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SOME RESULTS ON NONNEGATIVELY
CURVED MANIFOLDS

WALTER A. POOR, JR.

Cheeger and Gromoll have proven [1] that every complete Riemannian
manifold M of nonnegative sectional curvature has a compact totally convex
totally geodesic submanifold S, which they called a soul of M. Furthermore,
they have proven that M is homeomorphic to the normal bundle u(S) of S in
the tangent bundle TM of M ; for M simply connected and of dimension greater
than five, using the open A-cobordism theorem they proved that M and v(S)
are diffeomorphic. This result greatly simplifies the study of noncompact
complete manifolds of nonnegative curvature since it partially reduces the
problem to the study of vector bundles over compact manifolds.

Our first result will be to prove the differentiable soul theorem, that is, we
will prove that M and v(S) are diffeomorphic (without dimension or connec-
tivity assumptions). The diffeomorphism to be constructed will be rather
closely adapted to the geometric situation.

In preparation for the statement of the second result, we recall that if ¥ is
the Euler form on an oriented complete even-dimensional Riemannian mani-

fold M, then j X (if it exists) is called the total curvature of M. It has long
M

been known [4] that the total curvature of a complete surface of nonnegative
curvature is less than or equal to one; since in this case K = 27X, where K
is the sectional curvature, the result is usually written

j K <2rn.
M

Our second result will be to prove that for an oriented complete nonnega-
tively curved Riemannian manifold M of dimension 4, the total curvature ex-
ists and is bounded between zero and the Euler characteristic of M. This ob-
viously generalizes both the above result for surfaces and the generalized
Gauss-Bonnet theorem for four-dimensional oriented compact manifolds of
nonnegative curvature. In addition, for oriented complete nonnegatively curved
Riemannian manifolds of even dimension greater than 4, the argument reduces
the question to the so-called algebraic Hopf conjecture. This implies a partial
result in dimension 6.
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The results are related in the sense that both rest heavily on the global ex-
istence of certain convex functions; the analysis of these functions, which are
in general only continuous, is the central technical aspect of the work.

Finally we give some applications.

This paper presents the essence of the author’s doctoral dissertation at the
State University of New York at Stony Brook under the direction of Detlef
Gromoll. Here the author would like to express his thanks to Professor Gromoll
and also to the State University of New York at Stony Brook for its support.

1. Preliminaries

Given a C~ manifold M = M*, TM — ", M will denote the tangent bundle.
For p in M, M,: = z7'(p) is the tangent space to M at p. I'¢ will be the set
of C~ sections in the bundle & — M ; particular examples are FM: = I'(M X R)
= {C~ functions on M}, and tM: = I'TM = {C~ vector fields on M}. I will
always denote the covariant derivative operator YM X I'¢ — I'€ in whatever
bundle & we are discussing; exp will be the exponential map of F.

If M is a Riemannian manifold, then ¢, ) will be the first fundamental form,
and V: oM X tM — vM will denote the Levi-Civita connection. T'\M: =
{ue TM|||u|| = 1} is the (unit) tangent sphere bundle, and for p in M, §;~!
:= M, N T\M is the (unit) tangent sphere to M at p. Given nonzero u and v
in M, < (u,v) will denote the angle in [0, ] between u and v.

For p and q in M, p(p, @) is the metric distance from p to g. For r > 0 and
p in M, B.(p) is the open metric ball {g € M| p(p, ¢) < r} with boundary equal
to the metric sphere S.(p): = {g e M|p(p,q) = r}. A geodesic is said to be
normal if it is parametrized by arc length. If there exists a unique normal
geodesic ¢: [0, p(p, @)1 — M from p to g, it will be called the minimal connec-
tion from p to g.

Let X,, be the Euler characteristic of M.

In addition to the construction of a soul of M, we will also need a few of the
technical facts which Cheeger and Gromoll used in the proof of the continuous
soul theorem ; this section consists mainly of the necessary material from [1],
which we reformulate for our purposes.

A nonempty subset C of M will be said to be totally convex if for any p and
q in C and any geodesic c: [0, 1] — M from p to g, c lies in C. C is strongly
convex if for any p and g in C, there is a minimal connection ¢ from p to g
and c lies in C.

Lemma 1. Let C be a closed totally convex subset of an arbitrary
Riemannian manifold M. Then C has the structure of an imbedded k-dimen-
sional submanifold of M with smooth totally geodesic interior N and (possibly
nonsmooth) boundary 6C = N — N.

Cheeger and Gromoll actually proved a stronger version of the lemma, but
this is all we need. ‘
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For a closed totally convex set C and for a > 0, let *C:= {p e M| po(p,C)
< a} = Upec Bo(p); in addition, if 0C # 0, let C*: = {p ¢ C|p(p, 3C) > a}.
Notice that C* may be empty.

