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CONDITIONS FOR CONSTANCY OF THE HOLOMORPHIC
SECTIONAL CURVATURE

KATSUMI NOMIZU

In the present note we shall first prove an algebraic result (Theorem 1) on
the curvature tensor of a Kaehlerian manifold. As applications we derive two
results (Theorems 2 and 3) characterizing constancy of the holomorphic
sectional curvature by the existence of sufficiently many complex or totally
real submanifolds which are totally geodesic. A special case of Theorem 2 has
been known as the axiom of holomorphic planes [3].

1. Curvature tensor

Let M be a Kaehlerian manifold. In the tangent space at a point we con-
sider the curvature tensor R, the complex structure /, and the inner product
< , > arising from the Kaehlerian metric of M. We have (Jx, Jy} = <(*, y} for
any two vectors x and y. In addition to the usual properties of the curvature
tensor of a Riemannian manifold, R possesses the following properties:

( 1 )

(2) R(Jx,Jy)=zROc,y).

A subspace 5 of the tangent space is holomorphic if J(S) = 5. S is said to
be totally real if it satisfies the following condition:

( * ) </JC, y} = 0 for all x, y e S .

If P is a 2-dimensional subspace, with an orthonormal basis { c, y}, of the
tangent space, then the sectional curvature k(P) is given by <R(x9y)y9xy. If
P is holomorphic, then the holomorphic sectional curvature k(P) is equal to
(R(x, Jx)Jx, JC), where x is an arbitrary unit vector in P. It is well known (for
example, see [1, p. 167]) that k(P) is equal to a constant c for all holomorphic
planes P if and only if R is of the form

(3) Rβ(x9y) = ic(x /\y + Jχ/\Jy + 2(x,Jy}J) ,

where, in general, x Ay denotes the endomorphism which maps z into
<y, z}x - <x, z)y.
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We now prove
Theorem 1. The curvature tensor R at a point of a Kaehlerίan manifold

has constant holomorphic sectional curvature if and only if it has the following
property:

( A ) // (y, x) = <y, Jx) = 0, then (R(x, Jx)Jx, y} = 0.

Proof. The property is easily verified for the curvature tensor of the form
(3). Before we prove the converse, we observe that Property (A) implies that
if (y9 Xs) = (y, Jx} = 0 (consequently, (x, Jy) = 0), then the following terms
vanish:

<R(x,Jy)Jx,x>, <R(x,Jy)Jy,y), <R(y,Jx)Jx,x>, <R(y,Jx)Jy,yy,

<R(y,Jy)Jx,y>', <R(y, Jy)Jy, x} , <R(x,Jx)Jy,χ> .

For example,

<R(x, Jy)Jx, x} = <R(Jx, x)x, Jy} = <R(x, Jx)Jx, y} = 0 ,

(R(y, Jx)Jy, y} = 0 by simply interchanging x and y ,

and so on.

Now let x and y be unit vectors such that ζγ, x} = (y, Jx) = 0. Setting

u = x cos θ + y sin θ , v = —x sin θ + y cos θ ,

we find (v, u) = (v, Ju) = 0. Applying Property (A) to the pair (w, v), we
have (R(u,Ju)Ju,vy = 0. Expanding <#(>, /w)/w, v> we get 16 terms such
as

— sin θ cos3 θ(R(x, Jx)Jx, x} , cos4 θ(R(x, Jx)Jx, y} ,

- c o s 2 θ sin2 0<#O, /jc)/y, Λ> , • , sin3 θ cos

Since <Λ(JC, /X)/X, y} and the 7 terms in (4) vanish, and since

<R(χ, Jy)Jχ, y} = <R(y, Jχ)Jy, x} , <R(χ, Jχ)Jy, y> = <R(y, Jy)Jχ, χ> ,

the surviving terms in the expansion of (R(u, Ju)Ju, v} give rise to (for θ such

that cos θ φ 0, sin θ Φ 0)

-cos2θ(R(x,Jx)Jx,x> + sin2 θ<R(y, Jy)Jy, y}
( 5 } + (cos2 θ - sin2 θ)(2<R(x,Jy)Jy, x} + <R(x, Jχ)Jy, y » = 0 .

Choosing ^ = π/4, we obtain

( 6)
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Substituting (6) in (5) yields

( 7) 2<R(x, Jy)Jy, x> + <R(x, Jx)Jy, y} = <Λ(jt, Jx)Jx, x) .

We are now in a position to prove that R has constant holomorphic sectional
curvature under Property (A). First, the case where the complex dimension of
M is at least 3 can be easily disposed of. Let xι and y1 be any two unit vectors.
Then there exists a unit vector z1 such that

<z1? *!> = (zl9 Jχxy = <Zχ, 3Ί> = <Zχ, /yi> = 0 .

By virtue of (6) we obtain

(R(x19

as well as

Thus the holomorphic sectional curvature of the plane spanned by ΛX and Jxλ

is equal to that of the plane spanned by yx and /ylβ Hence the holomorphic
sectional curvature for R is constant.

Now assume that the complex dimension of M is equal to 2. We have an
orthonormal basis of the form {x, Jx, y, Jy}, for which (6) and (7) are valid.
Set

( 8 ) c - <#(*, Jx)Jx, x} = <R(y, Jy)Jy, y} .

