WINDING NUMBERS AND THE SOLVABILITY CONDITION (Ψ)

FRANÇOIS TREVES

Introduction

In [3] R. Moyer has proposed a new formulation of the solvability conditions (P) and (Ψ) for pseudodifferential equations of principal type (see [4], [5]). Moyer relates these conditions to an index or winding number whose meaning is very clear and natural, when the principal symbol of the operator under study has the property that the Poisson bracket $\{p, \bar{p}\}$ does not vanish at any point where p itself does (\bar{p} is the complex conjugate of p). In this case, Property (Ψ) simply says that $(1 / i)\{p, \bar{p}\}$ should be >0 at any such point.

In the present paper we show that Property (Ψ) for an arbitrary symbol p without critical points is equivalent to the fact that p is the limit, in the local C^{1} topology, of symbols having the above property ${ }^{1}$. Such a result points to a new definition of (Ψ). In our view the new definition has a two-fold advantage: first, it shows that the principal symbols of the pseudodifferential equations of principal type, whose solvability has been established so far (and which do not yet include all those satisfying $\left(\Psi^{\prime}\right)$), are limits of symbols of the kind alluded to above, and whose solvability has been well-understood (cf. [2]); secondly and perhaps most importantly, it is totally independent of the concept of bicharacteristic, and thus lends itself perfectly to generalization to arbitrary symbols with an arbitrary multiplicity of the characteristics or even degenerating on certain subsets. This of course leads to a new general conjecture on the necessity of (Ψ), redefined as indicated, for local solvability of any linear differential or pseudodifferential equation (see § 3).

1. Noninvolutive functions and their signatures

We shall first explain the notation used throughout the article. We shall deal with an even-dimensional Euclidean space $\boldsymbol{R}^{2 n}=\boldsymbol{C}^{n}$, where the variable is denoted by $(x, y), x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{n}\right)$, or by $z=x+\sqrt{-1} y$ $=\left(z_{1}, \cdots, z_{n}\right)$. In application to partial differential equations, $\boldsymbol{R}^{2 n}$ serves as

[^0]"local model" for the cotangent bundle $T^{*} M$ over a smooth (i.e., C^{∞}) manifold M (of dimension n). The real inner product on $\boldsymbol{R}^{2 n}$ will be denoted by $x x^{\prime}+$ $y y^{\prime}=\operatorname{Re} z \bar{z}^{\prime}$. Since we have in mind the case of a cotangent bundle $T^{*} M$, we shall use the symplectic form $\omega\left(z, z^{\prime}\right)=\operatorname{Im} z \bar{z}^{\prime}=x^{\prime} y-x y^{\prime}$. If f is a continuously differentiable function, the Hamiltonian field of f is defined in the standard fashion:
\[

$$
\begin{equation*}
H_{f}=\sum_{j=1}^{n} \frac{\partial f}{\partial y_{j}} \frac{\partial}{\partial x_{j}}-\frac{\partial f}{\partial x_{j}} \frac{\partial}{\partial y_{j}}, \tag{1.1}
\end{equation*}
$$

\]

and if g is another C^{1} function, the Poisson bracket of f and g is given by

$$
\begin{equation*}
\{f, g\}=H_{f} g \tag{1.2}
\end{equation*}
$$

In the applications to partial differential equations, one of the variables, either x or y, is taken to be the "vertical" variable, which along the fibres, that is to say in the cotangent spaces, is then usually denoted by ξ or p. Because of the way we have chosen the sign conventions in what follows, the reader should think of y as the vertical variable.

We are going to deal systematically with a bounded open subset Ω of $\boldsymbol{R}^{2 n}$, whose boundary $\partial \Omega$ is a C^{∞} hypersurface, and with the space $C^{1}(\bar{\Omega})$ of the complex-valued functions in $\bar{\Omega}$, which can be extended as C^{1} functions to $\boldsymbol{R}^{2 n}$, equipped with its standard topology, the topology of uniform convergence on the closure $\bar{\Omega}$, of the functions and their gradients; $C^{1}(\bar{\Omega})$ is a complete normable space.

Definition 1.1. We shall say that $f \in C^{1}(\bar{\Omega})$ is noninvolutive if

$$
\begin{equation*}
\forall z \in \bar{\Omega}, f(z)=0 \Rightarrow\{f, \bar{f}\}(z) \neq 0, \tag{1.3}
\end{equation*}
$$

and if, moreover, when $n>1, d(\operatorname{Re} f), d(\operatorname{Im} f)$ and the normal to $\partial \Omega$ are linearly independent at every point of $\partial \Omega$ where $f=0$. The set of noninvolutive functions in $C^{1}(\bar{\Omega})$ will be denoted by $\mathscr{P}(\bar{\Omega})$ (or simply by \mathscr{P} if there is no risk of confusion).

Remark 1.1. Going to the theory of partial differential equations (and therefore replacing Ω by an open subset of a cotangent bundle $T^{*} M$), we note that principal symbols $p(x, \xi)$ which are noninvolutive have been much studied, locally and globally, by Hörmander (in [2]) and Sjöstrand (in [6]) and others. Their microlocal prototype is the symbol of the so-called Mizohata operator:

$$
\begin{equation*}
L=\frac{\partial}{\partial x_{1}}-i x_{1} \frac{\partial}{\partial x_{2}} \quad(i=\sqrt{-1}) \tag{1.4}
\end{equation*}
$$

that is to say, the function

$$
\begin{equation*}
p=\xi_{2} x_{1}+i \xi_{1} \tag{1.5}
\end{equation*}
$$

From the viewpoint of the properties of L, the "interesting" points in (x, ξ) space are the zeros of p, i.e., the characteristics of L, which lie away from the zero section of the cotangent bundle, in other words, the zeros of p corresponding to large frequencies ξ. The latter requires $\xi_{2} \neq 0$, otherwise $p=0$ implies $\xi=0$, and because of the homogenity of p it suffices to look at the two cases $\xi_{2}=1, \xi_{2}=-1$.

Noting that a Fourier transformation with respect to x_{2} transforms L into

$$
\begin{equation*}
\hat{L}=\frac{\partial}{\partial x_{1}}+x_{1} \xi_{2}, \tag{1.6}
\end{equation*}
$$

we see that the case $\xi_{2}=1$ (or, if one prefers, $\xi_{2}>0$) corresponds to solvability points of L, whereas the other case $\xi_{2}=-1$ corresponds to nonsolvability points. But, on the other hand, the case $\xi_{2}=-1$ corresponds to hypoellipticity points of L, whereas the case $\xi_{2}=1$ does not. On this subject the reader is referred to [2] and, for a simple description, to [9, § 1].

Proposition 1.1. The set $\mathscr{P}(\bar{\Omega})$ is open in $C^{1}(\bar{\Omega})$, and is stable under multiplication by any element of $C^{1}(\bar{\Omega})$ which does not vanish anywhere in $\bar{\Omega}$.

