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CONVEXITY CONDITIONS RELATED WITH 1/2 ESTIMATE
IN BOUNDARY PROBLEMS WITH SIMPLE
CHARACTERISTICS. 1II

MASATAKE KURANISHI

Choose a submanifold (not necessarily closed) ./ of $*U, which is transversal
to C* and intersects C? only at (x°, £*(x%). Pick a nonzero u in W4(x’, {{(x)) =
the image of pi(x’, {*(x")). Then the function

fu(x, &) = |a(x, &)pi(x, E)uf

viewed as a function on A4 is of class C* and nonnegative, and (x°, {*(x")) is
its isolated zero, i.e., an isolated critical point of f, on 4.

Definition 2.3. Assume that the characteristics of A4 is smooth. We say
that a characteristic (x°, £*(x°)) of A is nondegenerate if and only if (x°, £*(x"))
is a nondegenerate critical point of f, on .4 for all nonzero u in W(x’, {*(x")).
We say that the characteristics of 4 are nondegenerate when each characteristic
is so.

Since f, on 4/ takes the minimum value at (x°, £*(x%)), the above condition
means that the Hessian of f, on 4™ at (x°, £*(x%)) is positive definite. In terms
of a chart (0,, - - -, 6,) of A/ with center (x°, {*(x°)), this means that the k£ X k-
matrix (8%f,/06,00,,) (0) is positive definite. If (x, {(x")) is nondegenerate for a
choice of a pair of 4™ and a local trivialization of E, it is also so for any other
such choice. We can check this by writing down how f, and its Hessian change
when we make a different choice. Note on this connection that a(x?, {*(x%))
I, D) = 0.

Because of (9) and (10), {(w, (Z*(x*) + )/(1 + |xPH; we N*and y | {*(x%)}
forms a submanifold {* as above. Hence by (11) and (15), the nondegeneracy
condition means that F*(x°; w, y) | W*(x°, {(x?)) is injective for all w ¢ T ,N* and
x | &(x%). Thus we have

Proposition 2.1. Assume that the characteristics of A are smooth and the
projection C* — 'C* is bijective, and further that (x°, {*(x°)) is a nondegenerate
characteristic. Then FY(x°; w,y), restricted to W(x', {¥(x"), is injective for
sufficiently small w e N* and any y | {'(x") provided (w,y) + 0.

Lemma 2.8. Under the assumptions in Proposition 2.1, for any ¢ > 0 we
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can find &, > O satisfying the following condition: For any 8, > & > O there
is C, , such that

ALK (%, D)u, uy + CL| QW) | > —ellully

for all ue C3(U, U X L,), provided we choose U sufficiently small and ¢* with
its support sufficiently close to C*.

Proof. By Proposition 2.1, Fi(y; w,y) on Wy, (y)) is injective when
(w,x) # 0 and y | &(y) provided |y| and |w| are sufficiently small. On the
other hand, Hi(x, £) is of order at least 3 in (w, y(x, £)). Hence for any 6 > 0
there is 6(¢) > O such that

COF(y; wll'(), &, D*F'(y; wlC'(»), &, x) + Hi(x,Hu,up >0,

where y = x(p, &) for all nonzero u ¢ W(y, {(y)) provided |y|,|w| and || ¥ (y, &)
are less than d(e). Since W(y, {(y)) is the image of pi(y, £), we see by (22) that

{K(x, &u,uy > 0

for all u e L,, provided we choose U sufficiently small and ¢* with its support
sufficiently close to C*. Hence by Theorem 1.4,