From

R(x, Jx)Jy + R(Jx9 Jy)x + R(Jy9 x)Jx = 0

we obtain

<R(x,Jx)Jy9y> = -<R(Jx9Jy)x9yy - <R(Jy,x)Jx,y>

= <R(x9y)y9x> + <R(x,Jy)Jx,y>

= <i?U,j)y,x> + (R(x,Jy)Jy,x> ,

where we have used (1) and (2). This last identity and (7) imply

(9 ) 3(R(x, Jy)Jy, x) + (R(x, y)y, x> = c .

Since we may replace y in (9) by Jy, we get

(10) <#(*, Jy)Jy, x} + 3(R(x, y)y, x} = c .

From (9) and (10) we find
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(11) <Λ(x, y)y, x} = <Λ(JC, Jy)Jy, x> = c/4 ,

and thus

(12) <R(χ, Jx)Jy,y) = (R(y, Jy)Jχ,x) = c/2 .

Replacing x by Jx in (11) gives

(13) <R(Jχ, y)y, /*> = <*(/*, /y)/y, /*> = c/4 .

The curvature tensor Rc in (3) obviously satisfies the identities (8), (11),
(12) and (13). Also, <ΛC(JC, Jx)Jx, y} and the terms in (4) for Rc are 0. It
follows that

(14)

if the vectors x19 x29 x3 and * 4 are taken from the basis {x, Jx, y, Jy}. Thus (14)
is valid for arbitrary vectors. Hence R = Rc.

Remark. Property (A) can be compared with E. Cartan's condition (see
the lemma in [2]) for constancy of the sectional curvature of the curvature
tensor of a Riemannian manifold.

2. Criteria for constancy of the holomorphic sectional curvature

Let M be a Kaehlerian manifold of dimension 2n. If M has constant
holomorphic sectional curvature, then for every 2&-dimensional holomorphic
subspace S of the tangent space TP(M), p e M, there exists a totally geodesic
complex submanifold V containing p such that TP(V) = S (for example, see
[1, pp. 277, 285]. On the other hand, suppose S is a ^-dimensional totally
real subspace of TP(M), where k < n as is easily seen. Then there exists a
Λ -dimensional totally geodesic submanifold V containing p such that TP(V) =
5. Indeed, for every point q of F, Tq(V) is a totally real subspace of Tq(M).

This assertion on the existence of totally real submanifolds which are totally
geodesic can be proved most easily by the following observation. A Kaehlerian
manifold of constant holomorphic sectional curvature c is locally either Cn

(for c = 0) or CPn with Fubini-Study metric (for c > 0) or the unit disk Dn

in Cn with Bergman metric (for c < 0). For Cn, the submanifolds in question
are simply R* naturally imbedded in Cn as well as its images by holomorphic
motions of Cn. For CPn, they are the real projective space RPk naturally im-
bedded in CPn or its images by the holomorphic isometries of CPn. Finally,
for Dn, the submanifolds in question are the real disc: {(JC1, • • • , ** )€ /?* ;
(JC1)2 + + (xk)2 < 1} which is naturally imbedded in Dn or its images by
the holomorphic transformations of Dn.
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We are now concerned with the converse of these existence theorems. We
formulate:
(B) Axiom of holomorphic 2A-planes. For any Ik-dimensional holomor-

phic subspace S of TP(M), p e M, there exists a Ik-dimensional totally
geodesic submanifold V of M containing p such that TP(V) = S.

(C) Axiom of totally real λ -planes For any k-dimensional totally real
subspace S of TP(M), p e M, there exists a k-dimensional totally geo-
desic submanifold V of M containing p such that TP(V) = S.

We shall prove
Theorem 2. // a Kaehleriam manifold M of dimension 2n satisfies the

axiom of holomorphic 2k-planes for some k, \ < k <n — 1, then M has
constant holomorphic sectional curvature.

Theorem 3. // a Kaehlerian manifold M of dimension 2n satisfies the
axiom of totally real k-planes for some k, 2 < k < n, then M has constant
holomorphic sectional curvature.

Proof of Theorem 2. Let p e M, and let x, y be two vectors in TP(M) such
that (y, Xs) = (y9 Jx)> = 0. We can find a holomorphic 2&-plane S in TP(M)
such that x, Jx € S and y is perpendicular to S. Since a totally geodesic sub-
manifold V with TP(V) = S exists, R(x, Jx)Jx 6 S and hence (R(x, Jx)Jx, y}
= 0. By Theorem 1, M has constant holomorphic sectional curvature.

Proof of Theorem 3. Let p € M, and let x,y be as above. We can find
a ^-dimensional totally real subspace 5 of TP(M) such that Jx, y e S and x is
perpendicular to S. (For this, consider TP(M) as Cn = R2n and take a basis
eγ = Jx, e2 = y9 e39 , en of Cn as a vector space over C. Then let 5 be the
real span ot{e19e29 , ek}.) By the existence of a totally geodesic submanifold
V with ΓP(PO = 5, we see that R(Jx,y)Jx e S so that (R(Jx,y)Jx,x) = 0.
But then (R(x9Jx)Jx9y) =: 0. Theorem 1 again applies.

Remark. The special case & = 1 of Theorem 2 has been known (see [3,
p. 241]). Theorem 3 can be considered as a complex analogue of a result
proved in [2] in a certain sense.
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