Proof. Evident.
Let f be an arbitrary element of \mathscr{P}. The zero-set of f,

$$
\begin{equation*}
Z_{f}=\{z \in \bar{\Omega} ; f(z)=0\} \tag{1.7}
\end{equation*}
$$

is a C^{1} noninvolutive submanifold (regarded as a manifold with boundary), of codimension two in $\bar{\Omega}$, which means that the restriction of the sympletic form ω to every tangent space to Z_{f} is nondegenerate. Note that this makes sense even at the boundary of Ω, for f can be extended as a C^{1} function $f^{\#}$ in the whole of $\boldsymbol{R}^{2 n}$. The zero-set $Z_{f \sharp}$ of $f^{\#}$ in some open neighborhood of $\bar{\Omega}$ is a C^{1} noninvolutive submanifold of codimension two.

Now, because of the compactness of $\bar{\Omega}, Z_{f}$ consists of a finite number of connected components $Z_{f}^{(j)}(j=1, \cdots, r)$; unless, of course, $Z_{f}=\emptyset$. Incidentally, note that some or all of these components might intersect the boundary $\partial \Omega$. At any rate, on each of these components the sign of $(1 / i)\{f, \bar{f}\}$ remains constant. Let us write $f=a+i b$ and observe that

$$
\begin{equation*}
\{f, \bar{f}\}=-2 i\{a, b\} . \tag{1.8}
\end{equation*}
$$

We shall denote by $m^{+}(f)$ (resp. $\left.m^{-}(f)\right)$ the number of connected components $Z_{f}^{(j)}$ on which $(1 / 2 i)\{f, \bar{f}\}>0$ (resp. <0).

Definition 1.2. The pair of nonnegative integers $\left(m^{+}(f), m^{-}(f)\right)$ will be called the signature of $f \in \mathscr{P}$ in $\bar{\Omega}$.

Example 1.2. Take $n=1$, and Ω to be the unit disk in the plane. The signature of the function $f(z)=z$ in $\bar{\Omega}$ is $(1,0)$, and that of $f(z)=\bar{z}$ is $(0,1)$. If $\alpha_{1}, \cdots, \alpha_{s}, \beta_{1}, \cdots, \beta_{t}$ are $r=s+t$ distinct points in Ω, then

$$
\begin{equation*}
f(z)=\left(\prod_{j=1}^{s}\left(z-\alpha_{j}\right)\right)\left(\prod_{k=1}^{t}\left(\bar{z}-\beta_{k}\right)\right) \tag{1.9}
\end{equation*}
$$

has signature (s, t) in $\bar{\Omega}$.
Remark 1.2. Let us return to the symbol (1.5) of the Mizohata operator. We see that it reads $z_{1}=x_{1}+i y_{1}$ when we take $\xi_{2}=1$ (and write y_{1} instead of ξ_{1}), whereas it reads $\bar{z}_{1}=x_{1}-i y_{1}$ if we take $\xi_{2}=-1$. In both cases the zero-set is given by $z_{1}=0$. Let us take Ω to be a bounded convex set in C^{2} whose closure is contained in the complement of the origin and which intersects the plane $z_{1}=0$. The signature of (1.5) will be $(1,0)$ if Ω intersects this plane at points where $y_{2}>0$, which are solvability, but nonhypoellipticity points for (1.4). It will be $(0,1)$ if $y_{2}<0$ on the intersection, which consists then of hypoellipticity, but nonsolvability points for (1.4).

Proposition 1.2. If $f, g \in \mathscr{P}$ and $Z_{f} \cap Z_{g}=\emptyset$, then

$$
\begin{equation*}
\left(m^{+}(f g), m^{-}(f g)\right)=\left(m^{+}(f)+m^{+}(g), m^{-}(f)+m^{-}(g)\right) . \tag{1.10}
\end{equation*}
$$

In particular, if g does not vanish anywhere in $\bar{\Omega}$, the signature of $f g$ in $\bar{\Omega}$ is equal to that of f.

Proof. Evident.

We shall denote by $\mathscr{P}^{p, q}(\bar{\Omega})$, or simply by $\mathscr{P}^{p, q}$ if there is no risk of confusion, the subset of functions $f \in \mathscr{P}$ whose signature in $\bar{\Omega}$ is (p, q) (p, q are any two nonnegative integers). Note that $\mathscr{P}^{0,0}$ consists of the C^{1} functions f in $\bar{\Omega}$ which do not vanish anywhere; in the language of partial differential equations, these would be the elliptic symbols.

In Ω is the union of r connected components $\Omega^{(j)}, j=1, \cdots, r$, and $\left(p_{j}, q_{j}\right)$ is the signature of $f \in \mathscr{P}$ in the closure of $\Omega^{(j)}$, then the signature of f in the closure of Ω is equal to $\left(p_{1}+\cdots+p_{r}, q_{1}+\cdots+q_{r}\right)$. This is evident. It is also evident that if Ω^{\prime} is any open subset of Ω, in general the restriction of $f \in \mathscr{P}^{p, q}(\bar{\Omega})$ to $\bar{\Omega}^{\prime}$ will not belong to $\mathscr{P}^{p, q}\left(\bar{\Omega}^{\prime}\right)$, unless, of course, $p=q=0$. Let us introduce the following subsets of \mathscr{P} :

$$
\mathscr{P}^{+}=\bigcup_{p=0}^{+\infty} \mathscr{P}^{p, 0}, \quad \mathscr{P}^{-}=\bigcup_{q=0}^{+\infty} \mathscr{P}^{0, q} .
$$

Note that $\mathscr{P}^{0,0}=\mathscr{P}^{+} \cap \mathscr{P}^{-}$. Complex conjugation $f \mapsto \bar{f}$ is an isomorphism of $\mathscr{P}^{p, q}$ onto $\mathscr{P}^{q, p}$.

It is evident that $\mathscr{P}^{0,0}$ is an open subset of \mathscr{P}. It is less evident that this is also true of every $\mathscr{P}^{p, q}$, but it follows from the next result:

Proposition 1.3. The signature is a locally constant function in \mathscr{P}.
Proof. We suppose that $f \in \mathscr{P}(\bar{\Omega})$ has been extended as a C^{1} function in some open neighborhood of $\bar{\Omega}, \Omega^{\prime}$, and that $f \in \mathscr{P}\left(\bar{\Omega}^{\prime}\right)$, which is of course permitted. We suppose also that $Z_{f} \neq \emptyset$. We can construct a tubular neighborhood U of $Z_{f}\left(=Z_{f} \cap \bar{\Omega}\right)$ in Ω^{\prime} in the following manner. For each $z \in Z_{f}$ let P_{z} denote the two-dimensional (real) plane through z which is orthogonal, for the
symplectic form ω, to the tangent plane to Z_{f} at z. Since the restriction of ω to this tangent plane is nondegenerate, the same is true of the restriction of ω to P_{z} (which, in particular, can be canonically oriented). On every plane P_{z} we use the Euclidean metric $|z|^{2}$ induced by the surrounding space $R^{2 n}$, and we call σ_{z} the open disk of radius $r>0$, and c_{z} the circumference of radius $r / 2$, both centered at $z ; c_{z}$ will be oriented counterclockwise. We may choose r so small as to achieve a number of properties: \#1) as z ranges over Z_{f}, the union of the disks σ_{z} is equal to U, which is contained in $\left.\Omega^{\prime} ; \# 2\right) U$ is not self-intersecting, which implies that each σ_{z} does not contain any other point of Z_{f} besides $\left.z ; \# 3\right)$ and most importantly, if g is any element of $C^{1}(\bar{\Omega})$ such that

$$
\begin{equation*}
\forall z \in \bar{\Omega},|d f(z)-d g(z)|<\frac{1}{2}|d f(z)|, \tag{1.11}
\end{equation*}
$$

then, whatever $z \in Z_{f}, g$ can vanish at most once in σ_{z}.
Once all this is achieved we set

$$
\begin{equation*}
I_{f}(z)=\frac{1}{2 i \pi} \oint_{c_{z}} \frac{1}{f} d f \tag{1.12}
\end{equation*}
$$

