CONDITIONS FOR CONSTANCY OF THE HOLOMORPHIC SECTIONAL CURVATURE

KATSUMI NOMIZU

In the present note we shall first prove an algebraic result (Theorem 1) on the curvature tensor of a Kaehlerian manifold. As applications we derive two results (Theorems 2 and 3) characterizing constancy of the holomorphic sectional curvature by the existence of sufficiently many complex or totally real submanifolds which are totally geodesic. A special case of Theorem 2 has been known as the axiom of holomorphic planes [3].

1. Curvature tensor

Let M be a Kaehlerian manifold. In the tangent space at a point we consider the curvature tensor R, the complex structure J, and the inner product \langle,$\rangle arising from the Kaehlerian metric of M$. We have $\langle J x, J y\rangle=\langle x, y\rangle$ for any two vectors x and y. In addition to the usual properties of the curvature tensor of a Riemannian manifold, R possesses the following properties:

$$
\begin{align*}
& R(x, y) J=J R(x, y), \tag{1}\\
& R(J x, J y)=R(x, y) . \tag{2}
\end{align*}
$$

A subspace S of the tangent space is holomorphic if $J(S)=S . S$ is said to be totally real if it satisfies the following condition:
(*)

$$
\langle J x, y\rangle=0 \quad \text { for all } x, y \in S .
$$

If P is a 2 -dimensional subspace, with an orthonormal basis $\{x, y\}$, of the tangent space, then the sectional curvature $k(P)$ is given by $\langle R(x, y) y, x\rangle$. If P is holomorphic, then the holomorphic sectional curvature $k(P)$ is equal to $\langle R(x, J x) J x, x\rangle$, where x is an arbitrary unit vector in P. It is well known (for example, see [1, p. 167]) that $k(P)$ is equal to a constant c for all holomorphic planes P if and only if R is of the form

$$
\begin{equation*}
R_{c}(x, y)=\frac{1}{4} c(x \wedge y+J x \wedge J y+2\langle x, J y\rangle J) \tag{3}
\end{equation*}
$$

where, in general, $x \wedge y$ denotes the endomorphism which maps z into $\langle y, z\rangle x-\langle x, z\rangle y$.

Received June 2, 1972. Work supported by NSF Grant GP-28419.

We now prove

Theorem 1. The curvature tensor R at a point of a Kaehlerian manifold has constant holomorphic sectional curvature if and only if it has the following property:

$$
\begin{equation*}
\text { If }\langle y, x\rangle=\langle y, J x\rangle=0, \text { then }\langle R(x, J x) J x, y\rangle=0 \tag{A}
\end{equation*}
$$

Proof. The property is easily verified for the curvature tensor of the form (3). Before we prove the converse, we observe that Property (A) implies that if $\langle y, x\rangle=\langle y, J x\rangle=0$ (consequently, $\langle x, J y\rangle=0$), then the following terms vanish:

$$
\begin{gather*}
\langle R(x, J y) J x, x\rangle, \quad\langle R(x, J y) J y, y\rangle, \quad\langle R(y, J x) J x, x\rangle, \quad\langle R(y, J x) J y, y\rangle, \tag{4}\\
\langle R(y, J y) J x, y\rangle ; \quad\langle R(y, J y) J y, x\rangle, \quad\langle R(x, J x) J y, x\rangle .
\end{gather*}
$$

For example,

$$
\begin{gathered}
\langle R(x, J y) J x, x\rangle=\langle R(J x, x) x, J y\rangle=\langle R(x, J x) J x, y\rangle=0 \\
\langle R(y, J x) J y, y\rangle=0 \text { by simply interchanging } x \text { and } y,
\end{gathered}
$$

and so on.
Now let x and y be unit vectors such that $\langle y, x\rangle=\langle y, J x\rangle=0$. Setting

$$
u=x \cos \theta+y \sin \theta, \quad v=-x \sin \theta+y \cos \theta
$$

we find $\langle v, u\rangle=\langle v, J u\rangle=0$. Applying Property (A) to the pair (u, v), we have $\langle R(u, J u) J u, v\rangle=0$. Expanding $\langle R(u, J u) J u, v\rangle$ we get 16 terms such as

$$
\begin{gathered}
-\sin \theta \cos ^{3} \theta\langle R(x, J x) J x, x\rangle, \quad \cos ^{4} \theta\langle R(x, J x) J x, y\rangle, \\
-\cos ^{2} \theta \sin ^{2} \theta\langle R(x, J x) J y, x\rangle, \cdots, \sin ^{3} \theta \cos \theta\langle R(y, J y) J y, y\rangle .
\end{gathered}
$$

