
J . DIFFERENTIAL GEOMETRY
9 (1974) 583-600

SOME RESULTS ON NONNEGATIVELY
CURVED MANIFOLDS
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Cheeger and Gromoll have proven [1] that every complete Riemannian

manifold M of nonnegative sectional curvature has a compact totally convex

totally geodesic submanifold S, which they called a soul of M . Furthermore,

they have proven that M is homeomorphic to the normal bundle v(S) of S in

the tangent bundle TM of M for M simply connected and of dimension greater

than five, using the open /z-cobordism theorem they proved that M and v(S)

are difϊeomorphic. This result greatly simplifies the study of noncompact

complete manifolds of nonnegative curvature since it partially reduces the

problem to the study of vector bundles over compact manifolds.

Our first result will be to prove the differentiable soul theorem, that is, we

will prove that M and v(S) are diίfeomorphic (without dimension or connec-

tivity assumptions). The diίϊeomorphism to be constructed will be rather

closely adapted to the geometric situation.

In preparation for the statement of the second result, we recall that if X is

the Euler form on an oriented complete even-dimensional Riemannian mani-

fold M, then 1 (if it exists) is called the total curvature of M . I t has long

J M

been known [4] that the total curvature of a complete surface of nonnegative

curvature is less than or equal to one since in this case K = 2πX, where K

is the sectional curvature, the result is usually written

J M
K<2π .

Our second result will be to prove that for an oriented complete nonnega-
tively curved Riemannian manifold M of dimension 4, the total curvature ex-
ists and is bounded between zero and the Euler characteristic of M. This ob-
viously generalizes both the above result for surfaces and the generalized
Gauss-Bonnet theorem for four-dimensional oriented compact manifolds of
nonnegative curvature. In addition, for oriented complete nonnegatively curved
Riemannian manifolds of even dimension greater than 4, the argument reduces
the question to the so-called algebraic Hopf conjecture. This implies a partial
result in dimension 6.
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The results are related in the sense that both rest heavily on the global ex-
istence of certain convex functions the analysis of these functions, which are
in general only continuous, is the central technical aspect of the work.

Finally we give some applications.
This paper presents the essence of the author's doctoral dissertation at the

State University of New York at Stony Brook under the direction of Detlef
Gromoll. Here the author would like to express his thanks to Professor Gromoll
and also to the State University of New York at Stony Brook for its support.

1. Preliminaries

Given a C°° manifold M = Mn, TM —^> M will denote the tangent bundle.
For p in M, Mp: = π~\p) is the tangent space to M at p. Γξ will be the set
of C°° sections in the bundle f —> M particular examples are FM: = Γ(M x R)
= {C°° functions on M}, and t)M: = ΓTM = {C°° vector fields on M}. F will
always denote the covariant derivative operator bM x Γξ —> Γξ in whatever
bundle ξ we are discussing; exp will be the exponential map of F.

If M is a Riemannian manifold, then <( , ) will be the first fundamental form,
and F: t)M x t)M—> t)M will denote the Levi-Civita connection. TλM: =
{u € TM 11| u|| = 1} is the (unit) tangent sphere bundle, and for p in M, Sn

p~
ι

: = Mp ΓΊ TλM is the (unit) tangent sphere to M at p. Given nonzero u and v
in Mp, <>C (w, v) will denote the angle in [0, π] between u and v.

For p and q in M, p(p, q) is the metric distance from p to q. For r > 0 and
p in M, Br(p) is the open metric ball {q € M \ p(p, q) < r) with boundary equal
to the metric sphere Sr(p):= {q e M\ρ(p,q) = r}. A geodesic is said to be
normal if it is parametrized by arc length. If there exists a unique normal
geodesic c: [0, p(p, q)] —> M from p to q, it will be called the minimal connec-
tion from p to q.

Let XM be the Euler characteristic of M.
In addition to the construction of a soul of M, we will also need a few of the

technical facts which Cheeger and Gromoll used in the proof of the continuous
soul theorem; this section consists mainly of the necessary material from [1],
which we reformulate for our purposes.

A nonempty subset C of M will be said to be totally convex if for any p and
q in C and any geodesic c: [0,1] —> M from p to q, c lies in C. C is strongly
convex if for any p and q in C, there is a minimal connection c from p to q
and c lies in C.

Lemma 1. Lei C be a closed totally convex subset of an arbitrary
Riemannian manifold M. Then C has the structure of an imbedded k-dimen-
sional submanifold of M with smooth totally geodesic interior N and (possibly
nonsmooth) boundary dC = N — N.

Cheeger and Gromoll actually proved a stronger version of the lemma, but
this is all we need.
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For a closed totally convex set C and for a > 0, let aC: = {p e M\p(p, C)
<a}= ΊJpecBa(p) \ in addition, if dC ψ 0, let Ca: = {p e C \ p(p, dC) > a}.
Notice that Ca may be empty.