<K§2(x7 D)u, M> Z _'<L(xa D)u, u> )
where

L(x,8) = 3 3(1 + [£Pa;0°Ki,(x, £) 0§ 08
+ (1 + |EP) b ;0°KiN(x, &) | 0x,;0x;, + terms of lower orders,

and a;y, bj; are given in (12) of § 1. By (22) and (23) we see easily that each
component of the matrices 9°K%,(x, £)/0&,0&, and 9°Ki,(x, £)/0x,0x; can be
written as ¢*(x, £)%(5t(x, &) + h(x, §)) + s(x, &), where ¢ and h are independent
of the choice of ¢* and Supp s(x, &) does not touch the characteristics. More-
over, A(x, £) is of order atleast 1 in wy, « - -, Wy_y, 12(%, &), - -+, Yn_1(x, &). Thus
we can suppose that |@*(x, £)4(01(x, §) + h(x, £))|/|&| is as small as we wish,
when § and U are sufficiently small and Supp ¢*(x, &) is sufficiently close to C*.
From this together with Lemma 2.3, we therefore see that

| RBLL(x, D)u, up| < e(||ully)* + CO(w) .

Hence Z{K},(x,D)u, uy + CQ) > —e(|ufly)’*. q.e.d.

By Lemmas 2.7 and 2.8, we have

Lemma 2.9. Under the assumptions in Lemma 2.8, for any ¢ > 0 we can
find 8, such that for any 6, > 6 > 0 we have

C..0W + ellull; > (1 — )| F{¢'(x, D)pi(x, D)}u|f  (ue C3(U,U X Ly)) ,
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provided C, , is sufficiently large, U is sufficiently small, and Supp ¢* is suffi-
ciently close to C*.

We further reduce the problem to a case of a differential operator with
constant coefficient in w{C*(y), D) and x(x, D).

Lemma 2.10. Under the assumptions in Proposition 2.1, for any ¢ > 0 we
can find 8, such that for any 0 < § < 8, we have the following: If U is suffi-
ciently small and Supp ¢* is sufficiently close to C*, then

| F*(y; wlC'(»), D), x(y, D)){¢'(x, D)pi(x, D)}ul}
— (1 = ®||F0; wiC'(y), D), x(y, D)){¢(x, D)pi(x, D)}u|}
> ellul} — Cllul’ — ||R(x, D)u|!

for all ue Cy(U,U X L,), where R(x,§&) depends on ¢, is of order 1, and
Supp R is outside of the characteristics.

Proof. By Proposition 2.1 there is a constant ¢ > 0 such that
|F'; w, pulf > c(wl + |xPluf ,

provided y, w are sufficiently small, y | (), and u/|u| is in a sufficiently
small neighborhood of W(x°, {(x")). Since F*(y; w, y) is linear in w and y, it
follows

1@ (x, OF(y; w{C'(¥), &, (v, ENpi(x, Hul
> (WKL), £ + |20, & Pe’(x, £)7| pix, Euf

for all ue L, and x ¢ U, provided U is sufficiently small and Supp ¢* is suffi-
ciently close to C*. For any ¢, > O we may also assume that U is so small that

[|F'(y; w, pul — [F*0; w, pul| < e(wf + [xP|uf .
Set
G(x, 8 = F(y; wll'(), £, x0,9) ,
Gy(x, &) = F{0; wl'(), &, 1, 8) .
Then
|G(x, &)¢*(x, E)pi(x, Oulf — (1 — 8)|Gy(x, )¢(x, &)pi(x, Eul’
= §|G(x, &)¢'(x, &)pi(x, Huf
+ (1 — )(G(x, H)¢'(x, O)pilx, Oul — |Gy(x, E)¢*(x, &)pi(x, Huf)
> (6c — (1 — 8)e)@(x, O} (WL, EDF + [x, )P | pilx, Ouf .

For a given 6 > 0 we choose ¢ so small that ¢ — (1 — d)¢; > 0. Then
<Sax(x’ E)Zj(x, s)u’ u> > O, where
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J(x,8) = pi(x, H)(G(x, O*G(x, &) — (1 — H)Gy(x, H*Gy(x, £)pil(x, &) .
Hence by Theorem 1.4,

