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BUNDLE HOMOGENEITY AND HOLOMORPHIC
CONNECTIONS
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1. Let ξ : G —» P > M be a holomorphic principal fiber bundle with
group G, total space P, base space M and projection π. Let a{M) be the Lie
algebra of all holomorphic vector fields on M, and let b(ξ) be the space of all
Rg invariant elements of a(P). (By Rg we mean the map Rg: P -> P given by
Rg(p) = pg.) Let π^. : ft(f) —> a(M) be the obvious projection. We say that ξ
is bundle homogeneous if π* is onto. The purpose of this paper is to study the
relation between the bundle homogeneity of ξ and the existence of a holomorphic
connection on ξ.

In § 2 we fix notation, and in § 3 we gather together the various defini-
tions of a holomorphic connection and show that they are equivalent. This
equivalence is well-known but does not seem to be written down anywhere.

In § 4 we prove
Theorem 4.1. // ξ has a holomorphic connection, then ξ is bundle ho-

mogeneous.
We also show that the converse of Theorem 4.1 is false in general, but we

prove
Theorem 4.5. Let M be complex parallelizable. Then ξ is bundle homo-

geneous if and only if ξ admits a holomorphic connection.
If M is compact, Theorem 4.1 is due to A. Morimoto [9]. In the case

where M is a complex torus, Theorem 4.5 was proven independently by Y.
Matsushima [6] and S. Murakami [10].

Recall that a real product bundle is a holomorphic principal fiber bundle
which admits a C°° cross-section [7]. In § 5, we obtain a necessary condition
for a real product bundle to be bundle homogeneous. This condition is also
sufficient if M is compact (Theorem 5.2), and we also obtain some information
about the kernel of π* in this case.

Since Dolbeault cohomology is not a homotopy invariant (Corollary 6.1),
we are able in § 6 to apply the results of the previous sections to construct an
example of a real product bundle with (noncompact) Kahler base which does
not admit a holomorphic connection. Because there are no topological obstruc-
tions on a real product bundle, this example shows that the Atiyah obstruction
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[1] is not a topological invariant, and also that in general the existence of a
holomorphic connection does not depend only on the topological structure of
the bundle [8].

2. We now recall some basic definitions and theorems about holomorphic
connections. Suppose that G is a complex Lie group, M and P are complex
manifolds, and G acts freely and holomorphically on P (on the right). We
write pg for the action of g e G on p e P, and Rg : P —> P for Rg(p) = pg. We

say that ξ : G —> P > M is a holomorphic principal fiber bundle if P is
locally biholomorphically equivalent to M x G. This means (i) M is the quo-
tient space of P under the action of G, (ii) there are an open cover {Ur} of M
and biholomorphic homeomorphisms ψr: π~\Uγ) -* Ur X G which commute
with the action of G such that

π-\Ur) ~^UUrxG

commutes (where prγ is projection in the first coordinate), (iii) π is holomorphic.
We shall write TmM for the complex tangent space of M at m (i.e., Zm <=. TmM
means Zm = Xm + iYm where Xm and Ym are real tangent vectors at m in the
usual sense), and φ^ for the differential of the map φ. We define the vertical
(ker π)p at p by

(ker π)v = {Xp e TP(P) \ π*(Xp) - 0} .

Let G be a complex Lie group of complex dimension r with complex struc-
ture JG. We denote by g the Lie algebra of all left invariant real vector fields on
G, considered as a real Lie group, by g0 the Lie algebra of all holomorphic
left invariant vector fields on G, and by QC the complexification of g, i.e. gc is
the Lie algebra of all left invariant complex vector fields on G. We may also
regard QC as a complex manifold with complex structure /. We shall use
Aι(M, qc) for the vector space of all Lie algebra valued one-forms on M.
Λ\M, gc) may be written as Λ(1 0)(M, 9C) θ Λ ( ( U )(M, δ c) where

Aι-\M9 <f) = {ω e Λ\M, qc) \ ω(JMA) = Jω(A) for all A e TM} ,

Λ0Λ(M, QC) = {ω e Λ\M, qc) | ω{JMA) = -Jω(A) for all A e TM} .

If h: M—>g is smooth, then/i induces a map dh: TM-+QC, i.e., dh e A\M, QC),
so that we may write dh as dh = dh + dh where dh e Λh0(M, gc) and
Sh e Λ°>ι(M, qc). If 2ωλ(A) = dh(A) - Jdh(JMA) and 2ω2(A) = dh(A) +
Jdh(JMA), then ω, <= Ah\M, g c), ω2 € Λ°'KM, $c) and dh = ω, + ω2. Therefore
2dh(A) = dh(A) + Jdh(JMA) or
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(2.1) 2J5h(A) = Jdh(A) - dh(JMA) .