It is checked at once that

$$
\begin{equation*}
I_{f}=\frac{1}{i}\{f, \bar{f}\} /|\{f, \bar{f}\}| \quad \text { on } \quad Z_{f} . \tag{1.13}
\end{equation*}
$$

Let $Z_{f}^{(j)}(j=1, \cdots, r)$ be the connected components of Z_{f}, and let us select arbitrarily a point $z^{(j)}$ of $Z_{f}^{(j)}$ for each j. Then

$$
\begin{equation*}
m^{+}(f)=\sum_{j=1}^{r} \sup \left(I_{f}\left(z^{(j)}\right), 0\right), \quad m^{-}(f)=\sum_{j=1}^{r} \inf \left(0, I_{f}\left(z^{(j)}\right)\right) \tag{1.14}
\end{equation*}
$$

It is clear that there is an open neighborhood of f in \mathscr{P} in which any element g has the following properties: \#1) g does not vanish at any point of $\bar{\Omega} \backslash U$ nor at any point of c_{z} whatever $\left.z \in Z_{f} ; \# 2\right) g$ satisfies (1.11); \#3) $I_{f}=I_{g}$ throughout Z_{f}. These properties imply that g vanishes once and only once in the interior of c_{z} for every $z \in Z_{f}$. In other words, for each $j=1, \cdots, r$, the union of the disks $\sigma_{z}, z \in Z_{f}^{(j)}$, contains a unique connected component $Z_{g}^{(j)}$ of $_{\underset{L}{\dagger}}^{Z_{g}}$, and the sign of $-i\{g, \bar{g}\}$ is equal to that of $-i\{f, \bar{f}\}$ on $Z_{g}^{(j)}$. Since g does not vanish in the complement of U, this completes the proof of Proposition 1.3.

2. Functions without critical points, Condition (Ψ) and its invariance

In the present section we look at the smooth (i.e., C^{∞} or only C^{1}) complexvalued functions f in $\bar{\Omega}$, which do not have critical points:

$$
\begin{equation*}
\text { whatever } z \text { in } \bar{\Omega}, f(z)=0 \Rightarrow d f(z) \neq 0 \tag{2.1}
\end{equation*}
$$

In the applications to the theory of partial differential equations this would correspond to symbols of principal type, except that it is not their total differential which is required not to vanish on the zero-set (i.e., the characteristic set), but actually their differential with respect to the fibre variable ξ. In the present notation, $f=0$ should imply $d_{y} f \neq 0$. Here, however, we shall disregard this fact and restrict ourselves to Condition (2.1).

Let us first assume that f is real-valued (note that a real function f cannot be noninvolutive in the sense of Definition 1.1 unless its zero-set is empty). We shall refer to the integral curves of the Hamiltonian field H_{f} as the bicharacteristics of f. In view of (2.1) they are "true" curves; through each point of $\bar{\Omega}$ there passes one and only one of them. Since $H_{f} f=0$, the function f itself is constant along any one of its bicharacteristics. Consequently, if one of these meets the zero-set Z_{f}, then it lies entirely in Z_{f}. To such a bicharacteristic we shall refer as a null bicharacteristic of f (in $\bar{\Omega}$).

Let us return to complex-valued functions f satisfying (2.1). Let $z_{0} \in Z_{f}$. By virtue of (2.1) there must be a complex number θ and an open neighborhood U_{0} of z_{0} such that the following holds:
$d(\operatorname{Re}(\theta f))$ does not vanish at any point of U_{0}.
Remark 2.1. Suppose that f is noninvolutive (Definition 1.1). Then (2.1) is automatically satisfied. As a matter of fact, we may choose the neighborhood U_{0} of $z_{0} \in Z_{f}$ so as to have (2.2) whatever $\theta \in C, \theta \neq 0$. In this case, $d(\operatorname{Re} f)$ and $d(\operatorname{Im} f)$ are linearly independent at, and therefore near, z_{0}; they span the plane $P_{z_{0}}^{\#}$ through the origin (in the cotangent space to $\boldsymbol{R}^{2 n}$ at z_{0}) which is the orthogonal of the tangent plane $T_{z_{0}} Z_{f}$ to Z_{f} at z_{0} in the sense of the symplectic form ω.

The solvability theory for linear partial differential equations of principal type has led to the introduction of the following property (see [4], [5]):

Definition 2.1. We say that f satisfies the condition $(\Psi)_{\theta}$ at $z_{0} \in Z_{f}$ if there is an open neighborhood U_{0} of z_{0} in $\bar{\Omega}$ such that (2.2) and the following property are true:
if the restriction of $\operatorname{Im}(\theta f)$ to any null bicharacteristic Γ of $\operatorname{Re}(\theta f)$, contained in U_{0}, is <0 at some point, then it is ≤ 0 at every later point of Γ.

The meaning of "later point" is defined by the natural orientation on the bicharacteristics, which itself is defined by the Hamiltonian field.

In [4] it has been conjectured that the local solvability of a pseudodifferential operator of principal type on a C^{∞} manifold M is equivalent to the validity of $(\Psi)_{\theta}$ at every point of its characteristic set for some θ depending on the point. This conjecture has been proved under various additional hypotheses. One of the first cases in which it was proved (in [2]) was that of a principal symbol
which is noninvolutive (Definition 1.1). Concerning these symbols we make the following observation:

Proposition 2.1. Let $f \in \mathscr{P}(\bar{\Omega})$ and $z_{0} \in Z_{f}$. In order that f satisfy $(\Psi)_{o}$ at z_{0} for some complex number θ it is necessary and sufficient that $(1 / i)\{f, \bar{f}\}\left(z_{0}\right)$ be >0.

Proof. Let us take $|\theta|=1$ and set $a=\operatorname{Re}(\theta f), b=\operatorname{Im}(\theta f)$. We have

$$
\frac{1}{i}\{f, \bar{f}\}=\frac{1}{i}\{\theta f, \overline{\theta f}\}=-2\{a, b\}
$$

Let then Γ be the bicharacteristic of a through z_{0}. It suffices to observe that the sign of the first derivative of b at z_{0} along Γ is equal to that of $-(1 / i)\{f, \bar{f}\}\left(z_{0}\right)$.

