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WINDING NUMBERS AND THE SOLVABILITY
CONDITION (Ψ)

FRANCOIS TREVES

Introduction

In [3] R. Moyer has proposed a new formulation of the solvability condi-
tions (P) and (Ψ) for pseudodifϊerential equations of principal type (see [4], [5]).
Moyer relates these conditions to an index or winding number whose meaning
is very clear and natural, when the principal symbol of the operator under
study has the property that the Poisson bracket {p, p] does not vanish at any
point where p itself does (p is the complex conjugate of p). In this case,
Property (Ψ) simply says that (l/ί){p, p} should be > 0 at any such point.

In the present paper we show that Property (Ψ) for an arbitrary symbol p
without critical points is equivalent to the fact that p is the limit, in the local
C1 topology, of symbols having the above property1. Such a result points to a
new definition of (Ψ). In our view the new definition has a two-fold advantage:
first, it shows that the principal symbols of the pseudodifϊerential equations of
principal type, whose solvability has been established so far (and which do not
yet include all those satisfying (Ψ)), are limits of symbols of the kind alluded
to above, and whose solvability has been well-understood (cf. [2]) secondly
and perhaps most importantly, it is totally independent of the concept of bi-
char act eristic, and thus lends itself perfectly to generalization to arbitrary
symbols with an arbitrary multiplicity of the characteristics or even degenerat-
ing on certain subsets. This of course leads to a new general conjecture on the
necessity of (Ψ), redefined as indicated, for local solvability of any linear dif-
ferential or pseudodifϊerential equation (see § 3).

1. Noninvolutive functions and their signatures

We shall first explain the notation used throughout the article. We shall deal
with an even-dimensional Euclidean space R2n = Cn, where the variable is
denoted by (x, y), x = (x19 , xn), y = (y19 , yn), or by z = x + J^Λy
= (zί9 ,z n ) . In application to partial differential equations, R2n serves as
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"local model" for the cotangent bundle T*M over a smooth (i.e., C00) manifold
M (of dimension n). The real inner product on R2n will be denoted by xx' +
yy' = Re zz!'. Since we have in mind the case of a cotangent bundle T*M, we
shall use the symplecίic form ω(z, z') = Im zz! = x'y — xy''• If / is a continu-
ously differentiable function, the Hamiltonian field of / is defined in the standard
fashion:

(i.i) Hf=£_dtJ__W_^ί

j = ι dy3 dXj dXj dyό

and if g is another C1 function, the Poisson bracket of / and g is given by

(1.2) {f,8}

In the applications to partial differential equations, one of the variables, either
x or y, is taken to be the "vertical" variable, which along the fibres, that is
to say in the cotangent spaces, is then usually denoted by ξ or p. Because of
the way we have chosen the sign conventions in what follows, the reader should
think of y as the vertical variable.

We are going to deal systematically with a bounded open subset Ω of R2n,
whose boundary dΩ is a C°° hypersurface, and with the space C\Ω) of the
complex-valued functions in Ω, which can be extended as C1 functions to R2n,
equipped with its standard topology, the topology of uniform convergence on
the closure Ω, of the functions and their gradients C\Ώ) is a complete normable
space.

Definition 1.1. We shall say that / e C\Ω) is noninvolutive if

(1.3) Vz € Ώ, f(z) = 0 => {/, /}(z) Φ 0 ,

and if, moreover, when n > 1, d(Re/), d(Im/) and the normal to dΩ are
linearly independent at every point of dΩ where / = 0. The set of noninvolutive
functions in C\Ώ) will be denoted by 0>(Ω) (or simply by 0> if there is no risk
of confusion).

Remark 1.1. Going to the theory of partial differential equations (and there-
fore replacing Ω by an open subset of a cotangent bundle T*M), we note that
principal symbols p(x, ξ) which are noninvolutive have been much studied,
locally and globally, by Hδrmander (in [2]) and Sjostrand (in [6]) and others.
Their microlocal prototype is the symbol of the so-called Mizohata operator:

(1.4) te1
dxx dx2

that is to say, the function

(1.5) P = £ Λ
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From the viewpoint of the properties of L, the "interesting" points in (x, ξ)-
space are the zeros of p, i.e., the characteristics of L, which lie away from
the zero section of the cotangent bundle, in other words, the zeros of p cor-
responding to large frequencies ξ. The latter requires ξ2 Φ 0, otherwise p = 0
implies ξ = 0, and because of the homogenity of p it suffices to look at the
two cases ξ2 = 1, ξ2 = — 1.

