BUNDLE HOMOGENEITY AND HOLOMORPHIC CONNECTIONS

RICHARD S. MILLMAN

1. Let $\xi: G \rightarrow P \xrightarrow{\pi} M$ be a holomorphic principal fiber bundle with group G, total space P, base space M and projection π. Let $a(M)$ be the Lie algebra of all holomorphic vector fields on M, and let $b(\xi)$ be the space of all R_{g} invariant elements of $a(P)$. (By R_{g} we mean the map $R_{g}: P \rightarrow P$ given by $R_{g}(p)=p^{g}$.) Let $\pi_{*}: b(\xi) \rightarrow a(M)$ be the obvious projection. We say that ξ is bundle homogeneous if π_{*} is onto. The purpose of this paper is to study the relation between the bundle homogeneity of ξ and the existence of a holomorphic connection on ξ.

In § 2 we fix notation, and in § 3 we gather together the various definitions of a holomorphic connection and show that they are equivalent. This equivalence is well-known but does not seem to be written down anywhere.

In § 4 we prove
Theorem 4.1. If ξ has a holomorphic connection, then ξ is bundle homogeneous.

We also show that the converse of Theorem 4.1 is false in general, but we prove

Theorem 4.5. Let M be complex parallelizable. Then ξ is bundle homogeneous if and only if ξ admits a holomorphic connection.

If M is compact, Theorem 4.1 is due to A. Morimoto [9]. In the case where M is a complex torus, Theorem 4.5 was proven independently by Y . Matsushima [6] and S. Murakami [10].

Recall that a real product bundle is a holomorphic principal fiber bundle which admits a C^{∞} cross-section [7]. In § 5, we obtain a necessary condition for a real product bundle to be bundle homogeneous. This condition is also sufficient if M is compact (Theorem 5.2), and we also obtain some information about the kernel of π_{*} in this case.

Since Dolbeault cohomology is not a homotopy invariant (Corollary 6.1), we are able in $\S 6$ to apply the results of the previous sections to construct an example of a real product bundle with (noncompact) Kähler base which does not admit a holomorphic connection. Because there are no topological obstructions on a real product bundle, this example shows that the Atiyah obstruction
[1] is not a topological invariant, and also that in general the existence of a holomorphic connection does not depend only on the topological structure of the bundle [8].
2. We now recall some basic definitions and theorems about holomorphic connections. Suppose that G is a complex Lie group, M and P are complex manifolds, and G acts freely and holomorphically on P (on the right). We write p^{g} for the action of $g \in G$ on $p \in P$, and $R_{g}: P \rightarrow P$ for $R_{g}(p)=p^{g}$. We say that $\xi: G \rightarrow P \xrightarrow{\pi} M$ is a holomorphic principal fiber bundle if P is locally biholomorphically equivalent to $M \times G$. This means (i) M is the quotient space of P under the action of G, (ii) there are an open cover $\left\{U_{r}\right\}$ of M and biholomorphic homeomorphisms $\psi_{r}: \pi^{-1}\left(U_{r}\right) \rightarrow U_{r} \times G$ which commute with the action of G such that

commutes (where $p r_{1}$ is projection in the first coordinate), (iii) π is holomorphic. We shall write $T_{m} M$ for the complex tangent space of M at m (i.e., $Z_{m} \in T_{m} M$ means $Z_{m}=X_{m}+i Y_{m}$ where X_{m} and Y_{m} are real tangent vectors at m in the usual sense), and ϕ_{*} for the differential of the map ϕ. We define the vertical $(\text { ker } \pi)_{p}$ at p by

$$
(\operatorname{ker} \pi)_{p}=\left\{X_{p} \in T_{p}(P) \mid \pi_{*}\left(X_{p}\right)=0\right\}
$$

Let G be a complex Lie group of complex dimension r with complex structure J_{G}. We denote by g the Lie algebra of all left invariant real vector fields on G, considered as a real Lie group, by g_{0} the Lie algebra of all holomorphic left invariant vector fields on G, and by \mathfrak{g}^{C} the complexification of \mathfrak{g}, i.e. \mathfrak{g}^{C} is the Lie algebra of all left invariant complex vector fields on G. We may also regard g^{C} as a complex manifold with complex structure \hat{J}. We shall use $\Lambda^{1}\left(M, \mathrm{~g}^{C}\right)$ for the vector space of all Lie algebra valued one-forms on M. $\Lambda^{1}\left(M, \mathrm{~g}^{C}\right)$ may be written as $\Lambda^{(1,0)}\left(M, \mathrm{~g}^{C}\right) \oplus \Lambda^{(0,1)}\left(M, \mathrm{~g}^{C}\right)$ where

$$
\begin{aligned}
& \Lambda^{1,0}\left(M, g^{C}\right)=\left\{\omega \in \Lambda^{1}\left(M, \mathfrak{g}^{C}\right) \mid \omega\left(J_{M} A\right)=\hat{J} \omega(A) \text { for all } A \in T M\right\}, \\
& \Lambda^{0,1}\left(M, \mathfrak{g}^{C}\right)=\left\{\omega \in \Lambda^{1}\left(M, \mathfrak{g}^{C}\right) \mid \omega\left(J_{M} A\right)=-\hat{J} \omega(A) \text { for all } A \in T M\right\} .
\end{aligned}
$$

