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THE NULLITY SPACES OF CURVATURE-LIKE TENSORS

ROBERT MALTZ

1. Introduction

In this paper we use the methods of the author [7] to prove the following
general theorem on the nullity spaces of tensor fields which have all the formal
properties of the curvature tensor. This result may be regarded as an intrinsic
version of the immersion theorem proved in [7]. See § 2 for precise definitions.

Theorem 1. Let K denote a curvature-like tensor on a Riemannian mani-
fold M, and μκ its index of nullity. Assume M is complete, and let Gκ be the
open set on which μκ takes its minimum value m (assumed > 0). Then every
leaf L of the nullity foliation of K induced on Gκ is complete (and totally
geodesic in M).

This theorem generalizes results given in Maltz [6] and Clifton-Maltz [3],
and our proof, besides being considerably simpler, corrects an expository error
in those papers. Our result also includes recent results of Abe [1] (given here
as Corollaries 1, 2 and parts of Corollaries 3 and 4), obtained by refining the
proofs in [6] and [3].

In § 3 we consider some well-known examples of curvature-like tensors,
obtaining the following results as corollaries of Theorem 1.

Corollary 1. Let M be a complete Riemannian manifold, and let Kxγ =
Rχγ — k(X Λ Y). Then the leaves of the nullity foliation of K induced on Gκ

are complete totally geodesic submanίfolds with constant curvature k.
Corollary 2. Let M be a complete Kάhlerian manifold, and let Kχγ =

RXY ~ (k/4)(X ΛY + JXΛJY + 2(X, JY}J). Then the leaves of the nullity
foliation of K induced on Gκ are totally geodesic submanifolds with constant
holomorphic curvature k.

The following result gives a second class of examples.
Theorem 2. Let I: M —> M be an isometric immersion of M into another

Riemannian manifold M. Suppose that P±RXYZ = 0 for all vector fields X, Y,
Z tangent to M (X is identified with I^X, etc., as in [7] PL denotes projection
normal to M). Then the curvature difference tensor Dχγ = Rχγ — Rxγ on M
is curvature-like.

It is interesting to note that the condition PLRXYZ = 0 is precisely what
was needed to prove the immersion theorem of [7], so this type of immersion
has particularly nice properties. Examples are provided by immersions into
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spaces M of constant curvature or by Kahler immersions of a Kahler manifold
M into a Kahler manifold M of constant holomorphic curvature.

2. The nullity spaces of a curvature-like tensor

Let M be a C°° Riemannian manifold. A (1, 3) tensor field K on M is said
to be curvature-like, if it has all the formal properties of the curvature operator.
Hence, using the notational conventions of [7], given any C°° manifold L and
C°° map F: L—>M, K satisfies

), γ> = -<κ*^A(Y), xy,

^ BφAφ

iii) <K*^BSCJ, D+> = < F , A U , ) , B#>,
iv) © K ^ C * ) = 0,
v) © ( Γ ^ * ) Λ Λ = 0,

where A,B,C,D e 3£(L) ^ , Y e X^M) and © denotes cyclic summation over
y4,5, and C. iii) actually follows from i), ii), and iv), but otherwise these con-
ditions are independent.

The following alternative version of v) will be needed later.
Lemma 1. GVΛ(K*B.C} = <5K*ίAiB},tCm. In particular, if [A, B] = [A, C] =

[B, C] = 0, then © F / £ * 5 Λ ) - 0.
Proof. We have [A,B]^ = VAB^ — FBAt, etc., by the generalized second

structural equation, [7]. Using these relations and v), we have ©F'A(KB^C) =

For each p e M, set Nκ(p) = {x e Mp: i ^ = 0 for all y e M p}. Nκ(p) is the
nullity space of £ at p. Nκ(p) is a linear subspace of M p , and its dimension
will be denoted by μκ{p), the mde c o/ nullity ot K at p. μκ is upper-semicon-
tinuous, so the set Gκ on which it assumes its minimal value m is open.