Noting that a Fourier transformation with respect to x2 transforms L into

(1.6) L = -A- + *,& ,
d

we see that the case ξ2 = 1 (or, if one prefers, ξ2 > 0) corresponds to solva-
bility points of L, whereas the other case ξ2 = — 1 corresponds to nonsolvability
points. But, on the other hand, the case ξ2 = — 1 corresponds to hypoelliptίcity
points of L, whereas the case ξ2 = 1 does not. On this subject the reader is
referred to [2] and, for a simple description, to [9, § 1].

Proposition 1.1. 77ze se* ^(12) w open in C\Ω), and is stable under
multiplication by any element of C\Ω) which does not vanish anywhere in Ω.

Proof. Evident.
Let / be an arbitrary element of &. The zero-set of /,

(1.7) Zf = {zeΩ;f(z) = 0},

is a C1 noninvolutive submanifold (regarded as a manifold with boundary), of
codimension two in Ω, which means that the restriction of the sympletic form
ω to every tangent space to Zf is nondegenerate. Note that this makes sense
even at the boundary of fl, for / can be extended as a C1 function /* in the
whole of R2n. The zero-set Z/# of /* in some open neighborhood of Ω is a C1

noninvolutive submanifold of codimension two.
Now, because of the compactness of Ω, Zf consists of a finite number of

connected components Zψ (j = 1, , r ) ; unless, of course, Zf = 0. Inci-
dentally, note that some or all of these components might intersect the boundary
3Ω. At any rate, on each of these components the sign of (1/*'){/,/} remains
constant. Let us write j—a + ib and observe that

(1.8) {/,/}= -2ί{a,b}.

We shall denote by m+(f) (resp. ra~(/)) the number of connected components

Zψ on which (l/2i){/,/} > 0 (resp. < 0 ) .
Definition 1.2. The pair of nonnegative integers (m+(f), m"(/)) will be

called the signature of / e 0> in Ω.
Example 1.2. Take n = 1, and Ω to be the unit disk in the plane. The

signature of the function f(z) = z in Ώ is (1, 0), and that of f(z) = z is (0, 1).
If a19 - , a8, β19 - , βt are r = s + t distinct points in Ω, then
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Kz) = (IJ(z - aή(Π(Z ~

has signature (s, t) in Ώ.
Remark 1.2. Let us return to the symbol (1.5) of the Mizohata operator.

We see that it reads zx = xx + OΊ when we take ξ2 = 1 (and write yx instead
of &), whereas it reads zλ = JCX — ί^ if we take f2 = — 1. In both cases the
zero-set is given by zλ = 0. Let us take Ω to be a bounded convex set in C2

whose closure is contained in the complement of the origin and which intersects
the plane zλ = 0. The signature of (1.5) will be (1, 0) if Ω intersects this plane
at points where y2 > 0, which are solvability, but nonhypoellipticity points for
(1.4). It will be (0, 1) if y2 < 0 on the intersection, which consists then of
hypoellipticity, but nonsolvability points for (1.4).

Proposition 1.2. // f,ge& and Zf Π Zg = 0, then

(1.10) (m+(fg), m-(fg)) = (m+(f) + m+(g), m~(f) + nr(g)) .

In particular, if g does not vanish anywhere in Ώ, the signature of fg in Ώ is
equal to that of f.

Proof. Evident.
We shall denote by 0>p>q(Ώ), or simply by &VΛ if there is no risk of confu-

sion, the subset of functions / e & whose signature in Ω is (p, q) (p, q are any
two nonnegative integers). Note that ^o'° consists of the C1 functions / in Ω
which do not vanish anywhere in the language of partial differential equations,
these would be the elliptic symbols.

In Ω is the union of r connected components Ωu\ j = 1, , r, and (pj, qj)
is the signature of / e βP in the closure of Ωu\ then the signature of / in the
closure of Ω is equal to (pλ + + pr, qλ + + qr). This is evident. It
is also evident that if Ωf is any open subset of Ω, in general the restriction of
/ e &>P Q(Ώ) to Ώ' will not belong to &>p>q(Ώ'), unless, of course, p = q = 0.
Let us introduce the following subsets of &:

Note that ^°'° = <^+ Π ̂ ~ . Complex conjugation / «-> / is an isomorphism
of &VΛ onto &*>*>.