Lemma 2. Let M have nonnegative curvature, and let C be a closed totally
convex subset of M with nonempty boundary. If C® is nonempty, then C® is a
closed totally convex set. If a,,,: = max {a e R|C® # 0} = max,., p(p, 9C),
then dim C%=ax < dim C.

Lemma 3 (standard). For every compact subset K of M there is a number
e > 0 such that for all p in K and r in (0, ¢):

(1) the metric ball B,(p) is the diffeomorphic strongly convex image under
exp, of the open Euclidean ball of radius r about 0 in M,,;

) if c:10,u] — B,(p) is a nonconstant geodesic, c,: [0,1] — B,(p) is
the minimal geodesic from p to c(0), and {é(0), ¢,(1)> > 0, then the function
s — p(c(s), p) is strictly increasing on [0, u].

From now on, we will always assume that M is a complete noncompact
Riemannian manifold of nonnegative curvature.

We will only use parts (1) and (2) of the next lemma; part (3) is presented
because it gives the flavor of the proof of the continuous soul theorem and is
a model for some of the work we must do.

Lemma 4. Let K be a compact totally convex set in M with nonempty
boundary, and let 0 < ¢ < a,,,, where ¢ is a constant as in Lemma 3, and
G, = max {p(p,0K)|p € K}. Then

(1) there exists § € (0, ¢) such that p(p, K*) < e forallpin K*if 0 <a <
d <ag,andad —a <g;

(2) there exists a “‘continuous geodesic contraction” of K* onto K% if
O0<a<d<ay,,andd —a<ig;

(3) given 0<a<d <ay, suchthat @ — a <43, there is a homeomorphism
of 0K* x [0, 1] onto K* — int K%'

We will now describe the constructions in parts (2) and (3) explicitly.

Given p in K* — K%, there is a closest point g in K*'; g is unique by the
first variation formula and Lemma 3. Define A(p): = q. & is continuous by
uniqueness of g and the continuity of p — p(p, K*'). Thus we can contract K*
onto K% along the minimal connections from points on 9K® to the closest
points on K*. We will occasionally refer to 4 as “the contraction” onto K¢'.

Let ' < a” < @y, so that a” — a < 5. Let k be the contraction onto K¢,
and for p in 9K* let g,: [0, 1] — K* be the unique minimal geodesic such that
2,(0) = p and g,(1) = h(p). Define @: 5K* — (0, 1) such that g,(d(p)) e 9K* ;
@ is continuous. Define F: 0K® x [0,1] — K* — int K¢’ such that (p,?) —
8,(@(p)?). F is the homeomorphism.

Let {C;};», be a family of nonempty compact totally convex sets such that

1) dim C¢{< d%mM %f t=20,

= dim M if t > 0;
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(2) L>t=> Ctl = Ctztrtl,

(3) Uiz C; = M.

Note that for all t > 0, C,! = C,.

Cheeger and Gromoll constructed this family as follows: a normal geodesic
c: [0, ) —> M is called a ray if each segment of ¢ is minimal between its end-
points. It is straightforward to see that every point in any noncompact com-
plete Riemannian manifold has at least one ray through it. If ¢ is a ray, let
B,: = ;s Bi(c(?)). B, is called the open half-space with respect to c, and
its complement M — B, is totally convex in our case.

Now pick pin M. Fort > 0, let L,: = (., (M — B,,), where the intersec-
tion is taken over all rays ¢ emanating from p and ¢, is the ray determined
by c,(s):=c(t + 5), 0 < s < . Each L, is compact and totally convex, and
p is in oL,.

If dim L, < dim M, then let C, = L, for all ¢ > 0. If dim L, = dim M, let
a,: = max,., p(q,dL,) and

_ [Ly*~t for0<t<aq,,
L

¢
t—aq fora, <t.

It 9C, =0, then let S=C, If aC,# 0, let K,:=C, and q,:=
max,.z, o(p, 9K,) ; thus K;: = K¢ is a totally convex set of lower dimension
than K,. Iteration yields a sequence K, O K, D --- D K; of compact totally
convex sets such that K, : = K%, where a;: = max {p(p, dK,)|p ¢ K;}, and
such that 0K; = 0;J < dim M. Let S: = K.

Cheeger and Gromoll called S a soul of M ; it is unique up to the choice of
p. They proved that M is homeomorphic to the normal bundle of S, and stated
that the construction could be smoothed out so as to give a diffeomorphism.
We have carried out this process in detail, and consider this approach to be
unnecessarily complicated. Here we present a modified construction which is
simpler and also more satisfying geometrically.

2. The differentiable soul theorem

Let M be a complete noncompact Riemannian manifold of nonnegative
sectional curvature.

