ON EINSTEIN METRICS

YOSIO MUTŌ

Let us consider a compact orientable C^{∞} manifold M. If a C^{∞} Riemannian metric g is given on M, we get a Riemannian manifold (M, g). Let us consider the set of Riemannian metrics g on M such that

$$
\int_{M} d V=1
$$

where $d V$ is the volume element of (M, g). We denote this set by $\mathscr{M}(M)$.
Consider the integral

$$
I(g)=\int_{M} K d V,
$$

where K is the scalar curvature of (M, g). It is well known that a critical point \bar{g} of $I(g)$ in $\mathscr{M}(M)$ is an Einstein metric. A question then arises that whether a given Einstein metric gives a minimum of $I(g)$ or not. It has been established by M. Berger [1] that there exists some Einstein metric (on some C^{∞} manifold) for which both $I(g)$ and $-I(g)$ have nonfinite indices.

The purpose of the present paper is to prove the following main theorem.
Theorem. Let $I(g)$ be the integral as defined above. Then the index of $I(g)$ and also the index of $-I(g)$ are positive at each critical point.

In the last paragraph some suggestion is given about the index.

1. Infinitesimal deformations of a Riemannian metric from an Einstein metric

In the following we use local coordinates, and a tensor is expressed in its components with respect to the natural frame. Thus $K_{k j i}{ }^{h}$ means the curvature tensor

$$
K_{k j i}^{h}=\partial_{k}\left\{\begin{array}{l}
h \\
j i
\end{array}\right\}-\partial_{j}\left\{\begin{array}{l}
h \\
k i
\end{array}\right\}+\left\{\begin{array}{l}
h \\
k l
\end{array}\right\}\left\{\begin{array}{l}
l \\
j i
\end{array}\right\}-\left\{\begin{array}{l}
h \\
j l
\end{array}\right\}\left\{\begin{array}{l}
l \\
k i
\end{array}\right\},
$$

where $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ is the Christoffel symbol of the metric g. The Ricci tensor and the scalar curvature are respectively given by

$$
K_{j i}=K_{t j i}^{t}, \quad K=K_{j i} g^{j i}=K^{j i} g_{j i}
$$

When we take a C^{∞} curve $g(t)$ in $\mathscr{M}(M)$, we get several tensor fields defined by

$$
\begin{gathered}
D_{j i}=\frac{\partial}{\partial t} g_{j i}, \quad D_{i}^{h}=D_{i k} g^{k h}, \quad D^{i h}=D_{k j} g^{k i} g^{j h} \\
D_{j i}^{h}=\frac{1}{2}\left(\nabla_{j} D_{i}^{h}+\nabla_{i} D_{j}^{h}-\nabla^{h} D_{j i}\right), \quad D_{k j i}^{h}=\nabla_{k} D_{j i}^{h}-\nabla_{j} D_{k i}^{h}
\end{gathered}
$$

where ∇ means the covariant differentiation with respect to the metric $g(t)$. Then we get

$$
\frac{\partial}{\partial t} K_{k j i}^{h}=D_{k j i}^{h}
$$

and consequently

$$
\frac{d}{d t} I(g(t))=\int_{M}\left[D_{k j i}^{k} g^{j i}-K^{j i} D_{j i}+\frac{1}{2} K g^{j i} D_{j i}\right] d V
$$

Since any divergence vanishes by integration, we immediately obtain

$$
\begin{equation*}
\frac{d}{d t} I(g(t))=\int_{M}\left(-K^{j i}+\frac{1}{2} K g^{j i}\right) D_{j i} d V \tag{1.1}
\end{equation*}
$$

On the other hand $D_{j i}$ must satisfy the only condition

$$
\begin{equation*}
\int_{M} g^{j i} D_{j i} d V=0 \tag{1.2}
\end{equation*}
$$

Let \bar{g} be a Riemannian metric such that, for every C^{∞} curve $g(t)$ of $\mathscr{M}(M)$ satisfying $g(0)=\bar{g}, I(g(t))$ has vanishing derivative at $t=0$. Then from (1.1) and (1.2) we get

$$
K^{j i}=\frac{1}{2} K g^{j i}+c g^{j i}
$$

for this metric \bar{g}. Here c is a constant, and this leads to the well-known formula of an Einstein space (M, \bar{g}), namely,

$$
\begin{equation*}
K_{j i}=\frac{K}{n} g_{j i} \tag{1.3}
\end{equation*}
$$

Now let us assume that $g(0)$ is an Einstein metric and study the behavior of $d^{2} I / d t^{2}$ at $t=0$ for various curves $g(t)$.