If a e G, then ad(fl): cf —> QC will be the usual adjoint map.
If M is a complex manifold, then in a coordinate neighborhood U we know

that {d/dxk, d/dyk \ k = 1, , n} forms a basis for T m M at each point meU.
We define

d/dzk = i(d/dxk - id/dyk) , d/dzfc - J(3/3Λ* + * W f c ) .

Let 7 V °Λf = {Z e T m M | / Z = iZ\, and Γ J ^ M - {Z e TmM\JZ = - *Z}.
Then TmM = 7V °Af 0 Tm^M, and {(d/dzfc)m 11 < k < n) (resp. {(d/dzk)m\
1 < k <n}) forms a basis for Tm

h0M (resp. Γm° 1M) a t m e l / . A vector field
Z is called a holomorphίc vector field if Z m € Γm

1>()M and in any cordinate chart
zm = Σ ^ i / ^ X d / d z Om for some holomorphic functions /•?.

We shall now describe the standard embedding of gc onto the vertical. For
p e P let PΦ : G-> P be defined by *Φ(g) = p^. We then define Θp : gc -> (ker τr)p

by θp(^4) = (PΦ)*(A), where the differential is evaluated ateeG and we have
identified gσ and TeG in the usual manner.

Proposition 2.1. (0) Θp : gc -^ (ker π)v is an isomorphism of vector spaces
for each p e P.

(b) If A e g0, //ϊe^ ί/ze vector field p —> © (̂̂ 4) w α holomorphic vector field.
Proof, (a) follows as in the C°° case [3, p. 51].
(b) The fact that ΘP(A) is of type (1,0) follows from [4, p. 179]. If

(w15 , wr) and (z1? , zn) are the coordinates about e e G and /? € P respec-
tively, then we may write

Φ(z1? , zn, w19 , wr) = (Φ\z9 w), , Φn(z, w))

with Φk holomorphic functions, and so

which is clearly a holomorphic vector field because (p, e) is a holomor-

phic function of p.
3. A connection on f is a distribution H : p^Hp in P such that (1) TPP =

(ker π)p®Hp, and (2) (Ra)*Hp = Hpa. The connection 1-foπn ω € yf(P, gc) is
defined as follows: Any X zTP may be written as the sum of hX e H and
vX € ker π. hX is called the horizontal part of X, and vX the vertical part
of X. Let ωp(X) = Θp~\vX) where Θ is as in Proposition 2.1. The following
proposition is quite easy and allows us to call a connection either a distribution
as in the definition above or a c^-valued 1-form satisfying the two conditions
of Proposition 3.1.
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Proposition 3.1. // ω is the connection 1-form of a connection, then
(1) ωp(θp(A)) = AforallAε$c,
(2) (Rg*ω)(X) = (ad g - ^ J f ) ) for all X € TP and g e G.

Furthermore, if ω € Λ1(P, QC) satisfies (1) and (2) above, then ω is the con-
nection given by

A connection H is of type (1, 0) if JHP = Hp for all p $P. This is clearly
equivalent to the condition ω e Λ1>0(P, qc) where ω is the connection 1-form of
H. A connection is a holomorphic connection if ω is of type (1, 0) and 5ω = 0.
The following theorem (which appears to be well-known but not written down)
gives the geometric content of the definition of a holomorphic connection. (Re-
call that if Z is a vector field on M, then the horizontal lift Z of Z is the
unique vector field on P such that π*(Z) = Z and Z{p) e Hp for all p e P.)

Theorem 3.2. If ξ : G -> P > M is a holomorphic principal fiber bun-
dle, and H is a (1,0) connection on ξ, then the following are equivalent:

(a) H is a holomorphic connection.
(b) // W is any open subset of P, and X is any holomorphic vector field de-

fined on W, then vX is also a holomorphic vector field on W.
(c) // X is holomorphic on W, then hX is holomorphic on W.
(d) The horizontal lift of any holomorphic vector field which is defined on

any open subset U of M is a holomorphic vector field on π~ι(U).
Proof. Let (w\ , wr) be a coordinate chart in G, and (z\ , zn) a co-

ordinate chart in M. We may use (z1, , zn, w\ , wr) as a coordinate in
P via the local trivialization. Suppose that ω is the connection 1-form of H. If
X is any holomorphic vector field, and {e19 , er] is a basis for §c, then we
may write locally ω = Σ ω* dzjek and

X = Σ f(z, w)-^— + Σ hk(z, w)~ d

dwι ~ dzk

where hk and f are holomorphic functions. Therefore

( 1 ) vX = Θω(X) = Σ hjωjkΘ(ek) .