Corollary 2.1. Let $f \in \mathscr{P}(\bar{\Omega})$. In order that f satisfy $(\Psi)_{\theta}$ at every point z_{0} of Z_{f} for some $\theta \in C$ (depending on z_{0}) it is necessary and sufficient that $f \in \mathscr{P}^{+}(\bar{\Omega})$.

We recall that \mathscr{P}^{+}is the set of functions $f \in \mathscr{P}$ with signature of the form $(p, 0), p \in Z_{+}$, i.e., such that $m^{-}(f)=0$.

The main result of the present section will be the following:
Theorem 2.1. Let $z_{0} \in \Omega$ be a zero of f, and let $\theta \in C$ be such that $d(\operatorname{Re}(\theta f))\left(z_{0}\right) \neq 0$. In order that f satisfy Condition $(\Psi)_{\theta}$ at z_{0} it is necessary and sufficient that there be an open neighborhood U of z_{0} in Ω such that $f \mid \bar{U}$ belongs to the clocure of $\mathscr{P}^{+}(\bar{U})$ in $C^{1}(\bar{U})$.

Proof of Theorem 2.1. We may take z_{0} to be the origin and also, by virtue of Proposition 1.2, $\theta=1$. Let us write $f=a+i b$; we may assume that (2.2) holds for a suitable choice of the open neighborhood U_{0} of 0 , hence that $d a$ $\neq 0$ in U_{0}. Possibly after shrinking U_{0}, we may perform a canonical (i.e., preserving the symplectic form ω) change of variables in $\boldsymbol{R}^{2 n}$ such that the expression of a in U_{0} becomes y_{n}. Throughout the proof we shall write $x^{\prime}=$ $\left(x_{1}, \cdots, x_{n-1}\right), y^{\prime}=\left(y_{1}, \cdots, y_{n-1}\right), z^{\prime}=x^{\prime}+\sqrt{-1} y^{\prime}$.
I. Proof of the necessity. It suffices to show that, in a suitable open neighborhood $U \subset U_{0}$ of the origin, the function $b_{0}\left(z^{\prime}, x_{n}\right)=b\left(x^{\prime}, x_{n}, y^{\prime}, 0\right)$ is the limit, in $C^{1}(\bar{U})$, of a sequence of functions $\beta_{j}\left(z^{\prime}, x_{n}\right)$ satisfying the following condition :

$$
\begin{equation*}
\forall z \in \bar{U}, \beta_{j}\left(z^{\prime}, x_{n}\right)=0 \Rightarrow\left(\partial / \partial x_{n}\right) \beta_{j}\left(z^{\prime}, x_{n}\right)<0 . \tag{2.5}
\end{equation*}
$$

Indeed, $f=y_{n}+i\left(b_{0}\left(z^{\prime}, x_{n}\right)+b(z)-b\left(x^{\prime}, x_{n}, y^{\prime}, 0\right)\right)=y_{n}+i\left(b_{0}\left(z^{\prime}, x_{n}\right)+\right.$ $\left.h(z) y_{n}\right)$ will then be the limit, in $C^{1}(\bar{U})$, of the sequence of functions $f_{j}=y_{n}$ $+i\left(\beta_{j}\left(z^{\prime}, x_{n}\right)+h(z) y_{n}\right)$. We note that $f_{j}(z)=0$ is equivalent to

$$
\begin{equation*}
y_{n}=0, \quad \beta_{j}\left(z^{\prime}, x_{n}\right)=0 \tag{2.6}
\end{equation*}
$$

and that, for such z 's,

$$
\frac{1}{2 i}\left\{f_{j}, \bar{f}_{j}\right\}(z)=-\left\{y_{n}, \beta_{j}\left(z^{\prime}, x_{n}\right)+h(z) y_{n}\right\}=-\left(\partial / \partial x_{n}\right) \beta_{j}\left(z^{\prime}, x_{n}\right)>0
$$

and therefore $f_{j} \in \mathscr{P}^{+}(\bar{U})$.
In other words, we may assume that $a=y_{n}$, and $b(z)=b\left(z^{\prime}, x_{n}\right)$ is independent of y_{n}. We shall study b in the $\left(z^{\prime}, x_{n}\right)$-projection of U_{0}, which we take to be of the form

$$
\begin{equation*}
W_{0}=U_{0}^{\prime} \times\left\{x_{n} \in \boldsymbol{R} ;\left|x_{n}\right|<T\right\}, \tag{2.7}
\end{equation*}
$$

where U_{0}^{\prime} is an open neighborhood of the origin in $R^{2(n-1)}$, and T is a positive number. Since the null bicharacteristics of a are the straight lines parallel to the x_{n}-axis and lying in the hyperplane $y_{n}=0$. Condition (Ψ) may be translated in the present set-up as

$$
\begin{align*}
& \forall z^{\prime} \in U_{0}^{\prime} \text {, if } b\left(z^{\prime}, x_{n}\right)<0 \text { for some } x_{n},\left|x_{n}\right|<T \text {, then we have } \tag{2.8}\\
& b\left(z^{\prime}, t\right) \leq 0 \text { for all } t, x_{n}<t<T \text {. }
\end{align*}
$$

For convenience we are going to assume that all the above properties of $b\left(z^{\prime}, x_{n}\right)$ hold in a neighborhood of the closure of W_{0}.

Let ε be an arbitrary number >0. We introduce a function $w=w\left(z^{\prime}, t, \varepsilon\right)$, defined and C^{∞} in a neighborhood of \bar{W}_{0}, and valued in C^{n-1}, as the unique solution (see [7, Lemma 2.1]) of the problem:

$$
\begin{equation*}
\dot{w}=-\left(\partial_{\bar{z}^{\prime}}, b\right)\left(z^{\prime}+\varepsilon w, t\right),\left.\quad w\right|_{t=0}=0 . \tag{2.9}
\end{equation*}
$$

We set

$$
\begin{equation*}
b^{c}\left(z^{\prime}, t\right)=b\left(z^{\prime}+\varepsilon w, t\right) \tag{2.10}
\end{equation*}
$$

Lemma 2.1. If $\varepsilon>0$ is sufficiently small, the following two properties hold:
(2.11) $d b^{e}$ vanishes at every point of \bar{W}_{0} where both b^{e} and $\partial_{t} b^{e}$ vanish.
(2.12) Assertion (2.8) is true with b^{s} substituted for b.

Proof of (2.11). By (2.9) we have $\partial_{t} b^{\varepsilon}\left(z^{\prime}, t\right)=\left(\partial_{t} b-\varepsilon\left|\partial_{z^{\prime}} b\right|^{2}\right)\left(z^{\prime}+\varepsilon w, t\right)$ (provided that ε is small enough). By (2.8) we know that wherever $b=0$, we must have $b_{t} \leq 0$. Therefore, if $b^{\iota}\left(z^{\prime}, t\right)=0$ we shall have $\partial_{t} b^{c}\left(z^{\prime}, t\right)<0$, unless $d b\left(z^{\prime}+\varepsilon w, t\right)=0$. But then

$$
\partial_{x^{\prime}} b^{s}\left(z^{\prime}, t\right)=\left(\partial_{x^{\prime}} b\right)\left(z^{\prime}+\zeta w, t\right)\left(I+\varepsilon \partial_{x^{\prime}} w\right)=0
$$

and similarly for $\partial_{y}, b^{\varepsilon}$.