Differentiating (1.1) again we get

$$
\begin{aligned}
\frac{d^{2} I(g(t))}{d t^{2}}=\int_{M}[& \left(-g^{l j} g^{k i} \frac{\partial K_{l k}}{\partial t}+2 g^{l j} \frac{\partial g_{l k}}{\partial t} K^{k i}\right) \frac{\partial g_{j i}}{\partial t}-K^{j i} \frac{\partial^{2} g_{j i}}{\partial t^{2}} \\
& +\frac{1}{2} \frac{\partial K_{j i}}{\partial t} g^{j i} g^{l k} \frac{\partial g_{l k}}{\partial t}-\frac{1}{2} K^{j i} \frac{\partial g_{j i}}{\partial t} g^{l k} \frac{\partial g_{l k}}{\partial t} \\
& -\frac{1}{2} K g^{l j} g^{k i} \frac{\partial g_{l k}}{\partial t} \frac{\partial g_{j i}}{\partial t}+\frac{1}{2} K g^{j i} \frac{\partial^{2} g_{j i}}{\partial t^{2}} \\
& \left.+\left(-K^{j i} \frac{\partial g_{j i}}{\partial t}+\frac{1}{2} K g^{j i} \frac{\partial g_{j i}}{\partial t}\right) \frac{1}{2} g^{l k} \frac{\partial g_{l k}}{\partial t}\right] d V,
\end{aligned}
$$

in which we can put

$$
\frac{\partial K_{j i}}{\partial t}=\nabla_{t} D_{j i}^{t}-\nabla_{j} D_{t i}^{t} .
$$

Using Green's theorem we can write (1.4) in the form

$$
\begin{aligned}
\frac{d^{2} I}{d t^{2}}=\int_{M}[& D^{j i \hbar} \nabla_{h} D_{j i}-D_{t}{ }^{i t} \nabla^{j} D_{j i}+2 D_{t}{ }^{j} K^{t i} D_{j i} \\
& -\frac{1}{2} D_{s}{ }^{s t} \nabla_{t} D_{i}{ }^{i}+\frac{1}{2} D_{s t}{ }^{t} \nabla^{s} D_{i}{ }^{i}-K^{j i} D_{j i} D_{t}{ }^{t} \\
& \left.-\frac{1}{2} K D_{j i} D^{j i}+\frac{1}{4} K\left(D_{t}{ }^{t}\right)^{2}-\left(K^{j i}-\frac{1}{2} K g^{j i}\right) \frac{\partial^{2} g_{j i}}{\partial t^{2}}\right] d V .
\end{aligned}
$$

Since $g(0)$ is an Einstein point ${ }^{1}$, we get

$$
\int_{M}\left[\left(K^{j i}-\frac{1}{2} K g^{j i}\right) \frac{\partial^{2} g_{j i}}{\partial t^{2}}\right] d V=-\left(\frac{1}{2}-\frac{1}{n}\right) K \int_{M} g^{j i} \frac{\partial^{2} g_{j i}}{\partial t^{2}} d V
$$

at $t=0$. On the other hand, differentiating $\int_{M} d V=1$ we get

$$
\begin{gathered}
\int_{M} g^{j i} \frac{\partial g_{j i}}{\partial t} d V=0 \\
\int_{M}\left[g^{j i} \frac{\partial^{2} g_{j i}}{\partial t^{2}}-g^{l j} g^{k i} \frac{\partial g_{l k}}{\partial t} \frac{\partial g_{j i}}{\partial t}+\frac{1}{2}\left(g^{j i} \frac{\partial g_{j i}}{\partial t}\right)^{2}\right] d V=0
\end{gathered}
$$