If $h: M \rightarrow \mathrm{~g}$ is smooth, then h induces a map $d h: T M \rightarrow \mathfrak{g}^{C}$, i.e., $d h \in \Lambda^{1}\left(M, \mathfrak{g}^{C}\right)$, so that we may write $d h$ as $d h=\partial h+\bar{\partial} h$ where $\partial h \in \Lambda^{1,0}\left(M, g^{c}\right)$ and $\bar{\partial} h \in \Lambda^{0,1}\left(M, g^{C}\right)$. If $2 \omega_{1}(A)=d h(A)-\hat{J} d h\left(J_{M} A\right)$ and $2 \omega_{2}(A)=d h(A)+$ $\hat{J} d h\left(J_{M} A\right)$, then $\omega_{1} \in \Lambda^{1,0}\left(M, g^{C}\right), \omega_{2} \in \Lambda^{0,1}\left(M, g^{C}\right)$ and $d h=\omega_{1}+\omega_{2}$. Therefore $2 \bar{\partial} h(A)=d h(A)+\hat{J} d h\left(J_{M} A\right)$ or

$$
\begin{equation*}
2 \hat{\jmath} \bar{\partial} h(A)=\hat{J} d h(A)-d h\left(J_{M} A\right) . \tag{2.1}
\end{equation*}
$$

If $a \in G$, then $\operatorname{ad}(a): \mathfrak{g}^{C} \rightarrow \mathfrak{g}^{C}$ will be the usual adjoint map.
If M is a complex manifold, then in a coordinate neighborhood U we know that $\left\{\partial / \partial x^{k}, \partial / \partial y^{k} \mid k=1, \cdots, n\right\}$ forms a basis for $T_{m} M$ at each point $m \in U$. We define

$$
\partial / \partial z^{k}=\frac{1}{2}\left(\partial / \partial x^{k}-i \partial / \partial y^{k}\right), \quad \partial / \partial \bar{z}^{k}=\frac{1}{2}\left(\partial / \partial x^{k}+i \partial / \partial y^{k}\right) .
$$

Let $T_{m}{ }^{1,0} M=\left\{Z \in T_{m} M \mid J Z=i Z\right\}$, and $T_{m}{ }^{0,1} M=\left\{Z \in T_{m} M \mid J Z=-i Z\right\}$. Then $T_{m} M=T_{m}^{1,0} M \oplus T_{m}{ }^{0,1} M$, and $\left\{\left(\partial / \partial z^{k}\right)_{m} \mid 1 \leq k \leq n\right\}$ (resp. $\left\{\left(\partial / \partial \bar{z}^{k}\right)_{m} \mid\right.$ $1 \leq k \leq n\}$) forms a basis for $T_{m}{ }^{1,0} M$ (resp. $T_{m}{ }^{0,1} M$) at $m \in U$. A vector field Z is called a holomorphic vector field if $Z_{m} \in T_{m}{ }^{1,0} M$ and in any cordinate chart $Z_{m}=\sum_{j=1}^{n} f^{j}(m)\left(\partial / \partial z^{j}\right)_{m}$ for some holomorphic functions f^{j}.

We shall now describe the standard embedding of g^{C} onto the vertical. For $p \in P$ let ${ }^{p} \Phi: G \rightarrow P$ be defined by ${ }^{p} \Phi(g)=p^{g}$. We then define $\Theta_{p}: g^{C} \rightarrow(\operatorname{ker} \pi)_{p}$ by $\Theta_{p}(A)=\left({ }^{p} \Phi\right)_{*}(A)$, where the differential is evaluated at $e \in G$ and we have identified g^{C} and $T_{e} G$ in the usual manner.

Proposition 2.1. (a) $\Theta_{p}: \mathrm{g}^{C} \rightarrow(\mathrm{ker} \pi)_{p}$ is an isomorphism of vector spaces for each $p \in P$.
(b) If $A \in g_{0}$, then the vector field $p \rightarrow \Theta_{p}(A)$ is a holomorphic vector field.

Proof. (a) follows as in the C^{∞} case [3, p. 51].
(b) The fact that $\Theta_{p}(A)$ is of type (1,0) follows from [4, p. 179]. If (w_{1}, \cdots, w_{r}) and $\left(z_{1}, \cdots, z_{n}\right)$ are the coordinates about $e \in G$ and $p \in P$ respectively, then we may write

$$
\Phi\left(z_{1}, \cdots, z_{n}, w_{1}, \cdots, w_{r}\right)=\left(\Phi^{1}(z, w), \cdots, \Phi^{n}(z, w)\right)
$$

with Φ^{k} holomorphic functions, and so

$$
\Theta_{p}\left(\frac{\partial}{\partial w_{j}}\right)_{e}=\sum_{k=1}^{n} \frac{\partial \Phi^{k}}{\partial w_{j}}(p, e)\left(\frac{\partial}{\partial z_{k}}\right)_{p}
$$

which is clearly a holomorphic vector field because $\frac{\partial \Phi^{k}}{\partial w_{j}}(p, e)$ is a holomorphic function of p.
3. A connection on ξ is a distribution $H: p \rightarrow H_{p}$ in P such that (1) $T_{p} P=$ (ker $\pi)_{p} \oplus H_{p}$, and (2) $\left(R_{a}\right)_{*} H_{p}=H_{p a}$. The connection 1-form $\omega \in \Lambda^{1}\left(P, g^{C}\right)$ is defined as follows: Any $X \in T P$ may be written as the sum of $h X \in H$ and $v X \in \operatorname{ker} \pi . h X$ is called the horizontal part of X, and $v X$ the vertical part of X. Let $\omega_{p}(X)=\Theta_{p}{ }^{-1}(v X)$ where Θ is as in Proposition 2.1. The following proposition is quite easy and allows us to call a connection either a distribution as in the definition above or a g^{C}-valued 1 -form satisfying the two conditions of Proposition 3.1.