Lemma 2. Let M have nonnegatίve curvature, and let C be a closed totally
convex subset of M with nonempty boundary. If Ca is nonempty, then Ca is a
closed totally convex set. If amΆX: = max {a e R \ Ca Φ 0} = maxp€(7 p(p, dC),
then dim C α m a x < dim C.

Lemma 3 {standard). For every compact subset K of M there is a number
ε > 0 such that for all p in K and r in (0, ε):

(1) the metric ball Br(p) is the diffeomorphic strongly convex image under
expp of the open Euclidean ball of radius r about 0 in Mp

(2) // c: [0, u] —• Br(p) is a nonconstant geodesic, c0: [0,1] —> Br(p) is
the minimal geodesic from p to c(0), and <c(0), co(l))> > 0, then the function
s ι-> p(c(s), p) is strictly increasing on [0, ύ\.

From now on, we will always assume that M is a complete noncompact
Riemannian manifold of nonnegative curvature.

We will only use parts (1) and (2) of the next lemma; part (3) is presented
because it gives the flavor of the proof of the continuous soul theorem and is
a model for some of the work we must do.

Lemma 4. Let K be a compact totally convex set in M with nonempty
boundary, and let 0 < ε < amax, where ε is a constant as in Lemma 3, and
amax = max{p(p,3K)\pe K). Then

(1) there exists δ e (0, ε) such that p(p, Ka') < ε for all p in Ka if 0 < a <
d < flmax and a' — a < δ \

(2) there exists a "continuous geodesic contraction" of Ka onto Ka' if
0 <a <a! <am^and a' - a <δ;

(3) given 0 < a < af < αmax such that a! — a<δ, there is a homeomorphism
of dKa X [0,1] onto Ka - int Ka\

We will now describe the constructions in parts (2) and (3) explicitly.
Given p in Ka — Ka', there is a closest point q in Ka> q is unique by the

first variation formula and Lemma 3. Define h(p):= q. h is continuous by
uniqueness of q and the continuity of p ι-> p(p, Ka'). Thus we can contract Ka

onto Ka' along the minimal connections from points on 3Ka to the closest
points on Ka'. We will occasionally refer to h as "the contraction" onto Ka'.

Let ar < a" < tfmax so that a" — a < δ. Let h be the contraction onto Ka",
and for p in dKa let gp: [0,1] —> Ka be the unique minimal geodesic such that
gp(0) = p and gp(l) = h(p). Define Φ: dKa -+ (0,1) such that gp(Φ(p)) € dKa'
Φ is continuous. Define F: dKa X [0,1] -> Ka — mtKa' such that (p, t) <-+
gp(Φ(p)t). F is the homeomorphism.

Let {CJ^ 0 be a family of nonempty compact totally convex sets such that

K d i m M i f ί = 0,(1) d imC £ l

' = dimM if t > 0 ;
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(2) t2 > tι => ctl = ct;*-\
(3) U ^ o Q - M .

Note that for all t > 0, C} = Co.
Cheeger and Gromoll constructed this family as follows: a normal geodesic

c: [0, oo) —> M is called a ra y if each segment of c is minimal between its end-
points. It is straightforward to see that every point in any noncompact com-
plete Riemannian manifold has at least one ray through it. If c is a ray, let
Bc: = \^jt>o Bt(c(t)). Bc is called the open half-space with respect to c, and
its complement M — Bc is totally convex in our case.

Now pick p in M. For t > 0, let Lt: = P | c (M — BCt), where the intersec-
tion is taken over all rays c emanating from p and ct is the ray determined
by ct{s): = c(t + s), 0 < s < oo. Each Lt is compact and totally convex, and
p is in dLQ.

If dim Lo < dim M, then let Q = Lt for all ί > 0. If dim Lo = dim M, let
a0: = mzxqeLo p(q, dL0) and

L^~ι for 0 < t < a0 ,

Lt_ao for a0 < t .

It aC0 = 0, then let S = Co. If 5C0 ^ 0, let ^ 0 : = C 0 and flo: =
maxp€iΓo ^(p, 5X0) thus Kλ: = K%° is a totally convex set of lower dimension
than KQ. Iteration yields a sequence Ko ZD Kλ Z) D A^ of compact totally
convex sets such that £ i + 1 : = Kf\ where a^.— mΆx{ρ(p,dKτ)\p e K^, and
such that dKj = 0;J < dimM. Let 5: = ^ j .

Cheeger and Gromoll called S a soul of M it is unique up to the choice of
p. They proved that M is homeomorphic to the normal bundle of S, and stated
that the construction could be smoothed out so as to give a difϊeomorphism.
We have carried out this process in detail, and consider this approach to be
unnecessarily complicated. Here we present a modified construction which is
simpler and also more satisfying geometrically.