Proof of (2.12). For the sake of clarity, let us use real coordinates in $\boldsymbol{R}^{2 n-1}$ and make the following change of coordinates:

$$
\begin{equation*}
\lambda=\left(x^{\prime}+\varepsilon \operatorname{Re} w, y^{\prime}+\varepsilon \operatorname{Im} w\right), \quad s=t . \tag{2.13}
\end{equation*}
$$

We have, by (2.9),

$$
\begin{equation*}
\frac{\partial}{\partial t}=\frac{\partial}{\partial s}-\varepsilon b_{\lambda}(\lambda, s) \cdot \frac{\partial}{\partial \lambda} . \tag{2.14}
\end{equation*}
$$

We may apply a result of Brézis [1, Theorem 2] to the functions $b(\lambda, s)$ and $Y(\lambda, s)=-\varepsilon b_{\lambda}(\lambda, s)$. The hypotheses (4), (5), (6) of Brézis are clearly satisfied in our case ((4) is nothing else but our hypothesis (2.8)). The conclusion in Theorem 2 of [1] is exactly (2.12).

It is obvious that the functions b^{e} converges to b in $C^{\infty}\left(\bar{W}_{0}\right)$ as $\varepsilon \rightarrow+0$. It will therefore suffice to approximate each b^{e} in $C^{1}\left(W_{0}\right)$ by elements of $C^{\infty}\left(W_{0}\right)$, $\left\{\beta_{j}^{e}\right\}(j=1,2, \ldots)$ satisfying (2.5). But then we may as well and we shall, in the remainder of the proof, assume that b itself is one of the b^{e}, in other words, that (2.11) is true for $\varepsilon=0$.

Let us introduce the set F_{0} of points $\left(z^{\prime}, x_{n}\right)$ of W_{0} such that for some t satisfying $-T<t<x_{n}$ we have $b\left(z^{\prime}, t\right)<0$; we shall denote by F the closure and by \dot{F} the boundary of F_{0} in W_{0}. It is seen at once that $b=0$ on \dot{F}. By (2.11) (for $\varepsilon=0$), we have $\dot{F}=G_{0} \cup G_{1}, G_{0}$ being the set of points where $d b=0$ and G_{1} the set of points where $\partial_{t} b<0$.

For each $z^{\prime} \in U_{0}^{\prime}$, we denote by $t^{+}\left(z^{\prime}\right)$ the infimum of the numbers $t,|t|<T$, such that $\left(z^{\prime}, t\right) \in F_{0}$, and by $+T$ if there are no such numbers t. We denote by $t^{-}\left(z^{\prime}\right)$ the supremum of the numbers $t,|t|<T$, such that $\left(z^{\prime}, t\right) \notin F$, and by $-T$ if there are no such numbers t. The function t^{+}is upper-semicontinuous, and the function t^{-}is lower-semicontinuous in U_{0}^{\prime}. They are equal and C^{∞} in the z^{\prime}-projection of G_{1}, and their singular supports are contained in the closure of the z^{\prime}-projection of G_{0}. Let us extend them to the whole of $\boldsymbol{R}^{2(n-1)}$ by setting $t^{+}=+T$ and $t^{-}=-T$ in the complement of U_{0}^{\prime}.

Let $\delta>0$ be arbitrary. We shall denote by S_{δ} the set of points z^{\prime} whose distance to the singular support of t^{-}(regarded as a function in $\boldsymbol{R}^{2(n-1)}$) is $\leq \delta$. Let then $\alpha \in C^{\infty}\left(\boldsymbol{R}^{2(n-1)}\right)$ vanish outside S_{δ} and be equal to 1 in $S_{o / 2}$, and let us denote by U_{o}^{\prime} the set of points z^{\prime} in U_{0}^{\prime} whose distance to the complement of U_{0}^{\prime} is $>\delta$.
Let $\rho \in C_{c}^{\infty}\left(\boldsymbol{R}^{2(n-1)}\right), \rho \geq 0$ everywhere, $\int \rho d x^{\prime} d y^{\prime}=1$, and set, as customarily done, $\rho_{s}\left(z^{\prime}\right)=\varepsilon^{-2(n-1)} \rho\left(z^{\prime} / \varepsilon\right)$. We then define:

$$
\begin{equation*}
t_{s}=(1-\alpha) t^{-}+\rho_{\varepsilon} *\left(\alpha t^{-}\right) \quad\left(\text { in } R^{2(n-1)}\right) . \tag{2.15}
\end{equation*}
$$

Note that $t_{s}=t^{-}$in the open set $U_{\dot{\delta}+\varepsilon}^{\prime} \backslash S_{\dot{\delta}+\varepsilon}$. Furthermore:

$$
\begin{equation*}
\text { given any } \delta>0 \text { there is } \varepsilon>0 \text { such that, if } z^{\prime} \in U_{2 \delta}^{\prime} \text { and }\left|t_{\varepsilon}\left(z^{\prime}\right)\right|< \tag{2.16}
\end{equation*}
$$ $T-2 \delta$, then the distance of $\left(z^{\prime}, t_{s}\left(z^{\prime}\right)\right)$ to \dot{F} is $<2 \delta$.

Proof of (2.16). It is immediately seen that \dot{F} is exactly equal to the union of the closed sets $\dot{F}_{z^{\prime}}=\left\{\left(z^{\prime}, x_{n}\right) ; t^{-}\left(z^{\prime}\right) \leq x_{n} \leq t^{+}\left(z^{\prime}\right)\right\}$. By semicontinuity, given any $\eta>0$ there is $\varepsilon>0$ such that if $\left|z^{\prime}-\zeta^{\prime}\right|<\varepsilon$ then

$$
\begin{equation*}
\left(\alpha t^{-}\right)\left(z^{\prime}\right)-\eta<\left(\alpha t^{-}\right)\left(\zeta^{\prime}\right) \leq\left(\alpha t^{+}\right)\left(\zeta^{\prime}\right)<\left(\alpha t^{+}\right)\left(z^{\prime}\right)+\eta \tag{2.17}
\end{equation*}
$$

We derive, from (2.15) and (2.17),

$$
\begin{equation*}
t^{-}\left(z^{\prime}\right)-\eta \leq t_{\epsilon}\left(z^{\prime}\right) \leq t^{+}\left(z^{\prime}\right)+\eta \tag{2.18}
\end{equation*}
$$

By choosing $\eta \leq \delta$ we see that this implies (2.16).
For convenience let us assume that b has been extended as a C^{∞} function to the whole of $\boldsymbol{R}^{2 n-1}$. We now construct a Whitney's partition of unity in $\boldsymbol{R}^{2 n-1} \backslash \overline{\boldsymbol{G}}_{0}$ in the manner of [10, Appendix]. It consists of a sequence of nonnegative C^{∞} functions $\left\{\phi_{j}\right\}(j=1,2, \cdots)$ with compact support in $\boldsymbol{R}^{2 n-1} \backslash \overline{\boldsymbol{G}}_{0}$ such that, for some constant $C>0$,

$$
\begin{equation*}
\sum_{j=1}^{+\infty}\left|d \phi_{j}\right| \leq C\left(1+1 / d_{0}\right) \quad \text { in } R^{2 n-1} \backslash \overline{\boldsymbol{G}}_{0} \tag{2.19}
\end{equation*}
$$

where $d_{0}\left(z^{\prime}, x_{n}\right)$ denotes the distance of $\left(z^{\prime}, x_{n}\right)$ to \bar{G}_{0} (which is compact). Then we set, for $J=1,2, \cdots$,

$$
b_{J}=\sum_{j=1}^{J} \phi_{j} b .
$$

Lemma 2.2. As $J \rightarrow+\infty, b_{J}$ converges to b in $C^{1}\left(\boldsymbol{R}^{2 n-1}\right)$.