Thus

$$
\begin{align*}
\left(\frac{d^{2} I}{d t^{2}}\right)_{0}=\int_{M}[& \left(\nabla^{j} D^{i h}\right) \nabla_{h} D_{j i}-\frac{1}{2}\left(\nabla^{h} D^{j i}\right) \nabla_{h} D_{j i}-\left(\nabla^{i} D_{j}{ }^{j}\right) \nabla^{h} D_{h i} \tag{1.5}\\
& \left.+\frac{1}{2}\left(\nabla^{i} D_{j}^{j}\right) \nabla_{i} D_{h}{ }^{h}+\frac{K}{n}\left\{D_{j i} D^{j i}-\frac{1}{2}\left(D_{i}{ }^{i}\right)^{2}\right\}\right] d V
\end{align*}
$$

[^0]for any symmetric tensor field $D_{j i}$ satisfying (1.2) if $g(0)$ is an Einstein point.

2. Infinitesimal conformal deformations of a Riemannian metric

If we put $D_{j i}=f g_{j i}$ where f is a C^{∞} function such that $\int_{M} f d V=0$, then

$$
\left(\frac{d^{2} I}{d t^{2}}\right)_{0}=\frac{n-2}{2}\left[(n-1) \int_{M}\left(\nabla^{i} f\right) \nabla_{i} f d V-K \int_{M} f^{2} d V\right] .
$$

There exist functions f which make this quantity positive. This proves that the index of $-I(g)$ is positive.

3. Infinitesimal deformations of a Riemannian metric in a small neighborhood

Let U be a coordinate neighborhood of M, and let $N \subset U$ be a neighborhood of a point $P_{0} \in U$, where the local coordinates are such that

$$
g_{j i}=\delta_{j i}, \quad\left\{\begin{array}{l}
h \\
j i
\end{array}\right\}=0
$$

at P_{0}. We assume that N is sufficiently small so that there exists a positive number ε such that g satisfies in N

$$
\left|g_{j i}-\delta_{j i}\right|<\varepsilon, \quad\left|g^{j i}-\delta_{j i}\right|<\varepsilon, \quad \left\lvert\,\left\{\begin{array}{l}
h \\
j i
\end{array}| |<\varepsilon\right.\right.
$$

Now we want to take a suitable C^{∞} tensor field $D_{j i}$. We know that for any given tensor field $D_{j i}$ there exists $g(t)$ such that

$$
\left(\frac{\partial g_{j i}}{\partial t}\right)_{0}=D_{j i}
$$

First, we assume $D_{i}{ }^{i}=0$ on M. Then

$$
\left(\frac{d^{2} I}{d t^{2}}\right)_{0}=\int_{M}\left[\left(\nabla^{j} D^{i h}\right) \nabla_{h} D_{j i}-\frac{1}{2}\left(\nabla^{h} D^{j i}\right) \nabla_{h} D_{j i}+\frac{K}{n} D_{j i} D^{j i}\right] d V .
$$

As we have

$$
\left|\left(\nabla^{j} D^{i h}+\nabla^{i} D^{j h}\right) \nabla_{h} D_{j i}\right|=\left|\left(\nabla_{c} D_{b a}+\nabla_{b} D_{c a}\right)\left(\nabla_{h} D_{j i}\right) g^{c j} g^{b i} g^{a h}\right|,
$$

where

$$
\nabla_{j} D_{i \hbar}=\partial_{j} D_{i n}-\left\{\begin{array}{l}
k \\
j i
\end{array}\right\} D_{k h}-\left\{\begin{array}{l}
k \\
j h
\end{array}\right\} D_{i k},
$$

we get

$$
\begin{aligned}
\mid\left(\nabla^{j} D^{i h}+\right. & \left.\nabla^{i} D^{j h}\right) \nabla_{h} D_{j i} \mid \\
= & \left\lvert\,\left(\partial_{c} D_{b a}+\partial_{b} D_{c a}-2\left\{\begin{array}{c}
t \\
c b
\end{array}\right\} D_{t a}-\left\{\begin{array}{c}
t \\
c a
\end{array}\right\} D_{t b}-\left\{\begin{array}{c}
t \\
b a
\end{array}\right\} D_{t c}\right)\right. \\
& \left.\cdot\left(\partial_{h} D_{j i}-\left\{\begin{array}{c}
s \\
h j
\end{array}\right\} D_{s i}-\left\{\begin{array}{c}
s \\
h i
\end{array}\right\} D_{s j}\right) g^{c j} g^{b i} g^{a h} \right\rvert\, .
\end{aligned}
$$

