In particular, if ¢: M — N is
any differentiable map, **'¢: ¥**'K X ¥*!L — ¥*!N is given locally by

(2)

(3) *(x,2) = JH([*d, Do By 0 Fe™)(9)E + D(“r o *¢ o Fp7)(@)r],)

wheres = (Sp, «++,85), 8 = (S, ++ +, Sgy1), X = B2 71(sy, « -+, Sk, 1), U = Fe7I(s),
q = (qo’ tt qlc)’ r = (ql’ tt Qk+1)s = k+17]—1(q0a Y qk+1), v = kv_l(Q),
and y = *¢(x, z).

Before passing to Lie considerations, an alternate description of the sequence
(*M) can be given which suggests the rationale for its consideration. Let
T°(M) = M, and for each integer kK > 0 let n;, = T%(x;) : T**' (M) — T*(M)
denote (inductively) the tangent bundle over 7%(M). For each & > 1 and each
m from 1 through k, let T™(z_,,) : T**'(M) — T*(M) denote (inductively) the
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tangent map associated with 7™!(z;_,,). For each £ > O the various T™(z;_,,)
(0 < m < k) are all distinct, and **'M can be viewed as precisely that subset
of T**'(M) on which all the T™(x,_,) coincide.

Now suppose ¢ = ¢'V:1 — M is any differentiable curve in M. Let
g®*V: [ — T**(M) denote (inductively) the standard lift of ¢'*’ over zy, £k > O.
One readily checks that ¢**" actually has its range in the (losed embedded)
submanifold **!M. Thus higher order ordinary differential equations over M
are properly formulated as given data relative to the *M rather than the ambient
T*(M). Recognition of this phenomenon is tacit in the standard treatment of
sprays, for instance, at the second tangential level (see [11] or [13]). A similar
situation occurs in other higher order differential contexts as well.

Let G be a (Banach modeled) Lie group with multiplication x and inversion
¢. With the conventions on products in mind, one checks that each *G is again
a Lie group with multiplication *x and inversion *;. Moreover all the global
maps involved in the construction of *G as a manifold are Lie group homo-
morphisms. If ¢: G X N — N is a differentiable (left) action of G on N, then
each ¥¢: *G X *N — kN is a differentiable action of *G on *N, and the sequence
(*¢) is called the tangential resolution of ¢. In particular, if N is a Banach
space and ¢ preserves the linear structure on N, then *¢ preserves the linear
structure on *N (viewed as N**),

We close this introductory section with a decomposition theorem for *G.
Let K, be the trivial subgroup of G and let G, = G. For k > 1 let K; =
ker (jwo - - - ox_,w) and let G, be the subgroup of *G consisting of those x for
which ;_,/(x) is the zero tangent vector at ,_,x(x).

Theorem 1. For each k > 0 the restriction of .z to Gy, is a Lie isomor-
phism onto G, and n(K;,) = K. In particular, each *G is the internal
semidirect product K,,G.

Proof. Letting O, denote the restriction of the zero section of z* : T(*G)— *G
to Gy, one checks (inductively) that ,/~'o O, is the inverse of the restriction of
«7 to Gy, Clearly ,n(K,,) C K;. Thus (inductively again) each K, N G, is
trivial. To see that K;Gy is all of *G for k > 1, let x € *G be arbitrary and
let g7' = o -0, w(x) e G. Letting y be the element of G, for which
oo -0, m(y) = g! and letting p denote multiplication in G, one has x =
Eu(®(u)(x), ¥) with *(u,)(x) necessarily in K.

Corollary. Let #(*G) denote the Lie algebra of *G. Then Z(*G) is the
internal semidirect product £(K;) ® £ (Gy) of the ideal #(K,) with the sub-
algebra £ (G,).