Proposition 3.1. If ω is the connection 1-form of a connection, then
(1) $\omega_{p}\left(\Theta_{p}(A)\right)=A$ for all $A \in \mathrm{~g}^{C}$,
(2) $\left(R_{g}{ }^{*} \omega\right)(X)=\left(\mathrm{ad}^{-1}\right)(\omega(X))$ for all $X \in T P$ and $g \in G$.

Furthermore, if $\omega \in \Lambda^{1}\left(P, g^{C}\right)$ satisfies (1) and (2) above, then ω is the connection given by

$$
H_{p}=\left\{X \in T_{p} P \mid \omega_{p}(X)=0\right\}
$$

A connection H is of type $(1,0)$ if $J H_{p}=H_{p}$ for all $p \in P$. This is clearly equivalent to the condition $\omega \in \Lambda^{1,0}\left(P, g^{C}\right)$ where ω is the connection 1-form of H. A connection is a holomorphic connection if ω is of type $(1,0)$ and $\bar{\partial} \omega=0$. The following theorem (which appears to be well-known but not written down) gives the geometric content of the definition of a holomorphic connection. (Recall that if Z is a vector field on M, then the horizontal lift \tilde{Z} of Z is the unique vector field on P such that $\pi_{*}(\tilde{Z})=Z$ and $\tilde{Z}(p) \in H_{p}$ for all $p \in P$.)

Theorem 3.2. If $\xi: G \rightarrow P \xrightarrow{\pi} M$ is a holomorphic principal fiber bundle, and H is a $(1,0)$ connection on ξ, then the following are equivalent:
(a) H is a holomorphic connection.
(b) If W is any open subset of P, and X is any holomorphic vector field defined on W, then $v X$ is also a holomorphic vector field on W.
(c) If X is holomorphic on W, then $h X$ is holomorphic on W.
(d) The horizontal lift of any holomorphic vector field which is defined on any open subset U of M is a holomorphic vector field on $\pi^{-1}(U)$.

Proof. Let $\left(w^{1}, \cdots, w^{r}\right)$ be a coordinate chart in G, and $\left(z^{1}, \cdots, z^{n}\right)$ a coordinate chart in M. We may use ($z^{1}, \cdots, z^{n}, w^{1}, \cdots, w^{r}$) as a coordinate in P via the local trivialization. Suppose that ω is the connection 1-form of H. If X is any holomorphic vector field, and $\left\{e_{1}, \cdots, e_{r}\right\}$ is a basis for g^{C}, then we may write locally $\omega=\sum \omega_{j}{ }^{k} d z^{j} e_{k}$ and

$$
X=\sum f^{l}(z, w) \frac{\partial}{\partial w^{l}}+\sum h^{k}(z, w) \frac{\partial}{\partial z^{k}},
$$

where h^{k} and f^{l} are holomorphic functions. Therefore

$$
\begin{equation*}
v X=\Theta \omega(X)=\sum_{j, k} h^{j} \omega_{j}^{k} \Theta\left(e_{k}\right) \tag{1}
\end{equation*}
$$

Using Proposition 2.1 (b), it follows from (1) that $\Theta(\omega(X))$ is holomorphic for all X if and only if $\omega_{j}{ }^{k}$ are holomorphic ; hence (a) \Leftrightarrow (b).

The equivalence of (b) and (c) follows from $X=v X+h X$.
Assume (c), and suppose that X is a holomorphic vector field on U which we may assume is small enough so that $\pi^{-1}(U)$ is trivial. We now regard X as the vector field $(X, 0)$ on $U \times G$, and clearly $\tilde{X}=h(X, 0)$; hence (c) \Rightarrow (d).

We now complete the proof by showing that $(\mathrm{d}) \Rightarrow$ (a). Because

$$
\stackrel{\widetilde{\partial}}{\partial z^{j}}=\left(\frac{\partial}{\partial z^{j}}-\sum_{k} \omega_{j}^{k} \Theta\left(e_{k}\right)\right)
$$

must be holomorphic for each j by assumption, we see that $\omega_{j}{ }^{k}$ must be holomorphic ; hence (d) \Rightarrow (a). q.e.d.

There is an alternate formulation due to Atiyah [1]. Because we shall not need it explicitly, we shall not go into it except to say that in his formulation a holomorphic connection exists on ξ if and only if a certain element (called the Atiyah obstruction) is zero in a certain cohomology set. To see that this is equivalent to our definition, see [7, Proposition 3.12].
4. Let $\xi: G \rightarrow P \xrightarrow{\pi} M$ be a holomorphic principal fiber bundle. Let $a(M)$ be the Lie algebra of all holomorphic vector fields on M, and let $b(\xi)=$ $\left\{X \in a(P) \mid\left(R_{g}\right)_{*} X=X\right.$ for all $\left.g \in G\right\}$. We call $X \in b(\xi)$ an infinitesimal bundle automorphism of ξ. If $X \in b(\xi)$, then by $\pi_{*}(X)$ we mean $\pi_{*}(X)_{m} f=X_{p}(f \circ \pi)$ for any $m \in M$ and $p \in \pi^{-1}(m)$. This is well-defined because $\left(R_{g}\right)_{*} X=X$ for all $g \in G$, and is holomorphic because of the local product structure. We say that ξ is bundle homogeneous if $\pi_{*}: b(\xi) \rightarrow a(M)$ is onto.

Theorem 4.1. If ξ has a holomorphic connection, then ξ is bundle homogeneous.

Proof. If $X \in a(M)$, then by Theorem 3.2 the horizontal lift \tilde{X} with respect to the holomorphic connection is holomorphic. On the other hand, if $\tilde{X}(p)$ is horizontal, then so is $\left(R_{g}\right)_{*} \tilde{X}(p)$; hence $\left(R_{g}\right)_{*} \tilde{X}(p)=\tilde{X}\left(p^{g}\right)$. We therefore have $\left(R_{g}\right)_{*} \tilde{X}=\tilde{X}$ and so $\tilde{X} \in b(\xi)$. Clearly $\pi_{*}(\tilde{X})=X$ and so π_{*} is onto. q.e.d.