Theorem A. M is diffeomorphic to v(S).

The exponential map restricted to ¥(S) is a smooth surjective map onto M,
which fails to be injective. The map we obtain is modelled (roughly speaking)
on the exponential map, and in fact we may think of it as being a smooth
bijective “bent exponential map”.

We will actually prove the following theorem ; by standard arguments from
differential topology it is equivalent to Theorem A. For these arguments, as
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well as for several arguments used in the proof of the following theorem, we
refer the reader to references [8] and [10].

Theorem B. Let M, = S. Then there exists an increasing sequence M,, M,,
-+« of nonempty compact submanifolds with boundary such that

(1) M, is diffeomorphic to a disc bundle in v(S),

2 M,,, — int M, is diffeomorphic to oM, X [0, 1] for i > 1, and

(3) M is the (disjoint) union S U (Ui (M, — M))).

This result will be proven in several steps. First we make a few remarks.

Recall that we have an expanding sequence {C,},., of nonempty totally con-
vex compact sets and a decreasing sequence C, = K, DK, D --- D K; =8
as constructed in § 1.

Cheeger and Gromoll construct a continuous “broken exponential map” by
locally adjusting the exponential map restricted to v(S) to get a locally injective
map; by using the above sequences of sets to keep track of the resulting
“continuous flow”, they end up with a homeomorphism from v(S) to M.

The local arguments are of three types. First, given a sufficiently small r > 0
they construct a homeomorphism between 7K, and the disc bundle v,(S) of
radius r. This argument takes into account the difference in dimension between
K, and K;,, at each step. Then they use another argument to show that 7C, is
homeomorphic to C, = C;*"". The third argument uses the exhaustive sequence
{C,} to extend this homeomorphism globally.

Simply smoothing out these constructions directly is not very efficient, and
so we have modified the whole approach.

First we present an interesting fact.

Lemma 5. Let K be a compact totally convex subset of M. Let d: M — R
such that d(p): = p(p,K). Then there exists an open neighborhood U of K
such that d|y_g is C".

Proof. Consider the set 'K. Choose ¢ in (0, 1] for 'K as in Lemma 3. Then
¢ also satisfies the conclusion of Lemma 3 for the smaller set ‘K. Let U: =
int ‘K. Let i: U — K be the “continuous geodesic contraction” onto K given
in Lemma 4(3) ; h(p) is the unique point in K such that o(p, K) = p(p, h(p))

Let peA:=U — K. Define f,: A —> R such that f,(q): = p(q, h(p)).
Clearly we have f, > d; in addition, f,(p) = d(p), and f, is C* on a neigh-
borhood of p in 4. Let 4 C M,,,,, be the supporting hyperplane for K orthog-
onal to the minimal connection from p to A(p) (cf. [1]). Let 4,: = {v e 4[| v||
< ¢}. Then exp, 4. is a local supporting hypersurface for K. For g ¢ 4, let
2,(@): = p(q,expypy 4.). Then g, < d, g,(p) = d(p), and g, is C~ on a
neighborhood of p in A4.

By the squeezing principle, d is (once) differentiable at p, and in fact

d*lp = fp*lp = 8p4p -
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To see this, let ¢ be a C~ curve in A4 such that ¢(0) = p. For small positive z,
1 1 1
T[gpw(t) — &M < T[dOC(t) —dp] < T[f,,OC(t) — @)1,
and therefore,
(8,°cY(0) < Jim L ldoc(®) — dp)] < (F, 20)(0)
Similarly,
(fp00)'(0) < lim %[d oc(t) — d(p)] < (g,°0)(0) .

Thus (f,°c)(0) = (g,°¢)(0), and therefore (doc)’(0) exists and equals
(f, o )(0).

Since the assignment p — h(p) is continuous, so is p — Vf,(p) = Vd(p) (see
the remark below) ; thus d is C' on U — K.

Remark. Given pe U — K, let 7, be the minimal connection from p to
h(p) e K. Then

Vdorp(t) = prorp(t) == _fp(t) s

for 0 <t < d(p). In particular, Fd is a continuous autoparallel unit vector field
on U — K. In addition, h(p) = exp, (—d(p)Vd(p)).

Lemma 6. Let K be a compact totally convex subset of M with nonempty
boundary, and let a,,.: = max {p(p,dK)|p € K}. Choose e ¢ (0, 1] as in the
proof of Lemma 5, and choose r e (0,¢). Define d: [0, a,,,] X "K — R such
that d(a,p) = d,(p): = p(p,K*), and set (Vd)(a,p) = Vd,(p). Then Vd is
uniformly continuous on the set

A:={(a,p)€l0,a,,] X "K|p e [K*] — int *[K°]} .