It is evident that ^°»0 is an open subset of SP. It is less evident that this is
also true of every &v*q, but it follows from the next result:

Proposition 1.3. The signature is a locally constant function in &.
Proof. We suppose that / e έP(Ω) has been extended as a C1 function in

some open neighborhood of Ω, Ω', and that / e £P(Ω;), which is of course per-
mitted. We suppose also that ZfΦ0. We can construct a tubular neighborhood
U of Zf ( = Z / Π Ώ) in Ω; in the following manner. For each ze Zf let Pz

denote the two-dimensional (real) plane through z which is orthogonal, for the
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symplectic form ω, to the tangent plane to Zf at z. Since the restriction of ω
to this tangent plane is nondegenerate, the same is true of the restriction of ω
to Pz (which, in particular, can be canonically oriented). On every plane Pz

we use the Euclidean metric \z\2 induced by the surrounding space R2n, and
we call σz the open disk of radius r > 0, and cz the circumference of radius
r/2, both centered at z; cz will be oriented counterclockwise. We may choose
r so small as to achieve a number of properties: #1) as z ranges over Zf, the
union of the disks σz is equal to U, which is contained in Ωf #2) U is not
self-intersecting, which implies that each σz does not contain any other point
of Zf besides z\ #3) and most importantly, if g is any element of O(Ω) such
that

(1.11) • Vz e Ώ,\dKz) - dg(z)\ < *\df(z)\ ,

then, whatever z e Zf9 g can vanish at most once in σz.
Once all this is achieved we set

(1.12) lf(z) = Λ-ά λdf.
2iπ J cz f

It is checked at once that

(1.13) // = -?-{/, /}/!{/> f}\ on Zf.
i

Let Zψ (j = 1, , r) be the connected components of Zf, and let us select
arbitrarily a point z(j) of Zψ for each /. Then

(1.14) m+(/) = Σ sup (/,(*<'>), 0) , m-(/) = ± inf (0,
j=l j=l

It is clear that there is an open neighborhood of / in & in which any element
g has the following properties: #1) g does not vanish at any point of Ώ\U nor
at any point of cz whatever ze Zf; #2) g satisfies (1.11); #3) // = Ig through-
out Zf. These properties imply that g vanishes once and only once in the
interior of cz for every z e Zf. In other words, for each 7 = 1, ««, r, the union
of the disks σz, z £ Zψ, contains a unique connected component Zψ ot[Zg,
and the sign of —i{g, g} is equal to that of — /{/, /} on Zψ. Since g does not
vanish in the complement of U, this completes the proof of Proposition 1.3.

2. Functions without critical points, Condition (Ψ) and its invariance

In the present section we look at the smooth (i.e., C00 or only C1) complex-

valued functions / in Ω, which do not have critical points:

(2.1) whatever z in Ώ, f(z) = 0 => df(z) Φ 0 .



140 FRANCOIS TREVES

In the applications to the theory of partial differential equations this would
correspond to symbols of principal type, except that it is not their total dif-
ferential which is required not to vanish on the zero-set (i.e., the characteristic
set), but actually their differential with respect to the fibre variable ξ. In the
present notation, / = 0 should imply dyf Φ 0. Here, however, we shall dis-
regard this fact and restrict ourselves to Condition (2.1).

Let us first assume that / is real-valued (note that a real function / cannot
be noninvolutive in the sense of Definition 1.1 unless its zero-set is empty).
We shall refer to the integral curves of the Hamiltonian field Hf as the bi-
characteristics of /. In view of (2.1) they are "true" curves; through each
point of Ώ there passes one and only one of them. Since Hff = 0, the function
/ itself is constant along any one of its bicharacteristics. Consequently, if one
of these meets the zero-set Zf9 then it lies entirely in Zf. To such a bicharac-
teristic we shall refer as a null bicharacteristίc of / (in Ώ).

Let us return to complex-valued functions / satisfying (2.1). Let zo€ Zf. By
virtue of (2.1) there must be a complex number θ and an open neighborhood
UQ of z0 such that the following holds:

(2.2) d(Re (#/)) does not vanish at any point of Uo.

Remark 2.1. Suppose that / is noninvolutive (Definition 1.1). Then (2.1)
is automatically satisfied. As a matter of fact, we may choose the neighborhood
Uo of z0 e Zf so as to have (2.2) whatever θ e C, θ Φ 0. In this case, d(Re /)
and d(Im /) are linearly independent at, and therefore near, z0 they span the
plane P\Q through the origin (in the cotangent space to R2n at zQ) which is the
orthogonal of the tangent plane TZ(jZf to Zf at z0 in the sense of the symplectic
form ω.