Proof. It suffices to reason in a bounded neighborhood $\tilde{\mathscr{O}}$ of \bar{W}_{0} (or \bar{G}_{0}) and to prove there that $h_{J}=b-b_{J}=\sum_{j>J} \phi_{j} b$ converges to zero in $C^{1}(\widetilde{O})$. Note that the support of h_{J} is contained in an arbitrarily "small" neighborhood of \bar{G}_{0}, provided that J is large enough. Since $\left|h_{J}\right| \leq|b|$ for whatever J and $b=0$ on G_{0}, we see that $h_{J} \rightarrow 0$ in C^{0}. By the same token, since $d b=0$ on G_{0},

$$
d h_{J}-\sum_{j>J}\left(d \phi_{j}\right) b=\sum_{j>J} \phi_{j} d b
$$

tends to zero in C^{0}. By virtue of (2.19) we have

$$
\begin{equation*}
\left|\sum_{j>J}\left(d \phi_{j}\right) b\right| \leq C \sup _{\operatorname{supp} h_{J}}\left\{\left(1+1 / d_{0}\right)|b|\right\} . \tag{2.20}
\end{equation*}
$$

But

$$
\left|b\left(z^{\prime}, x_{n}\right)\right| \leq d_{0}\left(z^{\prime}, x_{n}\right)\left[\sup _{d_{0}\left(\zeta^{\prime}, t\right) \leq d_{0}\left(z^{\prime}, x_{n}\right)}\left|d b\left(\zeta^{\prime}, t\right)\right|\right]
$$

Since $\left|d b\left(z^{\prime}, x_{n}\right)\right|$ tends to zero with $d_{0}\left(x^{\prime}, x_{n}\right)$, we see that the right-hand side of (2.20) goes to zero as $J \rightarrow+\infty$. q.e.d.

By virtue of Lemma 2.2, if we want to approximate b in the announced manner, it suffices to approximate each b_{J}. Let us therefore fix J arbitrarily. We know that b_{J} is a C^{∞} function, vanishing in some open neighborhood \mathcal{O}_{J} of \bar{G}_{0}. We reintroduce the function t_{e} (in U_{0}^{\prime}) defined and studied earlier. By virtue of (2.16) and the remark which precedes, we can choose δ and ε sufficiently small so that the set

$$
\begin{equation*}
z^{\prime} \in U_{2 \delta}^{\prime}, \quad|t|<T-2 \delta, \quad t=t_{\varepsilon}\left(z^{\prime}\right) \tag{2.21}
\end{equation*}
$$

is identical with \dot{F} except possibly in some compact subset of \mathcal{O}_{J}. It follows at once that there is a nonnegative C^{∞} function g_{J} in $\left.U_{2 \delta}^{\prime} \times\right]-T+2 \delta, T-2 \delta[$ such that for this same set

$$
\begin{equation*}
b_{J}\left(z^{\prime}, x_{n}\right)=g_{J}\left(z^{\prime}, x_{n}\right)\left(t_{s}\left(z^{\prime}\right)-x_{n}\right) \tag{2.22}
\end{equation*}
$$

Then

$$
\begin{equation*}
b_{J, k}\left(z^{\prime}, x_{n}\right)=\left[g_{J}\left(z^{\prime}, x_{n}\right)+\frac{1}{k}\right]\left[t_{s}\left(z^{\prime}\right)-x_{n}\right] \tag{2.23}
\end{equation*}
$$

converges to b_{J} in C^{∞} as $k \rightarrow+\infty$; it clearly satisfies (2.5) if U is chosen small enough (but independently of J and k).
II. Proof of the sufficiency. Let U be an arbitrary open subset of U_{0} containing the origin, and let $\left\{f_{j}\right\}(i=1,2, \cdots)$ be a sequence of elements of $\mathscr{P}^{+}(\bar{U})$ converging to $f=y_{n}+i b(z)$ in $C^{1}(\bar{U})$. We may assume that the f_{j} belongs to $C^{\infty}(\bar{\Omega})$. We shall assume that f does not satisfy $(\Psi)_{\zeta}$ (with $\zeta=1$, cf. remark at the beginning of the proof) at the origin, and show that this leads to a contradiction.

In the language of the natural topology on subsets, we may assert the following: in \bar{U} and for j sufficiently large, the zero-set of $a_{j}=\operatorname{Re} f_{j}$ is arbitrarily close to that of $\operatorname{Re} f$, i.e., to the hyperplane $y_{n}=0$, and the null bicharacteristics of a_{j} are arbitrarily close to those of $\operatorname{Re} f$, that is to say, to the x_{n}-lines lying in the hyperplane $y_{n}=0$. Suppose then that $b\left(z^{(1)}\right)<0, b\left(z^{(2)}\right)>0$ with

$$
z^{\prime(1)}=z^{\prime(2)}, \quad x_{n}^{(1)}<x_{n}^{(2)}, \quad y_{n}^{(1)}=y_{n}^{(2)}=0
$$

the segment joining $z^{(1)}$ to $z^{(2)}$ being entirely contained in \bar{U}. Then, as soon as j is large enough, there is a null bicharacteristic of a_{j} along which b_{j} must change sign from minus to plus and therefore vanish at a point z of \bar{U} where $H_{a_{j}} b_{j}>0$, contrary to the hypothesis that $f_{j} \in \mathscr{P}^{+}(\bar{U})$. q.e.d.

The so-called "invariance of Property (Ψ)" follows immediately from Theorem 2.1.

Corollary 2.1. Let $z_{0} \in V_{f}$ and let $\zeta \in C$ be such that $d[\operatorname{Re}(\zeta f)]\left(z_{0}\right) \neq 0$. Let $g \in C^{\infty}(\bar{\Omega})$ be such that $d[\operatorname{Re}(\zeta g f)]\left(z_{0}\right) \neq 0$. If $(\Psi)_{\zeta}$ holds for f at z_{0}, it also does for fg.

In particular, we have
Corollary 2.2. Let z_{0} and ζ be as in Theorem 2.1. If $(\Psi)_{\zeta}$ holds for f at z_{0}, so does $(\Psi)_{\theta}$ where θ is any complex number such that $d[\operatorname{Re}(\theta f)]\left(z_{0}\right) \neq 0$.