2. The differentiable soul theorem

Let M be a complete noncompact Riemannian manifold of nonnegative
sectional curvature.

Theorem A. M is diβeomorphίc to v(S).
The exponential map restricted to v(S) is a smooth surjective map onto M,

which fails to be injective. The map we obtain is modelled (roughly speaking)
on the exponential map, and in fact we may think of it as being a smooth
bijective "bent exponential map".

We will actually prove the following theorem by standard arguments from
differential topology it is equivalent to Theorem A. For these arguments, as
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well as for several arguments used in the proof of the following theorem, we
refer the reader to references [8] and [10].

Theorem B. Let Mo = S. Then there exists an increasing sequence M1,M2,
• of nonempty compact submanifolds with boundary such that

(1) Mλ is diβeomorphic to a disc bundle in v(S),
(2) Mi+1 — intMi is diβeomorphic to dMt X [0,1] for i > 1, and
(3) M is the {disjoint) union S U (U*>o (Mί+ι — Λf€)).
This result will be proven in several steps. First we make a few remarks.
Recall that we have an expanding sequence {Ct}t>0 of nonempty totally con-

vex compact sets and a decreasing sequence Co = Ko D Kλ Z) ID Kj = S
as constructed in § 1.

Cheeger and Gromoll construct a continuous "broken exponential map" by
locally adjusting the exponential map restricted to v(S) to get a locally injective
map; by using the above sequences of sets to keep track of the resulting
"continuous flow", they end up with a homeomorphism from v(S) to M.

The local arguments are of three types. First, given a sufficiently small r > 0
they construct a homeomorphism between rK0 and the disc bundle vr(S) of
radius r. This argument takes into account the difference in dimension between
Kt and Ki+1 at each step. Then they use another argument to show that r C 0 is
homeomorphic to Cr = C1

1~r. The third argument uses the exhaustive sequence
[Ct] to extend this homeomorphism globally.

Simply smoothing out these constructions directly is not very efficient, and
so we have modified the whole approach.

First we present an interesting fact.

Lemma 5. Let K be a compact totally convex subset of M. Let d: M—+R
such that d(p): = p(p,K). Then there exists an open neighborhood U of K
such that d\u_κ is O.

Proof. Consider the set ιK. Choose ε in (0,1] for ιK as in Lemma 3. Then
ε also satisfies the conclusion of Lemma 3 for the smaller set εK. Let U: =
int εK. Let h: U —> K be the "continuous geodesic contraction" onto K given
in Lemma 4(3) h(p) is the unique point in K such that ρ(p, K) = p(p, h(p))
= d(p).

Let p € A: = U - K. Define fp: A -* R such that fp(q): = p(q, h(p)).
Clearly we have fp > d\ in addition, fp(p) = d(p), and fp is C°° on a neigh-
borhood of p in A. Let Δ C MHp) be the supporting hyperplane for K orthog-
onal to the minimal connection from p to h(p) (cf. [1]). Let Δε: = {v € Δ \ \\v\\
< ε}. Then exρΛ ( p )J ε is a local supporting hypersurface for K. For q eA, let
gp(q)' = ρ{q,exph(p) Δε). Then gp < d, gp(p) = d(p), and gp is C00 on a
neighborhood of p in A.

By the squeezing principle, d is (once) differentiable at p, and in fact

«*|p — fp*\p — 8p*\p
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To see this, let c be a C°° curve in A such that c(0) = p. For small positive ί,

jlgpo c(f) - gp(p)] < λ[doc(t) - d(p)] < —Upoc(f) - fp(p)] ,

and therefore,

(gpoc)'(0) < limλ[doc(t) - d(p)] < (fpocY(0) .

Similarly,

h - d(p)] < (gpoc)'(0) .

Thus (/poc)'(0) = (gpoc)'(0), and therefore (doc)'(O) exists and equals

Since the assignment p •-> /z(p) is continuous, so is p ι-y F/p(/?) = Fd(p) (see
the remark below) thus d is C1 on £/ — £ .

Remark. Given p e U — K, let ^ be the minimal connection from p to
h{p) e K. Then

VdoyJJ) = Ffpoγp(ί) = -fp(t) ,

for 0 < t < d(p). In particular, Γd is a continuous autoparallel unit vector field
on U — K. In addition, h(p) = expp (—d(p)Fd(p)).

Lemma 6. Lei K be a compact totally convex subset of M with nonempty
boundary, and let αm a x: = max {p(p, dK) \ p e K}. Choose ε e (0,1] as in the
proof of Lemma 5, and choose r e (0, ε). Define d: [0, amΆX\ X rK —> R such
that d(a,p) = da(p):= p(p,Ka), and set (Pd)(a,p) = Fda(p). Then Fd is
uniformly continuous on the set

A : = {(a, p) e [0, amj X'K\pe '[Ka] - int ^[K*]} .