By [1, p. 188] we have
Corollary 4.2. Any holomorphic principal fiber bundle whose base space is a Stein manifold is bundle homogeneous.

Let M be compact, and let $A(M)$ denote the identity component of the complex Lie group of biholomorphic homeomorphisms of M, and $B(\xi)$ the identity component of the group of holomorphic bundle automorphisms (i.e., $B(\xi)$ is the identity component of $\left\{\phi \in A(P) \mid \pi \circ \phi=\pi\right.$ and $\phi \circ R_{a}=R_{a} \circ \phi$ for all $\left.a \in G\right\}$). Then $\pi: B(\xi) \rightarrow A(M)$ is defined by $\pi(\phi)(m)=\pi(\phi(p))$ for any $p \in \pi^{-1}(m)$.

Proposition 4.3. (Morimoto [9]). (a) If ξ is bundle homogeneous, then $\pi: B(\xi) \rightarrow A(M)$ is onto.
(b) If M is compact, then $B(\xi)$ is a Lie group, and so π is onto if and only if ξ is bundle homogeneous.

Proof. If $f_{t} \in A(M)$ is a 1-parameter subgroup for all $0 \leq t \leq 1$, then f_{t} induces an element X of $a(M)$. Let $\tilde{X} \in b(\xi)$ such that $\pi_{*}(\overline{\tilde{X}})=X$, and let ϕ_{t} be the local 1-parameter subgroup generated by \tilde{X} at $p \in P$. To prove (a), we need only to show that ϕ is a global 1-parameter subgroup because clearly $\pi\left(\phi_{t}\right)==f_{t}$ and $\phi_{t} \in B(\xi)$. To do this we show that ϕ_{t} is the horizontal lift of f_{t} with respect to some (not necessarily holomorphic) connection Γ on ξ.

Let g be any right G-invariant Riemannian metric on P, and \tilde{H}_{p} the orthogonal subspace in $T_{p} P$ of $V_{p}+C \tilde{X}_{p}$. If $\Gamma: p \rightarrow H_{p}$ is defined by $H_{p}=$ $\tilde{H}_{p}+C \tilde{X}_{p}$, then Γ is the desired connection.

The statement that $B(\xi)$ is a Lie group if M is compact is Morimoto's theorem. He also proved that the Lie algebra map induced by π is π_{*}, and so we have (b). q.e.d.

For compact M Theorem 4.1 is due to Morimoto [9, p. 166] who also proved

Theorem 4.4. If M is a compact Kähler manifold whose first Betti number is zero and G is nilpotent, then the holomorphic principal fiber bundle $\xi: G \rightarrow$ $P \rightarrow M$ is bundle homogeneous.

Both of these theorems of Morimoto are proven by using the Atiyah viewpoint. Applying Theorem 4.4 to the canonical C^{*} bundle ξ over $C P^{n}$ we see that the converse of Theorem 4.1 is false. We can also do this constructively as follows : $\phi \in B(\xi)$ if and only if $\phi: C^{n+1}-\{0\} \rightarrow C^{n+1}-\{0\}$ is a holomorphic homeomorphism and $\phi(\lambda z)=\lambda \phi(z)$ for all $\lambda \in C^{*}$ and $z \in C^{n+1}-\{0\}$. By [2, p. 21] ϕ can be extended to a map of $C^{n+1} \rightarrow C^{n+1}$ such that $\phi(\lambda z)=$ $\lambda \phi(z)$ for all $\lambda \in C$ and $z \in C^{n+1}$. By the standard trick this means that $\phi \in$ $G l(n+1, C)$. Clearly any $\phi \in G l(n+1, C)$ restricts to an element of $B(\xi)$, and hence $B(\xi)=G l(n+1, C)$. By using a result of Lichnerowicz [5] to give us all $A\left(C P^{n}\right)$, we see that π is onto. Recall that a complex parallelizable n manifold is one on which there are n holomorphic vector fields which are linearly independent at each point (see [12]). The following theorem gives a converse to Theorem 4.1.

Theorem 4.5. Suppose that $\xi: G \rightarrow P \rightarrow M$ is a holomorphic fiber bundle, and M is complex parallelizable. Then ξ is bundle homogeneous if and only if ξ admits a holomorphic connection.