The results in Corollaries 2.1 and 2.2 have been originally proved in [5, Appendix].

Definition 2.2. Let $f \in C^{1}(\bar{\Omega})$ satisfy (2.1). For any point z_{0} of Ω we say that f satisfies the condition (Ψ) at z_{0} if either $f\left(z_{0}\right) \neq 0$ or $f\left(z_{0}\right)=0$ with f satisfying $(\Psi)_{\theta}$ at z_{0} for some θ (and then this is true for all θ such that (2.2) holds).

Theorem 2.1 then implies
Corollary 2.3. Let z_{0} be any point of Ω. In order that f satisfy (Ψ) at z_{0} it is necessary and sufficient that there be an open neighborhood U of z_{0} in Ω such that $\left.f\right|_{\bar{U}}$ belongs to the closure of $\mathscr{P}^{+}(\bar{U})$ in $C^{1}(\bar{U})$.

Definition 2.3. Let f, z_{0} be as in Definition 2.2. We say that f satisfies the condition (P) at z_{0} if (Ψ) holds at z_{0}, both for f and \bar{f}.

Corollary 2.4. Let f, z_{0} be as in Corollary 2.3. In order that f satisfy (P) at z_{0} it is necessary and sufficient that there be an open neighborhood U of z_{0} in Ω such that $f_{\bar{U}}$ belongs to the intersection of the closures in $C^{1}(\bar{U})$ of $\mathscr{P}^{+}(\bar{U})$ and $\mathscr{P}^{-}(\bar{U})$.

We recall that \mathscr{P}^{-}is the union of the $\mathscr{P}^{(0, q)}, q=0,1, \cdots$, and that $f \in \mathscr{P}^{-}$ is equivalent to $\bar{f} \in \mathscr{P}^{+}$.

We ought perhaps to recall the "other" meaning of Condition (P) (at z_{0}): either $f\left(z_{0}\right) \neq 0$ or if $f\left(z_{0}\right)=0$ then, for a suitable open neighborhood U_{0} of z_{0} in Ω and for some (or any) complex number θ such that (2.2) holds,
the restriction of $\operatorname{Im}(\theta f) t o$ any null bicharacteristic Γ of $\operatorname{Re}(\theta f)$ contained in U_{0} does not change sign on Γ.

Finally we should underline the fact that the condition in Corollary 2.4 involves the intersection of the closures (of \mathscr{P}^{+}and \mathscr{P}^{-}) and not the closure of the intersection, which would be the closure of $\mathscr{P}^{0,0}$, the set of functions h which do not vanish anywhere in $\bar{\Omega}$. The closure of $\mathscr{P}^{0,0}$ is easy to characterize.

Definition 2.4. Let z_{0} be any point in Ω. We say that f satisfies the condition (R) at z_{0} if there are a complex number θ and an open neighborhood U_{0} of z_{0} in Ω such that $d[\operatorname{Re}(\theta f)]$ does not vanish anywhere in U_{0} and that the following holds:
the restriction of $\operatorname{Im}(\theta f)$ to the zero-set of $\operatorname{Re}(\theta f)$ in U_{0} does not change sign.

Theorem 2.2. Let z_{0} be any point in Ω. In order that f satisfy (R) at z_{0} it is necessary and sufficient that there be an open neighborhood U of z_{0} in Ω such that $\left.f\right|_{\bar{U}}$ belongs to the closure in $C^{1}(\bar{U})$ of the set of functions h which do not vanish at any point of \bar{U}.

The proof is easy and we leave it to the reader.
Condition (R) occurs in the theory of partial differential equations, and in [8] it has been shown that if it holds at every point of the cotangent bundle $T^{*} M$, then a simple construction of local parametrices is possible.

3. A few remarks in the general case

The condition that $f \in C^{\infty}(\bar{\Omega})$ belong to the closure of \mathscr{P}^{+}in $C^{1}(\bar{\Omega})$ makes sense even when f has critical points. Going back to the theory of partial differential equations and taking Theorem 2.1 into account, one is led to the natural generalization of the conjecture made in [4] that Property (Ψ) is equivalent to local solvability in the case of operators of principal type. Since it is well known that lower-order terms in a differential operator can affect its solvability properties, the only aspect of the conjecture which one can hope to generalize is the "necessity" (of Condition (Ψ) in the principal type case). Let therefore $P(x, D)$ be a pseudodifferential operator in a C^{∞} manifold M, and $p(x, \xi)$ its principal symbol (we are tacitely assuming that the total symbol of P is an asymptotic sum of terms which are homogeneous with respect to the variables ξ, with homogeneity degrees decreasing by integral values; it is likely that more general situations than this one could be considered).

Conjecture. If $P(x, D)$ is locally solvable at every point of M, then every point $\left(x_{0}, \xi^{0}\right)$ of the cotangent bundle $T^{*} M$ such that $\xi^{0} \neq 0$ has an open neighborhood U such that p $\left.\right|_{\bar{u}}$ belongs to the closure of $\mathscr{P}^{+}(\bar{U})$ in $C^{1}(\bar{U})$.

Such a statement makes it important to find out whether a symbol does belong (locally) to the closure (in C^{1}) of \mathscr{P}^{+}. It should be noted that this property is open, i.e., it cannot hold at a point unless it also holds at every point of some neighborhood of it. In view of this the next proposition might be useful.

Proposition 3.1. Let $f \in C^{\infty}(\bar{\Omega})$, and let z_{0} be a point of Ω such that $f\left(z_{0}\right)$ $=0$ and that for a suitable open neighborhood U_{0} of z_{0} in Ω the following is true:
there is a noninvolutive submanifold W of codimension 2 in U_{0} which contains $U_{0} \cap Z_{f}\left(Z_{f}:\right.$ zero-set of $\left.f\right)$.

Let p_{0} be the winding number of f about z_{0} in the two-dimensional plane $P_{z_{0}}$ through z_{0}, which is orthogonal to the tangent plane $T_{z_{0}} W$ in the sense of the symplectc form ω. Consider the following property (for a pair of nonnegative integers $p, q)$:
there is an open neighborhood $U \subset U_{0}$ such that $\left.f\right|_{\bar{U}}$ belongs to the closure of $\mathscr{P}^{p, q}(\bar{U})$ in $C^{1}(\bar{U})$.

Then (3.2) holds when $p=p_{0}, q=0$ if $p_{0} \geq 0$, or when $p=0, q=-p_{0}$ if $p_{0}<0$. Furthermore, if U_{0} is small enough, whenever (3.2) holds for some pair (p, q) of nonnegative integers, we must have $p=q+N p_{0}$ for some integer $N \geq 1$ in the first case, and $q=p-N p_{0}$ in the second case.

Proof. We may perform a canonical change of variables such that z_{0} becomes the origin and W becomes the piece of hyperplane $z_{n}=0$ defined by $\left|z^{\prime}\right|<r^{\prime}$. We may also assume that $p_{0} \geq 0$; the result for $p_{0}<0$ is then derived by exchanging f and \bar{f}.