Proof. First we prove that d is continuous on [0,flmax] x rK; we already
know that for each a, da is continuous on rK and C1 on r[Ka] — Ka.

Let {(ai9 Pi)} be a sequence in [0, amax] X rK converging to (a, p). Choose a
sequence {qt e Kai} such that d(au pt) = p(pt, qt). Let q be a limit point of this
sequence such a q exists since A! is compact. Then lim^ d(au pt) = lim^ p(pt, q^
= p(P, Φ > d(a, p). Now choose q e Ka such that p(p, q) = d(a, p), and let
{qt} be a sequence such that qt e Kaί and lim^ qt = q. For each /, d(ai7 pt) <
plPi, <ii), and therefore lim^ d(ai9 pz) < lim^ p{pi9 qt) = ^(p, q) = d(a, p). Thus
d is continuous.

But then since A = d~ι[\r, r], A must be compact. Define h: A -> K such
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that h(a, p) is the unique point q in Ka for which p(p, q) = d(a, p). By contin-
uity of d, h is also continuous. But

h(a, p) = Qxpp (-d(a, p)Pd(a, p)) ,

and thus Pd is continuous on the set A.
We are now ready to prove Theorem B.
Choose ε1 € (0,1) for the set C1 as in Lemma 3. Choose hx e (0, e) as in

Lemma 4. Let 0 < r < <51? and choose ĉ  for e = \r and the set C1 as in Lemma
4. Recall that Ko = Co and X ί+1 = Xt

α', where at = max {̂ (p, 9£f) | p € XJ.
Since Pd is uniformly continuous on the set

A: = {(a, p) € [0,^0] xrK0\pe r[Ko
a] - int ^[Xf]} ,

there exists ξ > 0 such that if (α, p) and (fe,p) e 4̂ and \a — 6| < ξ, then
$.(Fda(p), Pdb(p)) < ^ we may assume that f < ^.

Choose numbers 0 = b0 < 5X < < bk = α0 such that 6 i + 1 — fc^ < f,
0 < Ϊ < /: - 1. Let Lo = K09 Lx = Xo

&1, , Lfc = Ko

bk = «!. Continue similar-
ly with £ 1 ? ., Kj_λ (choosing a different value of ξ at each step, if necessary)
to get a decreasing sequence

Ko = Lo Z) Lx z) 3 Lft = ^ z) z> i^2 ID 3 Lα = S

such that for 1 < i < a, Lt — L^* for some sufficiently small at > 0, and

r/4Γ (— r/2T (— r/2T

Let dt:
 rL^ —> .R be the distance function from rL^ to L .̂ Then each di is C1

off of Li9 and if p e rLt_x - r/2L,, then <(Γd4(p), F^.^p)) < ^π.
We can choose a C°° function di on rL^ such that
(1) id^lK^r/a,
(2) Fdf4 Φ 0 and ^(Fd,, FJ,) < ^ off of ^L, .

For 1 < / < a, let Nt be the compact submanifold < p e rLi \ dt(p) <

« - 2 i + 1 Ί w i t h c . b o u n d fl = 3 χ / 4 « - 2 ί + l \
4α J \ 4α /

"Lί C int Nt a Nt a int TL^ ,

where σ = (£(2α - 0/α> and r = (i(2α - ι + l)/α)r). Also, F ^ _L H .̂
Thus ίifί is also transverse to Pdt_^ 1 < / < α, by the way we chose every-
thing. Therefore the gradient flow of di_1 determines (after reparametrization)
a diffeomorphism Hi X [0,1] ^ N^ — intiV^ 2 < i <a.

In addition, Pδa determines a diffeomorphism between d(r/2S) X [0,1] and
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Na — int r/2S. By the choice of r, the exponential map is a diffeomorphism be-
tween the normal disc bundle vr/2(S) of radius \r and r/2S.

Set

Ma+ι is a compact submanifold with boundary such that

where rλ = (\(2a — l)/a)r. We will now show how to find the larger sub-
manifolds required by the theorem.

Choose ε2 e (0,1) for the set C2 as in Lemma 3, δ2e (0,ε2) for C2 as in
Lemma 4, and let 0 < r2 < m i n j ^ , ^ } ; finally, choose δ2 for e = r2 as in
Lemma 4 for the set C2.

Let K be an integer greater than l/δ2. Then (rx — r2)/κ < 1/ιc < δ2. For
/ = 0 ,1 , ,Λ;, let 37(7): = rx — j(r1 — r2)//c. As 7 runs from 0 to /c, η(j)
decreases from rx to r2 let £(j) = j/κ. We have the following inclusions:

Q , _ υ c CeU) c " " C ^ . , , c '<-'-»C/w_1) c ' ^ ' C ί α ) .

