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BUNDLE HOMOGENEITY AND HOLOMORPHIC
CONNECTIONS

RICHARD S. MILLMAN

1. Let&é:G—P ", Mbe a holomorphic principal fiber bundle with
group G, total space P, base space M and projection z. Let a(M) be the Lie
algebra of all holomorphic vector fields on M, and let b(&) be the space of all
R, invariant elements of a(P). (By R, we mean the map R, : P — P given by
R,(p) = p?.) Let &, : b(§) — a(M) be the obvious projection. We say that &
is bundle homogeneous if z, is onto. The purpose of this paper is to study the
relation between the bundle homogeneity of & and the existence of a holomorphic
connection on &.

In §2 we fix notation, and in § 3 we gather together the various defini-
tions of a holomorphic connection and show that they are equivalent. This
equivalence is well-known but does not seem to be written down anywhere.

In § 4 we prove

Thecorem 4.1, If & has a holomorphic connection, then & is bundle ho-
mogeneous.

We also show that the converse of Theorem 4.1 is false in general, but we
prove

Theorem 4.5. Let M be complex parallelizable. Then & is bundle homo-
geneous if and only if & admits a holomorphic connection.

If M is compact, Theorem 4.1 is due to 4. Morimoto [9]. In the case
where M is a complex torus, Theorem 4.5 was proven independently by Y.
Matsushima [6] and S. Murakami [10].

Recall that a real product bundle is a holomorphic principal fiber bundle
which admits a C> cross-section [7]. In § 5, we obtain a necessary condition
for a real product bundle to be bundle homogeneous. This condition is also
sufficient if M is compact (Theorem 5.2), and we also obtain some information
about the kernel of r, in this case.

Since Dolbeault cohomology is not a homotopy invariant (Corollary 6.1),
we are able in § 6 to apply the results of the previous sections to construct an
example of a real product bundle with (noncompact) Kdhler base which does
not admit a holomorphic connection. Because there are no topological obstruc-
tions on a real product bundle, this example shows that the Atiyah obstruction
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12 RICHARD S. MILLMAN

[1] is not a topological invariant, and also that in general the existence of a
holomorphic connection does not depend only on the topological structure of

the bundle [8].
2. We now recall some basic definitions and theorems about holomorphic

connections. Suppose that G is a complex Lie group, M and P are complex
manifolds, and G acts freely and holomorphically on P (on the right). We
write p# for the action of ge Gon pe P, and R, : P — P for R,(p) = p%. We

say that £:G— P s Mis a holomorphic principal fiber bundle if P is
locally biholomorphically equivalent to M X G. This means (i) M is the quo-
tient space of P under the action of G, (ii) there are an open cover {U,} of M
and biholomorphic homeomorphisms v, : #7}(U,) — U, X G which commute
with the action of G such that

a(U) Y5 U, x G
\
UT

commutes (where pr, is projection in the first coordinate), (iii) z is holomorphic.
We shall write T, M for the complex tangent space of M at m (i.e., Z,, ¢ T,,M
means Z,, = X,, + iY,, where X,, and Y, are real tangent vectors at m in the
usual sense), and ¢, for the differential of the map ¢. We define the vertical

(ker «), at p by
(ker ), = {X, e T,(P) |7 (X,) = 0} .

Let G be a complex Lie group of complex dimension r with complex struc-
ture J,. We denote by g the Lie algebra of all left invariant real vector fields on
G, considered as a real Lie group, by g, the Lie algebra of all holomorphic
left invariant vector fields on G, and by g¢ the complexification of g, i.e. g¢ is
the Lie algebra of all left invariant complex vector fields on G. We may also
regard g° as a complex manifold with complex structure J. We shall use
AY(M, g°) for the vector space of all Lie algebra valued one-forms on M.
A'(M, g°) may be written as A"”(M, g°) @ A"V (M, g°) where

AV(M, g°) = {w e A(M, g% |o(yA) = Jo(A4) for all 4 ¢ TM} ,
A"(M, g€) = {w e (M, g% |0 yA) = —Jw(A) for all A e TM} .

If A: M — g is smooth, then % induces a map dh: TM — g%, i.e., dh ¢ A\(M, g°),
so that we may write dh as dh = oh + 0h where 0he A%°(M,g°) and
ohe A% (M, g%). If 2w,(A) = dh(A) — Jdh(JyA) and 2w,(4) = dh(4) +
Jdh(J,A), then v, ¢ A+°(M, a%), w, € A(M, g¢) and dh = w, + w,. Therefore
20h(A) = dh(A) + Jdh(J,A) or
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2.1) 2Jon(A4) = Jdn(4) — ah(JyA) .