2. A matrix realization of *G

Let B be a Banach space, GL(B) the Lie group of all continuous automor-
phisms of B, and gI(B) the Banach algebra (and Lie algebra) of all continuous
linear endomorphisms of B. For k > 0 each S ¢ gl(B**") will be treated as a
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(k + 1) X (k + 1) matrix [S;7] (0 < i,j < k) with lower index = row index.
(That is, given S, the various S;? € gl(B) are obtained by requiring S(v) =
(287 (y), -, 2;Sxi(wy)) for all v = (v, - - -, vy) € B¥*1.) For the remainder
of the paper G will be a Lie subgroup of GL(B), and ¢: G X B — B will
denote the usual left action of G on B. Thus the map x — ,*¢ amounts to a
realization of *G as a Lie subgroup of GL(B**!). Our purpose in this section
is to characterize the matrices [,*$,’] which arise in this realization. In the
process we obtain a characterization of the matrices which arise in the corre-
sponding realization of #(*G) in gI(B**') as well as an interpretation of
kexp: *#(G) — *G as an ordinary exponential map, where exp: #(G) — G
is the restriction to #(G) C gl(B) of the usual exponential map.

Theorem 2. Let C(i,j) = i!/[(i — )!j!] when 0 <j< i< k. Then *¢;
= C(>, ) ;" when 0 < j< i<k, and ,*¢;) = 0 when 0 <i<j<k.

Proof. It is sufficient to consider the case G = GL(B). We argue by in-
duction on k, the case k = O being trivial. With K = G, L = N = B, ¢ = the
standard injection G — gI(B), y» = 7 = the identity on B, and the convention
that .J(by, -+ -, by,)) = (by, + -, by by, -+ -, by,,) and in mind, formula (3)
amounts to

(4) ¥g(x, z) = J ' (FP(u, v) ; D(FP, 0 Fz7)(E + DGFB)(Qr) .

Now D(,*¢)(q)r = ,*¢(r), since ,*¢ is a continuous linear map. Thus, by the
inductive hypothesis for k, one has

D(,*¢)(q@)r = (C(0, 0)s(qy), C(1, 0)s:(q)) + C(1, 1)s(q,),
ooy 250k, s (q5.0) -

Define a continuous linear map F :gl(B)**! — B**! by

(5)

F(EO’ ) Ek) - (C(Oa O)Eo(qO)’ C(l, O)El(ql) + C(17 I)Eo(ch)’
M) ch(k’ j)Ek—](q])) .

By the induction assumption, the restriction of F to G X gl(B)* is precisely
k¢, o ¥z~1. Thus one has

(6) D(¥¢, 0 k™) (8)t = F(Sy, + + +, Spy1) -
Since C(i,j) + C@G,j + 1) =C@E + 1,j + 1), formulas (5) and (6) yield

(*g(u, v) ; D(*¢y 0 *z7)($)t + DG E)@r) = (F(sy, - - -5 51) 5 C(1, 0)5,(q0)

7
M + C(, Dsy(q), - -+, 2,0k + 1, Dse,1-4(q5) -

Apply ;J! to both sides of (7) to obtain (from (4))
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k+l¢(x9 Z) = (C(O5 O)SO(QO)7 C(l’ 0)s1(q0) + C(l ’ l)so(ql),

(8) j
<, 250k + 1, sk, -(q;)

which completes the induction.

Theorem 3. Let k> 1. If ue G, and 0 <i < k, then ,*¢," = 0. More-
over, for each s,e G there is exactly one ue G, with ,*¢ = s,. For any
u e Ky, ,*¢," is the identity element I ¢ G.

Proof. Forany u e *G, ,*¢,' = w0 - - - o ,_w(u). So the assertion for u ¢ K,,
is immediate from the definition of K,, while the assertion about ,*@,’ for
u € Gy, follows because (by Theorem 1) jzo - - - o ,_,x carries G, isomorphically
onto G. Fori > 0 and u = (sy, - - -, ) in GL(B) X gl(B)* = *GL(B), u ¢ Gy,
implies s, = --- = s = 0. Thus ,*¢," = 0 follows from Theorem 2 and more
precisely from the formula

uk¢(r) = (C(Oa O)so(ql); C(15 0)s1(q1) + C(la l)so(qZ)’
w20k, Psk-3(q5.0) -

Now let ¢, denote the realization of *G in GL(B**?), i.e., let ¢,(x) = [.*¢;'],
and let L(¢,) : L(*G) — gl(B**") denote the corresponding realization of the
Lie algebra Z(*G).

Theorem 4. The image of ¥£($,) consists of all matrices [A;7] with each
A e L(G) < gl(B) satisfying A =0 for i <j and A = C(i,j)A;_;* for
j < i. Such a matrix corresponds to an element of ¥ (K,) iff A, = 0. Such a
matrix corresponds to an element of £(G,) iff A, = 0 for all i > 0.