The solvability theory for linear partial differential equations of principal
type has led to the introduction of the following property (see [4]3 [5]):

Definition 2.1. We say that / satisfies the condition (W)θ at z0 € Zf if there
is an open neighborhood Uo of zQ in Ω such that (2.2) and the following
property are true:

// the restriction of Im (θf) to any null bίchar act eristic Γ of Re

(2.3) contained in Uo, is < 0 at some point, then it is < 0 at every later

point of Γ.

The meaning of "later point" is defined by the natural orientation on the
bicharacteristics, which itself is defined by the Hamiltonian field.

In [4] it has been conjectured that the local solvability of a pseudodifferential
operator of principal type on a C°° manifold M is equivalent to the validity of
(Ψ)θ at every point of its characteristic set for some θ depending on the point.
This conjecture has been proved under various additional hypotheses. One of
the first cases in which it was proved (in [2]) was that of a principal symbol
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which is noninvolutive (Definition 1.1). Concerning these symbols we make
the following observation:

Proposition 2.1. Let f e έP(Ω) and z0 e Zf. In order that f satisfy (Ψ)θ at
z0 for some complex number θ it is necessary and sufficient that (l/i){f, /}(z0)
be > 0 .

Proof. Let us take \θ\ = 1 and set a = Re (θf), b = Im (θf). We have

Uf,f} = jW,θf}= -2{a,b}.

Let then Γ be the bicharacteristic of a through z0. It suffices to observe that
the sign of the first derivative of b at z0 along Γ is equal to that of — (1 //){/, f}(z0).

Corollary 2.1. Let f e 0>(Ώ). In order that f satisfy (Ψ)θ at every point z0

of Zf for some θ e C {depending on z0) it is necessary and sufficient that
fe^+(Ώ).

We recall that 2P* is the set of functions / € 0> with signature of the form
(p, 0), p € Z+, i.e., such that m~(f) = 0.

The main result of the present section will be the following:
Theorem 2.1. Let zoe Ω be a zero of f, and let θ € C be such that

d(R& (θf))(z0) Φ 0. In order that f satisfy Condition (Ψ)θ at z0 it is necessary
and sufficient that there be an open neighborhood U of zQ in Ω such that f \ U
belongs to the clocure of 0>+(U) in C\U).

Proof of Theorem 2.1. We may take z0 to be the origin and also, by virtue
of Proposition 1.2, θ — 1. Let us write / = a + /Z? we may assume that (2.2)
holds for a suitable choice of the open neighborhood Uo of 0, hence that da
Φ 0 in Uo. Possibly after shrinking t/0, we may perform a canonical (i.e.,
preserving the symplectic form ω) change of variables in R2n such that the ex-
pression of a in UQ becomes yn. Throughout the proof we shall write x' —
(X, , *„_!>, Ϋ = (y19 , yn_λ), z! = xf + V ^ T / .

I. Proof of the necessity. It suffices to show that, in a suitable open
neighborhood U C Uo of the origin, the function bo(z', xn) = b(x', xn, y', 0) is
the limit, in C\U), of a sequence of functions βj(z',xn) satisfying the follow-
ing condition:

(2.5) vz e U,βj(z',xn) = 0^ (!S/dxn)βj(zf9xJ < 0 .

Indeed, / = yn + i(botf, xn) + b(z)_- b(x\ xn9 /, 0)) = yn + ί(b,{z\ xn} +
Kz)yn) will then be the limit, in O(U), of the sequence of functions fά = yn

+ i(βj(z'9 xn) + h(z)yn). We note that fj(z) = 0 is equivalent to

(2.6) y» = 0 , βjtf9xn) = O9

and that, for such z's,
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^ Xn) + Kz)yn} = -(d/dxn)βjtf,xn) > 0 ,

and therefore fj e 0>+(Π).

In other words, we may assume that a = yn9 and b(z) = b(z'9 xn) is in-
dependent of yn. We shall study b in the (z', tj-projection of Uo, which we
take to be of the form

(2.7) Wo= U'Qχ{xneR;\xn\<T},

where U'o is an open neighborhood of the origin in R2(n~υ,, and T is a positive
number. Since the null bicharacteristics of a are the straight lines parallel
to the x^-axis and lying in the hyperplane yn = 0. Condition (Ψ) may be
translated in the present set-up as

Vz' e UQ, if b(z',xn) < 0 for some xn, \xn\ < T, then we have

b(z', t)<0 for all t,xn<t<T.

For convenience we are going to assume that all the above properties of b(z', xn)
hold in a neighborhood of the closure of Wo.

