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HIGHER ORDER ANALOGUES OF CLASSICAL GROUPS

R. H. BOWMAN & R. G. POND

1. Introduction

In [2] and [3] one of the present writers introduced a notion of canonical
tangential resolution (kM) (k = 0 ,1 , 2, •) for an arbitrary real C°° finite-
dimensional manifold M. Subsequently, various aspects of the higher-order
terms of such a sequence have been investigated (see [4], [5], and [6]). While
the local origins of the theory are to be found in the formalism of extensor
analysis (see [7] as a general reference), the categorical context is co-equaliza-
tion in the general theory of cotriples, the basic cotriple being the zero-section
and the tangent functor in the category of C°° manifolds (see [9]).

The present paper concerns the resolution (kG) of a Lie group G and the
resolution (kφ) of a differentiate action φ of G on a manifold. The principal
results are the theorems in § 2 establishing matrix realizations for each kG and
its associated Lie algebra j£?(*G) and interpreting the relevant exponential map
in the case where G is a Lie subgroup of some general linear group. The in-
formation developed here yields the foundation for a general theory of differ-
entiable fiber bundle resolution and its interpretation, a systematic treatment
of which will be given in later papers. The remainder of the introduction ex-
plains the notational conventions and special identifications used in the sequel.
All manifolds are modeled on real Banach spaces and are at least of class C°°.
The notation is intended to conform as closely as possible with that currently
employed in such a context (see [1], [8], and [11]).

Let M be a manifold modeled on the Banach space B. An element of the
tangent bundle T(M) will be viewed as an equivalence class [θ, b]x, where
b e B, x g Aί, and θ is a local coordinate map about x. Thus, if φ: M —> N is
a differentiate map, its associated tangent map T(φ): T(M) —» T(N) is described
locally by

( 1) T(φ)([θ, b]x) = [ψ, D(ψoφoθ-ι){ff(x))b\v ,

where y = φ(x), ψ is a local coordinate map about y, andD(ψoφoθ~ ι){θ(x))b
is the total differential of ψoφoθ~ι at the point θ(x) evaluated at the vector b.
When V is an open set in a Banach space C, T(V) will be viewed as the direct
product V X C with (v c) denoting a tangent vector c e C located at the point
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vzV. In particular, given θ as above, T(θ)([θ, b]x) = {θ(x)\ b), i.e., T{θ) is
the usual lift of θ to a local coordinate map on T(M). If M is a direct product
Kx L, T(M) will be treated as T(K) X T(L). In particular, if 0 : M -> N is
a differentiate map, let w ^ : L —> TV and φv: K -^ N be given by

0(w, w) = 0B(M) for each (w, i;) β M .

In this case formula (1) becomes

2 Γ(0)([r, fl]tt, [η, d]v) = Πφv)([τ, a]J + T(uφ)([η, d]v)

[

where [τ, a]u € Γ(X) and [57, d\ e T(L).
Following [2], the tangential resolution (feM) for a manifold M can be specified

inductively. Let °M = M, XM = T(M), 0/ = the identity map ιM -+ Γ(°M).
For k > 0, suppose fcM and fe+1M have been defined together with an embedding

kI: k+1M -> T(kM). Let πk: Γ(fcM) -> kM and τrfe+1: Γ(*+1M) -^ fe+1M denote
the usual projections and let kπ = πk o kI. Then fe+2M is defined as the set of
all points in T(k+1M) where kI o π f c + 1 and Γ(fcπ) agree and Λ + 1 /: fc+2M -^ T(k + ιM)
denotes the inclusion map. With tangential resolutions of manifolds thus
defined, let φ: M —> N be any differentiable map. The tangential resolution
(kφ) for φ can be specified as follows: let Qφ = φ and, assuming kφ: kM —> fcN
has been defined, let φk+1: k+ιM -> fe+W be ^Z"1 o T(*φ) o fc/ where fc/ and fc/
are the embeddings of k+ιM and fc + W in T(kM) and Γ(W), respectively. It
is readily seen that the resolution process for manifolds is functorial at each
level k.