If a € G, then ad(a): g¢ — g¢ will be the usual adjoint map.

If M is a complex manifold, then in a coordinate neighborhood U we know
that {3/0x*,d/ay*|k = 1, - - -, n} forms a basis for T',M at each point m e U.
We define

0/0z% = L(9/ox* — io/oy"®) , 0/07% = 3(0/ox* + io/ay*) .

Let T,'M = {ZeT,M|JZ = iZ}, and T,""M ={ZeT,M|JZ = — iZ}.
Then T,M = T,"°M @ T,*'M, and {(0/0z%), |1 < k < n} (resp. {(3/0Z")n|
1 < k < n}) forms a basis for T,,"°M (resp. T,,"*M) at m € U. A vector field
Z is called a holomorphic vector field it Z,, € T,,*"M and in any cordinate chart
Z, = X}, fi(m)(3/0z7),, for some holomorphic functions f7.

We shall now describe the standard embedding of g¢ onto the vertical. For
p e Plet 7@ : G— P be defined by ?@(g) = p¢. We then define 6, : ¢° — (ker n),
by 6,(4) = (?9),(A), where the differential is evaluated at e ¢ G and we have
identified g and T,G in the usual manner.

Proposition 2.1. (a) 0,:g° — (ker n), is an isomorphism of vector spaces
for each p ¢ P.

(b) If A e q,, then the vector field p — 0,(A) is a holomorphic vector field.

Proof. (a) follows as in the C= case [3, p. 51].

(b) The fact that ©,(4) is of type (1,0) follows from [4, p. 179]. If
(wy, -+, w,)and (z,, - - -, z,,) are the coordinates about e ¢ G and p € P respec-
tively, then we may write

Q(Zla s Ty Wiyttt wr) = (Ql(zs W), R} @n(z’ W))

with @* holomorphic functions, and so

0 0
%) (o)
? aWj e k=1 ij (p e) aZk D>

oo*

W,

Il
M=

which is clearly a holomorphic vector field because (p, e) is a holomor-

phic function of p.

3. A connection on £ is a distribution H : p— H,, in P such that (1) T,P =
(ker r), ® H,, and (2) (R,),H, = H_,. The connection 1-form w ¢ A'(P, g9) is
defined as follows: Any X e TP may be written as the sum of 42X ¢ H and
vX e ker n. hX is called the horizontal part of X, and vX the vertical part
of X. Let 0,(X) = 6,7'(vX) where 0 is as in Proposition 2.1. The following
proposition is quite easy and allows us to call a connection either a distribution
as in the definition above or a g®-valued 1-form satisfying the two conditions
of Proposition 3.1.
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Proposition 3.1. If w is the connection 1-form of a connection, then

(1) w,(0,(4)) = A for all A e g°,

2) RFo)(X) = (ad g7 (w(X)) for all X e TP and g € G.
Furthermore, if we ANP, g°) satisfies (1) and (2) above, then o is the con-
nection given by

H, = {X ¢ T,P|w,(X) = 0} .

A connection H is of type (1,0) if JH, = H, for all p e P. This is clearly
equivalent to the condition w ¢ A“*(P, g°) where w is the connection 1-form of
H. A connection is a holomorphic connection if w is of type (1, 0) and do = 0.
The following theorem (which appears to be well-known but not written down)
gives the geometric content of the definition of a holomorphic connection. (Re-
call that if Z is a vector field on M, then the horizontal lift Z of Z is the
unique vector field on P such that n-*(Z) = Z and Z(p) eH,forall peP.)

Theorem 3.2. If£:G — P LsMisa holomorphic principal fiber bun-
dle, and H is a (1, 0) connection on &, then the following are equivalent :

(a) H is a holomorphic connection.

(b) If W is any open subset of P, and X is any holomorphic vector field de-
fined on W, then vX is also a holomorphic vector field on W.

(¢) If X is holomorphic on W, then hX is holomorphic on W.

(d) The horizontal lift of any holomorphic vector field which is defined on
any open subset U of M is a holomorphic vector field on n~'(U).

Proof. Let (W', --.,w") be a coordinate chart in G, and (2!, - - -, z*) a co-
ordinate chart in M. We may use (2!, - - -, 2% W', - - ., w") as a coordinate in
P via the local trivialization. Suppose that o is the connection 1-form of H. If
X is any holomorphic vector field, and {e,, - - -, e,} is a basis for g°, then we
may write locally w = ] o/ dz/e, and

X = % f@w-2 + nhawm
ow Z

a
where A* and f* are holomorphic functions. Therefore

(1) vX = Oo(X) = X Mo 0(e) .