Using Proposition 2.1 (b), it follows from (1) that θ(ω(X)) is holomorphic
for all X if and only if ω / are holomorphic hence (a) & (b).

The equivalence of (b) and (c) follows from X = vX + hX.
Assume (c), and suppose that X is a holomorphic vector field on U which

we may assume is small enough so that π~\Ό) is trivial. We now regard X as
the vector field (X, 0) on U X G, and clearly X = h(X, 0) hence (c) =φ (d).

We now complete the proof by showing that (d) ̂  (a). Because
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dzj

must be holomorphic for each / by assumption, we see that ω/ must be holo-
morphic; hence (d) => (a), q.e.d.

There is an alternate formulation due to Atiyah [1]. Because we shall not
need it explicitly, we shall not go into it except to say that in his formulation
a holomorphic connection exists on ξ if and only if a certain element (called
the Atiyah obstruction) is zero in a certain cohomology set. To see that this is
equivalent to our definition, see [7, Proposition 3.12].

4. Let ξ : G —> P > M be a holomorphic principal fiber bundle. Let
a(M) be the Lie algebra of all holomorphic vector fields on M, and let b(ξ) =
{X <= a(P) I (Rg)*X = X for all g e G}. We call X e b(ξ) an infinitesimal bundle
automorphism of ξ. If X e b(ξ), then by πJJX) we mean π^(X)mf = Xp (/ o π)
for any m e M and p e π~\m). This is well-defined because (Rg)^X = X for
all g eG, and is holomorphic because of the local product structure. We say
that ξ is bundle homogeneous if π# : b(ξ) —» a(M) is onto.

Theorem 4.1. // f /zαs a holomorphic connection, then ξ is bundle homo-
geneous.

Proof. If X 6 tf(M), then by Theorem 3.2 the horizontal lift X with respect
to the holomorphic connection is holomorphic. On the other hand, if X(p) is
horizontal, then so is (Rg)^X(p) hence (Rg)^X(p) = X(ps). We therefore
have (Rg)^X = X and so X e b(ξ). Clearly π^fjt) = X and so π^ is onto,
q.e.d.

By [ l , p . 188] we have

Corollary 4.2. Any holomorphic principal fiber bundle whose base space
is a Stein manifold is bundle homogeneous.

Let M be compact, and let A(M) denote the identity component of the com-
plex Lie group of biholomorphic homeomorphisms of M, and B(ξ) the identity
component of the group of holomorphic bundle automorphisms (i.e., B(ξ) is
the identity component of {φ e A{P) \ π o φ = π and φoRa = Raoφfor all a e G}).
Then π : JB(f) - » ^ ( M ) is defined by ττ(^)(m) = π(^(p)) for any p e π~ι{m).

Proposition 4.3. {Morimoto [9]). (a) // ξ is bundle homogeneous, then
π : B(ξ) —* A(M)is onto.

(b) // M w compact, then B(ξ) is a Lie group, and so π is onto if and only
if ξ is bundle homogeneous.

Proof. lίft e A(M) is a 1-parameter subgroup for all 0 < / < 1, thtnft in-
duces an element X of a(M). Let X e b(ξ) such that π#(X) — X, and let φt

be the local 1-parameter subgroup generated by X at p e P. To prove («), we
need only to show that φ is a global 1-parameter subgroup because clearly

π(φt) -- ft and φt € B(ξ). To do this we show that φt is the horizontal lift of ft

with respect to some (not necessarily holomorphic) connection Γ on ξ.
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Let g be any right G-invariant Riemannian metric on P, and Hp the ortho-
gonal subspace in TPP of Vp + CXP. If Γ: p -> Hp is denned by Hp =
Hp + CXP, then Γ is the desired connection.

The statement that B(ξ) is a Lie group if M is compact is Morimoto's
theorem. He also proved that the Lie algebra map induced by TΓ is TΓ ,̂ and so
we have (b). q.e.d.

For compact M Theorem 4.1 is due to Morimoto [9, p. 166] who also
proved

Theorem 4.4. // M is a compact Kάhler manifold whose first Bettί number
is zero and G is nilpotent, then the holomorphic principal fiber bundle ξ: G —>
P —> M is bundle homogeneous.