Let ε be an arbitrary number > 0 . We introduce a function w = w(z', t, ε),
defined and C°° in a neighborhood of Wo, and valued in Cn~\ as the unique
solution (see [7, Lemma 2.1]) of the problem:

(2.9) * = - ( d ^ ) U ' + εw, t) , w\t=0 - 0 .

We set

(2.10) b (z',i) = b{z! + εw,t) .

Lemma 2.1. // ε > 0 is sufficiently small, the following two properties

hold:

(2.11) dbε vanishes at every point of Wo where both bε and dtb
6 vanish.

(2.12) Assertion (2.8) is true with bε substituted for b.

Proof of (2.11). By (2.9) we have dtb'(z', t) = (dtb - ε \dz,b\2)(z' + εw, t)
(provided that ε is small enough). By (2.8) we know that wherever b = 0, we
must have bt < 0. Therefore, if bε(z\ i) = 0 we shall have dtb

ε(z', t) < 0,
unless db{z! + εw, t) = 0. But then

dx,b
ε(z', t) = (dx,b){zf + ζw, t){I + εdx,w) = 0 ,

and similarly for dy,b
ε.
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Proof of (2.12). For the sake of clarity, let us use real coordinates in R2n~ι

and make the following change of coordinates:

(2.13) λ = (x' + εRew,y' + εlmw) , s = t.

We have, by (2.9),

J L = jLeb(λs) d
(2.14)

dt ds dλ

We may apply a result of Brezis [1, Theorem 2] to the functions b(λ, s) and
YQ, s) = — εbλ(λ, s). The hypotheses (4), (5), (6) of Brezis are clearly satisfied
in our case ((4) is nothing else but our hypothesis (2.8)). The conclusion in
Theorem 2 of [1] is exactly (2.12).

It is obvious that the functions bε converges to b in C°°(W0) as ε —> + 0 . It
will therefore suffice to approximate each bε in Cλ(W^ by elements of C°°(^o),
{β«} (j = 1, 2, •) satisfying (2.5). But then we may as well and we shall, in
the remainder of the proof, assume that b itself is one of the b', in other words,
that (2.11) is true for ε = 0.

Let us introduce the set Fo of points (z',xn) of Wo such that for some t
satisfying — T < t < xn we have b(z\ t) < 0 we shall denote by F the closure
and by F the boundary of F o in Wo. It is seen at once that b — 0 on F. By
(2.11) (for ε = 0), we have F = Go U G1? Go being the set of points where
db = 0 and Gx the set of points where dtb < 0.

For each z! e U'O9 we denote by t+{z') the infimum of the numbers t,\t\<T,
such that (z', t) e F09 and by + T if there are no such numbers t. We denote by
Γ(z') the supremum of the numbers t, \t\ < T, such that (z', t) $ F, and by
— T if there are no such numbers t. The function t+ is upper-semicontinuous,
and the function t~ is lower-semicontinuous in t/J. They are equal and C°° in
the ^-projection of G19 and their singular supports are contained in the closure
of the ̂ -projection of Go. Let us extend them to the whole of R2{n~λ) by set-
ting t+ — +T and r = — T in the complement of U'o.

Let δ > 0 be arbitrary. We shall denote by Sδ the set of points z! whose
distance to the singular support of Γ (regarded as a function in R2in-υ) is < £ .
Let then a e C 0 0 ^ 2 ^ " " ) vanish outside Sδ and be equal to 1 in Sδ/2, and let us
denote by t/J the set of points z! in U'o whose distance to the complement of
C/Jis >δ.

Let p € C™(R2{n~l)), p > 0 everywhere, pdx'dy' = 1, and set, as custom-

arily done, ps{z!) = ε-2 U"1 )

io(z7ε). We then define:

(2.15) /. = (1 - ά)Γ + pε*(aΓ) (in jp<»-») .

Note that /β = r in the open set U'i+g\Sδ+t. Furthermore:
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given any δ > 0 there is ε > 0 such that, if z! € t/£a and \ tε(zf) | <
(2.16)

T - 2δ, then the distance of (z\ ί.(z')) to F is <2δ.

Proof of (2.16). It is immediately seen that F is exactly equal to the union
of the closed sets tz, = {(z',xn); Γ(z') < xn < /+(z')} By semicontinuity,
given any η > 0 there is ε > 0 such that if \z' — ζ ' | < ε then

(2.17) (αr)feθ - ^ < (αr)(ζθ < (αί+)(ζ0 < (at+){zf) + η .

We derive, from (2.15) and (2.17),

(2.18) r{z!) -η< t£{zf) < t+(z') + η .