Using Proposition 2.1 (b), it follows from (1) that O(w(X)) is holomorphic
for all X if and only if w;* are holomorphic; hence (a) & (b).

The equivalence of (b) and (c) follows from X = vX + hX.

Assume (c), and suppose that X is a holomorphic vector field on U which
we may assume is small enough so that z~'(U) is trivial. We now regard X as
the vector field (X,0) on U X G, and clearly X = h(X,0); hence (c) = (d).

We now complete the proof by showing that (d) = (a). Because
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T (- gore)

a0z’ 07’

must be holomorphic for each j by assumption, we see that w;* must be holo-
morphic; hence (d) => (a). q.e.d.

There is an alternate formulation due to Atiyah [1]. Because we shall not
need it explicitly, we shall not go into it except to say that in his formulation
a holomorphic connection exists on & if and only if a certain element (called
the Atiyah obstruction) is zero in a certain cohomology set. To see that this is
equivalent to our definition, see [7, Proposition 3.12].

4. Let ¢:G— P—"5>Mbea holomorphic principal fiber bundle. Let
a{M) be the Lie algebra of all holomorphic vector fields on M, and let b(&) =
{X ea(P)|(R,) X =X for all g e G}. We call X e b(§) an infinitesimal bundle
automorphism of &. 1If X e b(&), then by z,(X) we mean 7 (X),f = X, (foxn)
for any m e M and p ¢ z7'(m). This is well-defined because (R,), X = X for
all g € G, and is holomorphic because of the local product structure. We say
that & is bundle homogeneous if =, : b(¢) — a(M) is onto.

Theorem 4.1. If & has a holomorphic connection, then & is bundle homo-
geneous.

Proof. 1f X e a(M), then by Theorem 3.2 the horizontal lift X with respect
to the holomorphic connection is holomorphic. On the other hand, if X(p) is
horizontal, then so is (R,),X(p); hence (R,),X(p) = X(p5). We therefore
have (Rg)*X' = X and so X e b(&). Clearly n-*()f') = X and so z, is onto.
q.e.d.

By [1, p. 188] we have

Corollary 4.2. Any holomorphic principal fiber bundle whose base space
is a Stein manifold is bundle homogeneous.

Let M be compact, and let 4(M) denote the identity component of the com-
plex Lie group of biholomorphic homeomorphisms of M, and B(£) the identity
component of the group of holomorphic bundle automorphisms (i.e., B(§) is
the identity component of {¢ € A(P)|ro¢ =mandgoR, =R, o¢foralla e G}).
Then 7 : B(§) — A(M) is defined by n(¢)(m) = =(¢(p)) for any p € z~'(m).

Proposition 4.3. (Morimoto [9]). (a) If & is bundle homogeneous, then
7 : B(§) — A(M) is onto.

(b) If M is compact, then B(§) is a Lie group, and so r is onto if and only
if & is bundle homogeneous.

Proof. If f, e A(M) is a 1-parameter subgroup for all 0 < ¢ < 1, then f; in-
duces an element X of a(M). Let X ¢ b(¢) such that z,(X) = X, and let ¢,
be the local 1-parameter subgroup generated by X at pe P. To prove (a), we
need only to show that ¢ is a global 1-parameter subgroup because clearly
7(@,) = f, and ¢, € B(&). To do this we show that ¢, is the horizontal lift of f;
with respect to some (not necessarily holomorphic) connection /" on &.
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Let g be any right G-invariant Riemannian metric on P, and H » the ortho-
gonal subspace in T,P of V, + CX,. If I':p — H, is defined by H, =
H » + cxX »» then I is the desired connection.

The statement that B(£) is a Lie group if M is compact is Morimoto’s
theorem. He also proved that the Lie algebra map induced by = is z,, and so
we have (b). q.e.d.

For compact M Theorem 4.1 is due to Morimoto [9, p. 166] who also
proved

Theorem 4.4. If M is a compact Kihler manifold whose first Betti number
is zero and G is nilpotent, then the holomorphic principal fiber bundle & : G —
P — M is bundle homogeneous.