When V is an open set in a Banach space C, k + ιV will be treated as the direct
product V χCk+ι with the embedding map k+ιV -+ T(kV) = (V X Ck) X Ck+1

given by sending (v0, , vk+ι) to (y0, , vk v19 , vΛ + 1). Local coordinati-
zation of the point-set k+ιM is achieved through functions of the form k + ιθ
where θ is a local coordinate map for the manifold M. If M is a direct product
Kx L, k+ιM will be treated as k+ιK x k+1L. In particular, if φ: M -• N is
any differentiable map, * + 1 0: fc + 1K X fc+1L -> k+1N is given locally by

( 3 ) k + 1φ(x,z) = kJ-\[kψ,D(kψoKφvo*τ

w h e r e s = ( j 0 , •• -, J f c ) , / = (s19 •• , ^ + 1 ) , x = k + ι τ ~ \ s 0 , - ",sk+1),u = ^ r " 1 ^ ) ,

<? = teo> > ̂ t )> r = tei» > ^*+i)» ^ = fc+127-1(<?0? > ^Λ+i) , v = ^ " ' t o ) '
and y = kφ(x,z).

Before passing to Lie considerations, an alternate description of the sequence
(kM) can be given which suggests the rationale for its consideration. Let
T\M) = M, and for each integer k > 0 let πk = T\πk): Tk+\M) -> Tk(M)
denote (inductively) the tangent bundle over Tk(M). For each k>\ and each
m from 1 through k, let Tm(πk_m): Tk + \M) -+ Tk(M) denote (inductively) the
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tangent map associated with Tm~1(πk_m). For each k > 0 the various Tm(πk_m)
(0 < m < k) are all distinct, and k + ιM can be viewed as precisely that subset
of Tk+ί(M) on which all the Tm(πk_m) coincide.

Now suppose σ = σ(0): / —> M is any differentiate curve in M. Let

σu+i). / _^ τk+1(M) denote (inductively) the standard lift of σ(k) over πk, k>0.
One readily checks that σ(k+ι) actually has its range in the (losed embedded)
submanifold k + ιM. Thus higher order ordinary differential equations over M
are properly formulated as given data relative to the kM rather than the ambient
Tk(M). Recognition of this phenomenon is tacit in the standard treatment of
sprays, for instance, at the second tangential level (see [11] or [13]). A similar
situation occurs in other higher order differential contexts as well.

Let G be a (Banach modeled) Lie group with multiplication μ and inversion
c. With the conventions on products in mind, one checks that each kG is again
a Lie group with multiplication kμ and inversion kc. Moreover all the global
maps involved in the construction of kG as a manifold are Lie group homo-
morphisms. If φ: G x N —> TV is a differentiate (left) action of G on N, then
each kφ: kG x kN —»kN is a differentiate action of kG on kN, and the sequence
(kφ) is called the tangential resolution of φ. In particular, if N is a Banach
space and φ preserves the linear structure on N, then kφ preserves the linear
structure on kN (viewed as Nk+ι).

We close this introductory section with a decomposition theorem for kG.
Let Ko be the trivial subgroup of G and let Go = G. For k > 1 let Kk =
ker (oτr o . o k_λπ) and let Gk be the subgroup of kG consisting of those x for
which k_J(x) is the zero tangent vector at fc_i7r(;c).

Theorem 1. For each k > 0 the restriction of kπ to Gk+ι is a Lie isomor-
phism onto Gk and kπ(Kk+ι) = Kk. In particular, each kG is the internal
semίdίrect product KkGk.

Proof. Letting Ok denote the restriction of the zero section of πk: T(kG)-+ kG
to Gfc, one checks (inductively) that kI~ι o Ok is the inverse of the restriction of

kπ to Gk+ι. Clearly kπ(Kk+ι) (Z Kk. Thus (inductively again) each Kk Π Gk is
trivial. To see that KkGk is all of kG for k > 1, let x € kG be arbitrary and
let g"1 = Qπo . . . o k_1π(x) e G. Letting y be the element of Gk for which

Oτro . . . o k_ιπ(y) = g~ι and letting μ denote multiplication in G, one has x =
kμ(k(μg)(x),y) with k(μg)(x) necessarily in Kk.

Corollary. Let ^(kG) denote the Lie algebra of kG. Then ^(kG) is the
internal semidίrect product £f(Kk) ® £P(Gk) of the ideal 3?(Kk) with the sub-
algebra &(Gk).