Proof. First we prove that d is continuous on [0, a,,,] X "K; we already
know that for each a, d, is continuous on K and C' on "[K%] — K¢.

Let {(a;, p)} be a sequence in [0, a,,.] X "K converging to (a, p). Choose a
sequence {g; € K%} such that d(a;, p,) = p(p;, q;). Let g be a limit point of this
sequence ; such a g exists since K is compact. Then lim; d(a;, p;) = lim,; p(p;, q;)
= p(p, g) > d(a, p). Now choose g ¢ K* such that p(p,q) = d(a, p), and let
{g,} be a sequence such that g; e K and lim; g, = g. For each i, d(a;, p;) <
o(p;; 4;), and therefore lim; d(a;, p;) < lim, p(p;, §;) = p(p, @) = d(a, p). Thus
d is continuous.

But then since A = d~'[}r,r], A must be compact. Define ~: A — K such
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that A(a, p) is the unique point g in K* for which o(p, g) = d(a, p). By contin-
uity of d, A is also continuous. But

h(a, p) = exp, (—d(a, p)Vd(a, p)) ,

and thus Fd is continuous on the set 4.

We are now ready to prove Theorem B.

Choose ¢, ¢ (0, 1) for the set C, as in Lemma 3. Choose 4, € (0,¢) as in
Lemma 4. Let 0 < r < §,, and choose &, for ¢ = 1r and the set C, as in Lemma
4. Recall that K, = C, and K,,, = K,*, where a; = max {p(p, 9K,) | p € K,}.

Since Fd is uniformly continuous on the set

A:={(a,p) € [0,a,] X "K,|p e "[K,*] — int "*[Ke]} ,

there exists & > 0 such that if (a,p) and (b,p) e 4 and |[a — b| < &, then
X (Wd,(p),Vdy,(p) < ir; we may assume that & < §,.

Choose numbers 0 = b, < b, < - .- < b, = a, such that b;,, — b, <&,
0<i<k—1.LetL,=K, L,=K?,---,L, =K =K,. Continue similar-
ly with K, - - -, K;_, (choosing a different value of ¢ at each step, if necessary)
to get a decreasing sequence

K,=L,oL,D---DL,=K,D---DK,D---DOL,=S§
such that for 1 <i < &, L; = L;_,* for some sufficiently small a, > 0, and
1‘/4Li_1 C r/ZLi C T/ZLi—l .

Let d;: "L; — R be the distance function from 7L, to L,. Then each d, is C'
off of L;,, andif pe’L,_, — T/zLiz then S (Vd,(p),Vd;_(p)) < i=.

We can choose a C~ function d; on "L, such that

) |d; —di| <{rje,

(2) Vd; # 0 and J(Vd;,Vd;) < %=r off of "°L,.

For 1 <i<a, let N; be the compact submanifold {pe’Lilﬁ'i(p) <

da—2i41 r} with C* boundary H, — gi-1<wr). Then
i 4o

L, C intN, C N, C int°L, ,

where ¢ = (3Qa — i)/a)r and t = (3Qa — i + 1)/a)r). Also, Vd; | H,.
Thus H, is also transverse to V'd,_,, 1 < i < a, by the way we chose every-
thing. Therefore the gradient flow of d,_, determines (after reparametrization)
a diffeomorphism H; X [0,1] = N,_, — int N;,2 < i < .

In addition, V5, determines a diffcomorphism between a("/2S) x [0, 1] and
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N, — int 72§, By the choice of r, the exponential map is a diffeomorphism be-
tween the normal disc bundle v, ,(S) of radius 3 and "/%S.
Set

M1:='r/2S, M2::Nas' ) Ma+1::N1'

M., is a compact submanifold with boundary such that
"L, C Ma+1 crL,,

where r; = (3(2¢ — 1)/a)r. We will now show how to find the larger sub-
manifolds required by the theorem.

Choose ¢, ¢ (0, 1) for the set C, as in Lemma 3, §, ¢ (0,¢,) for C, as in
Lemma 4, and let 0 < r, < min {32,r1}; finally, choose 4, for e = r, as in
Lemma 4 for the set C,.

Let x be an integer greater than 1/§,. Then (r, — r,)/x < 1/k < §,. For
i=0,1,---,k let 9():=r, — jir, — r))/k. As j runs from O to x, ()
decreases from r, to r,; let £(j) = j/x. We have the following inclusions:

y _1 .
Cijory C© Cyyy T TC 5oy T TIPCyyyy T TICy -

By the way we have chosen everything, we can now use the appropriate
distance functions as before to obtain compact submanlfolds M, with boundary
fori=a + 2,---,a + £ — 1, such that

j (j+1
TDCoy T Moygur © 79C 5,0

forj =20, ..., — 1, and having the properties required in the theorem.
M,, ., is now close to "*C, C C,. Pick all the appropriate constants for C,
and iterate. This completes the argument.