By the way we have chosen everything, we can now use the appropriate
distance functions as before to obtain compact submanifolds Mt with boundary
for / = a + 2, , a + K — 1, such that

^C£U) C Aίa+J+2 C ' < > + 1 > C , ( j + 1 )

for 7 = 0, , K — 1, and having the properties required in the theorem.
Ma+K_λ is now close to r2C1 C C2. Pick all the appropriate constants for C3

and iterate. This completes the argument.

3. Total curvature of M

In this section we will prove that for a complete noncompact oriented
Riemannian manifold M of dimension 4, the total curvature of M exists and
is bounded between 0 and the Euler characteristic of M.1 In addition, if the
dimension of M is 2k, k > 3, then our argument reduces the problem to the
algebraic Hopf conjecture in particular, this implies a partial result in dimen-
sion 6.

The calculus we employ is not new, but does not appear in the literature in
this exact form. We start by presenting classical material to help fix the
notation.

Let π*ΓM be the pullback of TM over itself under the map π\

1 This result has also been proved by R. Walter using a different approach.
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;r*TM > TM

TM • M .

We may realize π*TM as the vertical bundle VM in TTM: for v e TM, the
fiber in VM over v is π^\υ~\0) c TTM. For w in M p , let w# denote the canon-
ical identification of Mp with (Mp)u C KM by parallel transport, that is, for

(u + tv). Then we may identify π*TM with V Musing #
at = 0

as follows: for (w, ?;) e τr*TM, w and v are in the same tangent space to M,
so w#v makes sense, and (w, t;) <-> «#?; is the required bundle identification.

Suppose f —» M is a vector bundle over M let Λ f̂ be the associated bundle
over M for which the fiber at p in M is the vector space of alternating /-linear
forms on the fiber ξp in ξ over p.

Given ω € Λjξ and μ e Λ£ξ, both over the same point p in M, we have as
usual the (/ + ^)-form

ω A μ: = -—- Σ s § n M(o) (X) μ) o <τ ,
/! ^ ! »

where the sum is taken over the symmetric group on j + £ letters.
Recall that t)M = ΓTM, and let Ar(ξ) be the FM-module of alternating r-

linear forms on t)M with values in Γξ. If F : t)M x Γf —> Γξ is a covariant
derivative operator in ξ, then we have the standard exterior derivative operator
άv\ Ar(ξ) -• ̂ 4r+1(f) with respect to V defined by

[dFω](X):=Pzω

for ω € y4°(f), and by

[d'ω](X09 '"9Xr)ι=Σ i-iyVxM^ •• , X i , - ' , X r ) )
i

+ Σ ( - D i + ^ ( [ z i ; ^ ] , z 0 , , xt, • • •, Xj, • • •, xr)

for ω€Ar(ξ),r > 1.
Notice that for an arbitrary covariant derivative V in an arbitrary bundle ξ,

dvd7 does not have to vanish a bundle ξ is said to be flat with respect to V if
and only if dvdv = 0. Example: M X R is flat with respect to its canonical
connection.

We will be using modules of the form Ar(Λjξ), and we need a sort of double
wedge product. Given φ <= Ar(ΛJξ), ψ € ̂ 4s0^f), and X19 , Xr+S e fc)M, we
define the form φ Λ ψ(X19 - - J J € ΓΛ'+ '£ to be (r\s\)-1 Σ* sgϋ(σ)φ(X.ι9
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• -,Xσr) A ψ(Xσr+1, -,Xσr+s), where as usual the sum is taken over the
symmetric group on r + s letters.

dv and Λ have the following usual properties:
(1) d7 is natural: f(dvω) = df*F(f*ω).
(2) Λ is associative.
(3) For φ <= Ar(A^ξ) and ψ e As(A£ξ), φ A ψ = ( - l) r 8 + "ψ Λ φ.
(4) For φ and ψ as in (3), dF(φ Λψ) = (dvφ) A ψ + ( - l) r0 Λ dΓψ.
We will use the canonical identification of functions on Mn with n-forms to

convert elements of Ar(ΛnTM) into ordinary differential r-forms on M; this
will allow us to integrate such (r,n)-toτms without further comment. More
generally, any (r, r)-form restricted to an r-plane can be thought of as a num-
ber an example of this occurs in the next paragraph.

A curvature form on a Euclidean vector space Ψ* is a 2-form flonf with
values in 2-forms on ψ* such that Ω satisfies the Jacobi identity in the first
three arguments. Assume that Ψ* is even-dimensional, dim Ψ* — 2/. The alge-
braic Hopf conjecture is that if — Ω is nonnegative (resp. positive) on all 2-
planes in i^, then (~Ω)j is nonnegative (resp. positive) on y.