Both of these theorems of Morimoto are proven by using the Atiyah view-
point. Applying Theorem 4.4 to the canonical C* bundle ξ over CPn we see
that the converse of Theorem 4.1 is false. We can also do this constructively
as follows: φ e B{ξ) if and only if φ: Cn+1 - {0} -> Cn+1 - {0} is a holomor-
phic homeomorphism and φ(λz) = λφ(z) for all λ € C* and zεCn+1 — {0}. By
[2, p. 21] φ can be extended to a map of Cn+1 -> Cn+1 such that φ(λz) =
λφ(z) for all λ e C and zeCn+1. By the standard trick this means that φ e
Gl(n + 1,C). Clearly any φ e Gl(n + 1,C) restricts to an element of B(ξ),
and hence Z?(f) == Gl(n + 1, C). By using a result of Lichnerowicz [5] to give
us all A(CPn), we see that π is onto. Recall that a complex parallelizable n-
manifold is one on which there are n holomorphic vector fields which are li-
nearly independent at each point (see [12]). The following theorem gives a
converse to Theorem 4.1.

Theorem 4.5. Suppose that ξ: G-^P —» M is a holomorphic fiber bundle,
and M is complex parallelizable. Then ξ is bundle homogeneous if and only if
ξ admits a holomorphic connection.

Proof. We need only to assume that ξ is bundle homogeneous, and to show
that ξ admits a holomorphic connection. Let X19 , Xn € a(M) be linearly in-
dependent. Let Xj* be any element of b(ξ) such that π%Xj* = Xj, and let Xj*
denote the complex conjugate of Xj*. We claim that if Hp = span of {Xλ*(p),
• , Xn*(p), X{*(#), , Xn*(p)}, then H: p -> Hp is a holomorphic connec-
tion on ξ. Since JXj* = iXj* and JXj* = —iXj*, we see that Hp is of type
(1,0). Since Xj* is of type (1,0), there is a real tangent vector A such that
X* =A- iJA. Hence (R^Xj* = (Rg)*A - U(Rg)*A and Xj* =_A +
iJA, which imply that (Rg)*Xj* = (Rg)*A + iJ(Rg)*A, so that (Rg)*Xj* =
(Rg)*Xj* for all g € G. Because Z / e b(ξ), we have that (Rg)*Xj* = Xj* and
(Rg)*Xj* = (Rg)χXj* = Z / ? so (Rg)*Hp = Hpg. By a dimension argument,
to show that TPP = (ker 7r)p Θ H p we need only to show that (ker π ^ Π iϊp
= (0), but this is clear because π^ is one to one on a basis of Hp by definition.
Hence H is a connection of type (1,0).

If X is any (local) holomorphic vector field on M, then there are (local)
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holomorphic functions fj on M such that X — Σ%if3Xj> ^ u t t n e n

Σ?=i (fj ° π)^0* i s clearly the horizontal lift of X with respect to H and is a
holomorphic vector field. Hence H is a holomorphic connection by Theorem
3.2. q.e.d.

5. A holomorphic principal fiber bundle ξ is called a real product bundle if
£ admits a C°° section (i.e., a C°° map s: M —> P such that TΓos = 1^). From
[7, Theorems 1.2.6 and 2.3.5] we know that every real product bundle must
take the form ξ: G ^ (M x G)jV -> M where ^ <= ΛM(M, gc) and (for z ε M,
k G ^ e Γ2M, £ e Γ,G)

/ϊ f i U,B) - (JMA,JGB + (dRλ)eV(A)) ,

and dη — \i[η, η\. We shall ask when π: B(ξ) —> ^4(M) is onto. This will give
us conditions for ξ to be bundle homogeneous (see Proposition 4.3). φ : M X
G —• M x G is a C°° bundle automorphism if and only if for z e M and g eG,
φ takes the form

(5.1) φ(z,g) = (f(z),s(z)g)

for some / € A(M) and s : M —> G (not necessarily holomorphic). φ is a bundle
automorphism in this case because

is a C°° bundle map which is the inverse of φ. It is clear from (5.1) that π(φ)
= /, so we must only find conditions on / e A(M) such that there is an s : M
—> G for which 0 defined by (5.1) is holomorphic with respect to Jv. Let a :
M x G ^ G b e defined by a(z, λ) = j(zW. Then 0(z, ^) = (/(z), α:(z, λ))9 and
so (using upper dot " " to denote the differential), for A € TZM and B € TλG,

