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STABLE COMPLEX STRUCTURES ON REAL MANIFOLDS

ALLAN BRENDER

1. Introduction

1.1. An almost complex (a.c.) structure on a real differentiable manifold
M2n is a bundle automorphism J of its tangent bundle / such that P = —I.
Such a / provides a reduction of t to a complex vector bundle τ. It is natural
to ask whether M carries the structure of a complex analytic manifold Wn

whose tangent bundle is τ, or (a stronger requirement) whether a W exists for
which / corresponds to multiplication by / in the fibers of τ. The stronger
question is known as the integrability problem for / [3]. In general, both
questions must be answered in the negative [1], [19]. However, the author
has shown [2] that given /, the cartesian product M2n x R2k always carries a
complex structure W for some large integer k. In fact, we shall show that
W is a Stein manifold. Thus, if we stabilize our problem, the weaker question
has an affirmative solution. As we point out in the concluding section, our
methods do not keep track of the a.c. structure /, and we cannot answer the
stabilized version of the integrability problem. Our purposes in this note are
to obtain bounds on the integer k and to classify, up to real deformations, the
complex structures obtained from various reductions of t (or t stabilized) to
complex vector bundles.

Our approach to the complexification problem is somewhat analagous to
that used in solving the triangulation and smoothing problems [14], [9]. One
first shows that reduction of the group of the tangent bundle of a manifold
implies the existence of a suitable manifold structure on M x Rk for large k.
Then one invokes a splitting principle (in the smoothing problem, for example,
this is the Cairns-Hirsch theorem) to show the new structure produced is
equivalent to the cartesian product of M with appropriate new structure and
Rk with its canonical structure. We have only a very limited splitting theorem
for the complexification problem namely, if M is known to support a Stein
manifold structure W, our procedures yield essentially the cartesian products
W X Ck. The results of [1] and [19] imply there is no general splitting theorem
for complexifications.

1.2. This paper is divided in to six sections of which this is the first. In the
second, we collect several facts from bundle theory which will be needed. The
third section is devoted to a discussion of real deformation spaces of complex
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structures on noncompact manifolds and also contains the statement of our
main result. The basic construction is described in section four and the result
proved in section five. We conclude with a final section devoted to pertinent
remarks and observations.

1.3. We now set down several conventions and some notation. All mani-
folds and diίϊeomorphisms between them will be assumed smooth of class C°°.
Our manifolds are Hausdorfϊ, without boundary, and paracompact but not
necessarily compact. If M2m is a real 2ra-dimensional manifold which carries
a particular structure of a complex analytic manifold, then M, considered as a
complex manifold, will be denoted by Wm.

An Rk bundle b over M is a ^-dimensional real vector bundle with total
space E(b) and structure group O(k). Similarly, a Ck bundle β will be assumed
to have structure group U(k). In general, real bundles will be denoted by
boldface letters and complex ones by Greek letters. We shall, when convenient,
assume that all vector bundles over M are smooth and that any bundle equival-
ences which arise are also smooth. ek will denote the trivial Rk bundle, and ek

the trivial Ck bundle. When convenient, we shall identify Ck with R2k and εk

with e2k.

The author wishes to thank Peter Landweber for several very valuable
comments.

2. Bundle theory

2.1. Let B be a topological space which has the homotopy type of a counta-
ble ^-dimensional CW complex. If £ is a Cn bundle over B, the natural inclu-
sion of U(ri) in O(2ri) allows us to consider ξ as a R2n bundle. Let b be a R2n

bundle over B.
Definition, i) A complex reduction of b is a pair (ξ, h), where ξ is a Cn

bundle over B, and h: ξ —> b is an equivalence of R2n bundles.
ii) Two reductions, (£$,/&*), / = 0, 1, of b are equivalent if h0 is isotopic

to an equivalence h: ξo-+ b such that h^oh: ξ0 —» ξx is an equivalence of Cn

bundles.

As in [15] we have
Proposition 1. The equivalence classes of complex reductions of b are in

one-one correspondence with the isotopy classes of lifts to BU(n) of a classify-
ing map f: B -> BO(2n) for b.

Recall that two lifts of / are isotopic if they are homotopic via a homotopy
{/J such that ft is a lift of / for each / e I. The set of equivalence classes of
complex reductions of b will be denoted by CR(b). [ξ,h] is the member of
CR(b) determined by a reduction (ξ, h).

