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PREASSIGNING CURVATURE OF POLYHEDRA
HOMEOMORPHIC TO THE TWO-SPHERE

DAVID SINGER

In [2] it was shown that PL Riemannian two-manifolds exist with arbitrarily
preassigned curvature satisfying the Gauss-Bonnet formula

( * ) J] curvature + Σ exterior angles = 2ττ Euler characteristic.
M dM

A related problem is that of finding PL manifolds embedded in a Euclidean n-
space Rn with preassigned curvature satisfying (*). Naturally an embedding
theorem for PL Riemannian manifolds, analogous to the Nash theorem in the
smooth category, would suffice here. Unfortunately, as of this date the
isometric embedding problem in PL Riemannian geometry remains unsolved.

One embedding theorem is known: Alexandrov has shown [1] that an ab-
stract PL Riemannian two-sphere whose curvature is everywhere nonnegative
can be realized in R3 as the boundary of a convex set. Ironically, this result
may not be applied to the spheres constructed in [2] to yield embedded spheres,
since Alexandrov's theorem excludes the special case of the double of a con-
vex polygon (it appears as a degenerate case, the "boundary" of a convex set
with volume 0).

In this note we demonstrate the existence of embedded spheres with arbi-
trarily preassigned positive curvatures. More precisely:

Theorem 1. Let p19 ,pr be points on the two-sphere S, and ku , kr

real numbers such that
1) 0 < kt < 2π for all /,
2) χrki = 4πm

Then there exists an embedding of S into Rn whose image is a polyhedral two-
sphere, such that the induced PL Riemannian metric on S has curvatures ki at
the points pi and is flat elsewhere.

Corollary 2. The embedded sphere in Theorem 1 may be chosen to be the
boundary of a convex linear three-cell in R3.

(Note that this will follow from Alexandrov's theorem once it has been veri-
fied that the Riemannian metric on S is not induced from the double of a con-
vex polygon. In fact, by a different method Robert Connelly has found an
explicit construction of a convex linear cell in R3 with the desired curvature
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data; it is achieved as a polyhedron circumscribed about the unit sphere.)
As in [2], the homogeneity of manifolds implies that it will suffice to find a

polyhedral sphere M in Rn with points p[, , p'r such that the curvature is kt

at p\ and is zero at all other points.
The proof of Theorem 1 depends on a basic result about tetrahedra.
Theorem 3. Let k19 , k4 be positive numbers with Σ ί K = 4τr, and T a

triangle with vertices V19 V29 F 3 , and denote by at the interior angle at F 4 . //
2ai < 2π — kt,l < i < 3, then there is a tetrahedron M with vertices W19W2,
W3, Wi such that the linear map T —> M sending Vt to Wt is isometric and the
curvature at Wi is kt. Furthermore, such tetrahedra are unique up to con-
gruence or symmetry.

1. Proof of Theorem 1

Assuming Theorem 3, the proof of Theorem 1 proceeds by induction on r.
The case r = 4 follows immediately from Theorem 3. Assume inductively that
one can construct a sphere with r — 1 vertices and preassigned curvatures, and
furthermore that any three specified curvatures can be made to appear at the
vertices of a flat triangular face. Let k19 , kr be given. Suppose that a sphere
is demanded with these curvatures, and that k19 k2 and k3 are to appear at the
vertices of a flat triangular face. Since kx + k2 + kz + kr < 4π, we may choose
numbers εi > 0, 1 < / < 3 such that

1) ex + ε2 + ε3 = Λ3,
2) ελ + kλ <C 2ττ, ε2 + k2 < 2τr, ε3 + kr < 2π.
By hypothesis there is a sphere S7 in some Rn with curvatures kλ + ε1? k2 + ε2,

kr + ε3, k4, - , kr_λ at the vertices, the first three at the vertices V19V2, V3 of
the triangular face Γ. If the angles of T are a19 a2, a3, then it is easy to see that

aλ < \(2π — K — ελ) , a2 < |(2ττ — k2 — ε2) , a3 < \{2π — kr — ε3)

(this is in fact the "triangle inequality" for angles around a vertex). By the
lemma there exists a tetrahedron W with base congruent to T and curvatures
2π — 2ax — ε1? 2π — 2a2 — ε2, 2π — 2a3 — ε3, and k3 at vertices Wl9 W29 W39 W4.