3. Total curvature of M

In this section we will prove that for a complete noncompact oriented
Riemannian manifold M of dimension 4, the total curvature of M exists and
is bounded between O and the Euler characteristic of M.! In addition, if the
dimension of M is 2k, k > 3, then our argument reduces the problem to the
algebraic Hopf conjecture ; in particular, this implies a partial result in dimen-
sion 6.

The calculus we employ is not new, but does not appear in the literature in
this exact form. We start by presenting classical material to help fix the
notation.

Let z*TM be the pullback of TM over itself under the map =:

* This result has also been proved by R. Walter using a different approach.



NONNEGATIVELY CURVED MANIFOLDS 591

*TM — TM

L F

™ —— M.

We may realize #*TM as the vertical bundle VM in TTM: for v e TM, the
fiber in VM over v is z,|,”'(0) C TTM. For u in M, let u, denote the canon-
ical identification of M, with (M,), C VM by parallel transport, that is, for

veM, uv:= di (u + tv). Then we may identify z*TM with V Musing #
=0

tle

as follows: for (u,v) e #*TM, u and v are in the same tangent space to M,
so u,v makes sense, and (4, v) < u,v is the required bundle identification.
Suppose & — M is a vector bundle over M ; let A7¢ be the associated bundle
over M for which the fiber at p in M is the vector space of alternating j-linear
forms on the fiber &, in & over p.
Given o € A’¢ and p e A%, both over the same point p in M, we have as
usual the (j + ¢)-form

]T,—lﬁzsgn(a)<w®#)oa,

o\ p =
where the sum is taken over the symmetric group on j + ¢ letters.

Recall that YM = I'TM, and let A7(§) be the FM-module of alternating r-
linear forms on bM with values in I'€. If VV: YM X I'é — ['¢€ is a covariant
derivative operator in &, then we have the standard exterior derivative operator
d’: A7(&) — AT*Y(€) with respect to /' defined by

[d0l(X): =V yo

for w € A°(¢), and by

A

[de](Xo, i "X’r): = Z (—1)iVXi(w(X01 M "Xi9 : 'aX'r))
+ Z_(_l)i+jw([Xian]sX05 ° '5‘?1'7 ot '7Yj’ ot "Xr)

i<J
forwe A7(&),r > 1.

Notice that for an arbitrary covariant derivative V in an arbitrary bundle &,
d’d’ does not have to vanish; a bundle £ is said to be flat with respect to F if
and only if d’d” = 0. Example: M X R is flat with respect to its canonical
connection.

We will be using modules of the form A7(47£), and we need a sort of double
wedge product. Given ¢ € A7(A7€), € A%(A%€), and X, - - -, X, ,; € bM, we
define the form ¢ N ¥(X,, - -+, X,,,) e 4776 to be (rls!)~' 33, sgn (0)p(X,,,
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LX) AKX, -0, X, ), where as usual the sum is taken over the
symmetric group on r + s letters.

d” and A have the following usual properties:

(1) d' is natural: f*(d"w) = d™"(f*w).

(2) A is associative.

(3) For ¢ € A7(A7¢) and + € AS(AE), ¢ N\ = (—=1)7%, A &.

(4) For ¢ and ¢ asin (3), d"(¢ A V) = (d¢) A ¥ + (=1)"¢ A\ d"+.

We will use the canonical identification of functions on M™ with n-forms to
convert elements of A7(A"TM) into ordinary differential r~forms on M ; this
will allow us to integrate such (r, n)-forms without further comment. More
generally, any (r, r)-form restricted to an r-plane can be thought of as a num-
ber; an example of this occurs in the next paragraph.

A curvature form on a Euclidean vector space ¥” is a 2-form £ on ¥~ with
values in 2-forms on 7~ such that {2 satisfies the Jacobi identity in the first
three arguments. Assume that ¥~ is even-dimensional, dim ¥~ = 2j. The alge-
braic Hopf conjecture is that if —£ is nonnegative (resp. positive) on all 2-
planes in ¥7, then (—2)7 is nonnegative (resp. positive) on 7.

Notice that — 2 restricted to 2-planes in #~ is just the usual sectional curva-
ture function. The conclusion of the Hopf conjecture is true under certain extra
algebraic conditions which have no geometric significance in our situation.

Define the curvature form Q € AX(A*TM) on M with respect to I/ by

X, Y)U,V): = (ddUX,Y), V> = (RX,Y)U, V>

for vector fields X, Y, U and V on M, where R is the usual curvature tensor
on M. The Bianchi identity now takes the form

&2 =0.

Pull ¢, > and V back to #*TM = VM, and let 4 = A(VM) = A(@*TM).
Let I be the “position vector field” on TM along z:

VM — TM

| I//l” I):=.