(5.2) ^,,G4, B) = (j,(A), &,M> B))

for z e M. Let βα : G -> G be ^ U ) = a(z, X) = Ls

(2)^, and α ; : M -^
= α(z, λ) = ^o^(z) . The Leibniz formula [3] says:

tf2,,C4,£) = (άλ)z(A) + (*ά)λ(B) = LS(Z)(B) + RJ(A) ,

which, together with (5.2), gives

(5.3) Φ,M>B) = (fz(A), i.(,,(B) +

Therefore

(5 4) •'Jo. wAiW'5)
VL(A)J(UB + RAA)) + AtwlV(ja(A)).
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On the other hand, (5.3) implies

Φ*MM, B)) = Φ2MMA , JGB + RλV(A))

= (fz(JMA), LS(Z)(JGB + Rλη(A)) + RJ(JMA)) .

Comparing (5.4) with (5.5) we see that φ is holomorphic if and only if

JGLS(Z)B + JGRλs{A) + RλRs(z)(f*V)(A)

= LS(Z)(JGB + Rλη{A)) + RAJMΛ) ,

and so we may conclude
Proposition 5.1. Let φ(z, λ) = (f(z), s(z)X). Then φ:MχG-^MχGis

holomorphic if and only if

(5.6) JGs{A) - s{JMA) = LSiz)V(A) - A,wf*η(A)

for all z e M and A e TZM.
Proceeding as in [7], we assume for the moment that there is a C°° function

h : M —> g such that

9

(5.7) J/* |eχP

commutes. Let / be the complex structure of QC viewed as a manifold. If
X = h(z) where z e M i s fixed, then (5.6) becomes

- dh(JMA)) = L^

since exp is a holomorphic map for Lie groups. Using (2.1) we thus obtain

2JGd(exp)Jh(A) = LeXpχ0?O4)) - R^xf*η(A) ,

and therefore, by the expression for d(exp) [7],

2Jβd(LexfX)e° fv -3KA) = d(LβxpX)v(A) - dRexpXf*v(A) ,
adΛ

or

3h(A) =
adZ

Since d(Le x p (_X ) °ReκpX) = ad exp ( - Z ) = e"LiX , we have
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(5.8) 2JG * , , OKA)) = η(A) - e-^ ψηίA) .
ad h(z)

We say that for ω, η e Λ0Λ(M, gc), ω is exponentially cohomologous to η
(and write ω~p5?) if there is a C°° map h : M —> g such that

(5.9) 2JQ

l—?——®KA)) = η{A) - e-*™ω{A) .v ad h(z)

We say that M has the exponential lift property with respect to G if for any
s : M —• G there is an /ι: M —> g such that the diagram (5.7) is commutative.

Theorem 5.2. Let η <= Λ°Λ(M, g<?) w/ίA M connected, ξ : G -> (M X G) j ,
-+M be a real product bundle with P as above, π : B(ξ)-^ A(M), and
feA(M).

(a) Iff*ηZ*η,thenfeπ(B(ξ))
(b) Suppose that G has the exponential lift property. Then f e π(B(ξ)) if

and only if fηZ^η.
(c) // G is abelίan and πλ (M) is a torsion group, then dim c ker TΓ̂  = 1.
(d) Suppose G = C*, and M is compact. Then

(i) f*yϊxVy if a n d only if f e π(B(ξ)), and
(ii) dim ker π^ = 1.

Proof, (a) If / * ^ p ^ , then there is an h : M —» g satisfying (5.8). If s :
M —> G is 5 = exp o /z, then ^ satisfies (5.6), and hence / e π (J5(f)).

(b) We need only to prove it f e π(B(ξ)) then f^η^vη. By Proposition 5.1,
we have a map s:M ^ G satisfying (5.6). If h: M —> g is the map of dia-
gram (5.7) (which exists by exponential lift), then by the above computation,
h satisfies (5.8), and hence $ i p f V

(c) Under the hypotheses of (c), (5.8) yields that τr(0) equals the identity
(i.e., / = 1^) if and only if there is h : M —> g such that 2dh = η — η = 0,
which happens if and only if h is a constant. Thus s : M —> G of (5.1) must
be the constant map at λ = exp X for some l e g , and therefore

ker π = {φ : M x G -> M x G10(z, g) = (z, ̂ ) for some λ e exp(g)} ,

which implies that dim ker π^ = 1.
(d) Follows from the following proposition and lemma.
Lemma. // G is abelian, then for each g e G the map β : (M x G)jV —•