Proof. We need only to assume that ξ is bundle homogeneous, and to show that ξ admits a holomorphic connection. Let $X_{1}, \cdots, X_{n} \in a(M)$ be linearly independent. Let $X_{j}{ }^{*}$ be any element of $b(\xi)$ such that $\pi_{*} X_{j}{ }^{*}=X_{j}$, and let $\bar{X}_{j}{ }^{*}$ denote the complex conjugate of $X_{j}{ }^{*}$. We claim that if $H_{p}=$ span of $\left\{X_{1}{ }^{*}(p)\right.$, $\left.\cdots, X_{n}{ }^{*}(p), \bar{X}_{1}{ }^{*}(p), \cdots, \bar{X}_{n}{ }^{*}(p)\right\}$, then $H: p \rightarrow H_{p}$ is a holomorphic connection on ξ. Since $J X_{j}{ }^{*}=i X_{j}{ }^{*}$ and $J \bar{X}_{j}{ }^{*}=-i \bar{X}_{j}{ }^{*}$, we see that H_{p} is of type $(1,0)$. Since $X_{j}{ }^{*}$ is of type (1,0), there is a real tangent vector A such that $X_{j}{ }^{*}=A-i J A$. Hence $\left(R_{g}\right)_{*} X_{j}{ }^{*}=\left(R_{g}\right)_{*} A-i J\left(R_{g}\right)_{*} A$ and $\bar{X}_{j}{ }^{*}=A+$ iJ A, which imply that $\left(R_{g}\right)_{*} \bar{X}_{j}{ }^{*}=\left(R_{g}\right)_{*} A+i J\left(R_{g}\right)_{*} A$, so that $\left(R_{g}\right)_{*} \bar{X}_{j}{ }^{*}=$ $\overline{\left(R_{g}\right)_{*} X_{j}{ }^{*}}$ for all $g \in G$. Because $X_{j}{ }^{*} \in b(\xi)$, we have that $\left(R_{g}\right)_{*} X_{j}{ }^{*}=X_{j}{ }^{*}$ and $\left(R_{g}\right)_{*} \bar{X}_{j}{ }^{*}=\overline{\left(R_{g}\right)_{*} X_{j}}{ }^{*}=\bar{X}_{j}{ }^{*}$, so $\left(R_{g}\right)_{*} H_{p}=H_{p g}$. By a dimension argument, to show that $T_{p} P=(\operatorname{ker} \pi)_{p} \oplus H_{p}$ we need only to show that (ker $\left.\pi\right)_{p} \cap H_{p}$ $=(0)$, but this is clear because π_{*} is one to one on a basis of H_{p} by definition. Hence H is a connection of type $(1,0)$.

If X is any (local) holomorphic vector field on M, then there are (local)
holomorphic functions f^{j} on M such that $X=\sum_{j=1}^{n} f^{j} X_{j}$, but then $\sum_{j=1}^{n}\left(f^{j} \circ \pi\right) X_{j}^{*}$ is clearly the horizontal lift of X with respect to H and is a holomorphic vector field. Hence H is a holomorphic connection by Theorem 3.2. q.e.d.
5. A holomorphic principal fiber bundle ξ is called a real product bundle if ξ admits $a C^{\infty}$ section (i.e., $a C^{\infty}$ map $s: M \rightarrow P$ such that $\pi \circ s=1_{M}$). From [7, Theorems 1.2.6 and 2.3.5] we know that every real product bundle must take the form $\xi: G \rightarrow(M \times G)_{J^{\eta}} \rightarrow M$ where $\eta \in \Lambda^{0,1}\left(M, g^{C}\right)$ and (for $z \in M$, $\left.\lambda \in G, A \in T_{z} M, B \in T_{\lambda} G\right)$

$$
J_{z, \lambda}^{\eta}(A, B)=\left(J_{M} A, J_{G} B+\left(d R_{\lambda}\right)_{e} \eta(A)\right),
$$

and $\bar{\partial} \eta=\frac{1}{4} i[\eta, \eta]$. We shall ask when $\pi: B(\xi) \rightarrow A(M)$ is onto. This will give us conditions for ξ to be bundle homogeneous (see Proposition 4.3). $\phi: M \times$ $G \rightarrow M \times G$ is a C^{∞} bundle automorphism if and only if for $z \in M$ and $g \in G$, ϕ takes the form

$$
\begin{equation*}
\phi(z, g)=(f(z), s(z) g) \tag{5.1}
\end{equation*}
$$

for some $f \in A(M)$ and $s: M \rightarrow G$ (not necessarily holomorphic). ϕ is a bundle automorphism in this case because

$$
\tilde{\phi}(z, g)=\left(f^{-1}(z),\left(\left(s \circ f^{-1}\right)(z)\right)^{-1} g\right)
$$

is a C^{∞} bundle map which is the inverse of ϕ. It is clear from (5.1) that $\pi(\phi)$ $=f$, so we must only find conditions on $f \in A(M)$ such that there is an $s: M$ $\rightarrow G$ for which ϕ defined by (5.1) is holomorphic with respect to J^{η}. Let α : $M \times G \rightarrow G$ be defined by $\alpha(z, \lambda)=s(z) \lambda$. Then $\phi(z, \lambda)=(f(z), \alpha(z, \lambda))$, and so (using upper dot "." to denote the differential), for $A \in T_{Z} M$ and $B \in T_{\lambda} G$,

$$
\begin{equation*}
\dot{\phi}_{z, \lambda}(A, B)=\left(\dot{f}_{z}(A), \dot{\alpha}_{z, \lambda}(A, B)\right) \tag{5.2}
\end{equation*}
$$

for $z \in M$. Let ${ }^{z} \alpha: G \rightarrow G$ be ${ }^{z} \alpha(\lambda)=\alpha(z, \lambda)=L^{s}{ }_{(z)} \lambda$, and $\alpha^{2}: M \rightarrow G$ be $\alpha^{2}(z)$ $=\alpha(z, \lambda)=R_{\lambda} \circ s(z)$. The Leibniz formula [3] says:

$$
\dot{\alpha}_{z, \lambda}(A, B)=\left(\dot{\alpha}^{\lambda}\right)_{z}(A)+\left(^{z} \dot{\alpha}\right)_{\lambda}(B)=\dot{L}_{s(z)}(B)+\dot{R}_{\lambda} \dot{s}(A),
$$

which, together with (5.2), gives

$$
\begin{equation*}
\dot{\phi}_{z, \lambda}(A, B)=\left(\dot{f}_{z}(A), \dot{L}_{s(z)}(B)+\dot{R}_{\lambda} \dot{s}(A)\right) . \tag{5.3}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& J_{f(z), s(z) \lambda}^{\eta} \dot{\phi}_{z, 2}(A, B) \tag{5.4}\\
& \quad=\left(J_{M} \dot{f}_{z}(A), J_{G}\left(\dot{L}_{s(z)} B+\dot{R}_{\lambda} \dot{s}(A)\right)+\dot{R}_{s(z) \lambda} \eta\left(\dot{f}_{z}(A)\right) .\right.
\end{align*}
$$