By writing out all the terms in ©FA(KB CD) = ©((F^iQ^Z) + KBC(FAD) +
K?ΛB,CD + KB^ACD), where A,D are nullity vector fields (Ap <=. Nκ(p), etc.),
and B, C are arbitrary vector fields on M, we find that KBC(FAD) = 0. By
the antisymmetries of K, this implies that VAD is a nullity vector field (we
write VAD g JV^) whenever ^ and £> are. It follows as in [7] that the nullity
of K distribution p—>Nκ(p) is involutive (in fact autoparallel), so it is com-
pletely integrable on Gκ and the leaves of the foliation it defines on Gκ are
totally geodesic (this argument adapted from [1]).

We are now ready to prove Theorem 1.
Proof of Theorem 1. Let γ: [0, c) -» L be a geodesic segment in L. It suf-

fices to show that γ can be extended, as a geodesic of L, over the half-line
[0, oo). Suppose this cannot be done, and that γ as given is maximal. Since M
is complete, γ can be extended as a geodesic f of M. Since L is totally geodesic
in M, it follows that f(c) = p is not in Gκ. But this means that μκ(f(c)) > m.
We show that to be impossible.

We make the convention that /, / , & ( ! < /, /, k <m) shall be nullity indices,
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a,b,c (m + 1 < a, b, c < ή) nonnullity indices, and /, J,K (1 <I,J,K < ή)
unrestricted indices (here n = dimM). Now let η = (/, , yn) be a Frobe-
nius coordinate system on a neighborhood Voί γ(0) = p. We can further as-
sume that η(p) = (0, ,0), the origin in Rn, and that idjdyl)p = γ'(0),
{djdyι)eNκ on V, and (d/dya)peN^(p), the orthogonal complement of Nκ(p).

Nowl et 2 be the slice of V determined by yi = 0, and let E = (E19 , E m ,
• , En) be a C°° orthonormal-frame field on 2 , adapted to the nullity distribu-
tion (Et € Nκ), such that Eλ(p) = γ'(Q) (we can assume γ has unit speed). η2 =
(ym+1, ,yn) defines a coordinate system on 2 set % ( Σ ) = ^ c ^ n ~ w

Now define F: Rm X W->M by F(JCX, -9x
m,η2(s)) = e x p ^ j c ^ j ) ) , where

ί€ 2 Since M is complete, F is defined for all values in Rm.
Identify Rm X W with a subset U oί Rn, and let (JC1, , xn) be the natural

Euclidean coordinate functions on U. Also set xτ — d/dx1, and JJj = F%(Xj).
Now by definition, F(ί, 0 , 0) = f(t), and t/^ί, 0, , 0) = γ'(t) e Nκ(γ(t))

for 0 < t < c. Let G* denote an open neighborhood of f[0, c) in the open set
Gκ, and 17* = F~\G*) for fixed qeWtrnd all (JC1, , ;cm) such that (JC1, ,
xm,q) eϋ*,F parametrizes the nullity leaf through F(0, - ,q) on a (leaf)
neighborhood of that point, so the Ut = F^d/dx1) are nullity vector fields
over F \n*. It follows that KϋlUa are identically vanishing tensor fields over F \m.

By Lemma 1 we have ©ΓjΓα(Kί/αC7δ) = 0. But the only surviving term on U*
is VXχ(KUaU) = 0, since covariant derivatives of vanishing tensor fields must
vanish.

Now let Ϋ be a nullity vector at f(c) = p. Parallelly translate Ϋ backwards
along γ (as parametrized by γ(t) = F(t, 0, , 0)) to get a parallel vector field
Y(t, 0, , 0) along F |({Λ...,0) Then on (t, 0, , 0), 0 < / < c, we have
Pχ1(Kuauι)Y = Px^KuauJ) = 0. But then KϋaϋbY is parallel along γ, hence
must vanish, since it vanishes for t = c. It follows that Y(i) is a nullity vector for
all t, 0<t< c, so that μκ(p) > μκ(P) = m Hence μκ(p) = m also, or p e Gκ,
contrary to assumption, thus completing the proof.

3. Examples and applications

In this section we give some important examples of curvature-like tensors,
as well as some related results on immersions.

