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f-STRUCTURES WITH PARALLELIZABLE
KERNEL ON MANIFOLDS

RICHARD S. MILLMAN

1. A structure on an n-dimensional differentiable manifold given by a non-
zero tensor field f of type (1,1) and constant rank r, which satisfies f* + f = 0,
is called an f-structure. This notion has been studied by Yano and Ishihara
(among others) [5]. An f-structure is integrable if about each point there is a
coordinate system in which f has the constant components

0 —I, 0
(1) f=[1,, 0 o]
0 0 0

where I, is the p X p identity matrix (p = r). In [2] it is shown that the
integrability of f is equivalent to the vanishing of the Nijenhuis tensor of f given
by NX,Y) = [fX, fY] — f[fX, Y] — f[X,fY] + f[X, Y] where X and Y are
vector fields on M. We shall write y(M) for the set of all vector fields on
M, T,.(M) for the tangent space of M at me M, and T(M) for the tangent
bundle of M. For m ¢ M, let (ker f),, = {X e T,M|f,(X) = 0} and (im f),, =
XeT,M|X = f,Y for some Y e T,,M}. The kernel ker f of f is |_n(ker f),
and the image im f of f is | ,,(im f),,. An f-manifold is k-framed if there are
& -y Ener € x(M) such that {&,(m), - .-, &,_.(m)} forms a basis for (ker f),,
for all m e M. We write ny = n — r. If M, and M, are k-framed f-manifolds,
then we define an almost complex structure J on M; X M,. We shall denote
the k-framing on M, by {&, .- -, &}, and the f-structure on M, by f,. If in
addition [£:,£8 =0 for all 1 < k, I < ny, then M, is called an f-contact
manifold. The concept of f-contact manifold generalizes the basic features of
almost contact structure to f-manifold of higher nullity (i.e., lower rank).

Theorem A. Let M, and M, be two k-framed f-manifolds of the same rank
with f,- and f,-structures respectively, and suppose that f, and f, are integrable.
Then the almost complex structure J on M, X M, is integrable if and only if
both M, and M, are f-contact manifolds.

If p: M, —» M, and f,p,(X) = ¢,f,(X) for all X € T,,M,, m e M,, then ¢ is
an f-map. Here ¢, denotes, as usual, the differential of ¢. If M, = M,, then
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¢ is an f-automorphism; if ¢ is a diffeomorphism, then both ¢ and ¢! are
f-maps and ¢,&; = &; forall 1 < i < n,.

Theorem B. If M is a compact integrable f-contact manifold, then the set
of all f-automorphisms of M is a Lie group in the compact-open topology.

Theorem A generalizes a result of Morimoto [3] which states that the pro-
duct of any two normal (integrable) almost contact manifolds is a complex
manifold. (This includes the Calabi-Eckmann manifolds $??*! x $%*! as a
special case.) Morimoto [3] also proved Theorem B for integrable almost
contact manifolds. Theorem B is also valid without the assumption of inte-
grability if M is an almost contact manifold [4].

2. We shall construct the almost complex structure J.

Lemma 1. If f is an f-structure on an f-manifold, then ker f N im f = (0).

Proof. If Y = f(X) e ker f, then 0 = f(Y) = fA(X), so from (X)) + f(X)
= O we have Y = f(X) = 0. q.e.d.

Since dim 7,M = dim (ker f),, + dim (im f),,, Lemma 1 allows us to
write T,,M = (ker f),, ® (im f),,. Let n,: T,,M — (ker f),, be the projection
associated to this direct sum decomposition. We define the differential 1-forms
2.G=1,..-,n) on M by (3),(X) = a,(m) where z,,X = ] a,(m)¢,(m) and
XeT, M.

Lemma 2. If X e T,M, then

@ 7(X)=0fori=1,--,n,

®) fX) — TiXE = —X.

Proof. (a) If fX = Z + =z(fX) where ZecImf{, then z(fX) =X — Ze
(ker f) N (imf) = (0) so z(fX) = 0.

(b) LetY =X + fA(X). Then f(Y) =0so Y = }; a,&;. Thus a, = 5,(Y)
= 2(X) + 7,(f(X)) = »,(X) where the last equality follows from (a). q.e.d.

Assume M, (resp. M,) has f-structure f, (resp. f,) with k-framing {&, - - -, &5}
(resp. {&1, - - -, &2,}D). Note that we have assumed that the rank of f, is equal to
the rank of f,. If X, e T,M,, X, ¢ T,M, where p ¢ M, q € M,, then we define
a tensor J of type (1,1) on M, XM, by

(2) Ty (X, X)) = ((X) — 2 9i( X)), f(X,) + Z 7(X)ENQ) .

Proposition 3. J is an almost complex structure on M, X M,.
Proof. Clearly

15X, X)) = (X)) — X 7i(X)§D), (X, — 21 7i(X,)89) ;

hence J5, , = —I by Lemma 2.

3. Before proving Theorem A we need the following:

Lemma 3. If M is an integrable k-framed f-manifold, then

@ 79X, Y] + [X, YD = {(X)9(Y) — (F¥)p(X) for all 1< i< n,
X,Y e y(M),
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®) X, &1 = [0, &1 for 1 <j < np, X e TM.