Notice that — Ω restricted to 2-ρlanes in Ψ* is just the usual sectional curva-
ture function. The conclusion of the Hopf conjecture is true under certain extra
algebraic conditions which have no geometric significance in our situation.

Define the curvature form Ω e A2(Λ2TM) on M with respect to V by

Ω(X, Y)(U, V):= (dFdFU(X, Y), F> = <R(X, Y)U, V}

for vector fields X, Y, U and V on M, where R is the usual curvature tensor
on M. The Bianchi identity now takes the form

d7Ω = 0 .

Pull < , > and V back to π*TM = VM, and let A = Λ(VM) = Λ(π*TM).
Let / be the "position vector field" on TM along π:

TM

TM > M
π

Let -η e A\Aι) be the canonical 1-form defined by

for s in VM. Suppose that s = u$v then

η(s) = (π*I,s)\u = <(π*/)w, u,v) - <w#w, u,v) = <M, V}
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by the definition of < , > on TM as the pullback of < , > on M.
Next we define the connection 1-form on VM by

For v <= TTM and s e VM, β(v)(s) = (Vvη){s) = <F?,TT*/, S>. We now mention
some facts which will be needed below.

(1) If v is vertical on TM, then FVI = v, and therefore θ(s)(i) = <s, t} for
s and t in FM.

(2) If v is tangent to T,M, then θ(v)(π*l) = 0.
(3) Consider dF0 e A\Aι) for w and v e ΓΓM and ,s € FM,

dψθ(μ,v)(s) = π*Ω(u,vXπ*I,s) .

(4) τr*β(w, ^ ) = 0 for vertical vectors w, t? e TΎM.
For 1 < i < k, let

n,:=v A θH-λ A π*Ωk~ι e An~\Λn) ,

'" πk2k~ί+ι(k- 0 ! ( 2 i - 1)!

Define

The key points in the classical Chern argument [2] are the following: first
of all, on TλM,

d'Π- i iw '* f l I ;

second, on the unit sphere S^"1 in M p , Π is a constant times the volume form,
and in particular

f 7 7 = - 1 .

These equalities are proven by choosing special bases and then applying the
definitions and facts (l)-(4).

Define the Euler form on M by

( — λλk

X:= κ } Ωk e An(Λn) .
k\(2π)k

π*X is exact on ΎXM. X is often called the Chern integrand.
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Let H be an (n — l)-dimensional submanifold of M equal to a level set
f~ι(c) for some / in FM and some regular value c of /. The Hessian form of
/ at p is the symmetric bilinear form hp: Mp x Mp —> R defined by hp(u, v)
: = (VuVf, v} for u and v in Mp. Notice that for p in # , /zp restricted to Hp X H p

is just | |F/(p)|| times the second fundamental form of H at p with respect to
the unit normal field Ff/\\Ff\\ on H; call this restricted unit normal field X.

We want to estimate X*Π. To do this we first evaluate g(p), where g is the
JH

function on H determined by the identification

where d(volH) is the volume form on H. Let uo\ = Xp9 and let u19 , un_x

be the principal curvature directions of H at p with principal curvatures λ19

• , Λn_! respectively. Then

= g ( p ) ' d p ( y o l H ) ( u 1 9 •••,«„_!>

= X*Π(U19 , Mn_i)(M0, * * * , Mn-i)

- Σ ^ * ( 9 Λ β2*"1 Λ fl*-')(Mi, , ««-i)(Ho, , «»-i)

= Σ c, Σ sgn W sgn (τ)- L-—<X, uτχVx^UσiX,X, X,uτi}

where the inner sum is taken over all σ e Sn_λ acting on {1, - - ,n — 1}, and
τ e Sn acting on {0, , n — 1}, and everything is evaluated at p. Since
(X9 uτo} = d0,ro by the definition of the uu and

we have

= Σ Oi - 1)!
1

where Ωk~ι is evaluated on M/I5 , u£n_2i9 and the inner sum is taken over all

/ Ί < < hi-ι and ίλ < < -^w_2ί such that {j19 , 72i_19 £19 , 4-2 J =

{l, , π - 1}.
If the boundaries of the sets Ct were C2 for all sufficiently large t, the

remaining work would be simple; unfortunately, the boundary of a totally
convex set is in general only continuous, and the set of points of non-diίϊeren-
tiability can in fact be dense in the boundary. The nicest way around the dif-
ficulty would be to approximate each set by a totally convex set with C2 bound-
ary so far we have been unable to prove that this is possible in general. For
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our purposes it is sufficient to have an approximating set with a diίϊerentiable
boundary which is only close to being totally convex.

Recall that on a manifold a convex function is a continuous function
f:M^>R such that for every geodesic c i n M , / o c i s a convex function on R
in the standard sense, that is, given real numbers a and b,

foφa + (1 - s)b) < sfoc(a) + (1 - s)foφ)

for 0 < s < 1. All the sublevel sets of a convex function are totally convex.
In our situation, the function /: M —> R such that

ί if p € dCt for / > 0

is convex. This follows since on Ct9 [p H-> —ρ(p, 3Ct)] is a convex function (see
[1]), and f(p) = t - p(p, dCt) for p in Ct.