Since $\langle R(x, J x) J x, y\rangle$ and the 7 terms in (4) vanish, and since

$$
\langle R(x, J y) J x, y\rangle=\langle R(y, J x) J y, x\rangle, \quad\langle R(x, J x) J y, y\rangle=\langle R(y, J y) J x, x\rangle,
$$

the surviving terms in the expansion of $\langle R(u, J u) J u, v\rangle$ give rise to (for θ such that $\cos \theta \neq 0, \sin \theta \neq 0$)

$$
\begin{gather*}
\quad-\cos ^{2} \theta\langle R(x, J x) J x, x\rangle+\sin ^{2} \theta\langle R(y, J y) J y, y\rangle \\
+\left(\cos ^{2} \theta-\sin ^{2} \theta\right)(2\langle R(x, J y) J y, x\rangle+\langle R(x, J x) J y, y\rangle)=0 . \tag{5}
\end{gather*}
$$

Choosing $\theta=\pi / 4$, we obtain

$$
\begin{equation*}
\langle R(x, J x) J x, x\rangle=\langle R(y, J y) J y, y\rangle . \tag{6}
\end{equation*}
$$

Substituting (6) in (5) yields

$$
\begin{equation*}
2\langle R(x, J y) J y, x\rangle+\langle R(x, J x) J y, y\rangle=\langle R(x, J x) J x, x\rangle . \tag{7}
\end{equation*}
$$

We are now in a position to prove that R has constant holomorphic sectional curvature under Property (A). First, the case where the complex dimension of M is at least 3 can be easily disposed of. Let x_{1} and y_{1} be any two unit vectors. Then there exists a unit vector z_{1} such that

$$
\left\langle z_{1}, x_{1}\right\rangle=\left\langle z_{1}, J x_{1}\right\rangle=\left\langle z_{1}, y_{1}\right\rangle=\left\langle z_{1}, J y_{1}\right\rangle=0 .
$$

By virtue of (6) we obtain

$$
\left\langle R\left(x_{1}, J x_{1}\right) J x_{1}, x_{1}\right\rangle=\left\langle R\left(z_{1}, J z_{1}\right) J z_{1}, z_{1}\right\rangle
$$

as well as

$$
\left\langle R\left(y_{1}, J y_{1}\right) J y_{1}, y_{1}\right\rangle=\left\langle R\left(z_{1}, J z_{1}\right) J z_{1}, z_{1}\right\rangle .
$$

Thus the holomorphic sectional curvature of the plane spanned by x_{1} and $J x_{1}$ is equal to that of the plane spanned by y_{1} and $J y_{1}$. Hence the holomorphic sectional curvature for R is constant.

Now assume that the complex dimension of M is equal to 2 . We have an orthonormal basis of the form $\{x, J x, y, J y\}$, for which (6) and (7) are valid. Set

$$
\begin{equation*}
c=\langle R(x, J x) J x, x\rangle=\langle R(y, J y) J y, y\rangle \tag{8}
\end{equation*}
$$

From

$$
R(x, J x) J y+R(J x, J y) x+R(J y, x) J x=0
$$

we obtain

$$
\begin{aligned}
\langle R(x, J x) J y, y\rangle & =-\langle R(J x, J y) x, y\rangle-\langle R(J y, x) J x, y\rangle \\
& =\langle R(x, y) y, x\rangle+\langle R(x, J y) J x, y\rangle \\
& =\langle R(x, y) y, x\rangle+\langle R(x, J y) J y, x\rangle
\end{aligned}
$$

where we have used (1) and (2). This last identity and (7) imply

$$
\begin{equation*}
3\langle R(x, J y) J y, x\rangle+\langle R(x, y) y, x\rangle=c \tag{9}
\end{equation*}
$$

Since we may replace y in (9) by $J y$, we get

$$
\begin{equation*}
\langle R(x, J y) J y, x\rangle+3\langle R(x, y) y, x\rangle=c . \tag{10}
\end{equation*}
$$

From (9) and (10) we find

$$
\begin{equation*}
\langle R(x, y) y, x\rangle=\langle R(x, J y) J y, x\rangle=c / 4, \tag{11}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\langle R(x, J x) J y, y\rangle=\langle R(y, J y) J x, x\rangle=c / 2 \tag{12}
\end{equation*}
$$

Replacing x by $J x$ in (11) gives

$$
\begin{equation*}
\langle R(J x, y) y, J x\rangle=\langle R(J x, J y) J y, J x\rangle=c / 4 . \tag{13}
\end{equation*}
$$

The curvature tensor R_{c} in (3) obviously satisfies the identities (8), (11), (12) and (13). Also, $\left\langle R_{c}(x, J x) J x, y\right\rangle$ and the terms in (4) for R_{c} are 0 . It follows that

$$
\begin{equation*}
\left\langle R\left(x_{1}, x_{2}\right) x_{3}, x_{4}\right\rangle=\left\langle R_{c}\left(x_{1}, x_{2}\right) x_{3}, x_{4}\right\rangle \tag{14}
\end{equation*}
$$

if the vectors x_{1}, x_{2}, x_{3} and x_{4} are taken from the basis $\{x, J x, y, J y\}$. Thus (14) is valid for arbitrary vectors. Hence $R=R_{c}$.