In the first place, as proved in [7], the curvature tensor R itself is an example
of a curvature-like tensor. The nullity spaces of the curvature operator were
defined in Chern and Kuiper [2]. More generally, any (1,3) parallel tensor
field 5 satisfying i), ii), and iv) of § 2 and hence R — S are also curvature-like.
In particular, SXY = k(XΛ Y), where Z Λ Γ is defined by (X A Y)Z =
<X, Z}Y - <y, Z}X, leads to Corollary 1 of the Introduction. If M is a
Kahler manifold and SXY = (k/4)(X ΛY + JXΛJY + 2<X, JY}J) where /
is the almost complex structure on M, then 5 satisfies i)-iv) and is clearly
parallel, being made up of parallel operators <(, > and /. Hence R — S is
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curvature-like, and we obtain Corollary 2 of the Introduction. The last two
examples were introduced in Otsuki [8] and Gray [4].

We now give the proof of Theorem 2 of the Introduction.
Proof. We first note that by Lemma 1 of § 2, the Bianchi-like identity v)

can be written as follows:

®FX{KYZW) = ®{FX{KYZ)W + KYZVXW) = ®KYZFXW ,

for coordinate vector fields X, Y, Z, and W on M. We will show that in fact
^FX{RYZW) = (SRYZFXW on M for coordinate vector fields X, Y,Z. Of
course we identify X and I^X as in [7]. Also note that RXYW = PRXYW on
M since PLRZYW = 0 by assumption, so VXR is indeed defined.

Given a point p € M, choose local M-coordinate vector fields X, Y, Z , and
W on a neighborhood U of p in M such that X = X\U9 Y = F |^, etc. are local
M-coordinate vector fields on U = M Π Ό.

Then we have &PFx{RYzW) = &PRYZFXW on [/, using the M-Bianchi
identity. It follows that <5FX{RYZW) = ( 5 ^ F Z ( F X Ψ ) . But PRYZ(N) = 0 for
normal vector fields N on U since <ΛF Z(Λ0ΛF> = - ( 5 F Z ( f 0 , N> = 0 for
arbitrary vector field F tangent to [/, and P^RYZV = 0 by assumption. Thus
RγZiV_xW) = RYZ(P^VXW +PFXW) =RYZ(FXW). It follows that © F ^ f e W O
= ©i^F^ίΓjrW7) as required.

We mention here that since D j ^ = [Tx, Tγ] by the Gauss equation (see
[7]), it follows that R(p) cz ND(p) for all p e M, where #(/?) denotes the relative
nullity Space at p.

We may state the following explicit result as a corollary of Theorems 1 and 2.
Corolary 3. If I: M —>M is an isometric immersion such that PLRXYZ =

0 for vector fields X, Y, Z tangent to M, αrcd M w assumed complete, then
the leaves of the nullity of D foliation induced on the open set GD of minimal
index of nullity {assumed > 0) are complete totally geodesic submanifolds with
curvature tensor Rxγ in the induced metric.

If M and M are Kahlerian, and the immersion / is also Kahlerian, then it
is immediate that the nullity of D and relative nullity distributions are both
invariant under / ; indeed, a result of K. Nomizu as reported in [1] shows that
in this case ND(p) = R(p) for all p e M. In any case, we obtain as a corollary
of Theorems 1 and 2, or from the immersion theorem of [7], the following
result.

Corollary 4. If I: M -> M is a Kdhler immersion of the Kdhler manifold
M into Kahler manifold M such that PLRXYZ = 0 for all X, Y, Z tangent to
M, then the leaves of the relative nullity foliation induced on the set G of
minimal index of relative nullity {assumed > 0) are complete totally geodesic
complex submanifolds of M, and are also the leaves of the distribution ND on
G since ND is identical with R.

Finally we mention two applications of global results on complete manifolds
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of positive curvature. First of all, as B. O'Neill and K. Abe have already

remarked, a result of T. Frankel on totally geodesic submanifolds of a com-

plete Riemannian manifold of positive curvature shows that in Corollaries 1 and

2 if 2μκ > n, n — dim M, then μκ — n and M has constant (holomorphic)

curvature. Another result of this type is the following. A recent result of

Gromoll and Meyer [5] states that in a complete noncompact Riemannian

manifold M of positive sectional curvature there are no compact totally geo-

desic submanifolds. Now by the well-known result of S. B. Myers a complete

totally geodesic submanifold of positive curvature bounded away from zero

would be compact. It follows, for example, that Corollary 1 with k > 0 is

vacuous (i.e., m = 0) when M is noncompact with positive sectional curvature.
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