fe*(x, DY J(x, D)}u, uy > — R{L(x, D)u, uy ,

where
L(x, &) = ¢'(x, &) ]Zk G + [ED4a,d%T (x, &) 0,08,

+ 31 + l‘fl)_ﬂ)jkaz"(xs ‘S)/axjaxk) + R/(x,8)
+ terms of lower orders,

where R,(x, £) is a sum of terms containing derivatives of ¢*(x, & and hence
its support does not touch the characteristics. By (12) of § 1, we may choose
g(x) in Theorem 1.4 in such a way that the absolute value of each component
of the matrix Y] #(1 + |£P)74b ;0% (x, &) /0x;0x, is less than &’ |§|. 8% (x, £) /0&,0&;
is a sum of terms which contain as a factor G(x, £)*G(x, &) — (1 — §)G,(x, &)*
-Gy(x, &) or its partial derivatives in £. Since these partial derivatives can enter
only through partial derivatives of <¢*(y), £ or of x(v, &), each term contains
a factor of the form (a(y) — (1 — §)a(0))b(x, &), so that if we choose § and U
sufficiently small, its absolute value can be made to be less than ¢’|&|. Thus for
any ¢ > 0 we find for a sufficiently small choice of ¢/, d, and U that

[<{g*(x, DY’L(x, D)}u, up| < ellully + [<Ry(x, D)u, u)|
for all ue C5(U, U X L;). Therefore

|F* (s wlC*(¥), D), x(y, D)){¢*(x, D)pi(x, D)}ulf
— (1 — 9)||F0; wC'), D), x(y, D)){¢'(x, D)pi(x, D)}ul!
= {({¢*(x, D)J(x, D)} + B(x,D))u, u)
> (B(x,D)u, uy — ellull} — [{R,(x, D)u, uy| ,

where B(x, £) is of order 1 and can be calculated by means of the formula for
the symbols of compositions and adjoints of pseudo-differential operators.
Hence it remains to show that we may assume

(26) | Z{B(x, D)u, uy| < e||ul}} + [{Ry(x, DIu, up| + [{Tou, up| ,

where R,(x, &) is of order < 1 and does not touch the characteristics. We see
easily that each term of the 1st order part of B(x, &) contains either ¢*(x, §)*
WD), &, o(x, £y, &), a factor of the form (a(y) — (1 — §)a(0)), or a
derivative of ¢*(x, £). The sum of the terms of the last type is R,(x, &). We may
assume that the absolute values of other terms are less than ¢’|£|. Hence for a
sufficiently small choice of ¢’ we have the formula (26). q.e.d.
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By Lemmas 2.9 and 2.3 we have the following:
Proposition 2.2. Assume that the characteristics of A are smooth, C* — 'C?
is bijective, and the characteristics are nondegenerate at (x°, {X(x")). Then, for

any ¢ > 0 by a choice of a sufficiently small neighborhood U of x* and ¢'(x, §)
with its support sufficiently close to C?,

C QW + ellul} = |F/(x*;s w<&'(¥), D), x(y, D){¢*(x, D)pi(x, D)}u|f

forall ue Cy(U,U X L,) provided C, is sufficiently large.
Expanding a(x, &) pi(x, &) pi(x, £) = 0 in Taylor series in (w,y) at
(O, <&, T*()EH(»)) and noting that a(y, {*(y))pi(y, {*(y)) = 0 we find that

F(y; w,0pi(y, () = 0.

In particular,

27 Fi(x*; w, Pos(x’, T(x")) = 0,

and we may consider that
(28) F'(x*; w, y) e Hom (W*(x’, {*(x")), E,) .

Definition 2.4. Assume that the characteristics of 4 are smooth. We say
that the characteristics are of fiber dimension O if and only if, for each point
x° of M and for each component C? of the characteristics passing over x°, 7: C?
— 'C* is bijective.

Proposition 2.3. Assume that the characteristics of A are smooth, of fiber
dimension 0, and nondegenerate, and further that there is r > O such that for
each A we have, for all sufficiently small § > 0,

| F*(x*; w<C*(»), D), x(y, D)w|* + C,||v|?
> —CO* o[} + f"<LEHx%), DDv, v) + (L ("), DYv, v)
+ Z{TY(x, D) + R*(x; w{C*(»), D}, x(y, D))v, v)

for all v e Cy(U, WX, L3(xY))), where L, is an endomorphism of W*(x°, C(x%))
such that {L,v,v> > 0 for all v, T is of order 1, T*(x°, &) = O for all &, and

R’(x; w, y) is linear in (w, y). Then, for a sufficiently small neighborhood U of
X%, O(u) > cllull; for all ue Cy(U,U X Ly).