It is a standard fact from homotopy theory that the inclusions /: U(ή) —>
U(m) and /": O(2n) —> O(2m) induce isomorphisms /#: πk(BU(ή)) —> πk(BU(m))
and /#: πk(BO(2n)) -> πk(BO(2m)) when 2m > 2n > k, where the map between
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classifying spaces determined by a map of groups is denoted by the same letter.
Now, itf:B->BO(2n) classifies a n R 2 n bundle 4, then jof classifies b0e2(w~n).
The isomorphisms in homotopy mentioned above, when combined with stand-
ard obstruction theory, can be applied to show that if In — 1 > k and Fr: B
-> BU(m) is any lift of /Ό/, then there exists a lift F: B -> BU{n) of / such
that ioF is isotopic to F' . Further, if F\\ B—>BU(m) are isotopic lifts of /Ό/,
i = 1,2, then the lifts Ft: B -> £E/(w), / = 1,2, which they determine, can
be constructed so as to be isotopic lifts of /. Thus, if In — 1 > k and / > 0,
then the function χ: CR(b) -> CR(b Θ *20 defined by χ[ξ, h] = [ξ@ει,h® id]
is a bijection. We shall, when convenient, identify there sets by means of χ.
All this can be reformulated as follows: if In — 1 > k and [f,/ι] € CR(b),
then f and 4 are stafo/e bundles over 5 and are completely determined by ele-
ments {ξ}eKU(B) and {b}eKO(B). If π: KU(B) ->KO(B) is the natural
homomorphism induced by the inclusion of U in O, then [f, /z] € CR(b) if and
only if π{ξ} = {b}. The element [ξ, A] is completely determined by {£}, and
CR(b) corresponds to π~ι{b}, a coset of ker π. Thus, if we choose some ele-
ment of CR(b) as the neutral element, the correspondence with ker π allows
us to define an abelian group structure on CR(b) in a manner similar to that
in [9].

2.2. If 2m — 1 > k, and b, {b} are as above, then we can find an R2m

bundle c over B with {c} = ~{b}εKO(B). Then, for each {ξ}ζπ~ι{b},
— {ξ}ζπ~ι{c} and conversely, so there is a well-defined bijection between
CR(b) and CR(c). We shall be particularly interested in the case when b =
the tangent bundle t of a real 2n-dimensional manifold M2n and c = the stable
normal R2m bundle n for M, 2m > In + 2. An almost complex structure
on M determines a reduction (η,h) of /. This gives rise to a reduction
Gyθe', /z(x)id) representing χfy, A], But now the bundles are stable, so we have
a well-defined element of CR(n). We shall use this correspondence in section
five.

3. Deformation and Stein Structures

3.1. Let S and V be real manifolds of dimensions s and In + s respectively,
and p: V —> S be a smooth surjection. The triple (F, 5, p) will be said to have
the structure of a smooth family of complex structures if there exists a family
of quadruples {(Nj,Uj,Wj,hj)}jej such that for each jεJ,Nj is an open
subset of V, Uj is an open subset of 5, Wά is an open subset of Cn and
hj: Nj —> £// X FF, is a difϊeomorphism, all satisfying the conditions: i)
{Nj}j€J is an open cover of V which is an atlas for the differential structure
of V n) p I Nj = π1o hj for each j eJ where ^ is projection to the first factor
iii) if /, / e / and Nt ΓΊ Λ^ is nonempty, then for each x e Ut (Ί Uj9 the map
h3 o h^1: Ai(N< Π Nj Π ^ ( Λ ) ) -> hj(Ni Π N, Π / r 1 ^ ) ) is a holomorphic map
from an open subset of {x} X W€ to an open subset of {x} X ^ .
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It is an immediate consequence of iii) that for each x e S, Mx = ρ~\x) is a
complex analytic n-dimensional manifold. If S is connected and for each
s e S, Mx is known to be compact, it can be shown that all the Mx's, when
considered as real 2rc-dimensional manifolds, are diffeomorphic in fact, V is
the space of a smooth bundle over S with fiber M and projection p. This may
not be the case if some Mx is noncompact. However, this property holds for
all families of deformations of interest in this paper. Consequently we shall
require that our families (F, S, p) satisfy iv) there exists a real 2«-dimensional
namifold M such that (F, S, p) is a smooth bundle with fiber M. We shall be
concerned with families in which S = R1. Consequently V is diffeomorphic to
R1 x M, and p is projection to the first factor.