On the other hand, (5.3) implies

$$
\begin{align*}
& \dot{\phi}_{z, \lambda}\left(J_{z, \lambda}^{\eta}(A, B)\right)=\dot{\phi}_{z, \lambda}\left(J_{M} A, J_{G} B+\dot{R}_{\lambda} \eta(A)\right) \tag{5.5}\\
& \quad=\left(\dot{f}_{z}\left(J_{M} A\right), \dot{L}_{s(z)}\left(J_{G} B+\dot{R}_{\lambda} \eta(A)\right)+\dot{R}_{\lambda} \dot{s}\left(J_{M} A\right)\right) .
\end{align*}
$$

Comparing (5.4) with (5.5) we see that ϕ is holomorphic if and only if

$$
\begin{aligned}
& J_{G} \dot{L}_{s(z)} B+J_{G} \dot{R}_{\lambda} \dot{s}(A)+\dot{R}_{\lambda} \dot{R}_{s(z)}\left(f_{*} \eta\right)(A) \\
& \quad=\dot{L}_{s(z)}\left(J_{G} B+\dot{R}_{\lambda} \eta(A)\right)+\dot{R}_{\lambda} \dot{s}\left(J_{M} A\right),
\end{aligned}
$$

and so we may conclude
Proposition 5.1. Let $\phi(z, \lambda)=(f(z), s(z) \lambda)$. Then $\phi: M \times G \rightarrow M \times G$ is holomorphic if and only if

$$
\begin{equation*}
J_{G} \dot{s}(A)-\dot{s}\left(J_{M} A\right)=\dot{L}_{s(z)} \eta(A)-\dot{R}_{s(z)} f^{*} \eta(A) \tag{5.6}
\end{equation*}
$$

for all $z \in M$ and $A \in T_{z} M$.
Proceeding as in [7], we assume for the moment that there is a C^{∞} function $\mathrm{h}: M \rightarrow \mathrm{~g}$ such that

commutes. Let \hat{J} be the complex structure of g^{c} viewed as a manifold. If $X=h(z)$ where $z \in M$ is fixed, then (5.6) becomes

$$
d(\exp)_{X}\left(\hat{J} d h(A)-d h\left(J_{M} A\right)\right)=\dot{L}_{\exp X} \eta(A)-\dot{R}_{\exp X} f^{*} \eta(A)
$$

since exp is a holomorphic map for Lie groups. Using (2.1) we thus obtain

$$
2 J_{G} d(\exp)_{X} \bar{\partial} h(A)=\dot{L}_{\exp X}(\eta(A))-\dot{R}_{\exp X} *^{*} \eta(A),
$$

and therefore, by the expression for $d(\exp)$ [7],

$$
2 J_{G} d\left(L_{\exp X}\right)_{e} \circ \frac{I-e^{-\mathrm{ad} X}}{\operatorname{ad} X} \bar{\partial} h(A)=d\left(L_{\exp X}\right) \eta(A)-d R_{\exp X} f^{*} \eta(A),
$$

or

$$
2 J_{G} \frac{I-e^{-\mathrm{ad} X}}{\operatorname{ad} X} \bar{\partial} h(A)=\eta(A)-d\left(L_{\exp (-X)} \circ R_{\exp X}\right) f^{*} \eta(A) .
$$

Since $d\left(L_{\exp (-X)} \circ R_{\exp X}\right)=\operatorname{ad} \exp (-X)=e^{-\mathrm{ad} X}$, we have

$$
\begin{equation*}
2 J_{G} \frac{I-e^{-\operatorname{ad} h(z)}}{\operatorname{ad} h(z)}(\bar{\partial} h(A))=\eta(A)-e^{-\operatorname{ad} h(z)} f^{*} \eta(A) . \tag{5.8}
\end{equation*}
$$

We say that for $\omega, \eta \in \Lambda^{0,1}\left(M, g^{C}\right)$, ω is exponentially cohomologous to η (and write $\omega_{\exp }^{\sim} \eta$) if there is a C^{∞} map $h: M \rightarrow \mathrm{~g}$ such that

$$
\begin{equation*}
2 J_{G} \frac{I-e^{-\operatorname{ad} h(z)}}{\operatorname{ad} h(z)}(\bar{\partial} h(A))=\eta(A)-e^{-\operatorname{ad} h(z)} \omega(A) . \tag{5.9}
\end{equation*}
$$

We say that M has the exponential lift property with respect to G if for any $s: M \rightarrow G$ there is an $h: M \rightarrow g$ such that the diagram (5.7) is commutative.

Theorem 5.2. Let $\eta \in \Lambda^{0,1}\left(\mathrm{M}, \mathrm{g}^{C}\right)$ with M connected, $\xi: G \rightarrow(M \times G)_{J} \eta$ $\rightarrow M$ be a real product bundle with J^{η} as above, $\pi: B(\xi) \rightarrow A(M)$, and $f \in A(M)$.
(a) If $f^{*} \eta_{\exp }^{\sim} \eta$, then $f \in \pi(B(\xi))$.
(b) Suppose that G has the exponential lift property. Then $f \in \pi(B(\xi))$ if and only if $f^{*} \eta_{\text {exp }}^{\sim} \eta$.
(c) If G is abelian and $\pi_{1}(M)$ is a torsion group, then $\operatorname{dim}_{C} \operatorname{ker} \pi_{*}=1$.
(d) Suppose $G=C^{*}$, and M is compact. Then
(i) $f^{*} \eta_{\text {exp }}^{\sim} \eta$ if and only if $f \in \pi(B(\xi))$, and
(ii) $\operatorname{dim} \operatorname{ker} \pi_{*}=1$.