™ —— M
T
Let e A%(4") be the canonical 1-form defined by
p(8): = {&*l, s)

for s in VM. Suppose that s = u,v; then

7(s) = (a*l, s)], = {@*Du, uw) = uu, uw) = {u,v)
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by the definition of {, > on TM as the pullback of {, > on M.
Next we define the connection 1-form on VM by

0:=dne AU .

For v e TTM and s ¢ VM, 6(v)(s) = (F,p)(s) = <V,z*I,s>. We now mention
some facts which will be needed below.
(1) If vis vertical on TM, then VI = v, and therefore 4(s)(9) = (s, ¢ for

sand tin VM.
(2) If v is tangent to T)M, then 8(v)(z*I) = 0.
(3) Consider d’8 e A*(A*); for u and v € TTM and s € VM,

d"0(u, v)(s) = o* 2, v)(z*l,s) .
4) =*92(u,v) = 0 for vertical vectors u, v e TTM.
For1 <i<k,let
Hi: =y /\ 021'—1 /\ E*Qk_i e An—l(An) R

(—=1)*+i+1(G — 1)!

C;i = . - .
mF2E (e — D120 — 1)!

Define
k
H: = Z Ciﬂi .
iz

The key points in the classical Chern argument [2] are the following: first
of all, on T M,

i = (D" e
k! )"

second, on the unit sphere S7~! in M, II is a constant times the volume form,
and in particular

II=—1.

n—1
SP

These equalities are proven by choosing special bases and then applying the
definitions and facts (1)-(4).
Define the Euler form on M by

1= (5D g g gnismy
k120

7*X is exact on T\M. X is often called the Chern integrand.
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Let H be an (n — 1)-dimensional submanifold of M equal to a level set
f~(c) for some f in FM and some regular value ¢ of f. The Hessian form of
f at p is the symmetric bilinear form 4,: M, X M, — R defined by h,(u, v)
:= IV Vf,v)foruand vin M,. Notice that for p in H, h,, restricted to H, X H,
is just |Ff(p)|| times the second fundamental form of H at p with respect to
the unit normal field Ff/||F'f|| on H; call this restricted unit normal field X.

We want to estimate J X*II. To do this we first evaluate g(p), where g is the
H
function on H determined by the identification
[X*H]p = g(p) . dp(VOIH) s

where d(voly) is the volume form on H. Let u,: = X,, and let u;, - - -, u,_,
be the principal curvature directions of H at p with principal curvatures 2,,
-+ -, A,_, respectively. Then

glp) = g(p)-d,(vol ) (uy, - - -, Uy _y)
= X*H(uu D) un_l)(um ) un_1)

k
- §1 ClX*(v A 02‘;_1 AN ‘Qk_i)(ul’ Tty un—l)(uo’ Tty un—l)

= e, Y sgn (@) sgn (L (X, u NP g XX, X,

[(n — 2)!F
.. X*E*Qk_i(u,”, cee, uun-l)(umi’ cee u{n_l) s
where the inner sum is taken over all ¢ € S,,_, acting on {1, --.,n — 1}, and

reS, acting on {0,---,n — 1}, and everything is evaluated at p. Since
{X,u.,y = ., by the definition of the u;, and

70.

<VX*u.,lX#X5 X3u11> = <Vua1X9 url> - 5,;‘,:12«1 ’

we have
& .
gp) = 2 (= Dle X Ay, oo A 25
where Q%-¢ is evaluated on u,,, - - -, u, _,,, and the inner sum is taken over all
jl < tte < jzi—l and zl < tee < gn—zi such that {jn M ’jzi—ls gl, M) gn—Zi} =
{1,...,n — 1}.

If the boundaries of the sets C, were C* for all sufficiently large ¢, the
remaining work would be simple; unfortunately, the boundary of a totally
convex set is in general only continuous, and the set of points of non-differen-
tiability can in fact be dense in the boundary. The nicest way around the dif-
ficulty would be to approximate each set by a totally convex set with C* bound-
ary; so far we have been unable to prove that this is possible in general. For
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our purposes it is sufficient to have an approximating set with a differentiable
boundary which is only close to being totally convex.

Recall that on a manifold a convex function is a continuous function
f: M — R such that for every geodesic c¢ in M, foc is a convex function on R
in the standard sense, that is, given real numbers a and b,

foc(sa + (1 — s)b) < sfoc(a) + (1 — $)f o c(b)

for 0 < s < 1. All the sublevel sets of a convex function are totally convex.
In our situation, the function f: M — R such that

0 ifpeC,,

i) = {
t if peadC, fort >0

is convex. This follows since on C,, [p — — p(p, 8C,)] is a convex function (see
[1]), and f(p) = ¢t — p(p, dC,) for p in C,.