3.2. A smooth family of complex structures of the form (F, R\ p) will be
called a path of complex structures on M where M is the real 2«-dimensional
manifold provided by condition iv) of the definition. If C(M) is the set of all
complex-manifold structures on M2n, two elements Wo, Wλ e C(M) are said to
be in the same path component if there is a path (F, R1, p) of complex struc-
tures on M, with Mt = p~\t) holomorphically homeomorphic to Wt, t = 0, 1.
This is an equivalence relation. The reflexive property is obvious, and sym-
metry is seen to hold when one replaces the path (F, R1, p) joining Wo to W1

by the path (V9R
1

9p') where p'(y) = 1 — p(v). To check transitivity, let
W09 W19 W2 e C(M), and let (V19ΛVft), (F 2 ,R\p 2 ) be paths of complex struc-
tures on M with holomorphic homeomorphisms rt: pϊ\t) —> Wt, t = 0, 1 and
st pΐKϋ —> Wt+19 t = 0 , 1 . Pick a diffeomorphism D from Rι to itself which
leaves fixed the points 0 and 1 and all of whose derivatives vanish at these
points. Now, set at = Dopi9 i = 1,2, and let V = σϊ\— oo, 1] U σ^^O, cx̂ )
where σϊ\ϊ) = pϊKί) is identified to pϊ\0) = σ^KO) by ^ 0~ l o ri Define
p3:V-^Rι by p3\σ;\- oo, 1] - ^ and p,\σ^[0, oo) = i( l + σ2). Then
( F , R1, p) is a path of complex structures from Wo to W2.

3.3. For n ^> 0, a complex manifold Wn is a Stein manifold if and only
if it can be holomorphically embedded as a closed subset of Ck for some large
integer k, [6], Necessarily, W is noncompact. If M is a noncompact real
2n-dimensional manifold, we shall denote the subset of C(M) consisting of the
Stein manifold structures on M by S(M). If S(M) is nonempty, then M must
be of the homotopy type of a CW complex of dimension <n [17, p. 39]. A
path (F, R\ p) of complex structures on M is a Stein path if for each / e j?1,
M έ = ρ~\t) is a Stein manifold. As in § 3.2, 5(M) decomposes into path com-
ponents, where two complex structures Wo, W1 e S(M) are in the same path
component of S(M) if there is a Stein path joining them. PS(M) denotes the
set of path components of S(M). We define PSk(M) to be PS(M x R21c), k>0.
If W is a Stein manifold, so is the cartesian product W X Ck for any k > 0.
Clearly, if (F, Λ1, p) is a Stein path joining Wo to ^ then ( F X C*, i?1, ^ o 7̂ )
is a Stein path joining WQ x Cfc to W1 X Ck, and we have a natural function
σ: PS(M)-+PSk(M). Let 77i;(M) = l im^^ PSk(M). Observe that if M2 w is
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compact, PS(M) will be empty but for k > 2n, PSk(M) may very well be
nonempty. So ΠΣ(M) is well defined for all even dimensional manifolds M.
If M is odd-dimensional, we can define PSk(M) to be PS(M x R2k+1), and
again have ΠΣ(M) well defined.

3.4. We can now state our results. Let M be a real 2τz-dimensional mani-
fold of the homotopy type of a ^-dimensional CW complex, and 2m be the
smallest even integer larger than k.

Theorem 1. // n is the stable normal Ru bundle of M, 2/ > 2m > k,
there is a one-one correspondence between CR(n) and ΠΣ(M).

Corollary. Let J be an almost complex (a.c.) structure on M, and J1 be
the canonical a.c. structure on Cι = R21. Let I > m + n. Then J © Jly an
ax. strucrure on M X R2, is homotopic to an integrable a.c. structure which
integrates to a Stein manifold.

The proofs of these statements appear in section five.

4. The main construction

In this section, we review and improve on the dimensional restrictions of a
construction described by the author in [2]. Landweber has also considered
these improvements on dimension in a preliminary version of [12].