2. A matrix realization of kG

Let B be a Banach space, GL(B) the Lie group of all continuous automor-
phisms of B, and gl(B) the Banach algebra (and Lie algebra) of all continuous
linear endomorphisms of B. For k > 0 each S e gl(Bk+1) will be treated as a
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(k + 1) X (k + 1) matrix [SJ] (0 < i, / < k) with lower index = row index.
(That is, given S, the various SiJ e gl(B) are obtained by requiring S(v) =
(ΣjSJiVj), , ΣJSΛVJ)) for all v = (v0, , vk) e Bk+1.) For the remainder
of the paper G will be a Lie subgroup of GL(B), and φ: G X B ^ B will
denote the usual left action of G on J5. Thus the map JC ι-> x

kφ amounts to a
realization of kG as a Lie subgroup of GL(Bk + [). Our purpose in this section
is to characterize the matrices [x

kφij] which arise in this realization. In the
process we obtain a characterization of the matrices which arise in the corre-
sponding realization of J?(kG) in gl(Bk+ι) as well as an interpretation of
fcexp: k<£(G) —> kG as an ordinary exponential map, where exp: Jδ?(G) —> G
is the restriction to Jδf (G) C #/(#) of the usual exponential map.

Theorem 2. Lei C(ί, /) = i! / [(i - / ) ! / ! ] wήen 0<j<i<k. Then X

kφj
= C(i, j)x%_j° when 0 < j < i < k, and x%

j == 0 w/ien 0<i<j<k.
Proof. It is sufficient to consider the case G = GL(B). We argue by in-

duction on k, the case k = 0 being trivial. With K = G, L = N = B,τ = the
standard injection G —> #/(£), ψ = η — the identity on B, and the convention
that Λ /(6 0 , , 6 fc+1) = (&0, , fefc &i, , 6 fc+1) and in mind, formula (3)
amounts to

( 4 ) *+ty(*, z) - kJΛkφ(u, v) D(V, o kτ-ι)(s)t + D(ttV)te)0 •

Now D(u

kφ)(q)r = u

kφ(r), since u

kφ is a continuous linear map. Thus, by the
inductive hypothesis for k, one has

D(u

kφ)(q)r = (C(0,0)s0foi

Define a continuous linear map F:gl(B)k+1 —> 5 f e + 1 by

By the induction assumption, the restriction of F to G X g/(#)fc is precisely
kφυ o kτ~ι. Thus one has

( 6 ) D(*0 β o*τ

Since C(/,/) + C(/,/ + 1) = C(i + 1,/ + 1), formulas (5) and (6) yield

( V ( « , V) D?φ, o * r - 0 ( i ) / + D{%*φ)(q)r) = ( F ( ί β , . • • , « * ) ; C ( l , 0)Sl(q0)

+ C{\, l)so(qi), • • ,Σ]C{k

Apply kJ
-1 to both sides of (7) to obtain (from (4))
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g *+ιφ(x, z) = (C(0, 0)s0(q0), C(hO)s1(q0) + C(l, lKfe ) ,

...9ΣjC(k+ I,j)sk+I_j(qj)),

which completes the induction.
Theorem 3. Let k > 1. If u e Gk and 0 < i < k, then u

kφ? = 0. More-
over, for each s0 e G there is exactly one u e Gk with u

kφ0° = s0. For any
u β Kk, u

kφ0° is the identity element I e G.
Proof. For any w e fcG, w

fc0o° = oττ o . . o k_λπ(u). So the assertion for u ζ. Ku

is immediate from the definition of Kk, while the assertion about u

kφ0° for
u e Gk follows because (by Theorem 1) oπ o o k_1π carries Gk isomorphically
onto G. For i > 0 and u = (s0, , sk) in GL(B) x gl(B)k = kGL(B), u <= Gk

implies sx— = sk = 0. Thus w

fc^° = 0 follows from Theorem 2 and more
precisely from the formula

u*φ(r) = (C(0, 0>0fe), C(l, OKίft) + C(l, l)sQ(q2),

Now let φk denote the realization of kG in GL(Bk+ι), i.e., let 0fcQc) = t^^^ 7 ] ,
and let ^(φk): ^f(fcG) -> gl(Bk+ι) denote the corresponding realization of the
Lie algebra ££{kG).