In attempting to find a C~ convex approximation for f one is naturally led
to the idea of convolving f with a C~ bump function. The result fails to be
convex, but is close in the sense of the following lemma.

Lemma 7. Given K compact in M, choose ¢ > 0 as in Lemma 3. Suppose
f: M — R is convex. Then there exist an open neighborhood U of K and a
family {f, e FU|r € (0, )} such that

(1) the functions f,.|x converge uniformly to f|g as r — 0,

(2) f, approaches f monotonically from above,

(3) lim ( inf Ay, (u,u)) > O where h,, is the Hessian form of f,.

r—0 wueTli1K
A complete proof of this result has been given by Greene and Wu in [5], so

we will give no more than the explicit construction of the functions f, for later
use.

Let #: R — R be a nonnegative C> bump function with support in [—1, 1]
which is constant near zero and such that

[ wtopan=1.

Define
1 vl
f(p): = ,—n‘L,pf"eXp (v)p<T>dv .

Theorem. Let M be a complete oriented Riemannian manifold of non-
negative sectional curvature and even dimension 2k. Assume that the algebraic
Hopf conjecture holds on M. Then the total curvature of M exists and is
bounded between zero and the Euler characteristic of M.

Proof. For each positive integer i, let ¢; > O be a constant as chosen in
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Lemma 3 for the set C; in the filtration of M by compact totally convex sets
C,. Fix a positive integer i >2; let {f, |r € (0, ¢;)} be a sequence of C* functions
on a neighborhood U of C; as given by Lemma 7 for the function f indexing
the sets C,.

First we prove that for r sufficiently small, f, has no critical points off of
a neighborhood of C, in C;, and f,”! (— o, i] is homeomorphic to C;,.

Choose a positive ¢ < min {e;, 1} for the set C, as in Lemma 4. Let
i—0<d <a<i Then we have a continuous geodesic contraction of C;
onto C,. and the distance function d from C; to C,, is C* on C, — C,.. For
each p in 9C,. there is a unique geodesic y, through p such that y,(0) = p and
7»(0) = Vd(p); 7, is a reparametrization of one of the geodesics given by the
contraction of C; onto C,.. 9C,, is transverse to y,, and therefore f is strictly
increasing along y,. By continuity, for each p there is a cone W, of normal
geodesics through p about 7, such that f is strictly increasing along each ¢ in
W,. We may assume that there is some positive number « such that for all p,
W, is the set of all normal geodesics on the interval [—p3, 1] which have
¢(0) = p and <((é(0), 7,(0)) < «, where § is some positive number less than
a—a.LetW: =Jyeoc, Wp- Then{foc|_, ;]c € W} is a continuous compact
family of strictly increasing functions, all of which are convex and have the
value a at 0. All of the difference quotients

%[foc(t)—a], 120, ceW,

are positive, and it is a straightforward proof that the difference quotients for
t > 0 have a uniform positive lower bound £. Then by monotonicity of the
difference quotients of a convex function,

foel) — focls) o .
t—s -

foO<s<tandceW.

Furthermore, there exists a positive number r, such that for all ¢ in W, the
difference quotients of f along every curve of the form [z — exp,, V(¢)] are
greater than or equal to ik, where each V is a parallel vector field along ¢ for
which ||V (2)|| < r,. We may assume that 7, < ¢,.

Now let ¢ = 7, for some p in 9C,. We want to calculate (f, o ¢)’(¢) for t > 0.
Now r*(f, o c(s) — f,oc(¥)) is equal to

IMM foexpes (’Mﬂ(@)d@ — JMW) fo €xpe, (’U)p(”%”)d,v

= I (f o €Xpecs) V(8) — foexpeg, V(t))y(M)dv s
Me(e) r
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where V is the parallel vector field along ¢ with V(f) = v. Thus, if r < r,, then
froc(s) — froc® > 3(s — D&,

and therefore (f,oc)’(#) > }x. But this means that <{I'f,,d) is positive for
r < r,; notice that by the same argument we can prove that off of a small
neighborhood of C,, the derivative of f, in a direction transverse to the bound-
ary of each set C, is positive for sufficiently small r. In particular, for small r
we may use the gradient flow of some distance function d to obtain a
homeomorphism between C; and 5,: = f,~'(— o, i]. This is a crucial step in
the proof of the theorem since it allows us to equate the Euler characteristic of
£ with the Euler characteristic of M:

XET:XCi:XS:XM'

We will also use the fact that f, has no critical points near C; since that
means that 5, = f,7'(i) is a submanifold.

From here on the proof is almost identical to what it would have been if the
boundary of C,; had been C*.