4.1. Let M be a real rc-dimensional manifold we do not necessarily require
n to be even. A classical result of Whitney allows us to assume M is a real-
analytic manifold. Now for each real-analytic n-manifold M Whitney and
Bruhat [20] have constructed a pair (M, 0, called a complexification of M,
consisting of a complex π-dimensional manifold M and a real analytic embed-
ding i: M-+M such that i(M) is covered by a family {(ί/α, ha)}aeA of coordinate
charts in M with the property that ha(Ua Π i(M)) = Rn Π ha(Ua) C Cn for
each a e A. Moreover, the germ of the complexification is unique in the sense
that if (Mjjj), j = 1,2, are two complexifications of M, there exist neigh-
borhoods Uj of ij(M) in M^ j = 1,2, and a holomorphic equivalence /: Uλ

—> U2 such that foiι — i2. The normal Rn bundle n to the embedding / of M
in M is thus independent of (M, ί), and is naturally equivalent to the tangent
bundle t of M. Furthermore, Grauert [5] has shown that for any complexfica-
tion (M, ί) of M there is an open tubular neighborhood N of i(M) in M which
is a Stein manifold. We shall identify N with the total space E(t) of the tangent
bundle of M via a smooth bundle equivalence, and let r: N -* ί(M) be the
neighborhood retraction which corresponds under this identification to the
projection of t.

Suppose now that n = 2m, and M carries a complex m-manifold structure
W with Cm tangent bundle τ. Let W be the conjugate complex structure on
M with tangent bundle τ, the conjugate bundle to τ (considered as Cm bundles
over M). Then we can choose as a complexification of M the pair (W X W, d)
where d: M —> W X W (= M x M) is the diagonal map. The normal bundle
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to the embedding d is now a Cm bundle equivalent to τ thus we can identify
a tubular neighborhood N of d(M) with E(τ) so that the retraction r onto d(M)
is projection to the first factor W. Observe that this identification is one of
smooth manifolds it need not preserve complex structures. In fact, if (M, ί)
is any complexification of a real manifold M, we use the smooth identification
of E(t) with N to define a complex structure on E(t). It is the structure pulled
back by the equivalence from the Stein structure on N determined by Grauert.
If M carries W as above, then the natural diffeomorphism of E(τ) and E(t)
gives a Stein structure on E(τ) since τ reduces t. This is the structure pre-
served by the equivalence, but is not, in general, the natural complex structure
on E(τ) determined by W.

4.2. Once more, M i s a real rc-dimensional manifold. Let n be a stable
normal R2m bundle for M, 2m > n. Thus ί@n = en+2m. For any ξ e CR(n),
we can conclude that f e CR(n) and r*ξ e CR(r * ή). Since N is a Stein manifold
and r * ξ is a Cm bundle over N, it follows from another result of Grauert [4]
that r * f may be considered in a canonical way as a holomorphic bundle over
N. This determines a Stein manifold structure on E(r*ξ) [6, p. 258]. Since
N and E(t) are equivalent as real manifolds, the underlying real structure on
E(r*ξ) is diffeomorphic to E(r*n) = E(t@n) = E(en+2m) = M X Rn+2m.
Thus to each reduction ξ of n we can assign a Stein structure W on M x Rn+2m.
Actually, a reduction of n was defined to be a pair (f, h). A different choice
(?!, /ιx) within the same equivalence class in CR(n) would give ξ = ξ1 and /z
isotopic to hλ. The isotopy gives rise to a Stein path joining W to the structure
W1 determined by (ξ19 h^). Thus we have a well-defined function γ: CR(n2m) —>
PSW+2TO(M). We pause to assure the reader that the reason for employing f in
place of ξ will become evident in the next section.

4.3. Recall that if M has the homotopy type of a /:-dimensional CW com-
plex, then χ: CR(n) —> CR(n 0 e21) is an equivalence when 2m > /: and / > 0.
On the other hand, it is easy to see that if the reduction (ξ, h) of n gives rise
to the Stein structure W on M x Rn+2m, then the construction of § 4.2, when
applied to (f 0 ει, h 0 id), gives rise to W X Cι. So we have a commutative
square

CR(n) ~U PSn+2m(M)+ 277

a

CR(n® e21) ^U PSn+2(m+l)(M)

and a well-defined function Γ: CR(ή) -> ΠΣ(M).