Proof. (a) If $f^{*} \eta_{\text {exp }}^{\sim} \eta$, then there is an $h: M \rightarrow \mathrm{~g}$ satisfying (5.8). If s : $M \rightarrow G$ is $s=\exp \circ h$, then s satisfies (5.6), and hence $f \in \pi(B(\xi))$.
(b) We need only to prove if $f \in \pi(B(\xi))$ then $f^{*} \eta_{\text {exp }}^{\sim} \eta$. By Proposition 5.1, we have a map $s: M \rightarrow G$ satisfying (5.6). If $h: M \rightarrow \mathrm{~g}$ is the map of diagram (5.7) (which exists by exponential lift), then by the above computation, h satisfies (5.8), and hence $\left.\tilde{\eta_{\text {exp }}}\right)^{*} \eta$.
(c) Under the hypotheses of (c), (5.8) yields that $\pi(\phi)$ equals the identity (i.e., $f=1_{M}$) if and only if there is $h: M \rightarrow g$ such that $2 \bar{\partial} h=\eta-\eta=0$, which happens if and only if h is a constant. Thus $s: M \rightarrow G$ of (5.1) must be the constant map at $\lambda=\exp X$ for some $X \in \mathfrak{g}$, and therefore

$$
\operatorname{ker} \pi=\{\phi: M \times G \rightarrow M \times G \mid \phi(z, g)=(z, \lambda g) \text { for some } \lambda \in \exp (\mathfrak{g})\}
$$

which implies that dim ker $\pi_{*}=1$.
(d) Follows from the following proposition and lemma.

Lemma. If G is abelian, then for each $g \in G$ the map $\beta:(M \times G)_{J^{\eta}} \rightarrow$ $(M \times G)_{J^{\eta}}$ given by $\beta(z, x)=\left(z, L_{g} x\right)$ is holomorphic.

Proof. $\dot{\beta}_{z, x}(A, B)=\left(A, \dot{L}_{g} B\right)$ for $A \in T_{z} M$ and $B \in T_{x} G$, hence

$$
\begin{aligned}
J^{n} \dot{\beta}_{z, x}(A, B) & =\left(J_{M} A, J_{G} \dot{L}_{g} B+\dot{R}_{g x} \eta(A)\right) \\
\dot{\beta}_{z, x} J^{\eta}(A, B) & =\left(J_{M} A, \dot{L}_{g}\left(J_{G} B+\dot{R}_{x} \eta(A)\right)\right)
\end{aligned}
$$

and so $\dot{\beta} J^{\eta}=J^{\eta} \dot{\beta}$ if G is abelian.

Proposition 5.3. Suppose that M is compact and $G=C^{*}$. Then $s: M \rightarrow G$ satisfies (5.6) if and only if there is $\tilde{s}: M \rightarrow G$ defined by $\tilde{s}=L_{2 r} \circ s$ and satisfying (5.6) such that \tilde{s} factors through the exponential map as in diagram (5.7).

Proof. Let $B_{r}(g)=\left\{z \in C^{*}| | z-g \mid<r\right\}$, and assume that $s: M \rightarrow G$ satisfies (5.6). Let $r>0$ be any real number such that $s(M) \subset B_{r}(0)$. If $\tilde{s}=$ $L_{2 r} \circ S$, then $\tilde{s}(M) \subset L_{2 r} B_{r}(0)=B_{r}(2 r)$. This means that $\tilde{s}(M)$ never winds around the origin; that is, $\tilde{s}(M)$ is a simply-connected subspace of C^{*}. Because the logarithm is well-defined on any simply-connected region in C^{*}, \tilde{s} factors through the exponential map. By the above lemma, the map $\tilde{\beta}(z, \lambda)=$ $(f(z), \tilde{s}(z) \lambda)$ is holomorphic in the J^{n} structure on $M \times G$ if and only if $\beta(z, \lambda)$ $=(f(z), s(z) \lambda)$ is holomorphic. q.e.d.

We remark that the above proposition can be used to strengthen some results in [7], e.g., for compact M with $G=C^{*}, \operatorname{Exp} D(M, G)=0$ if and only if Pic $(M, G)=0$.
6. Combining Theorem 5.2 (b) and Proposition 4.3 yields

Corollary 6.1. If $\xi: C^{*} \rightarrow\left(M \times C^{*}\right)_{J^{\eta}} \rightarrow M$ is bundle homogeneous, and M has the exponential lift property with respect to C^{*}, then for all $f \in A(M)$

$$
\begin{equation*}
f^{*} \eta-\eta=\bar{\partial} h \tag{6.1}
\end{equation*}
$$

for some $h: M \rightarrow C$. If M is compact, then the converse holds.
Observe that (6.1) says that $A(M)$ must "act" as the identity on $\mathscr{D}_{0,1}(M, C)$; however, it is known that if f is homotopic to g through complex analytic maps and $\bar{\partial} \omega=0$, it is not necessarily true that $f^{*} \omega-g^{*} \omega=\bar{\partial} l$ for some $l: M \rightarrow C$ [11]! The example in [11] is on the Iwasawa manifold. We shall now present a different example.