(M X G ) J ? given by β(z, x) = (z, LgX) is holomorphic.
Proof. J βZyX(A,B) = (A, LgB) for A ε TZM and B € TXG, hence

Pβ,tX(A,B) - (JMA,JGLgB + Rgxη{A)) ,

βZ)XΠA,B) = (JMA,Lg(JGB + Axτj(A))) ,

and so βJv = Jvβ if G is abelian.
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Proposition 5.3. Suppose that M is compact and G = C*. Then s:M-^G
satisfies (5.6) // and only if there is s : M-^G defined by s = L 2 r o 5 and satis-
fying (5.6) s«c& that s factors through the exponential map as in diagram (5.7).

Proof. Let Br(g) = {z <= C* \\z - g\ < r}9 and assume that s\M-»G
satisfies (5.6). Let r > 0 be any real number such that s{M) C Br(0). If S =
L 2 r o5, then S(M) c L 2 r β r (0) = B r(2r). This means that s(M) never winds
around the origin; that is, s(M) is a simply-connected subspace of C*. Be-
cause the logarithm is well-defined on any simply-connected region in C*, s
factors through the exponential map. By the above lemma, the map β(z, X) =
(/(z), s(z)λ) is holomorphic in the /* structure on M x G if and only if β(z, λ)
= (f(z),s(z)λ) is holomorphic. q.e.d.

We remark that the above proposition can be used to strengthen some re-
sults in [7], e.g., for compact M with G = C*, Exp D(M, G) = 0 if and only
if Pic (M, G) = 0.

6. Combining Theorem 5.2 (b) and Proposition 4.3 yields
Corollary 6.1. // ξ : C* —> (M X C*) j 3 ? -» M w bundle homogeneous, and

M has the exponential lift property with respect to C*, then for all f € A(M)

(6.1) f * v - v = 3h

for some h : M —> C. If M is compact, then the converse holds.
Observe that (6.1) says that A(M) must "act" as the identity on @QΛ(M, C)

however, it is known that if / is homotopic to g through complex analytic
maps and Bω = 0, it is not necessarily true that f*ω — g*ω = dl for some
l:M -> C [11]! The example in [11] is on the Iwasawa manifold. We shall
now present a different example.

If M = C2 — {(0,0)}, A and B are complex numbers with nonzero imagi-
nary parts such that AB Φ 1, and we define ft:M —• M

2 \

-t)B) '+ (i-t)A' 1 + (X-t)B

then ft e A(M), and so in particular f1 = f:M-±M is an element of A(M).
We define η e Λ° '(M, C) by

_ Γ9(z2/(z/2)) when z, Φ 0 ,
( 3?<ίI'22' ~ I - Sfe/fer2)) when z2 ̂  0 ,

where r2 = \zλ\
2 + |z2|

2. 27 is well-defined (but not 5-cohomologous to zero) by
[2, p. 30]. We now calculate f*η - η. If zλ Φ 0, then

and therefore
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i f Zi

If ί*η — η = dh for some h: M -> C, then for ^ =£ 0, (6.2) and (6.3) imply

(6 4) a/, =
1 } +- |£z2 |2) Zl(\Zi\2 + \z2f)

If we let g : M —> C be given by

(6.5) g(z!,z2) = zMzuZz) —
|z2 |

2

then for (zλ φ 0) we have, from (6.4),

S(Zι,z2) is therefore holomorphic for zx ψ 0. Since g is locally bounded on
M — X where X — {(z15z2) 6 C 2 |z x = 0} and X is thin, we may apply the
Riemann extension theorem [2, p. 19] and conclude that g : M —> M. Since a
point is a removable singularity in Cw (n > 1), g must be a holomorphic map
of C2 to C2. However, by the form of g given by (6.5) we have

" v " z2 ABz2

which is not holomorphic at z2 = 0 since AB Φ 1. Therefore (6.1) cannot
hold in this case. Because M is simply connected, M has the exponential lift
property with respect to C* [7, Proposition 2.2.2], and so Corollary 6.1 im-
plies

Corollary 6.2. TTzere gjcw/5 α reα/ product bundle which does not have a
holomorphic connection; in particular, the Atiyah obstruction is not a topo-
logίcal invariant.

Note also that C2 — {0,0} is a Kahler manifold, so compactness cannot be
dropped from [7, Theorem 3.1.7].
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