Let us denote this quantity by F_{1}.
Define $S_{j i}$ by

$$
g^{j i}=\delta_{j i}+\varepsilon S_{j i}
$$

Then $S_{j i}$ satisfy $\left|S_{j i}\right|<1$.
Assume that $D_{j i}$ vanishes everywhere except in the interior of N, and define M_{1} and M_{2} by

$$
\begin{aligned}
& M_{1}=\max \left\{\left|D_{j i}(P)\right| ; P \in N ; i, j=1, \cdots, n\right\}, \\
& M_{2}=\max \left\{\left|\partial_{j} D_{i h}(P)\right| ; P \in N ; h, i, j=1, \cdots, n\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
F_{1}= & \left\lvert\, \sum_{a, b, c} \sum_{h, i, j}\left(\partial_{c} D_{b a}+\partial_{b} D_{c a}-2\left\{\begin{array}{c}
t \\
c b
\end{array}\right\} D_{t a}-\left\{\begin{array}{c}
t \\
c a
\end{array}\right\} D_{t b}-\left\{\begin{array}{c}
t \\
b a
\end{array}\right\} D_{t c}\right)\right. \\
& \cdot\left(\partial_{h} D_{j i}-\left\{\begin{array}{c}
s \\
h j
\end{array}\right\} D_{s i}-\left\{\begin{array}{c}
s \\
h i
\end{array}\right\} D_{s j}\right) \\
& \cdot\left(\delta_{c j}+\varepsilon S_{c j}\right)\left(\delta_{b i}+\varepsilon S_{b i}\right)\left(\delta_{a h}+\varepsilon S_{a h}\right) \mid \\
\leq & \left|\sum_{h, i, j}\left(\partial_{j} D_{i h}+\partial_{i} D_{j h}\right) \partial_{h} D_{j i}\right|+4 n^{4} M_{1} M_{2} \varepsilon+4 n^{4} M_{1} M_{2} \varepsilon+6 n^{4}\left(M_{2}\right)^{2} \varepsilon \\
& +\left(M_{1}+M_{2}\right)^{2} \varepsilon
\end{aligned}
$$

where the last term $\left(M_{1}+M_{2}\right)^{2} \varepsilon$ is a substitute for the terms containing $\varepsilon^{2}, \varepsilon^{3}$,

Next consider

$$
F_{2}=\left(\nabla^{h} D^{j i}\right) \nabla_{h} D_{j i} .
$$

For this quantity we get

$$
\begin{gathered}
F_{2}=\left\lvert\, \sum_{a, b, c} \sum_{h, i, j}\left(\partial_{c} D_{b a}-\left\{\begin{array}{c}
t \\
c b
\end{array}\right\} D_{t a}-\left\{\begin{array}{c}
t \\
c a
\end{array}\right\} D_{t b}\right)\right. \\
\cdot\left(\partial_{j} D_{i h}-\left\{\begin{array}{c}
s \\
j i
\end{array}\right\} D_{s h}-\left\{\begin{array}{c}
s \\
j h
\end{array}\right\} D_{s i}\right) \\
\cdot\left(\delta_{c j}+\varepsilon S_{c j}\right)\left(\delta_{b i}+\varepsilon S_{b i}\right)\left(\delta_{a h}+\varepsilon S_{a h}\right) \mid \\
\geq \sum_{h, i, j}\left(\partial_{j} D_{i h}\right)^{2}-4 n^{4} M_{1} M_{2} \varepsilon-3 n^{4}\left(M_{2}\right)^{2} \varepsilon-\left(M_{1}+M_{2}\right)^{2} \varepsilon,
\end{gathered}
$$

and therefore

$$
\begin{aligned}
& \int_{M}\left[\left(\nabla^{j} D^{i h}\right) \nabla_{h} D_{j i}-\frac{1}{2}\left(\nabla^{h} D^{j i}\right) \nabla_{h} D_{j i}\right] d V \\
& \leq \frac{1}{2} \int_{N}\left(F_{1}-F_{2}\right) d V \\
& \leq \frac{1}{2} \int_{N}\left[\left|\sum_{h, i, j}\left(\partial_{j} D_{i h}+\partial_{i} D_{j h}\right) \partial_{h} D_{j i}\right|-\sum_{h, i, j}\left(\partial_{j} D_{i h}\right)^{2}\right. \\
& \left.\quad+12 n^{4} M_{1} M_{2} \varepsilon+9 n^{4}\left(M_{2}\right)^{2} \varepsilon+2\left(M_{1}+M_{2}\right)^{2} \varepsilon\right] d V
\end{aligned}
$$