In attempting to find a C°° convex approximation for / one is naturally led
to the idea of convolving / with a C°° bump function. The result fails to be
convex, but is close in the sense of the following lemma.

Lemma 7. Given K compact in M, choose ε > 0 as in Lemma 3. Suppose
f:M—>R is convex. Then there exist an open neighborhood U of K and a
family {fr <= FU \ r 6 (0, ε)} such that

(1) the functions fr\κ converge uniformly to f\κ as r -^ 0 ,
( 2 ) fr approaches f monotonically from above,
(3) lim ( inf hfr(u, u)) > 0 where hfr is the Hessian form of fr.

A complete proof of this result has been given by Greene and Wu in [5], so
we will give no more than the explicit construction of the functions fr for later
use.

Let μ: R —> R be a nonnegative C°° bump function with support in [— 1, 1]
which is constant near zero and such that

μ(\\v\\)dv = 1 .
Rn

Define

rn JMp

Theorem. Let M be a complete oriented Riemannian manifold of non-
negative sectional curvature and even dimension 2k. Assume that the algebraic
Hopf conjecture holds on M. Then the total curvature of M exists and is
bounded between zero and the Euler characteristic of M.

Proof. For each positive integer i, let e* > 0 be a constant as chosen in
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Lemma 3 for the set Ct in the filtration of M by compact totally convex sets
Ct. Fix a positive integer i > 2 let {fr \ r e (0, ε̂ )} be a sequence of C°° functions
on a neighborhood U of Q as given by Lemma 7 for the function / indexing
the sets Ct.

First we prove that for r sufficiently small, fr has no critical points off of
a neighborhood of Co in C1? and j r ~ ι (— oo, /] is homeomorphic to Ct.

Choose a positive <5<min{^, 1} for the set Q as in Lemma 4. Let
i — δ < d < a < ί. Then we have a continuous geodesic contraction of Q
onto Ca, and the distance function ά from Q to Cα, is C1 on Q — Cα,. For
each p in dCa, there is a unique geodesic γp through p such that γp(0) = p and
fp(0) = Fί/(p) ^p is a reparametrization of one of the geodesies given by the
contraction of Q onto Cα,. 9Cα, is transverse to 7^, and therefore / is strictly
increasing along γp. By continuity, for each p there is a cone Wp of normal
geodesies through p about fp such that / is strictly increasing along each c in
Wp. We may assume that there is some positive number a such that for all p,
Wp is the set of all normal geodesies on the interval [ — β, 1] which have
c(0) = p and <£(c(0), fp(0)) < a, where β is some positive number less than
a — a!. Let W: = \Jpedca Wp. Then {/ °c\ι_βA-] \ c € W) is a continuous compact
family of strictly increasing functions, all of which are convex and have the
value a at 0. All of the difference quotients

j[foc(t)-a], tφOyceW,

are positive, and it is a straightforward proof that the difference quotients for
t > 0 have a uniform positive lower bound tz. Then by monotonicity of the
difference quotients of a convex function,

foc(t)-foc(s) ^ r

t — s ~

if 0 < s < t and c e W.
Furthermore, there exists a positive number r0 such that for all c in W, the

difference quotients of / along every curve of the form [t ι-> expc ( ί ) V(t)] are
greater than or equal to %κ, where each V is a parallel vector field along c for
which | | F ( 0 | | < r0- We may assume that rQ < et.

Now let c = γp for some p in dCα. We want to calculate (fr o c/(0 for / > 0.
Now rn(fr o c(V) — /r o c(0) is equal to

f / o expC(S) (v)μ(Mλdv - f

= f
e x p c ( 0

exp c ( S ) K(^) - / o exp, ( ί )
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where V is the parallel vector field along c with V(t) = v. Thus, if r < r0, then

froc(s) - froc(t) > $(s - t)κ ,

and therefore (/roc)'(Y) > \κ. But this means that ζFfr,F<Γ) is positive for
r < r0 notice that by the same argument we can prove that off of a small
neighborhood of Co, the derivative of fr in a direction transverse to the bound-
ary of each set Ct is positive for sufficiently small r. In particular, for small r
we may use the gradient flow of some distance function d to obtain a
homeomorphism between Ct and Ξr: = fr~

l{— oo, ϊ\. This is a crucial step in
the proof of the theorem since it allows us to equate the Euler characteristic of
Ξ with the Euler characteristic of M:

We will also use the fact that fr has no critical points near dCt since that
means that Ξr = ίr~

ι(ι) is a submanifold.
From here on the proof is almost identical to what it would have been if the

boundary of Q had been C2.
We may approximate Ffr by a C°° vector field Vr which equals Ffr near dΞr

and has only isolated zeros. By the Poincare-Hopf Theorem [9], the sum of
the indices of the zeros of Vr is just the Euler characteristic of Ξr, that is, 1M.
Let Yr: = Vrl\\ Vr\\ on Ξr - {zeros of Vr).