We shall denote by $I_{f}(z)$ the winding number of f about $z \in W$ in the plane P_{z}.
Let us first suppose $p_{0}=0$. If r^{\prime} and $r_{n}>0$ are small enough, and U denotes the set $\left\{z \in C^{n} ;\left|z^{\prime}\right|<r^{\prime},\left|z_{n}\right|<r_{n}\right\}$ for each $k=1,2, \cdots$, then we can find a smooth complex-valued function $\lambda_{k}\left(z^{\prime}\right)$ of $z^{\prime} \in C^{n-1},\left|z^{\prime}\right| \leq r^{\prime}$, converging uniformly to zero in this set together with its first partial derivatives (with respect to $\left.x^{\prime}, y^{\prime}\right)$, as $k \rightarrow+\infty$, such that, for every k and each z^{\prime} with $\left|z^{\prime}\right|<r^{\prime}$, $\lambda_{k}\left(z^{\prime}\right)$ does not belong to the range of $f\left(z^{\prime}, z_{n}\right)$ when $\left|z_{n}\right|<r_{n}$. Thus $f_{k}(z)=$ $f(z)-\lambda_{k}\left(z^{\prime}\right) \in \mathscr{P}^{0,0}(\bar{U})$ converges to $f(z)$ in $C^{1}(\bar{U})$.

Suppose now $p_{0}>0$. Then we may write $f(z)=z_{n}^{p_{0}} g(z)$ with $Z_{g} \subset W, I_{g}=0$ throughout W (we recall that I_{f} is locally constant on W). We apply the first part to the function g. We may form a sequence of elements g_{1}, g_{2}, \ldots in $\mathscr{P}^{0,0}(\bar{U})$ (for U open, containing the origin, sufficiently small) converging to g in $C^{1}(\bar{U})$. On the other hand, let $\theta_{1}, \cdots, \theta_{p_{0}}$ denote the p_{0}-th roots of unity and set $f_{k}(z)=\left(z_{n}-\theta_{1} / k\right) \cdots\left(z_{n}-\theta_{p_{0}} / k\right) g_{k}(z)$. It is clear that $f_{k} \rightarrow f$ in $C^{1}(\bar{U})$, and that $f_{k} \in \mathscr{P}^{p_{0}, 0}(\bar{U})$ as soon as $k>1 / r_{n}$.

Let now U be an open neighborhood of the origin, contained in Ω, and let f_{j} be a sequence of elements of $\mathscr{P}^{p, q}(\bar{U})$ converging to f in $C^{1}(\bar{U})$. Let us decompose $\bar{U} \cap W$ into N connected components W^{1}, \cdots, W^{N}, and for each $\alpha=1, \cdots, N$ let U^{α} be a tubular neighborhood of the compact set W^{α} in the fashion of those considered in the proof of Proposition 1.3. The cross section of each U^{α} is a disk of fixed radius centered at $z \in W^{\alpha}$ and contained in the plane P_{z}. It is clear that for j large enough f_{j} will not vanish except possibly in $U^{1} \cup \cdots \cup U^{N}$. Consequently, if c_{z} denotes the circumference (oriented counter-clockwise) centered at z which bounds the cross-section of U^{α} through $z\left(z \in W^{\alpha}\right)$, then $I_{f_{j}}(z)=(2 \pi i)^{-1} \oint_{c_{z}} d f_{j} / f_{j}$ is equal to $I_{f}(z)$, i.e., to p_{0}. This implies that U^{α} contains p_{α} (resp. q_{α}) connected components of the zero-set of f_{j} on which $-i\left\{f_{j}, \bar{f}_{j}\right\}$ is positive (resp. negative), and that $p_{\alpha}-q_{\alpha}=p_{0}$. But of course $p=p_{1}+\cdots+p_{N}$ and $q=q_{1}+\cdots+q_{N}$, hence $p=q+N p_{0}$.

Corollary 3.1. With the same hypotheses as in Proposition 3.1 we further assume that z_{0} belongs to the closure of $W \backslash Z_{f}$ in W. Then (3.2) holds with $p=q=0$.

There are other cases in which f will belong (locally) to the closure (in C^{1}) of $\mathscr{P}^{0,0}$. A notable one is that of the real-valued functions as we can see in the following proposition.

Proposition 3.2. Suppose that $f \in C^{1}(\bar{\Omega})$ is real-valued. Then every point z_{0} of Ω has an open neighborhood U such that $f_{\bar{U}}$ belongs to the closure of $\mathscr{P}^{0,0}(\bar{U})$ in $C^{1}(\bar{U})$.

Proof. Real-valued functions $f \in C^{1}(\bar{\Omega})$ are limits, in this space, of realvalued smooth functions in $\bar{\Omega}$ which have no critical point. It suffices then to apply Theorem 2.2.

In connection with these considerations it is perhaps worth mentioning that if f and g are locally in the C^{1} closure of \mathscr{P}^{+}, so is their product $f g$. We shall leave the proof of this fact to the reader. Note that $f g$ might well belong to the closure of \mathscr{P}^{+}in the neighborhood of a given point, without this being true of neither f nor g; e.g., it is always true, according to Proposition 3.2, of the products $f \bar{f}$, though of course it is not always true of f.

Finally, we wish to mention that one might state the same conjecture for (determined) systems of pseudodifferential equations as the one we have stated for a single (scalar) such equation, provided that we interpret $p(x, \xi)$ as the determinant of the principal symbol of the system. In our opinion, it is a reasonable conjecture and perhaps the only one which can be made, bearing solely on the principal symbol.

Bibliography

[1] H. Brezis, On a characterization of flow-invariant sets, Comm. Pure Appl. Math. 23 (1970) 261-263.
[2] L. Hörmander, Pseudodifferential operators and non-elliptic boundary value problems, Ann. of Math. 83 (1966) 129-209.
[3] R. Moyer, On the Nirenberg-Treves condition, unpublished manuscript.
[4] L. Nirenberg \& F. Treves, On local solvability of linear partial differential equations. Part I: Necessary conditions, Comm. Pure Appl. Math. 23 (1970) 1-38.
[5] --, On local solvability of linear partial differential equations. Part II: Sufficient conditions, Comm. Pure Appl. Math. 23 (1970) 459-510.
[6] J. Sjostrand, Operators of principal type with interior boundary conditions, Acta Math. 130 (1973) 1-51.
[7] M. Strauss \& F. Treves, First-order linear PDEs and uniqueness in the Cauchy problem, J. Differential Equations 15 (1974) 195-209.
[8] F. Treves, Hypoelliptic partial differential equations of principal type, sufficient conditions and necessary conditions, Comm. Pure Appl. Math. 24 (1971) 631670.
[9] - On the existence and regularity of solutions of linear partial differential equations, Proc. Sympos. Pure Math. Vol. 23 Amer. Math. Soc., 1971, 33-60.
[10] _ Local solvability in L^{2} of first order linear PDEs, Amer. J. Math. 92 (1970) 369-380.

[^0]: Communicated by L. Nirenberg, November 26, 1973. Supported in part by NSF Grant No. 27671.
 ${ }^{1}$ That a fact of this kind might be true was suggested approximately ten years ago to L. Nirenberg and the author by J. Moser.