5. Proofs

For the remainder of the argument, we shall assume M is a real even-
dimensional manifold. Let dim M = 2m.
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5.1. Our first order of business is to construct an inverse to Γ. Let X be
a Stein structure on M X Rn for some / > 0. Then there is a holomorphic
embedding /': X —> cHm+l)+1 with a holomorphic normal Cm+ι+1 bundle ξ [6,
p. 256]. Observe that ξ is a stable bundle. Then ξ is a reduction of the stable
normal bundle of M. More precisely, we note that some tubular neighborhood
U of j(X) can be holomorphically identified with the total space E(ξ') of a
disk sub-bundle of ξ [6, p. 257]. Using a radial projection in each fiber, we
can identify E(ξ) with E(ξ') and thus with U, this identification being C°°. It
is a standard fact of differential topology that U can be identified with E(n),
[16]. Composing these identifications, and restricting our attention to those
parts of the respective bundles over M X {0}, we have our reduction. Clearly,
if we follow j by some embedding of c 2 ( m + i ) + 1 into c2(m+l)+1+p the resulting
reduction of n®e2p is ξ®εp. If j ' : X —> Ck is some other holomorphic
embedding of X, we can consider / and f to be embeddings of X in general
position in some Cp by embedding c2im+l)+1 and Ck in Cp as affine subspaces
in general position. Now the embedding J: X x I -+ Cp given by J(x, t) =
(1 — t)j(x) + t]'(x) is holomorphic for each /-level and is an isotopy between
/ and f. It provides an isotopy between the stable reductions of n determined
by / and f'. Thus X determines a well-defined element in CR(n). We now
observe that the embedding theorem of [6, p. 224] can be modified to produce
a level-preserving smooth embedding / : V —> C2(n+l)+1 X R1 of any Stein path
(F, R\ p) such that / : p-\i) -» C2(n+l)+1 X {/} is holomorphic for each real /.
Thus reductions of n determined by different Z ' s within the same Stein path
class are equivalent. Hence we have a well-defined map Δ: ΠΣ(M) —» CR(n).

5.2. We now show that ΓΔ is the identity map of ΠΣ(M). Let τ be the
Cn+ι tangent bundle of a Stein structure X on M X R21, and ξ be the stable
Cp normal bundle to X, p large. Then Δ(X) is represented by ξγ = ξ \ M x {0}.
In carrying out the construction of § 4.2 to obtain Γ(ξ) we note that we can
take a tubular neighborhood of the diagonal in X X X as N, and we can
identify N with E(τ) (cf. § 4.1). Moreover, we can take E(r*ξx) —> iV —> Z to
be a holomorphic bundle. But this bundle is equivalent, in a C°° sense, to
f θ l i = r φ f! = e = e. By [4], our bundle is also holomorphically trivial,
so ΓΔ(X) = {X X Cw+*+ί)} - {Z} in 772XM).

5.3. We complete the proof of the theorem by showing that ΔΓ is the
identity map of CR(n). Let ξ e CR(ri). We can assume that the real tangent
bundle t of M is stable for M can be replaced by M x R2 in this argument.
Now ξ determines a unique τ e CR(t) with f φ τ = e.

It is a standard fact that if (M, ί) is a complexification of M with complex
tangent bundle λ, then λ \ M = t ®R C which we can identify with τ 0 τ. Let
X = ECr*?) be the Stein structure obtained from ξ by the construction of
§ 4.2. X is a bundle over a complexification N of M. If μ is the tangent bundle
of X then, regarding N as the zero-section of r*ξ, μ\N = r*ξ ® λ. Thus
μ\M = ξφtφv = τ®ε. If we now embed X in Cp, and let ζ be the
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normal bundle to the embedding, then μ@ζ = ε; so τ © ε θ ζ | M = ε. Thus

ζ \M is a stable inverse to τ. But ξ is also a stable inverse t o r e KU(M). Since

£t/(M) is a group, £ = ζ | M. But ζ | M represents JΓ(f) , so ΔΓ is the identity
map.

5.4. To prove the corollary, we first observe that / 0 J19 when restricted
to that part of the tangent bundle of M X Ru which lies over M, provides a
complex reduction of the stable tangent bundle of M. This, in turn, induces a
reduction of the stable normal bundle of M. The dimensional restrictions are
such that the main construction gives a Stein structure on M x R21 with tangent
bundle equivalent to the complex bundle determined by / 0 Jx.