Then

f X = f y*/7 +
J Ξr JdΞr

But

r>0

since fr > f, and then

χ = lim ί X .
Ct r~*° J Ξr

In particular, the limit of YfΠ exists as r —> 0. As before, Y*Π
JdΞr JdBr

I gr(p)'dp(volBBr), and
J 3Ξr

where { — Ω)k ί is evaluated on the plane spanned by v^ through f̂ _2m, and
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the inner sum is taken over all /Ί < < /2m-i and ίλ < < &n_2m such
that {j19 , j 2 m _ 1 9 £19 , £n_2m} = {1, , n - 1}. Here v1? , vn_λ are the
principal curvature directions of dΞr at p with corresponding principal curva-
tures λ19 ,^n_!. By the choice of the functions fr and the fact that the
Hessian form of fr at p is just \\Ffr(p)\\ times the second fundamental form of
dSr at p, we see that lim λh λhm_1 > 0. Since we have assumed that the

r-0

Hopf conjecture is true on M, {—Q)k~l is nonnegative. The result is that
lim gr(p) < 0, and consequently,
r-0

lim f Y*i7 < 0 .

Here we use the fact that {vol (dΞr)}r>0 is bounded, which is easily proven
using the basic Hausdorfϊ measure theory. But then,

f X = lim f χ = lim f Y*Π + XM < XM .

Again by the Hopf conjecture, 0 < X < \ X for all /. Therefore X
JCi J Ci + i JM

exists and 0 < I X < XM.
J M

4. Some remarks

Cohn-Vossen classified the complete noncompact surfaces of nonnegative
curvature [4] for such a surface M, the soul S is either a point or is difϊeo-
morphic to S1. If S is a point, then M is diffeomorphic to R2, and Cohn-Vossen
proved that the total curvature is bounded between 0 and 1 these estimates
are sharp. If S is diffeomorphic to 51, then M is isometric to one of the two
flat line boundles over S and has zero total curvature.

Our result gives a new proof of the Cohn-Vossen total curvature result.
Cheeger and Gromoll classified the complete noncompact 3-manifolds of

nonnegative curvature using the soul theorem [1] the soul is diffeomorphic to
one of the following: a point, S\ S2, RP2, the flat torus, or the flat Klein bottle.
In addition, they proved that if the soul S of an arbitrary complete Riemannian
manifold of nonnegative curvature has codimension 1, then M is isometrically
a flat line bundle over S.

Gromoll and Meyer proved that if the curvature of M is everywhere posi-
tive, then the soul is a point (see [7]). From this they proved, for n ψ 3 or 4,
that M and Rn are diffeomorphic; our result implies directly that for any
manifold for which the soul is a point, the manifold is diffeomorphic to Rn and
the total curvature, if it exists, is bounded above by 1.

We will assume that all our manifolds are oriented; by considering the
orientation covering, similar information can be gotten for nonoriented mani-
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folds. No attempt will be made to classify anything, but we will make some
comments about the cases of dimensions 4 and 6.

Dimension 4. The only possible souls with positive Euler characteristic are

a point and S2. Thus we see immediately that 0 < X < 2.
J M

If the soul is difϊeomorphic to S1, then the total curvature of M is zero.
Suppose dim S = 2. If S is the flat torus, then M is locally isometrically

trivial over S (see [1]), and in such a case the Chern integrand is identically
zero. If S is diffeomorphic to S2 and the total curvature of M is positive, then
M is not isometrically the product S2 X R2; M may still be the product of S2

and some nonnegatively curved surface diffeomorphic to R2, and there are
examples where M is not even locally isometrically a product, e.g., TS2.

If dim S = 3, then 1M is of course zero, as is the case whenever the soul of
M is odd-dimensional. In addition, in this case M is isometrically a flat line
bundle over S with zero Chern integrand. Despite these restrictions there are
still many possibilities for M, since there are already 6 flat compact orientable
3-manifolds [11].

Dimension 6. Here we cannot in general say that the total curvature exists,
but since the boundary terms involve only the first and second powers of the
curvature form, we do know that

lim ί X<
ΐ-»oo J Ci

Even if the total curvature does exist, without more information we have no
guarantee that it will be nonnegative. The number of manifolds here will be
quite large since in the flat case alone there are very many manifolds of dimen-
sion less than six. Notice however that if S is flat, then the Chern integrand is
identically zero on M since locally M has a flat factor [1].
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