By choosing η < δ we see that this implies (2.16).
For convenience let us assume that b has been extended as a C°° function to

the whole of R2n~ι. We now construct a Whitney's partition of unity in
R2n~λ\GΌ in the manner of [10, Appendix]. It consists of a sequence of non-
negative C°° functions {φj} (j = 1,2, •) with compact support in R^'^GQ
such that, for some constant C > 0,

(2.19) Σ \dφj\ < C(l + l/d0) in R^-^G, ,
.7 = 1

where do(z', xn) denotes the distance of (z', xn) to Go (which is compact). Then
we set, for / = 1, 2, ,

Lemma 2.2. As J -> + oo, Z?j converges to b in C\R2n~ι). _
Proof. It suffices to reason in a bounded neighborhood 0 of Wo (or Go)

and to prove there that hj = b — bj = Σ Φfi converges to zero in C\ΰ).

Note that the support of hj is contained in an arbitrarily "small" neighborhood
of Go, provided that / is large enough. Since \hj\ < \b\ for whatever / and
b = 0 on Go, we see that hj —> 0 in C°. By the same token, since db = 0 on

= Σ

tends to zero in C°. By virtue of (2.19) we have

(2.20)
supp hj

But

<C sup {(1 + ί/do)\b\}.
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\b(z', xn) I < dt(z', xn) \ sup I db(ζ',

Since \db(zf,Xn)\ tends to zero with do(x',xn), we see that the right-hand side
of (2.20) goes to zero as / —• + 0 0 . q.e.d.

By virtue of Lemma 2.2, if we want to approximate b in the announced
manner, it suffices to approximate each bj. Let us therefore fix / arbitrarily.
We know that bj is a C°° function, vanishing in some open neighborhood Θj
of Go. We reintroduce the function te (in U'o) defined and studied earlier. By
virtue of (2.16) and the remark which precedes, we can choose δ and ε suffi-
ciently small so that the set

(2.21) z'eU'U9 |*| < T - 2δ , t = te(z') ,

is identical with F except possibly in some compact subset of Θj. It follows
at once that there is a nonnegative C°° function gj in U'2δ X ] — T + 2δ, T — 2δ[
such that for this same set

(2.22) bjtf, xn) = gjW, XnXtXzf) - xn) .

Then

(2.23) bj,k(zf, xn) = [gjtf, xn) + j

converges to bj in C°° as k —• + 00 it clearly satisfies (2.5) if U is chosen
small enough (but independently of / and k).

II. Proof of the sufficiency. Let U be an arbitrary open subset of Uo con-
taining the origin, and let {fj} (i = 1,2, •) be a sequence of elements of
0>+(U) converging to / = yn + ib(z) in C\U). We may assume that the fj
belongs to C°°(Ω). We shall assume that / does not satisfy (Ψ)ζ (with ζ = 1,
cf. remark at the beginning of the proof) at the origin, and show that this leads
to a contradiction.

In the language of the natural topology on subsets, we may assert the fol-
lowing : in U and for / sufficiently large, the zero-set of a^ = Re fj is arbitrarily
close to that of Re /, i.e., to the hyperplane yn — 0, and the null bicharacter-
istics of ύj are arbitrarily close to those of Re /, that is to say, to the jc^-lines
lying in the hyperplane yn = 0. Suppose then that b(zω) < 0, b(z(2)) > 0 with

7/(l) 7/(2) r (l ) <£ γ(2) v ( l ) v(2) 0

the segment joining zω to z(2) being entirely contained in U. Then, as soon as
/ is large enough, there is a null bicharacteristic of a^ along which bj must
change sign from minus to plus and therefore vanish at a point z of U where
Ha.bj > 0, contrary to the hypothesis that fό € ̂ +(U). q.e.d.
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The so-called "invariance of Property (¥)" follows immediately from
Theorem 2.1.

Corollary 2.1. Let zQ e Vf and let ζ e C be such that d[Re (ζ/)](z0) φ 0.
Let g β C°°(Ώ) be such that d[Re (ζ gf)](zQ) Φ 0. // (Ψ\ holds for f at z0, it also
does for fg.

In particular, we have
Corollary 2.2. Let z0 and ζ be as in Theorem 2.1. // (¥)ζ holds for f at z0,

so does (Ψ)θ where θ is any complex number such that d[Re (θf)](z0) Φ 0.
The results in Corollaries 2.1 and 2.2 have been originally proved in [5,

Appendix].
Definition 2.2. Let / <= Cι(Ώ) satisfy (2.1). For any point z0 of Ω we say

that / satisfies the condition (Ψ) at z0 if either f(z0) Φ 0 or f(z0) = 0 with /
satisfying (Ψ)θ at zQ for some θ (and then this is true for all θ such that (2.2)
holds).