Theorem 4. The image of ^(φk) consists of all matrices [A^] with each
AJ e &iβ) £ gl(β) satisfying AJ = 0 for i < j and AJ = C(i,/)i4i-/ /or
j < i. Such a matrix corresponds to an element of &(Kk) iff Ao° = 0. Such a
matrix corresponds to an element of J?(Gk) iff A? = 0 for all / > 0.

Proof. Let U and V be open neighborhoods of 0 and /, respectively, in
j£?(G) and G such that the exponential map exp: U —> V is a diffeomorphism.
Then fcexp: kU = U X &(G)k -^ kV e fcG is also a diffeomorphism for all &.
Viewing *G c fcGL(β) = GL(B) x g/(J5)fc one has φk(AQ, ...,Ak) = [At']9

where Ai

Q = Ai.Letf:U-+ GL(B) be given by /(r0) = exp (r0).
Simply because / is a differentiable map from an open set in a Banach space

to an open set in another, one readily checks that kf: kU = U X £f(G)k —>
= GL(B) x ^/(5)fc is given by

(10) kf(rQ, , rk) = (/0(r0), /^ΓQ, r j , , / t(r0, , r t)) ,

where /0 = / and /€(r0, , r<) = D{ji_^{r^ , r ^ ! ) ^ , , rf) for all / > 0.
Now the range of kf is actually kV. The Lie algebra determinations are made
by passing curves v — (v0, , vk) through the origin in kU and differentiating
φk°kf°v at O e R. Observe that, for all / = O, , k, one has

(11) ΰ(/i)(O, --.,0)040, ...9At)=At .

(Actually, as one checks inductively ^(O, , O, Aj9 O, , O) = O for j < i
while ft(O9 ...9O9Ai) = At.ίn particular, Z)J+1(/,)(O, . . . , 0 ) ^ = 0 for / < i
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while Di+1(ft)(Q, -", O)Λί = A,. Thus D(/ f )(O, , O)(A09 , At) =

ΣjDj+ι(fi)(O, , O)/4^ = /4ί.) On the other hand, since φk is the restriction
of a continuous linear map gl(B)k+ι —> gl(Bk+ι), one always has

(12) 0 ( W ( * o , ••-,**) = 0*

So, for any curve v through the origin in kU, the chain rule and (10), (11),
and (12) yield

(13) (φk o */ o p)'(θ) = & G V ( O ) , , vk\o)).

The matrix indicated in (13) is clearly of the required general type, and any
such matrix [At

j] can be obtained by letting v = (vQ, , vk) where the curves
vι with values in J^(G) are chosen such that v/(O) = A* holds for each /. By
Theorem 3, φk°

kfov takes values strictly in φk(
kV Π Gk) provided vt = 0 for

all / > 0, while φk o
 kf o v takes values strictly in φk(

kV Π i^fc) provided v0 = 0.
This accounts for the splitting of the images of J?(Gk) and ^(Kk).

The task remains to fully describe the entries xkφι (ϊ > 0) which can arise
in φ<t(x) for x e Kk. Letting exp fc: gl(Bk+1) -+ GL(Bk+ι) denote the ordinary
exponential map, one knows that its restriction to J£(φk)(J£(Kk)) is just the
exponential map over φk(Kk). We shall establish that this restriction is actually
a difϊeomorphism. This completes the task for, in view of Theorem 4, the re-
striction of expfc to £g(φk)(£?(Kk)) is quite easy to compute and yields a sharp
description of the matrices x

kφi°.

Theorem 5. Treat kgl(B) = gl(B)k+ι as the tangent space at the identity in
kGL(B) = GL{B) x gl(B)k via (Ao, . . ., Ak) -+ (/, O, . ., Ao, , Ak). Then
the exponential map over kGL(B) is just fcexp: kgl(B) —> kGL(B), where
exp: gl(B) —» GL(B) is the usual exponential map.

Proof. The proof reduces inductively to the following result.
Lemma. Let V be any Banach space. Then !exp: ιgl(V) = gl(V)2 —>

ιGL{V) = GL(V) X gl(V) is the exponential map over ιGL(V). Thus, for any
Lie subgroup H in GL(V), *(exp | ^ ( i y ) ) : ιS£(R) —* ιH is the exponential map
over ιH, where ι££(H) is identified with its image in ιgl(V) — gl(V)2.