Both of these theorems of Morimoto are proven by using the Atiyah view-
point. Applying Theorem 4.4 to the canonical C* bundle & over CP* we see
that the converse of Theorem 4.1 is false. We can also do this constructively
as follows: ¢ e B(¢) if and only if ¢: C**' — {0} — C*** — {0} is a holomor-
phic homeomorphism and ¢(4z) = 2¢(z) for all 2 e C* and z e C**' — {0}. By
[2, p. 21] ¢ can be extended to a map of C**'— C**! such that ¢(iz) =
2¢(z) for all 2e C and z e C**'. By the standard trick this means that ¢ ¢
Gl(n + 1,C). Clearly any ¢ € Gl(n + 1, C) restricts to an element of B(§),
and hence B(§) = Gl(n + 1, C). By using a result of Lichnerowicz [5] to give
us all A(CP"), we see that r is onto. Recall that a complex parallelizable n-
manifold is one on which there are n holomorphic vector fields which are li-
nearly independent at each point (see [12]). The following theorem gives a
converse to Theorem 4.1.

Theorem 4.5. Suppose that &. G — P — M is a holomorphic fiber bundle,
and M is complex parallelizable. Then & is bundle homogeneous if and only if
& admits a holomorphic connection.

Proof. We need only to assume that ¢ is bundle homogeneous, and to show
that & admits a holomorphic connection. Let X, - - -, X,, € a(M) be linearly in-
dependent. Let X ;* be any element of b(£) such that 7, X ,* = X, and let X ;*
denote the complex conjugate of X;*. We claim that if H, = span of {X,*(p),
L XK, X F(p), - -+, X, *(p)), then H: p — H, is a holomorphic connec-
tion on &. Since JX ,;* = iX,;* and JX;* = —iX;*, we see that H, is of type
(1,0). Since X;* is of type (1,0), there is a real tangent vector 4 such that
X;*=A — iJA. Hence (R, X;* = (R),A — iJ(R),A and X;* = 4 +
iJA, which imply that (R,), X ;* = (Rp),A4 + iJ(R,),A, so that (R,), X * =
(R,) X ;* for all g ¢ G. Because X ;* ¢ b(§), we have that (Rp),X,;* = X,;* and
(Rg)*f,-* = (Rp),X,;* = X ;*, so (R,)H, = H,.. By a dimension argument,
to show that T,P = (ker x), ® H, we need only to show that (ker ), N H,
= (0), but this is clear because =, is one to one on a basis of H, by definition.
Hence H is a connection of type (1, 0).

If X is any (local) holomorphic vector field on M, then there are (local)
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holomorphic functions f7 on M such that X = 7., f'X;, but then

"1 (f7om)X* is clearly the horizontal lift of X with respect to H and is a
holomorphic vector field. Hence H is a holomorphic connection by Theorem
3.2. q.e.d.

5. A holomorphic principal fiber bundle ¢ is called a real product bundle if
& admits a C~ section (i.e., a C* map s: M — P such that 7os = 1,). From
[7, Theorems 1.2.6 and 2.3.5] we know that every real product bundle must
take the form ¢: G — (M X G),, — M where 5 ¢ A%'(M, g°) and (for z ¢ M,
AeG, AeTM, BeT,G)

J2:(A4,B) = (JyA4,1:B + (dR)n(A) ,

and gy = Lily, »]. We shall ask when z: B(§) — A(M) is onto. This will give
us conditions for & to be bundle homogeneous (see Proposition 4.3). ¢: M X
G —- M x G is a C~ bundle automorphism if and only if for ze M and g € G,
¢ takes the form

5.1 &z, 8) = (f(2), s(2)g)

for some f € A(M) and s : M — G (not necessarily holomorphic). ¢ is a bundle
automorphism in this case because

3z, 8) = (F(2), (s f)(2)) ")

is a C~ bundle map which is the inverse of ¢. It is clear from (5.1) that =(g)
= f, so we must only find conditions on f € A(M) such that there is an s: M
— G for which ¢ defined by (5.1) is holomorphic with respect to J7. Let « :
M X G — G be defined by a(z, 1) = s(z)2. Then ¢(z, 2) = (f(2), «(z, 2)), and
so (using upper dot “-” to denote the differential), for 4 ¢ T,M and B ¢ T,G,

(5.2 $.,.(4, B) = (f.(A), &, (4, B))

forze M. Let *a: G — G be *a(2) = a(z, 1) = L°,,4, and o* : M — G be a*(2)
= a(z, ) = R,05(z). The Leibniz formula [3] says:

d, (A, B) = (@),(4) + (a),(B) = Ly,(B) + Rs(A),
which, together with (5.2), gives