Now let us consider a tensor field $T_{j i}$, which vanishes everywhere except in the interior of N, such that all components are identically zero except

$$
T_{12}=T_{21}=f
$$

where f is a C^{∞} function. By putting

$$
D_{j i}=T_{j i}-\frac{1}{n} T_{l k} g^{l k} g_{j i}=T_{j i}-\frac{2}{n} f g^{12} g_{j i},
$$

we get $D_{i}{ }^{i}=0$ and

$$
\left|\partial_{j} D_{i h}-\partial_{j} T_{i h}\right| \leq\left(\frac{4}{n}|f|+\frac{2}{n}\left|\partial_{j} f\right|\right) \delta_{i h} \varepsilon+0\left(\varepsilon^{2}\right)
$$

Hence

$$
M_{1}=(\max |f|)(1+0(\varepsilon)), \quad M_{2} \leq\left(\max \left|\partial_{j} f\right|+\frac{4}{n}|f| \varepsilon\right)(1+0(\varepsilon))
$$

and we can neglect all minor terms in F_{1} and F_{2}. Moreover we can replace $D_{i n}$ and $\partial_{j} D_{i n}$ by $T_{i h}$ and $\partial_{j} T_{i n}$ respectively to obtain

$$
\begin{aligned}
\left(\frac{d^{2} I}{d t^{2}}\right)_{0} & =\int_{N}\left[\sum_{h, i, j}\left(\partial_{j} T_{i h}\right) \partial_{h} T_{j i}-\frac{1}{2} \sum_{h, i, j}\left(\partial_{j} T_{i h}\right)^{2}+\frac{K}{n} \sum_{i, j}\left(T_{j i}\right)^{2}\right] d V \\
& =\int_{N}\left[-\left(\partial_{3} f\right)^{2}-\cdots-\left(\partial_{n} f\right)^{2}+\frac{2 K}{n} f^{2}\right] d V
\end{aligned}
$$

As there exist functions f for which the last integral is negative, the index of I is positive.

Thus we have proved the main theorem.

4. Index of an Einstein metric

Let g be an Einstein metric. Then the right hand side of (1.5) is a quadratic functional of the tensor field $D_{j i}$. For convenience this integral will be denoted by $J(D)$. Let \mathscr{D} be the set of tensor fields D (with components $D_{j i}$) which satisfy

$$
\begin{align*}
& \int_{M} g^{j i} D_{j i} d V=0 \tag{4.1}\\
& \int_{M} D^{j i} D_{j i} d V=1 \tag{4.2}
\end{align*}
$$

We now study critical points of $J(D)$ when D moves in \mathscr{D}.
If $E_{j i}$ denotes an infinitesimal change of $D_{j i}$, we have at a critical point

$$
\begin{align*}
& \int_{M}\left[\left(\nabla^{j} E^{i h}\right) \nabla_{h} D_{j i}+\left(\nabla^{j} D^{i h}\right) \nabla_{h} E_{j i}-\left(\nabla^{h} E^{j i}\right) \nabla_{h} D_{j i}\right. \\
& \quad-\left(\nabla^{i} E_{j}^{j}\right) \nabla^{h} D_{h i}-\left(\nabla^{i} D_{j}^{j}\right) \nabla^{h} E_{h i}+\left(\nabla^{i} E_{j}^{j}\right) \nabla_{i} D_{h}^{h} \tag{4.3}\\
&\left.+\frac{K}{n}\left(2 D^{j i} E_{j i}-D_{j}^{j} E_{i}^{i}\right)\right] d V=0
\end{align*}
$$

where $E_{j i}$ satisfies

$$
\begin{equation*}
\int_{M} g^{j i} E_{j i} d V=0, \quad \int_{M} D^{j i} E_{j i} d V=0 \tag{4.4}
\end{equation*}
$$