We may approximate F'f, by a C~ vector field V', which equals Vf, near 95,
and has only isolated zeros. By the Poincaré-Hopf Theorem [9], the sum of
the indices of the zeros of V', is just the Euler characteristic of &, that is, X,.
LetY,:=V.,/|V,| on B, — {zeros of V }.

Then

J x:f YT + %y .
Sy 5y

But

Iy

Ci:U

>0

T

since f, > f, and then

fx:lim 7.
Ci r=0 5,

In particular, the limit of Y*]I exists as r — 0. As before, Y*I =
IE, A5y

LE 2,(p)-d,(vol,,), and

&) = -2 2Emigk(k — )1

Z Zjl e zjzm—l(_‘Q)k_i ’

where (—£)*-* is evaluated on the plane spanned by v,, through v,, , , and
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the inner sum is taken over all j, < «++ <j,_, and 4, < ... < £,_,, such

that {j,, - <+, fom—1s 415+ * *5 Lpyym} = {1, - - -, n — 1}. Here v, - - -, v,,_, are the

principal curvature directions of 35, at p with corresponding principal curva-

tures 4;, -+, 4,_;. By the choice of the functions f, and the fact that the

Hessian form of f, at p is just ||F'f,(p)|| times the second fundamental form of

05, at p, we see that lim 2;, - - - 4;,, , > 0. Since we have assumed that the
-0

Hopf conjecture is true on M, (—2)¥¢ is nonnegative. The result is that
lim g.(p) < 0, and consequently,
r—0

im| Y*7T<oO.
=0 )5z,

£l
Here we use the fact that {vol (65,)},., is bounded, which is easily proven
using the basic Hausdorff measure theory. But then,

-0

j%:limf X:limj YHIT + Ly < Yo -
Ci &y ™0 Jas,

Again by the Hopf conjecture, 0 < f X gj x for all i. Therefore J X
C; M

Ci+1

exists and 0 < J 1< Ay
M

4. Some remarks

Cohn-Vossen classified the complete noncompact surfaces of nonnegative
curvature [4]; for such a surface M, the soul S is either a point or is diffeo-
morphic to S*. If S is a point, then M is diffeomorphic to R?, and Cohn-Vossen
proved that the total curvature is bounded between O and 1; these estimates
are sharp. If S is diffeomorphic to S, then M is isometric to one of the two
flat line boundles over S and has zero total curvature.

Our result gives a new proof of the Cohn-Vossen total curvature result.

Cheeger and Gromoll classified the complete noncompact 3-manifolds of
nonnegative curvature using the soul theorem [1]; the soul is diffeomorphic to
one of the following: a point, S', $?, RP?, the flat torus, or the flat Klein bottle.
In addition, they proved that if the soul S of an arbitrary complete Riemannian
manifold of nonnegative curvature has codimension 1, then M is isometrically
a flat line bundle over S.

Gromoll and Meyer proved that if the curvature of M is everywhere posi-
tive, then the soul is a point (see [7]). From this they proved, for n # 3 or 4,
that M and R™ are diffeomorphic; our result implies directly that for any
manifold for which the soul is a point, the manifold is diffeomorphic to R™ and
the total curvature, if it exists, is bounded above by 1.

We will assume that all our manifolds are oriented; by considering the
orientation covering, similar information can be gotten for nonoriented mani-
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folds. No attempt will be made to classify anything, but we will make some
comments about the cases of dimensions 4 and 6.
Dimension 4. The only possible souls with positive Euler characteristic are

a point and S$*. Thus we see immediately that 0 < f 1< 2.
M

If the soul is diffeomorphic to S!, then the total curvature of M is zero.

Suppose dim § = 2. If § is the flat torus, then M is locally isometrically
trivial over S (see [1]), and in such a case the Chern integrand is identically
zero. If S is diffeomorphic to S and the total curvature of M is positive, then
M is not isometrically the product S* X R?; M may still be the product of S
and some nonnegatively curved surface diffeomorphic to R? and there are
examples where M is not even locally isometrically a product, e.g., TS

If dim S = 3, then X, is of course zero, as is the case whenever the soul of
M is odd-dimensional. In addition, in this case M is isometrically a flat line
bundle over S with zero Chern integrand. Despite these restrictions there are
still many possibilities for M, since there are already 6 flat compact orientable
3-manifolds [11].

Dimension 6. Here we cannot in general say that the total curvature exists,
but since the boundary terms involve only the first and second powers of the
curvature form, we do know that

Iim| 1<%y .

i—o0 J Oy

Even if the total curvature does exist, without more information we have no
guarantee that it will be nonnegative. The number of manifolds here will be
quite large since in the flat case alone there are very many manifolds of dimen-
sion less than six. Notice however that if S is flat, then the Chern integrand is
identically zero on M since locally M has a flat factor [1].
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