Remark. Property (A) can be compared with E. Cartan's condition (see the lemma in [2]) for constancy of the sectional curvature of the curvature tensor of a Riemannian manifold.

2. Criteria for constancy of the holomorphic sectional curvature

Let M be a Kaehlerian manifold of dimension $2 n$. If M has constant holomorphic sectional curvature, then for every $2 k$-dimensional holomorphic subspace S of the tangent space $T_{p}(M), p \in M$, there exists a totally geodesic complex submanifold V containing p such that $T_{p}(V)=S$ (for example, see [1, pp. 277, 285]. On the other hand, suppose S is a k-dimensional totally real subspace of $T_{p}(M)$, where $k \leq n$ as is easily seen. Then there exists a k-dimensional totally geodesic submanifold V containing p such that $T_{p}(V)=$ S. Indeed, for every point q of $V, T_{q}(V)$ is a totally real subspace of $T_{q}(M)$.

This assertion on the existence of totally real submanifolds which are totally geodesic can be proved most easily by the following observation. A Kaehlerian manifold of constant holomorphic sectional curvature c is locally either C^{n} (for $c=0$) or $C P^{n}$ with Fubini-Study metric (for $c>0$) or the unit disk D^{n} in C^{n} with Bergman metric (for $c<0$). For C^{n}, the submanifolds in question are simply R^{k} naturally imbedded in C^{n} as well as its images by holomorphic motions of C^{n}. For $C P^{n}$, they are the real projective space $R P^{k}$ naturally imbedded in $C P^{n}$ or its images by the holomorphic isometries of $C P^{n}$. Finally, for D^{n}, the submanifolds in question are the real disc: $\left\{\left(x^{1}, \cdots, x^{k}\right) \in R^{k}\right.$; $\left.\left(x^{1}\right)^{2}+\cdots+\left(x^{k}\right)^{2}<1\right\}$ which is naturally imbedded in D^{n} or its images by the holomorphic transformations of D^{n}.

We are now concerned with the converse of these existence theorems. We formulate:
(B) Axiom of holomorphic $2 k$-planes. For any $2 k$-dimensional holomorphic subspace S of $T_{p}(M), p \in M$, there exists a $2 k$-dimensional totally geodesic submanifold V of M containing p such that $T_{p}(V)=S$.
(C) Axiom of totally real \boldsymbol{k}-planes. For any k-dimensional totally real subspace S of $T_{p}(M), p \in M$, there exists a k-dimensional totally geodesic submanifold V of M containing p such that $T_{p}(V)=S$.
We shall prove
Theorem 2. If a Kaehleriam manifold M of dimension $2 n$ satisfies the axiom of holomorphic $2 k$-planes for some $k, 1 \leq k \leq n-1$, then M has constant holomorphic sectional curvature.

Theorem 3. If a Kaehlerian manifold M of dimension $2 n$ satisfies the axiom of totally real k-planes for some $k, 2 \leq k \leq n$, then M has constant holomorphic sectional curvature.

Proof of Theorem 2. Let $p \in M$, and let x, y be two vectors in $T_{p}(M)$ such that $\langle y, x\rangle=\langle y, J x\rangle=0$. We can find a holomorphic $2 k$-plane S in $T_{p}(M)$ such that $x, J x \in S$ and y is perpendicular to S. Since a totally geodesic submanifold V with $T_{p}(V)=S$ exists, $R(x, J x) J x \in S$ and hence $\langle R(x, J x) J x, y\rangle$ $=0$. By Theorem 1, M has constant holomorphic sectional curvature.

Proof of Theorem 3. Let $p \in M$, and let x, y be as above. We can find a k-dimensional totally real subspace S of $T_{p}(M)$ such that $J x, y \in S$ and x is perpendicular to S. (For this, consider $T_{p}(M)$ as $C^{n}=R^{2 n}$ and take a basis $e_{1}=J x, e_{2}=y, e_{3}, \cdots, e_{n}$ of C^{n} as a vector space over C. Then let S be the real span of $\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}$.) By the existence of a totally geodesic submanifold V with $T_{p}(V)=S$, we see that $R(J x, y) J x \in S$ so that $\langle R(J x, y) J x, x\rangle=0$. But then $\langle R(x, J x) J x, y\rangle=0$. Theorem 1 again applies.

Remark. The special case $k=1$ of Theorem 2 has been known (see [3, p. 241]). Theorem 3 can be considered as a complex analogue of a result proved in [2] in a certain sense.

References

[1] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. II, WileyInterscience, New York, 1969.
[2] D. S. Leung \& K. Nomizu, On the axiom of spheres in Riemannian geometry, J. Differential Geometry 5 (1971) 487-489.
[3] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.