From (4.3) we get

$$
\begin{gathered}
\int_{M}\left[-\left(\nabla_{h} \nabla^{j} D^{i h}+\nabla_{h} \nabla^{i} D^{j h}\right)+\nabla_{h} \nabla^{h} D^{j i}+\left(\nabla^{k} \nabla^{h} D_{h k}\right) g^{j i}+\nabla^{j} \nabla^{i} D_{k}^{k}\right. \\
\left.-\left(\nabla_{k} \nabla^{k} D_{h}^{h}\right) g^{j i}+\frac{2 K}{n} D^{j i}-\frac{K}{n} D_{k}^{k} g^{j i}\right] E_{j i} d V=0
\end{gathered}
$$

where $E_{j i}$ is restricted only by (4.4). Hence we have

$$
\begin{aligned}
& -\nabla_{k} \nabla^{j} D^{i k}-\nabla_{k} \nabla^{i} D^{j k}+\nabla_{k} \nabla^{k} D^{j i}+\nabla^{j} \nabla^{i} D_{k}{ }^{k} \\
& \quad+\left(\nabla^{t} \nabla^{s} D_{t s}-\nabla_{t} \nabla^{t} D_{s}{ }^{s}-\frac{K}{n} D_{k}{ }^{k}\right) g^{j i}=C_{1} g^{j i}+C_{2} D^{j i}
\end{aligned}
$$

where C_{1} and C_{2} are constants.
If (4.5) is transvected with $g_{j i}$ and then integrated over M, we get $C_{1}=0$ because of (4.1). If (4.5) is transvected with $D_{j i}$ and then integrated over M, we get

$$
\begin{gathered}
C_{2}=\int_{M}\left[2\left(\nabla^{j} D^{i k}\right) \nabla_{k} D_{j i}-\left(\nabla^{k} D^{j i}\right) \nabla_{k} D_{j i}-2\left(\nabla_{j} D^{j i}\right) \nabla_{i} D_{k}{ }^{k}\right. \\
\left.+\left(\nabla^{t} D_{s}^{s}\right) \nabla_{t} D_{l}{ }^{l}-\frac{K}{n} D_{l}{ }^{l} D_{k}{ }^{k}\right] d V
\end{gathered}
$$

because of (4.2). Hence from (1.5) it follows that

$$
\begin{equation*}
\left(\frac{d^{2} I}{d t^{2}}\right)_{0}=\frac{1}{2} C_{2}+\frac{K}{n} . \tag{4.6}
\end{equation*}
$$

Let a symmetric tensor field $A_{j i}$ be a solution of the following system of partial differential equations with an unknown constant C_{2},

$$
\begin{align*}
& -\nabla^{k} \nabla_{j} A_{i k}-\nabla^{k} \nabla_{i} A_{j k}+\nabla_{k} \nabla^{k} A_{j i}+\nabla_{j} \nabla_{i} A_{k}^{k} \\
& \quad+\left(\nabla^{t} \nabla^{s} A_{t s}-\nabla_{t} \nabla^{t} A_{s}^{s}-\frac{K}{n} A_{k}{ }^{k}\right) g_{j i}=C_{2} A_{j i}, \tag{4.7}
\end{align*}
$$

when C_{2} takes the eigenvalue a. If $A_{j i}$ satisfies $\int_{M} g^{j i} A_{j i} d V=0$, and moreover $a<-2 K / n$, then we have $J(A)<0$ for this tensor field $A_{j i}$.

If (4.7) is transvected with $g^{j i}$ and integrated over M, we get

$$
-K \int_{M} A_{k}^{k} d V=C_{2} \int_{M} A_{k}^{k} d V
$$

Hence any solution $D_{j i}$ of (4.7) satisfies (4.1) if $K+C_{2} \neq 0$. (4.2) is always satisfied if $D_{j i}$ is replaced by $D_{j i}$ multiplied by a suitable number.

Let us call each value of C_{2}, for which (4.7) has a solution $D_{j i}$ satisfying (4.1), an effective eigenvalue of the system (4.7).