(5.3) $:,:(4, B) = (1.(A4), Ly(,(B) + R,5(4)) .
Therefore

J}(z),s(znéz,x(A s B)

(5.4) . , . ,
= (JMfz(A), JG'(LS(Z)B + Rxs(A)) + Rs(z)ﬂ](fz(A)) .
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On the other hand, (5.3) implies

Sz;z,z(JZ,z(A’B)) = Szgz,x(JMA,JGB + Rﬂ?(A))

(5.5 ; . . .
= (f.(JyA), L;,(JsB + Ry(4)) + R,;5UyA)) .
Comparing (5.4) with (5.5) we see that ¢ is holomorphic if and only if

JGLS(z)B + JGRZS(A) + Rst(z)(f*ﬁ)(A)
= Ls(z)(-’GB + Rﬂ](A)) + Rxs(JMA) )

and so we may conclude
Proposition S.1. Let ¢(z,2) = (f(z),5(2)2). Then¢: M X G—-M X G is
holomorphic if and only if

(56) JGS(A) - S(JMA) — LS(z)v(A) - RS(z)f*ﬁ(A)

forallzeM and A e T,M.
Proceeding as in [7], we assume for the moment that there is a C= function
h: M — g such that

g

5.7 y exp

commutes. Let J be the complex structure of g¢ viewed as a manifold. If
X = h(z) where z € M is fixed, then (5.6) becomes

d(exp)X(jdh(A) - dh(JMA)) = Leprﬂ(A) - Reprf*yi(A) >
since exp is a holomorphic map for Lie groups. Using (2.1) we thus obtain
2J5d(exp) x0h(A) = Loxy x(7(4)) — Ry xf*9(A) ,

and therefore, by the expression for d(exp) [7],
I . e-adX _ "
2J(}‘l([’exp X)e © Wah(A) = d(Lexp X)r)(A) - dRexp Xf 77(A) >

or

I — e—adX

27
“Tad X

oh(A) = 9(A) — d(Lexp(—x) © Rexp D 9(A4) .

Since d(Leygy - x)° Rezpx) = ad exp (—X) = e™**¥, we have
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I—e_adh(Z) A — __ p—adh(2)f*
(5.8) 2] ad—h(z)(ah(A)) = 9(4) e @f 7](A) .

We say that for w,ne A%'(M, g°), o is exponentially cohomologous to 73
(and write wg,») if there is a C* map h: M — g such that

I _ e—adh

@ A —ad (2
(5.9) 2] 2 @ (Oh(A)) = p(A4) — e™"@y(A4) .

We say that M has the exponential lift property with respect to G if for any
§:M — G there is an h: M — g such that the diagram (5.7) is commutative.

Theorem 5.2. Let 5e A*'(M, g°) with M connected, §:G — (M X G,y
— M be a real product bundle with J* as above, r:B(§) — AM), and
fe AM). '

(@) If f*55pn, then f e n(B(£)).

(b) Suppose that G has the exponential lift property. Then f ¢ n(B(§)) if
and only if f*p5,n.

(©) If G is abelian and =, (M) is a torsion group, then dim; ker =, = 1.

(d) Suppose G = C*, and M is compact. Then

(i) f*yz,n if and only if f e x(B(£)), and
¢i) dimkerr, = 1.

Proof. (a) If f*55,7, then there is an s : M — g satisfying (5.8). If s:
M — G is s = expoh, then s satisfies (5.6), and hence f ¢ z(B(§)).

(b) We need only to prove if f e z(B(£)) then f*y5 7. By Proposition 5.1,
we have a map s: M — G satisfying (5.6). If h: M — g is the map of dia-
gram (5.7) (which exists by exponential lift), then by the above computation,
h satisfies (5.8), and hence 5, *7.

(¢) Under the hypotheses of (c), (5.8) yields that n(¢) equals the identity
(i.e., f = 1,) if and only if there is 4 : M — g such that 26k =y — 5y = 0,
which happens if and only if 4 is a constant. Thus s : M — G of (5.1) must
be the constant map at 2 = exp X for some X ¢ g, and therefore

kerz ={p:M X G—>M X G|¢(z,8) = (z, Ag) for some 1 € exp(g)} ,

which implies that dim ker z, = 1.

(d) Follows from the following proposition and lemma.

Lemma. If G is abelian, then for each g ¢ G the map B: (M X G),, —
M x G) v 8iven by Bz, x) = (z, Lx) is holomorphic.