Proof. For simplicity we set p* = pi(x°, {(x")). Clearly

(29) | o*{¢*(x, D)pi(x, D)}ully < Cllully + Cilluf ,

where C, may depend on ¢*. Put
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K(x, &) = [€lo(x, §)" + };} o(x, £)*(1§] pi(x, §)
+ pi(x, )XY, £))p'pi(x, )

+ %pﬁ(x, D@ w(T0), £, 70, ) F(;

w8, £, 1, )pi(x, &) .
Since the characteristics are nondegenerate,
(30) (K(x,8) — ¢ |éDu,up > 0

for a constant c,. Therefore, since K(x, &) is of order 1, Theorem 1.4 implies
that

(3D <K(x, D)u, uy > ||l — Cllulf .
On the other hand, by Lemmas 2.3 and 2.6 together with Proposition 2.2,

(K, D 0y < el + C.OW)
GD 4 5, Dy, Dipitx, D, o, D)piC, Dy

Thus, by our assumption,
;I | FA(x*; wC'(¥), D), 2(y, D))¢*(x, D)pi(x, D)u|
= Zzl | F*(x"; wlC’3), D), x(y, D))o*e*(x, D)pi(x, D)ulf , (by (27))
> };_. (—CO7*4|| p’¢*(x, D)pi(x, D)ulf;
+ 0" (CHxY), D)p*p*(x, D)pi(x, D)u, p*¢*(x, D)pj(x, D)u)
+ Z{T{(x, D) + R¥*(x; w(C*(y), D),
1, DN)p*o(x, D)pi(x, D)u, p*¢*(x, D)pi(x, D)up) + 7
> —0’+*c’llu||§ + 0" ((K{x, D)u, uy — e|uly — C.Qw))
+ (T{(x,D)u,uy + y, (by (29) and (32)) ,
where Ti(x, &) = X pi(x, (TP(x, §) + R¥(x; x(x, E))e'(x, §)°p'pi(x, &), and

2
1 = {LLLC(x", DYp*{p*(x, D) pi(x, D)}u, p*{¢*(x, D) pi(x, D)}u>. By choosing
Supp ¢* sufficiently close to C* and U small, we may assume that
L CHXY), £ (x, £)0%0i(x, E)u, p*pi(x, §)uy > 0, so that y > —C,||u|]*. Hence
by (31),

I I w0, Dy, 10, DI}g'(x, D)pi(x, D)ulf + C7.0(w)
> (e, — (e + 6:) ||ulff + {Ti(x, D)u, uy .
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Choose 6, and ¢ so small that ¢, — (¢ + 6ic’) > 0. Then, for constants ¢ > 0
and C > 0 (setting T'(x, §) = T{(x, §)),

Z;: | FA(x; wlC(), D), x(y, D)){¢*(x, D)pi(x, D)}ulf + CQ(u)
> cllully + <Ty(x, D)u, uy

for all ue Cy(U, U X L), provided U is sufficiently small and Supp ¢* is suf-
ficiently close to C*. Now by applying Proposition 2.2 to the left hand side of
(33) for a sufficiently small choice of ¢, for constants ¢ > 0 and C > 0 (where
¢ is independent of but C is dependent on the choice of ¢*) we find that

CO) > cllully + <Ty(x, D)u, u) .

Since Ty(x, §) = 73. (T2 (x, &) + R**(x; x(x, O))¢p*(x, )2 ppi(x, &) and T (x°, &)

= 0, T\(x, £)/|&| can be made arbitrarily small by choosing U sufficiently small
and Supp ¢* sufficiently close to C*. Hence for such choice of U and ¢?,

%uuuz < CO).