Define a differential operator L such that from any symmetric tensor field $A_{j i}$ a symmetric tensor field $L_{j i}(A)\left(=(L(A))_{j i}\right)$ is induced by

$$
\begin{align*}
L_{j i}(A)= & -\nabla^{k} \nabla_{j} A_{i k}-\nabla^{k} \nabla_{i} A_{j k}+\nabla_{k} \nabla^{k} A_{j i} \\
& +\nabla_{j} \nabla_{i} A_{k}^{k}+\left(\nabla^{t} \nabla^{s} A_{t s}-\nabla_{t} \nabla^{t} A_{s}^{s}-\frac{K}{n} A_{k}^{k}\right) g_{j i} . \tag{4.8}
\end{align*}
$$

Then we can write (4.7) in the form ${ }^{2}: L_{j i}(A)=C_{2} A_{j i}$.
Let $A_{j i}$ and $B_{j i}$ be any C^{∞} symmetric tensor fields. Then

$$
\begin{aligned}
\int_{M} L_{j i}(A) B^{j i} d V=\int_{M} & {\left[2\left(\nabla_{j} A_{i k}\right) \nabla^{k} B^{j i}-\left(\nabla_{k} A_{j i}\right) \nabla^{k} B^{j i}-\left(\nabla_{i} A_{k}{ }^{k}\right) \nabla_{j} B^{j i}\right.} \\
& \left.-\nabla^{s} A_{t s} \nabla^{t} B_{l}^{l}+\nabla^{t} A_{s}{ }^{s} \nabla_{t} B_{l}{ }^{l}-\frac{K}{n} A_{k}{ }^{k} B_{l}{ }^{l}\right] d V,
\end{aligned}
$$

which will be denoted by (A, B). If $A_{j i}$ and $B_{j i}$ are solutions of (4.7) when $C_{2}=a$ and $C_{2}=b$ respectively, then

$$
(A, B)=a \int_{M} A_{j i} B^{j i} d V, \quad(B, A)=b \int_{M} A_{j i} B^{j i} d V
$$

As (A, B) is symmetric in A and B, we get

$$
\int_{M} A_{j i} B^{j i} d V=0, \quad(A, B)=0
$$

if $a \neq b$.
Now let $a_{1}>\ldots>a_{p}$ be any discrete subset of effective eigenvalues of the system of equations

$$
L_{j i}(A)=C_{2} A_{j i}
$$

such that $a_{1}<-2 K / n$. Let A_{k} bi be a solution of (4.7) corresponding to the eigenvalue a_{k} and satisfying

$$
\int_{M} g^{j i}{ }_{k j}{ }_{j i} d V=0 .
$$

As

$$
\int_{M} A^{j i}{ }_{k} A_{j i} d V=0
$$

for $l \neq k, A_{1}, \cdots, A_{p i}$ are linearly independent.
Definition. Let us say that the index of the Einstein metric under consideration is m if (4.7) has just m linearly independent solutions with effective eigenvalues less than $-2 K / n$.

Then we get the following theorem.
Theorem 4.1. If (4.7) has p effective eigenvalues $a_{1}>\ldots>a_{p}$ such that $a_{1}<-2 K / n$, then the index of the Einstein metric under consideration is not less than p. The same holds with the index of $I(g)$ at this Einstein point.

[^1]Evidently all eigenvalues of (4.7) are effective except the only possible one, namely, $C_{2}=-K$. However, the author does not know whether $-K$ is an eigenvalue or not.

It has been pointed out by M. Berger and D. Ebin [2], [3] that in studying the variation of $I(g)$ we need to consider only tensor fields $D_{j i}$ which satisfy $\nabla^{j} D_{j i}=0$, and that a tensor field $D_{j i}=\nabla_{j} X_{i}+\nabla_{i} X_{j}$ never changes $I(g)$. If we put $A_{j i}=\nabla_{j} X_{i}+\nabla_{i} X_{j}$, we immediately find that this is a solution of (4.7) with $C_{2}=-2 K / n$.

The author wishes to express his cordial thanks to Professor M. Berger for his kind information on relevant studies.

References

[1] M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. sci. École Norm. Sup. (4) 3 (1970) 285-294.
[2] M. Berger \& D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969) 379-392.
[3] D. G. Ebin, The manifold of Riemannian metrics, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968) Amer. Math. Soc., 1970, 11-40.

Yoконama National University

[^0]: ${ }^{1}$ We call an Einstein metric an Einstein point in $\mathscr{M}(M)$.

[^1]: ${ }^{2} L$ is not an elliptic operator.