Indeed, the lemma handles the case k = 1 in the theorem. Moreover, as-
suming the conclusion of the theorem holds for k arbitrary, the inductive step
to k + 1 is accomplished by letting H = kGL(B) Cl gl{V) in the lemma with
V = Bk+1.

Proof of lemma. Only the first assertion requires proof. For convenience,
transfer ! exp: ιgl(V) = gl(V)2 -> ιGL(V) = GL(V) x gl{V) to the matrix map
Έ x p : &(φd(&QGL(y))) -> φ.QGLiV)) defined so as to satisfy φλ o

 !exp =
Έ x p o ̂ (φ^. Thus Έxp is given by

(14) Έ x p ( F 0-|\ = Γexp(Z) 0 Ί
VLY X\) ID (exp) (X)(Y) exp(Z)J
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To see that Έxp is the required exponential map, i.e., that the restriction of
the standard exponential map gl(V2) —> GL(V2), it suffices to check that each

curve v(t) = Έxp l\tγ tχ\) satisfies the differential equation

(15) i/(0 = p(0oi/(O) .

Now the curve 11-> exp (tX) satisfies the differential equation

(16) (d/dt) (exp (tX)) = exp (tX) o (d/dt) | ί = 0 (exp (tX)) = exp (tX) o Z .

Also by the chain rule one has

(17) (d/dt)(D (exp) (tX)(tY)) = Z)2 (exp) (tX){fY9 X) + D (exp) (ίX)(Y) .

Thus

(18) .'« = [ expOAOo* 0 "I
L£»2 (exp) (tX)(tY, X) + D (exp) (tX)(Y) exp(tX)oXi

In particular, one has

(19) »'(O)

and therefore

(20) p ( 0 c / ( O ) = f expdΛQoZ 0 1
ID (exp) (ίZ)(ίy) o X + exp (/Z) o Y exp (ίZ) o ZJ
f
ID (exp) (ίZ)(ίy) o X + exp (/Z) o Y exp

Thus comparing (15), (18) and (20) we must show

(exp) (ίX)(tY, X) + D (exp

= D (exp) (ί^)(ίY) o X + exp (ίZ) o Y .

To verify (21) we resort to the classical formula

(22) D (exp) (A)(B) = exp (A) o Σ , >0 ((-ad (A)y(B))/ti + D !

(Formula (22) is well known in the finite-dimensional case; see [12, p. 95]
for instance. It is probably also standard in the general Banach setting; see
[10, p. 89] for an indirect reference. At any rate, the formula can be checked
directly.) By (22) one has

D (exp) (tX)(Y) = exp (tX) o (Y + Σ ^ ((-ad (tX)y(Y))/(j + 1)!))

= exp (tX) o Y + exp (tX) o ( £ ^ ((-ad (tX)y(Y))/(j + 1)!) .
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Also by (22) one has

D(exp)(tX)(tY)oX

= (exp (ίX) o (ΣJ>0 ((-ad (tX)y(tY))/(j + 1)!))

Comparing (21), (23) and (24) we must show

X- y (-ad(rZ)V(Y)\
k ϋ + D ! / '

Let p = (p19 p2): gl(V) -> End* (g/(F))2 be given by ^ . U ) = exp{A)μ = left-
multiplication by exp 04) and p2(A) = Σj>o( — ad(^4))J70* + 1)! . Let
5 : End R(gl(V))2 -> EndΛ(g/(F)) be given by S(L19L2) = L l O L 2 . Then from
(22) it follows that

(26) D (exp) = 5 o r

Thus by the chain rule and bilinearity of S one has

D2 (exp) G4)(B, C) = (D(Pι)(A)(B))(p2(A)(Q)

+ (p2(A))((D(p2)(A)(B))(C)) .

Now D(p^(A){B) = D(exp)(AnB)μ, while term-by-term differentiation and the
chain rule yield

D(p2)(A)(B) = Σ , ( ~ 1

1

) ' (ad (B) o (ad OOV"1 + + (adOO)'" 1 o ad(B)) ,
j>ι 0 + 1)!

there being / terms in each internal sum on the right corresponding to the
various possible placements of ad(β). So (27) can be rewritten

(28) _ j

+ exp (A) o ( Σ } l)* (ad (B) o (ad (A)y~ι +
\ ( + 1)!