Proof. Let U and V be open neighborhoods of 0 and I, respectively, in
Z(G) and G such that the exponential map exp: U — V is a diffeomorphism.
Then *exp: *U = U X L(G)* — *V C *G is also a diffeomorphism for all %.
Viewing *G C *GL(B) = GL(B) X gl(B)* one has ¢;(A4,, - -+, Ay) = [4/7],
where 4,° = A;. Let f: U — GL(B) be given by f(r,) = exp (r,).

Simply because f is a differentiable map from an open set in a Banach space
to an open set in another, one readily checks that *f: *U = U X £(G)* —
*GL(B) = GL(B) X gl(B)* is given by

(9)

(10) fro, o5 re) = Fo(r), fi(ros 1)y - o5 fulrs -+ <5 10))

where f, = f and f;(ry, - - -, 1) = D(fs_)(rg, + -+, 1)y, - - -, 1) for all i > 0.
Now the range of *f is actually *V. The Lie algebra determinations are made
by passing curves v = (y,, - - -, v;) through the origin in *U and differentiating
dro*fov at O € R. Observe that, for alli = O, - - -, k, one has

amn D(f:)(O, - - -, 0)(Ay, - -+, 4) = A4, .

(Actually, as one checks inductively f,(O, ---,0,4,;,0, ---,0) = Oforj<i
while £,(O, - .-, 0, A;) = A;. In particular, D, ,(f,)(O, ---,0)A4; = Oforj<i
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While D’L+1(fl)(07 ) O)Az = Ai- Thus D(fl)(o, tt Yy O)(AO’ M} Az) =
Y;D; (f)(O, - --,0)A; = A;.) On the other hand, since ¢, is the restriction
of a continuous linear map gl(B)**' — gl(B**'), one always has

(12) D(g)( Xy, -+, X)) = @i

So, for any curve v through the origin in *U, the chain rule and (10), (11),
and (12) yield

(13) (i 0 *fov)'(0) = ¢i(/(0), - - -, v'(O)) .

The matrix indicated in (13) is clearly of the required general type, and any
such matrix [4;’] can be obtained by letting v = (y,, - - -, v;) where the curves
y; with values in #(G) are chosen such that v;’(O) = A,° holds for each i. By
Theorem 3, ¢, o “f oy takes values strictly in ¢,(*V N G;) provided y; = O for
all i > 0, while ¢ o *f o v takes values strictly in ¢,(*V N K) provided v, = O.
This accounts for the splitting of the images of #(G;) and #(K,).

The task remains to fully describe the entries x*¢," (i > 0) which can arise
in ¢¢(x) for x e K. Letting exp,: gl(B**') — GL(B**') denote the ordinary
exponential map, one knows that its restriction to #(¢;)(£(K;)) is just the
exponential map over ¢,(K;). We shall establish that this restriction is actually
a diffeomorphism. This completes the task for, in view of Theorem 4, the re-
striction of exp, to L(¢,)(F(K})) is quite easy to compute and yields a sharp
description of the matrices ,*¢,".

Theorem S. Treat ¥*gl(B) = gl(B)**' as the tangent space at the identity in
EGL(B) = GL(B) X gl(B)*via(A,, - -+, A) - U{,0, ---,; Ay, - -+, A,). Then
the exponential map over *GL(B) is just *exp: *gl(B) — *GL(B), where
exp: gl(B) — GL(B) is the usual exponential map.

Proof. The proof reduces inductively to the following result.

Lemma. Let V be any Banach space. Then ‘exp: 'gl(V) = gl(V)* —
\GL(V) = GL(V) x gl(V) is the exponential map over 'GL(V). Thus, for any
Lie subgroup H in GL(V), "(exp|gu) : ¥ (H) — 'H is the exponential map
over ‘H, where '#(H) is identified with its image in 'gl(V) = gl(V)*.

Indeed, the lemma handles the case k = 1 in the theorem. Moreover, as-
suming the conclusion of the theorem holds for k arbitrary, the inductive step
to k + 1 is accomplished by letting H = *GL(B) C gl(V) in the lemma with
V - Bk+1.