If $\boldsymbol{M}=C^{2}-\{(0,0)\}, A$ and B are complex numbers with nonzero imaginary parts such that $A B \neq 1$, and we define $f_{t}: M \rightarrow M$

$$
f_{t}\left(z_{1}, z_{2}\right)=\left(\frac{A z_{1}}{1+(1-t) A}, \frac{B z_{2}}{1+(1-t) B}\right)
$$

then $f_{t} \in A(M)$, and so in particular $f_{1}=f: M \rightarrow M$ is an element of $A(M)$. We define $\eta \in \Lambda^{0,1}(M, C)$ by

$$
\eta_{\left(z_{1}, z_{2}\right)}= \begin{cases}\bar{\partial}\left(\bar{z}_{2} /\left(z_{1} r^{2}\right)\right) & \text { when } z_{1} \neq 0 \tag{6.2}\\ -\bar{\partial}\left(\bar{z}_{1} /\left(z_{2} r^{2}\right)\right) & \text { when } z_{2} \neq 0\end{cases}
$$

where $r^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \cdot \eta$ is well-defined (but not $\bar{\delta}$-cohomologous to zero) by [2, p. 30]. We now calculate $f^{*} \eta-\eta$. If $z_{1} \neq 0$, then

$$
f^{*} \eta_{\left(z_{1}, z_{2}\right)}=\bar{\partial}\left(\bar{z}_{2} /\left(z_{1} r^{2}\right) \circ f\right),
$$

and therefore

$$
\begin{equation*}
f^{*} \eta_{\left(z_{1}, z_{2}\right)}=\bar{o}\left(\frac{\overline{B z_{2}}}{A z_{1}\left(\left|A z_{1}\right|^{2}+\left|B z_{2}\right|^{2}\right)}\right), \quad \text { if } z_{1} \neq 0 \tag{6.3}
\end{equation*}
$$

If $f^{*} \eta-\eta=\bar{\partial} h$ for some $h: M \rightarrow C$, then for $z_{1} \neq 0$, (6.2) and (6.3) imply

$$
\begin{equation*}
\bar{\partial} h=\bar{\partial}\left(\frac{\overline{B z_{2}}}{A z_{1}\left(\left|A z_{1}\right|^{2}+\left|B z_{2}\right|^{2}\right)}-\frac{\bar{z}_{2}}{z_{1}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)}\right) . \tag{6.4}
\end{equation*}
$$

If we let $g: M \rightarrow C$ be given by

$$
\begin{equation*}
g\left(z_{1}, z_{2}\right)=z_{1} h\left(z_{1}, z_{2}\right)-\left(\frac{\overline{B z_{2}}}{A\left(\left|A z_{1}\right|^{2}+\left|B z_{2}\right|^{2}\right)}-\frac{\bar{z}_{2}}{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}\right), \tag{6.5}
\end{equation*}
$$

then for $\left(z_{1} \neq 0\right)$ we have, from (6.4),

$$
\bar{\partial}\left(g / z_{1}\right)=\bar{\partial} h-\bar{\partial} h=0 .
$$

$g\left(z_{1}, z_{2}\right)$ is therefore holomorphic for $z_{1} \neq 0$. Since g is locally bounded on $M-X$ where $X=\left\{\left(z_{1}, z_{2}\right) \in C^{2} \mid z_{1}=0\right\}$ and X is thin, we may apply the Riemann extension theorem [2, p. 19] and conclude that $g: M \rightarrow M$. Since a point is a removable singularity in $C^{n}(n>1), g$ must be a holomorphic map of C^{2} to C^{2}. However, by the form of g given by (6.5) we have

$$
g\left(0, z_{2}\right)=\frac{1}{z_{2}}-\frac{1}{A B z_{2}},
$$

which is not holomorphic at $z_{2}=0$ since $A B \neq 1$. Therefore (6.1) cannot hold in this case. Because M is simply connected, M has the exponential lift property with respect to C^{*} [7, Proposition 2.2.2], and so Corollary $6.1 \mathrm{im}-$ plies

Corollary 6.2. There exists a real product bundle which does not have a holomorphic connection; in particular, the Atiyah obstruction is not a topological invariant.

Note also that $C^{2}-\{0,0\}$ is a Kähler manifold, so compactness cannot be dropped from [7, Theorem 3.1.7].

Bibliography

[1] M. F. Atiyah, Complex analytic connections in fiber bundles, Trans. Amer. Math. Soc. 85 (1957) 181-207.
[2] R. Gunning \& H. Rossi, Analytic functions of several complex variables, Prentice Hall, Englewood, New Jersey, 1965.
[3] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[4] - Foundations of differential geometry, Vol. II, Interscience, New York, 1969.
[5] A. Lichnerowicz, Sur les transformations analytiques des variétés kähleriennes compactes, C. R. Acad. Sci. Paris 244 (1957) 3011-3013.
[6] Y. Matsushima, Fibrés holomorphes sur un tore complexe, Nagoya Math. J. 14 (1959) 1-24.
[7] R. S. Millman, Complex structures on real product bundles with applications to differential geometry ,Trans. Amer. Math. Soc. 166 (1972) 71-99.
[8] -, The Holomorphic connection as a C^{∞} phenomenon, Proc. 13th Biennial Sem., Canad. Math. Congress, Vol. 2, 1971, 93-101.
[9] A. Morimoto, Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe, Nagoya Math. J. 13 (1958) 157-178.
[10] S. Murakami, Sur certains espaces fibrés principaux holomorphes admettant des connexions holomorphes, Osaka Math. J. 11 (1959) 43-62.
[11] D. C. Spencer \& V. K. A. M. Gugenheim, Chain homotopy and the de Rham theory, Proc. Amer. Math. Soc. 7 (1956) 144-152.
[12] H. C. Wang, Complex parallelizable manifolds, Proc. Amer. Math. Soc. 5 (1954) 771-776.

Southern Illinois University, Carbondale