Proof. B, .(A,B) = (A, L,B) for A ¢ T,M and B ¢ T,G, hence

Jv‘Bz,z(A,B) - (JMA5]GLgB + Rgzv(A)) s
Be,d"(4, B) = (JyA, L,UsB + Ry(A))) ,
and so pJ? = J8 if G is abelian.
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Proposition 5.3. Suppose that M is compact and G = C*. Then s: M —G
satisfies (5.6) if and only if there is 5 : M — G defined by § = L,, o s and satis-
fying (5.6) such that § factors through the exponential map as in diagram (5.7).

Proof. Let B.(g) = {zeC*||z — g|<r}, and assume that s: M — G
satisfies (5.6). Let r > 0 be any real number such that s(M) C B,(0). If § =
L, os, then (M) C L,,B,(0) = B,(2r). This means that (M) never winds
around the origin; that is, §(M) is a simply-connected subspace of C*. Be-
cause the logarithm is well-defined on any simply-connected region in C*, §
factors through the exponential map. By the above lemma, the map j5(z, 2) =
(f(z), 5(2)2) is holomorphic in the J” structure on M X G if and only if B(z, 1)
= (f(2), 5(z)2) is holomorphic. q.e.d.

We remark that the above proposition can be used to strengthen some re-
sults in [7], e.g., for compact M with G = C*, Exp D(M, G) = 0 if and only
if Pic M, G) = 0.

6. Combining Theorem 5.2 (b) and Proposition 4.3 yields

Corollary 6.1. If £:C* — (M X C*),, — M is bundle homogeneous, and
M has the exponential lift property with respect to C*, then for all f ¢ A(M)

6.1 fry — 5 = oh

for some h: M — C. If M is compact, then the converse holds.

Observe that (6.1) says that 4(M) must “act” as the identity on 9, ,(M, C) ;
however, it is known that if f is homotopic to g through complex analytic
maps and 0w = 0, it is not necessarily true that f*w — g*w = 4l for some
l[:M — C [11]! The example in [11] is on the Iwasawa manifold. We shall
now present a different example.

If M =C?— {(0,0)}, 4 and B are complex numbers with nonzero imagi-
nary parts such that AB # 1, and we define f,: M — M

_ Az, Bz,
fi(zy, 2) = (1 +1—-04" 1+ — I)B) ’

then f, ¢ A(M), and so in particular f, = f: M — M is an element of A(M).
We define 5 € A>'(M, C) by

0z 2 h 0,
(6.2) %M_{&Mw» when z, #

— 0(Z,/(z,rD) when z, # 0,

where 2 = |z,}? + |z, 7 is well-defined (but not 5-cohomologous to zero) by
[2, p. 30]. We now calculate f*5 — 5. If z, # 0, then

f*77<z,,z2) = 3(22/(117‘2) ° f) s

and therefore
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(6. 3) f*ﬂ(n,za) =

) Bz .
a( 2 ) . ifz,£0.
Azl(|Azl |2 + lez lz) '

If f*y — » = oh for some h: M — C, then for z, # 0, (6.2) and (6.3) imply

I Bz, Z
oh = : - 2 '
(6.4) a(Az,(iAzl F+1BuD  zlaf + 1z F>)

If we let g: M — C be given by

_ _ Bz, _ Z
6.5 g(z,2) = 2,1z, 2,) (A(|A21‘2 + |Bz,P) 1z F + lzz|2) s

then for (z, #= 0) we have, from (6.4),
0(g/z,) =0h —0h=0.

8(z,,z,) is therefore holomorphic for z, # 0. Since g is locally bounded on
M — X where X = {(z,,z,) ¢ C*|z, = 0} and X is thin, we may apply the
Riemann extension theorem [2, p. 19] and conclude that g : M — M. Since a
point is a removable singularity in C* (n > 1), g must be a holomorphic map
of C? to C*. However, by the form of g given by (6.5) we have

1 1
O,Z)Z—— ’
2(0, z, Py 4Bz,

which is not holomorphic at z, = O since AB # 1. Therefore (6.1) cannot
hold in this case. Because M is simply connected, M has the exponential lift
property with respect to C* [7, Proposition 2.2.2], and so Corollary 6.1 im-
plies

Corollary 6.2. There exists a real product bundle which does not have a
holomorphic connection; in particular, the Atiyah obstruction is not a topo-
logical invariant.

Note also that C* — {0, 0} is a Kéhler manifold, so compactness cannot be
dropped from [7, Theorem 3.1.7].
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