Proof of lemma. Only the first assertion requires proof. For convenience,
transfer 'exp: 'gl(V) = gl(V)? - 'GL(V) = GL(V) X gl(V) to the matrix map
'Exp: L(¢)(Z(GL(V))) — ¢,('GL(V)) defined so as to satisfy ¢, o'exp =
'Exp o #(¢,). Thus 'Exp is given by

(14) o (ly xl)= [g(?ei);; X)(Y) ex;? (X)]'
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To see that 'Exp is the required exponential map, i.e., that the restriction of
the standard exponential map gi(V?) — GL(V?), it suffices to check that each

curve v(¢f) = 'Exp ([g t?(]) satisfies the differential equation

(15) V(1) = v(8)0v'(O) .

Now the curve ¢ — exp (1X) satisfies the differential equation

(16) (d/d?) (exp (1X)) = exp (1X) o (d/dD) |,_, (exp (X)) = exp (tX) o X .
Also by the chain rule one has

(17)  (d/an(D (exp) (1X)(1Y)) = D* (exp) (tX)(1Y, X) + D (exp) (tX)(Y) .
Thus

exp (tX)o X 0 ] .

18) v = [D2 (exp) (tX)(tY, X) + D (exp) (tX)(Y) exp (tX)o X

In particular, one has

o=

and therefore

20) v (0) = [ exp (tX) o X 0 ] |

D (exp) @X)(@Y)oX + exp(tX)oY exp(tX)oX
Thus comparing (15), (18) and (20) we must show

D (exp) (1X)(tY, X) + D (exp (tX)(Y)

(21
= D (exp) (X)(tY)o X + exp(tX)oY .

To verify (21) we resort to the classical formula
(22) D (exp) (A)(B) = exp(A)o ¥z (—ad (4)(B)/( + D! .

(Formula (22) is well known in the finite-dimensional case; see [12, p. 95]
for instance. It is probably also standard in the general Banach setting; see
[10, p. 89] for an indirect reference. At any rate, the formula can be checked
directly.) By (22) one has

D (exp) (tX)(Y) = exp (tX) o (Y + 25 ((—ad X))(Y)) /(G + D)

23
@9 = exp (tX)o Y + exp (1X) o (X2 ((—ad ¢X))(Y)) /(G + DY) .
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Also by (22) one has

D (exp) (X)(tY) o X

@4 — (exp (1X) & (3 o0 (—ad (XY G + DD)o X .

Comparing (21), (23) and (24) we must show

D* (exp) ((X)(tY, X)
(25)
_ . (—ad tX))/(1Y) 5 _ (—ad (1X))/(Y)
= exp (1X) fgo( G+ 1! X Jé G+ D! )

Let p = (o5, p) : gl(V) — Endy, (gl(V))* be given by p,(4) = ., 4 )¢t = left-
multiplication by exp(4) and p,(4) = X5, (—ad(A))/(G + 1)!. Let
S: End z(gl(V))* — End z(gl(V)) be given by S(L,,L,) = L,oL,. Then from
(22) it follows that

26) D (exp) = Sop .
Thus by the chain rule and bilinearity of S one has

D? (exp) (4)(B, C) = (D(p)(A)(B))(0(A)C))
+ (0:(AN(D(p)(A)(B))(C)) .

27

Now D(0)(A)(B) = p exp) t)mtt> While term-by-term differentiation and the
chain rule yield

Do) A)B) = ¥ =D (ad (B)o (ad (4)) + - - - + (ad (4))/ 0 2d (B)) ,
= (j+ D!

there being j terms in each internal sum on the right corresponding to the
various possible placements of ad (B). So (27) can be rewritten

D* (exp) (A)(B, C)

= D (exp) ()(B)° T, (—)i(ad (4)(C)

G+ D!

+ (ad (A))j“oad(B))(C))) .

(28)

In particular, one has
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D? (exp) t(X)(tY, X) = D*(exp) (tX)(X, tY)
_ (—ad (1X))’(tY)
(29) = exp (tX)"E, G+ D o X

(—1)7 )
+ [X’Jé b @) (zY)]

(=1 o
——~ _(ad(X)o(ad tX))7" 4+ ...
iz (j+ D!