Proof. (a) Since f is integrable, there is a coordinate system (with s = 1r)
(X5 ooy Xy Y1y oo+ 5 Vs Wy, - -+, Wy, ) such that {6/0x,;,0/8y;|i = 1, - - -, s} forms
a local basis for im f and {3/ow;|i =1, --.,n,} forms a basis for kerf. It
suffices to show (a) when X,Y ekerf, Xekerf, Yeimf and X,Y eim f
since both sides are skew-symmetric. If X, Y ¢ ker f, then both sides are zero.
If Y = g¢, and X = ho/ox; where h e C*(M), then fX = hd/dy; and both
sides are dg/dy;. If Y = g&, and X = hd/dy,, then both sides are —hdg/ax;.
Now assume X,Y e imf, and suppose X = hd/ox; and Y = gd/ady,. Then
[fX,Y] + [X,fY] = [ho/dy;, gd/dyr] — [hd/dx,,88/0x;] which is in imf;
hence 7,([fX, Y] + [X, fY]) = O for all i. On the other hand 7,(Y) = 7,(X) = 0,
so both sides are zero. The other three cases of this part are the same.

(b) If N(X,Y) is the Nijenhuis torsion of f (which is zero since f is inte-
grable), then

0 = f(N(X, Y)) = flfX, fY] — FIfX, Y] — FIX, Y] — fIX, Y] .
Applying Lemma 2(b) we see

(3) .
— 3 (X, Y] + X, YDEs) .

If we let Y = &; and apply part (a), (3) becomes
fIX, &) = UX. &1 — 3 (X086 ,

where 9;; is the Kronecker 4, so that each term in the summation is zero.
q.e.d.

We shall now prove Theorem A using the notation introduced there. Let
X, Y, ex(M), i=1,2, and 4 = (X, X,), B=(Y,,Y,). J is integrable if
and only if

(4) N(A,B) = [JA,JB] — JIJA,B] — J[4,JB] — [4,B] =0 .

We prove this at the point (m,,m,) e M, X M,. Let (x, .-, x¢,y%, ..., ¥,
wi, .-, w.) be local coordinates about m; as in the proof of Lemma 3. It
suffices to prove (4) when X, Y, are one of 3/0x},3/dy., &, and X,, Y, are one
of 3/0x3,9/dy3, & since N is a tensor.

We shall consider two cases—the others are similar. Suppose 4 =
(0/0x',0/0y") and B = (&}, £3). ThenJA = (9/3y', —d/0x*), JB = (—&%, &) so
that
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JlJA, B] = J([9/0y*, &1, —[0/0x*, &5
= (f([9/9y* & + ; ni([0/9x%, £5D¢&i,

— f,([9/ox*, &3] + ZLI 7i([0/0y*, EDED .
Using Lemma 3(b) and the fact that

7:([0/0x*, £51) = —7i(lfa/3y*, &) = —7i(fla/ay*, 65D = 0,

from Lemma 2(a) we have

(5) JUA,B] = (—[9/ax*, &1, —([3/3y*, &) .
Similarly
(6) J[A, JB] = ([—a/ay17 Ej]’ _[a/axza ‘53]) )

([4, B] = ([9/9x*, &1, [0/0y*, £3])) »
(7) [J4,JB] = (—[9/ay', &1, —[9/0x*, &1]) .

From (5), (6) and (7) it follows that N(4, B) = O in this case.

The other case we shall study in detail is when 4 = (c'€}, ¢’¢%) and B =
(d'gL, d?¢?) where c¢?,d* e R for i = 1,2. Note that J4 = (—c%, c'¢?) and
JB = (—d%,,d'&2). Clearly

JlJA,B] = _,So (r[c'l, 63D, nille’sn, d'E,DED)

J[A,]B] = _ﬁl (i(lc’ss,, A&, Dés, nilc'gr, P DED
[JA,JB] = ([¢*%},, &%), [c'&, d'E))) .

Thus

N(4, B) = (Ic¢’¢,, 4°¢] — [c'&,, d'&}]
(8) + 2R, dE) + (6, a8, (g 4] — [, 7E)
+ Zkl ni(lc’eh, d'6,] + [c'&), EDED) .
If M is an f-contact manifold, then [£,&1] = O for all i< k,I<mny, i=
1,2, so that N(4, B) = O in this case. If N(4,B) = 0, then set ¢ = d* = 1,

¢ =d =0 in (8) so that 0 = N(4, B) = ([£k, £],[&2, £2]). Since m,q,l,p
are arbitrary, we conclude that both M, and M, are f-contact manifolds.
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4. Let A(M,) be the set of all f~automorphisms of the k-framed f-manifold
M;, and A(M, X M,) be the almost complex diffeomorphisms of M; X M,
with the almost complex structure J.

Proposition 4. If ¢; ¢ AM,) for i = 1,2, then ¢, X ¢, ¢ AM, X M,).

Proof. This is a routine computation once we see that ¢*y. = i for i =
1,2,and k =1, .-,n,. If X; e TM,, then X, = Z, + }] a'&’ for some Z, ¢
im f; and a € R, so that ¢,Z; € im f; and hence that

7ilpsXs) = Z]I il (a36))) = ; aii(€5) = ap = 7(X,) .

Corollary 1. Let M, and M, be f-contact manifolds. If A(M,) acts transi-
tively on M, for i = 1,2, then A(M, X M,) operates transitively on M, X M,.

Corollary 2. If M is an integrable f-contact manifold, and A(M) operates
transitively on M, then M X M is a complex homogeneous manifold.

To prove Theorem B we define H(p) = ¢ X ¢ for ¢ € A(M). By Proposition
4, H(p) e AM x M). Using the function H: A(M) > A(M X M) we may
view A(M) as a subset of A(M X M) which is a Lie group. By means of this
we can show that 4(M) is locally compact and that any element of A(M)
leaving fixed a nonempty open set of M is the identity map of 4(M). Hence
by a theorem of Bochner-Montgomery [1], A(M) is a Lie transformation
group. The details of the proof are quite similar to Morimoto’s proof in the
almost contact case [3, Theorem 5] and we refer the reader there for details.
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