6. Remarks

6.1. There is a relative version of our existence result whose proof is a
consequence of the material in §§ 4 and 5.

Theorem 2. Let M2n be a smooth unbounded real manifold, and V2k a
noncompact submanifold which carries a Stein manifold structure Xk. Assume
the normal bundle n of V in M has been reduced to a Cn~k bundle v. If ξ is
a Cn+1 bundle over M which reduces the stable tangent bundle t(Be2 of M
such that ξ\V splits as τ(X) φvφε, then M2n x Rin+i carries a Stein struc-
ture W which contains X X C2n+2 as a holomorphic submanifold.

6.2. Our approach to the whole problem of existence and classification of
complex structures is essentially topological. It is crucial to our arguments
that given almost complex structures can be changed within a homotopy class.
Thus we have not tackled the classical integrability problem at all. To illustrate
the variance of our approach from the classical problem, we point out that
even if we begin with an a.c. structure which is known to be integrable, the
stable complex structure obtained from our construction bears no immediate
relation to the complex structure with which we began.

Proposition 2. Let Wn be a complex structure on M2n, with stable normal
Cn+1 bundle v. Then γ(v) is in the Stein path component of W X C2n+1 if and
only if W is a Stein manifold.

One half of the proof is the content of § 5.2 where it is shown that ΓΔ is
the identity of ΠΣ(M). For the other direction, it suffices to observe that W
is a submanifold of W X C2n+1. However a submanifold of a Stein manifold
X must itself be Stein since any holomorphic embedding of X in some Cp

induces an embedding of the submanifold.
On the other hand, it follows from work of Haefliger and Landweber, dis-

cussed below, that γ{v) is in the same path component as W X C2n+ι for any
complex manifold W.

Finally, we note that the introduction of the limiting process in the defini-
tion of ΠΣ(M) is necessitated,by a lack of more specific knowledge of the map
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σ: PSk(M) —> PSk + ι(M). One conjectures σ is a bijection. This would be
equivalent to a weak form of a splitting theorem such as the Cairns-Hirsch
theorem. It would suffice to show σ is either one-one or onto. With respect to
the "kernel" of σ, we have the following analogue of a theorem of Hirsch and
Mazur in the topological, piecewise-linear and smooth categories [8].

Proposition 3. Let Wλ and W2 be Stein structures with the same underlying
real manifold M2n and equivalent stable tangent bundles. Then, for any
I > 2n + 1, W1 X Cι and W2 X Cι are in the same Stein path component.

6.3. We conclude with a remark on the relation of this paper to the work
of Haefliger [7] and Landweber [12]. Haefliger has constructed a space BΓc

n

and a map v: BΓ^-* BU(ή) such that for any real open 2n-dimensional
manifold M whose tangent bundle can be reduced to a Cn bundle τ classified
by τc: M —* BU(ή), M supports a complex structure with tangent bundle τ if
and only if τc can be factored as vτf. Furthermore, homotopy classes of maps
τf (homotopic as lifts of τc) correspond to "integrable homotopy classes of
complex structures". A close examination of the definitions shows that Hae-
fliger 's integrable homotopy classes are exactly our paths of complex struc-
tures Stein structures do not enter here. Landweber has shown that the fiber
of v is (n — l)-connected, using methods which have their genesis in Haefliger's
approach and in our main construction [2]. An appeal to obstruction theory
yields

Theorem (Landweber). Let M be an open manifold of dimension 2n. If
Hl(M\ Z) = 0 for i > n, then there is a natural bijection between paths of
complex structures on M and homotopy classes of almost complex structures
on M.

Since we can replace M b y M x R21 in Landweber's theorem and obtain
the same classification, we see that a weak form of the splitting theorem holds:
// M is as in Landweber's theorem, any complex structure on M X R2k can
be joined by a path to a structure of the form W X Ck where W is a complex
structure on M.

We note that if M is as in Landweber's theorem, its tangent R2n bundle is
stable. Now, Landweber's classification is in terms of CR(i) which is naturally
equivalent to CR(n). Thus we may conclude that for any real 2«-dimensional
manifold M, any complex structure on M x R2k, k > n, may be deformed
within its path component to a Stein structure. This leads is to conjecture that
if M is as in Landweber's theorem, any complex structure on M can be
deformed within its path component, to a Stein manifold. We conclude with
the observation that Landweber's hypotheses on M are necessary if M carries
a Stein structure [17, p. 39].
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