Choose a point V such that the join W of V and Γ is congruent to W and
disjoint from S'\T; this is certainly possible in Rn+1. Let 5 = cl [(£' U 3 ^ 0 \ Π ,
the connected sum of S' aud dWf. One easily checks that S is the required
sphere. For example, at V1 the angle sum is 2π — kλ — ex in S'9 and is 2ax + εx

in dW. Therefore in S the angle sum at Vλ is (2π — kx — ε^ + (2aλ + e2) —
2aγ = 2π — kx.

2. Proof of Corollary 2

In order to apply Alexandrov's theorem, we must show that the sphere S is
not isometric to a double of polygon. This is easily demonstrated, as follows.
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The point W can be joined to each of the points V19V29 V3 by a unique geod-
esic in Rn+ι; since these geodesies lie in S, they are unique shortest paths
from W to V19 V29 and V3. But in a doubled polygon, any vertex of positive
curvature can be joined to only two other vertices by unique shortest paths.

3. Outline of the proof of Theorem 3

Suppose a triangle T is given, situated in the plane R2 c R3. Any tetrahedron
with base T is determined up to congruence (or symmetry) by a point V in
open upper half space H, namely, by forming the join T*V. Thus we may
think of H as the space of tetrahedra with base T it is homeomorphic to an
open three-cell. If the vertices of T are V19V29V39 and the lengths of the edges
VV19 VV2, VV3 are x, y, z respectively, then there is a well defined map
h.H^R3 g i v e n b y h(V) = (x9y9z) = (x(V),y(V),z(V)). T h e m a p / l i s a
diffeomorphism onto its image Hf which is a reparametrization of the space of
tetrahedra with base T.

Given a point X in H', that is, a tetrahedron, there is a well-defined triple
(kl9 k2, k3) of numbers in R3 defined by kt = the curvature of the tetrahedron
X at the vertex Vt. Thus there is a well-defined map φ: Hf —> K C R3, where
K consists of all triples (k19 k2, k3) satisfying

1) • 0 < kt < 2π - 2ai9 1 < / < 3,

2) Σl k€ < 4τr.
K is evidently an open convex linear cell.

Theorem 3 can now be restated: φ: H'^>K is a homeomorphism onto. This
will be proved in two steps. First, ψ is differentiate we compute the Jacobian
J(φ) and show that it is never zero. It follows that φ is an open map. Second,
by a compactification argument it will be shown that φ is extendable to a map
from a closed cell with interior Hf to c l £ which sends boundary points to
boundary points. It will then follow that ψ is surjective, and in fact a homeo-
morphism onto.

4. Computation of J(φ)

Suppose a triangle is given with sides of lengths a, b, c and opposite angles
A,B,C, respectively. The law of cosines gives

C = cos"1 ( ~ c ) — cos"1 u .
\ lab I

Viewing C as a function of a, b, and c we have

du sin C c sin B c sin
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these last by the law of sines. We can also easily have

gu a2 + c2 -b2 c cos B

da 2a2b ab

and similarly,

Therefore we

dC _
da

db

derive the

— cotB
a

ab '

formulas

dc
db

cot

b

A

dc

dC

do

ab

_ csc£
a

_ esc A
b

Using these formulas, we compute J(φ). Let the fixed tetrahedron K have
vertices V1,V2,V3,Vi, faces Q,R,S,T opposite these vertices respectively,
edges x = VxVi9 y = F 2 F 4 , z = F 3 F 4 , q = V2V3, r = V3V19 and s = VλV2

(Fig. 1). A face angle of K will be denoted by a letter determining the face
and a subscript determining the vertex, Thus Q2 is the angle at V2 on the tri-
angle β, etc.