+ (ad (£X))’ "o ad (X))(#Y)) ,

where [ , ] denotes the usual Lie bracket. But (29) is just (25) as required since

[X, s (=D 4 (tX))J'(tY)] = [X, z =D g (tX))f“(tY)]

G+ D! j!

= ad () (X2 (— D/ )(ad (X)) (Y))
= 550 @woym = - 1 @@

j=1 7! =1

= = 5 (S @@orm + 5 S0 @d @0y

izt (j+ D! + 1
= — (L= (=1D7/G + DY (ad X))/ (Y)

(=1’ o UL
+g}lm(ad(){) (ad (2X))7 7 +

+ (ad (¢X))7~ o ad (X))(1Y)) .

So the proof of the lemma is complete.

Theorem 6. Again let G be an arbitrary Lie subgroup of GL(B), let exp
denote the restriction of the usual exponential map to £ (G) C gl(B), and let
expy : gl(B¥*") — GL(B**") denote the usual exponential map. Then the re-
striction of expy, to L(¢x)(ZL(Ky)) is a diffeomorphism onto ¢,(Ky).

Proof. Choose open sets U and V' about the origin in #(G) and the identity
I in G, respectively, such that the restriction of exp to U is a diffeomorphism
onto V. Then *exp is a diffecomorphism of *U = U X #£(G)* onto *V. But
K. C ¥V, whence L (K;) C *U because L(¢:)(Z(Ki) C L(6)(*U). Thus
kexp restricts to a diffeomorphism from #(K,) onto K. Now by Theorem 5
and the naturality of exponential maps one knows ¢ o “exp = exp; o Z(¢).
Thus the proof is complete.

Example 1. Let G be an open subgroup of GL(B). Using the functions
fos + + -, fr introduced in the proof of Theorem 4, one can sharpen the results
of Theorem 2 directly to conclude that ¢,(*G) consist of all matrices [H;?] such
that H' ¢ G, H,' ¢ #(G) fori > 0, H;7 = 0 for i < j, and H;” = C(i, )H;_,°
for j < i. Still, G serves to illustrate the rest of the machinery developed. Let
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g 0 0
k = 2 for instance. By Theorem 3 one knows ¢,(G,) {[0 g 0] ge G}.

From Theorem 4 it follows Z(¢,)(Z(K,)) = {[E 0 Ol E,Fe $(G)}. B
F 2E O

Theorem 6, ¢,(K,) = exp, (Z(¢.)(Z(K,))). Now

0 0 0 0 1 00
epo[E 0 0]=ZL[E 010
F 26 of =1'|r 28 0 0 0 I
0 0 0 0 0 0
+lE o 0]+[0 0 0]
|F 2E 0 E: 0

[T 0 0
= E I 0},

F + E? 2E I

0O 0 O 0 0O
since j > 3 implies |[E 0 O =10 0 O0f. Thus
F 2E 0 0 0 O

1 0 O
&,(K,) = {[ E I O|:E,Fe ,SF(G)} .
F+ E 2FE 1

By Theorem 1,

g 0 0
¢2(2G) = {[ Eog g 0] :E,Fe,?(G),geG} .
(F+ E)og 2Eog g

Example 2. If G is not an open subgroup of GL(B), the subdiagonals may
contain entries in neither G nor Z(G).

Let G be the group of proper orthogonal transformations in the plane.
(G =0"(2) = S0(2) = T' = §*' = - ...) Graphically, one can interpret G as
the unit circle and 'G = T(G) as the family of all tangent lines at points on
the wunit circle. Now #(G) consists of all skew-symmetric matrices

A= [O —8] where a € R. Of course

a
0= {8 o=l n@lscio).
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Since L(g)(Z(K)) = { [?4 8] 1A e 20 } ’

6(K) = exp, (L@)(ZK,)) = {[f (1)] ‘A $(G)} .

Thus ¢,('G) = ¢,(K)$,(G,) = {[ jB g] :Ae Z(G),Be G}. Treat the points

in the plane (i.e., the complex numbers) as all 2 X 2 real matrices of the form

y
. [cos (@ —sin (0)
~ |sin (6) cos (6)
origin parallel to the tangent line at B, and hence the subdiagonal term can
be any complex number.

[x _i ] (corresponding to the number x + iy). Then, for fixed

] ¢G, {AB: A ¢ #(G)} is just the line through the
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