Theorem 2.1 then implies
Corollary 2.3. Let z0 be any point of Ω. In order that f satisfy (Ψ) at z0 it

is necessary and sufficient that there be an open neighborhood U of z0 in Ω
such that f\fj belongs to the closure of 0>+(U) in C\U).

Definition 2.3. Let /, z0 be as in Definition 2.2. We say that / satisfies the
condition (P) at z0 if (Ψ) holds at z0, both for / and /.

Corollary 2.4. Let f,z0 be as in Corollary 2.3. In order that f satisfy (P)
at z0 it is necessary and sufficient that there be an open neighborhood U of z0

in Ω such that fy belongs to the intersection of the closures in Cι(JJ) of 3?+(U)
and &-(U).

We recall that &~ is the union of the ^^\ q = 0,1, , and that / e &~
is equivalent to / e έP+.

We ought perhaps to recall the "other" meaning of Condition (P) (at z0):
either f(z0) Φ 0 or if f(z0) = 0 then, for a suitable open neighborhood Uo of
z0 in Ω and for some (or any) complex number θ such that (2.2) holds,

the restriction of Im (θf)to any null bicharacteristic Γ of Re (θf)
(2.24)

contained in Uo does not change sign on Γ.

Finally we should underline the fact that the condition in Corollary 2.4 in-
volves the intersection of the closures (of ^ + and &>-) and not the closure of
the intersection, which would be the closure of ^°'°, the set of functions h
which do not vanish anywhere in Ώ. The closure of ^°'° is easy to characterize.

Definition 2.4. Let z0 be any point in Ω. We say that / satisfies the condi-
tion (R) at zQ if there are a complex number θ and an open neighborhood Uo

of z0 in Ω such that d[Re (θf)] does not vanish anywhere in Uo and that the
following holds :

the restriction of Im (θf) to the zero-set of Re (θf) in Uo does not
(2.25)

change sign.
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Theorem 2.2. Let z0 be any point in Ω. In order that f satisfy (R) at z0 it
is necessary and sufficient that there be an open neighborhood U of z0 in Ω
such that f\fj belongs to the closure in C\U) of the set of functions h which
do not vanish at any point of U.

The proof is easy and we leave it to the reader.
Condition (R) occurs in the theory of partial differential equations, and in

[8] it has been shown that if it holds at every point of the cotangent bundle
T*M, then a simple construction of local parametrices is possible.

3. A few remarks in the general case

The condition that / <= C°°(Ω) belong to the closure of 0>+ in C\Ώ) makes
sense even when / has critical points. Going back to the theory of partial dif-
ferential equations and taking Theorem 2.1 into account, one is led to the natural
generalization of the conjecture made in [4] that Property (Ψ) is equivalent to
local solvability in the case of operators of principal type. Since it is well known
that lower-order terms in a differential operator can affect its solvability prop-
erties, the only aspect of the conjecture which one can hope to generalize is
the "necessity" (of Condition (SO in the principal type case). Let therefore
P(x, D) be a pseudodifferential operator in a C°° manifold M, and p(x, ξ) its
principal symbol (we are tacitely assuming that the total symbol of P is an
asymptotic sum of terms which are homogeneous with respect to the variables
ξ, with homogeneity degrees decreasing by integral values; it is likely that
more general situations than this one could be considered).

Conjecture. // P(x, D) is locally solvable at every point of M, then every
point (x0, ξ°) of the cotangent bundle T*M such that ξ° Φ 0 has an open
neighborhood U such that p\& belongs to the closure of έ?+(U) in C\U).

Such a statement makes it important to find out whether a symbol does
belong (locally) to the closure (in C1) of 0>+. It should be noted that this prop-
erty is open, i.e., it cannot hold at a point unless it also holds at every point of
some neighborhood of it. In view of this the next proposition might be useful.

Proposition 3.1. Let f e C°°(Ώ), and let zQ be a point of Ω such that f(z0)
= 0 and that for a suitable open neighborhood Uo of z0 in Ω the following is
true:

there is a noninvolutίve submanifold W of codίmension 2 in UQ which

contains Uo Π Zf (Zf: zero-set of /).