Fig. 1

N o w φ(x, y, z) = (k19 k29 Λ3) where

Λx = 2π - R, - S, - Tx

t-r

S, - Tx , ^ 2 - 2^ - Q 2

= 2π - Q3 - R3 - T 3 .

T 2 ,

Recalling that the angles Ίi are constant, while the other angles depend on x,
y,z, the Jacobian matrix of φ is
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ds,
dy

dQ2

dy

3β 3

dy

+ cot S4)

esc 54

csc.R4

dS2

dy

dR, 1
dz

dQ2

dz

3β 3 3Λ3

dz az

--ίcscS 4
X

—(cotβ4 + cotS4)
y

--ίcscβ 4

z

—

—

—(cot
z

1

1
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a

esc .Rr

cscβ4

+ cotjR4)
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= [cot2 Λ4(cot β 4 + cot 54) + cot2 54(cot Q4 + cot RA)

+ cot2 β4(cot R, + cot S4) + 2 cot β 4 cot i?4 cot S4

- 2 CSC β 4 CSC i ? 4 CSC 5 4 - CSC2 # 4 ( C 0 t QA + COt S 4)

- esc2 54(cot Q4 + cot RA) - esc2 β4(cot R4 + cot 54)]

= [2 cot Q4 cot i?4 cot 54 — 2 esc β 4 esc 7?4 esc 54

- (cot β 4 + cot 54) - (cot Q4 + cot R4) - (cot R, + cot 54)]

2

sin Qi sin /£4 sin 54

1 - cos ( β 4 4

[cos β 4 cos (i?4 + S4)

- 1 - sin Q4 sin (i?4 + SJ]

< 0 ?

sin ^4 sin i?4 sin 54

since Qi + R± + 54 < 2π. This proves that φ is a local homeomorphism and
an open map.

5. Proof of Theorem 3: conclusion

In order to verify that ψ is a homeomorphism, it suffices to show that
φoh: H —> K is a homeomorphism.

We first compactify H as follows. Compactify I?3 —> B3 to a three-cell in the
usual way, that is, every point in B3\R3 corresponds to a direction of a ray
from a fixed point 0 in R\ Remove the points V19V2, V3 from B\ yielding a
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manifold with three ends. Cap off each end with a sphere; a point on such a
sphere corresponds to a direction in j?3 of a ray emanating from the deleted
point. The resulting space is a three-cell with three holes the closure H of H
in this space is clearly homeomorphic to a three-cell.

Any point P in H\H is a limit of points in H; it should be thought of as
the limit of tetrahedra, a degenerate tetrahedron. The value φ(h(P)) is defined
to be the limit of φ(h(P3)) for Ps —> P. That this makes sense derives from the
fact that as Pά —> P, the direction of the line segment from Vt to Pd in R3 ap-
proaches a limiting value. This argument would fail in B3, because as Pj —» V19

for example, the rays from Vλ to Pά would not necessarily converge in direc-
tion. Thus a degenerate tetrahedron with two identical vertices does not have
well-defined curvatures. Any other degenerate tetrahedron does have well-
defined curvatures for example a vertex at infinite distance has curvature 2π,
while a vertex lying inside the triangle T has curvature 0.

The map φoh: H —> cl K is a continuous map between compact spaces
(three-cells) and therefore takes closed sets to closed sets. Also, φoh takes
H\H to dK, so φ o h: H —> K is also a closed map hence φ o h is surjective. In
fact, it is easy to see φoh is a homeomorphism, as follows. Inverse images of
compact sets are compact, so in particular point inverses are finite. If {P19 ,
Pn] — (φoh)~\w), w e K, then choosing a sufficiently small neighborhood O
of w we may find neighborhoods Ut of Pi mapping homeomorphically onto O.
There cannot be points in O arbitrarily close to w whose inverse images are not
contained in [J™ Vs for then one could find a sequence in H whose images
converged to w but which could not have a limit point (such a point would
map to w). It now follows that φoh is a covering map, hence a homeomor-
phism. This completes the proof of Theorem 3.
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