In particular, one has



ANALOGUES OF CLASSICAL GROUPS 519

D* (exp) (tX)(tY, X) = D* (exp) (tX)(X, tY)

, Σ ,.

(j + 1)!

(/+ D!

+ Σ . f " 1 ? ' (ad (*) ° (ad (dQ)'-1 +
j>ι 0 + 1)!

where [ , ] denotes the usual Lie bracket. But (29) is just (25) as required since

> Σ }
0
} (ad(ao)( ) l f , Σ
0 + 1 ) ! J L j>i /!

= ad (tX) ( Σ ^ ( ( - iy+1j!)(ad (tfOV^

= Σ ( ~ y + (ad(^))^(y) = - Σ/! Σ

Σ - ! ! ( a d ( 0 ) ( ) + Σ } ] [
J^ 0 + 1)! J*I 0 + 1)!

+ Σ }~1}' (ad (X) o (ad (tX)y-' +

+ (ad ( ίX)) ' -^ ad (*))(*Y)) .

So the proof of the lemma is complete.
Theorem 6. Again let G be an arbitrary Lie subgroup of GL(B), let exp

denote the restriction of the usual exponential map to ^(G) CI gl(B), and let
expfc: gl(Bk+1) —> GL(Bk+1) denote the usual exponential map. Then the re-
striction of expfe to <g(φk)(<g(Kk)) is a diβeomorphism onto φk(Kk).

Proof. Choose open sets U and V about the origin in «£?(G) and the identity
/ in G, respectively, such that the restriction of exp to U is a diffeomorphism
onto V. Then fcexp is a diffeomorphism of kU = U X J*?(G)fc onto * F . But
Kk^

kV, whence J&?(KΛ) c *t/ because Sf(φk)(Sf(Kk)) c ^(φk)(kU). Thus
fcexp restricts to a diffeomorphism from J?(Kk) onto Xfc. Now by Theorem 5
and the naturality of exponential maps one knows 0feo

fcexp = expfc ojg{φk).
Thus the proof is complete.

Example 1. Let G be an open subgroup of GL(B). Using the functions
/0, , fk introduced in the proof of Theorem 4, one can sharpen the results
of Theorem 2 directly to conclude that φk(

kG) consist of all matrices [Ht

j] such
that #o° € G, Ht

0 e Sf(G) for / > 0, H^ = 0 for / < /, and HJ = C(i, j)Hi_j°
for j < i. Still, G serves to illustrate the rest of the machinery developed. Let
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k = 2 for instance. By Theorem 3 one knows φ2(G2) =

fro o a
F r o m T h e o r e m 4 it fo l lows i f (02)(j&?(K2)) = \ \ E 0 0

{[F IE 0
Theorem 6, ̂ (/Q = exp2 {^(φ2){^{K2))). Now

0

0

g 0 0] ϊ
0 g 0\:geG\
0 0 g\ J

exp2 E

\F IE 0

0

0

0

0

Lo
0"

0

0

0
/

0

0"
0

/

since /' > 3 i:
Γ0 0 01^ Γ0 0 0 ]

implies \E 0 0 = 0 0 0 .

[F 2E oj LO o oj
Thus

By Theorem 1,

1 1
g 0 \:E,FεJ?(G),geG

j J
Example 2. If G is not an open subgroup of GL(B), the subdiagonals may

contain entries in neither G nor <£(G).
Let G be the group of proper orthogonal transformations in the plane.

(G = 0+(2) = 50(2) = Tι = Sι = .) Graphically, one can interpret G as
the unit circle and jG = T(G) as the family of all tangent lines at points on
the unit circle. Now J2?(G) consists of all skew-symmetric matrices

Γ0 -ά\
- [ a Oj where a e R. Of course

o ββJ Lsin(^) cos(0)
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Since . ^ X J & W ) = | [ ° °] : A e JS?(G)},

0 ^ ) = exPl

Thus φ^G) = φάKJφάGJ = [ \%B β]'Aε &{G), BeG\. Treat the points

in the plane (i.e., the complex numbers) as all 2 x 2 real matrices of the form

—y\ ( c o r r e s p O n c i i n g to the number x + iy). Then, for fixed

B = β ? s ^ " ™ g j ] eG,{AB:Ae J?(G)} is just the line through the

origin parallel to the tangent line at B, and hence the subdiagonal term can

be any complex number.
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