Let p0 be the winding number of f about z0 in the two-dimensional plane PZQ

through z0, which is orthogonal to the tangent plane TZoW in the sense of the
symplectc form ω. Consider the following property (for a pair of nonnegatίve
integers p, q):

there is an open neighborhood U C Uo such that fy belongs to the

closure of 0™φ) in C\U).
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Then (3.2) holds when p = p0, q = 0 // p0 > 0, or when p = 0, q = —p0 if
p0 < 0. Furthermore, if Uo is small enough, whenever (3.2) holds for some
pair (p, q) of nonnegative integers, we must have p = q + Np0 for some integer
N > 1 in the first case, and q = p — NpQ in the second case.

Proof. We may perform a canonical change of variables such that z0 be-
comes the origin and W becomes the piece of hyperplane zn = 0 defined by
\z'\ < r'. We may also assume that p0 > 0; the result for p0 < 0 is then
derived by exchanging / and /.

We shall denote by If(z) the winding number of / about zeW'm the plane Pz.
Let us first suppose p0 = 0. If rf and rn > 0 are small enough, and U de-

notes the set {zeCn; \z'\ < rf, \zn\ < rn) for each k = 1, 2, . , then we can
find a smooth complex-valued function λk(z!) of z! e Cn~\ \z'\< rf, converging
uniformly to zero in this set together with its first partial derivatives (with
respect to x\ / ) , as k-+ + oo, such that, for every k and each z! with \z!\ < rf,
λk(z!) does not belong to the range of f(z', zn) when \zn\ < rn. Thus fk(z) =
Kz) - λk(z') e 0>w(U) converges to f(z) in Cι(U).

Suppose now p0 > 0. Then we may write f(z) = zζ°g(z) with Zg C W, Ig = 0
throughout W (we recall that // is locally constant on W). We apply the first
part to the function g. We may form a sequence of elements g19 g2, in
^°'°(C/) (for U open, containing the origin, sufficiently small) converging to g
in C\U). On the other hand, let θλ, , θPo denote the po-th roots of unity and
set fk(z) = (zn - ΘJk). "(zn- θPo/k)gk(z). It is clear that fk — / in C\U),
and that fk e 0>Po>°(U) as soon as k > l/rn.

Let now U be an open neighborhood of the origin, contained in Ω, and let
fj be a sequence of elements of έ?p>q(U) converging to / in C\U). Let us de-
compose U Π W into N connected components W1, , WN, and for each
a = 1, , N let Ua be a tubular neighborhood of the compact set Wa in the
fashion of those considered in the proof of Proposition 1.3. The cross section
of each Ua is a disk of fixed radius centered at z e Wa and contained in the
plane Pz. It is clear that for / large enough fό will not vanish except possibly
in U1 U U UN. Consequently, if cz denotes the circumference (oriented
counter-clockwise) centered at z which bounds the cross-section of Ua through

z (z e Wa), then If.(z) = (27rO"1^ dfj/fj is equal to If(z), i.e., to pQ. This

implies that Ua contains pa (resp. qa) connected components of the zero-set of
fj on which —i{fj, fj} is positive (resp. negative), and that pa — qa = p0. But
of course p = Pi + + pN and q = qx + + qN, hence p = q + Np0.

Corollary 3.1. With the same hypotheses as in Proposition 3.1 we further
assume that z0 belongs to the closure of W\Zf in W. Then (3.2) holds with
p = q = 0.

There are other cases in which / will belong (locally) to the closure (in C1)
of ^°'°. A notable one is that of the razZ-valued functions as we can see in the
following proposition.
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Proposition 3.2. Suppose that f e C\Ώ) is real-valued. Then every point

z0 of Ω has an open neighborhood U such that f\# belongs to the closure of

&0>°(U) in C\U).

Proof. Real-valued functions f e C\Ω) are limits, in this space, of real-

valued smooth functions in Ω which have no critical point. It suffices then to

apply Theorem 2.2.

In connection with these considerations it is perhaps worth mentioning that

if / and g are locally in the C1 closure of ^ + , so is their product fg. We shall

leave the proof of this fact to the reader. Note that fg might well belong to the

closure of έP+ in the neighborhood of a given point, without this being true of

neither / nor g; e.g., it is always true, according to Proposition 3.2, of the

products //, though of course it is not always true of /.

Finally, we wish to mention that one might state the same conjecture for

(determined) systems of pseudodifϊerential equations as the one we have stated

for a single (scalar) such equation, provided that we interpret p(x, ξ) as the

determinant of the principal symbol of the system. In our opinion, it is a

reasonable conjecture and perhaps the only one which can be made, bearing

solely on the principal symbol.
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