Definition 2.5. F'(x"; w(¢(y), D), y(y, D)) will be called the localized
operator of A at x° for the characteristics C*. Forp = (9, - - +, 7, _,) € R¥™*™D,

g (n) = F{xX°; py, - - -, n_y) Will be called the indirect symbol of the localized
operator. (We recall w and y are considered as functions of x.)

In order to make the writing easy, we fix 2 once for all and set for
j=1,.--.,n—1

(34) X8 = w@@OW), e, X, = X, D),
(35) Xonorif%,8) = 34,6,8) , Xu_1yy = Xn_14;(x,D),
(36) IO = f, gi(x%) = fr14d

Thus we can write
(37 F' = PG w(@0), Dy, 10, D) = 5, I'X,
By direct calculation we find that for s,t =1, -..,2n — 2
(8) XX, XX, = Sc/0C0). D> + 5 BiwX, |

where ¢, (x) is a real valued function, skew-symmetric in s,¢, given by,
forj,k=1,.-.,n—1,
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Cjk(x) =0,
(39) Cn_14j k(x) = an—1+jwk(x) (mOd W) s
Cn—l+j n—1+k(x) = i(Xn—HjC;.:(x) - Xn+l+kcl}(x)) B (mOd Cl) .

Another way of writing down these functions are as follows:
dw; = 3 oy, dx) - (mod (F0), dx))
dcx = Z %cn—l+k n—1+ij(y’ dX) A\ Xk(y, dx) ) (mOd <CZ()’), d-x>) )

Jsk

where {* denotes the differential form {{*(y(x)), dx) = Y] {i(y(x))dx;.
7

3. Study of the characteristic parts

In this section we fix vector spaces W, V, and a linear mapping

() g: R" 39— g(np) e Hom (W, V) .
We write

2n—-2
(2) gl = Z}l 87 »

where g* ¢ Hom (W, V). U will be as in § 2, T'; will denote as in § 2 the pseudo-
differential operators of order j which may change from formulas to formulas,
and X,, - -+, X,,_, will have the same meaning as in § 2. For ue Cy(U, W)
we set

(3) gXu =3 gXu,

which is in Cy(U, V). We are interested in an estimate of the type described
in Proposition 2.3. To this end we apply our results to the case where g(x) =
Fi(x°; ), W = WHx*,*(x")) and V = E,. Assume that we are given hermitian
metrics on W, V, and set

(4) dy(x, §) = g(X(x, £)* g(X(x, ) .
Lemma 3.1. For ue Cy(U, W),
18(Xu| = Z{dg(x, D)u, uy
+ 5 4”8 (--eu(ICC00, D) + B(0X,)u )
+ (gXu, gh(0uy + (T, Du, uy ,
where hy(x) is a C* function, c(x) and bl,(x) are defined in § 2 of (38).



CONVEXITY CONDITIONS. II 105

Proof. Clearly, X¥ = X, + hy(x), where h,(x) is a C* function. Thus
g(X)* g(X)u = Ay(x, D)u + s§jgs*g‘(aXs(x, £)[0€)Y 5(x, u
+ gh(x)* g(Xu ,
where Y,; = (1/9)oX,(x, §)/dx;, and therefore
lgXu|* = A{dy,(x, D)u, uy + A{g(X)u, g(h(x))u)
+ Z Y <88 (0X (x, §)[9§,)Y ,5(x, D)u, u)y .

(Note that 9X,/0¢; is a function of x.) On the other hand, since Y,;(x, &) has
purely imaginary coefficients, we have
Z 3, {8"g'(0X (x, §)[0&)Y ,5(x, D)u, uy

= —2Z 3, {8"8"(0X,(x, §)[0& )Y o4(x, D)u, uy + R{T(x, D)u, uy

=} 7 {8"8{(0X(x, §) /0§ )Y 15(x, D)

— (0X,(x, 8)[0£))Y o j(x, D)}u, uy + AL{T(x, D)u, uy
— 1% T (&"g' (XX, — X,X)u,uy + AT x, Dyu, 1)
= {2 3, {8"8"(X¥X, — X}Xu, uy + A{T(x, D)u, uy

= 32 X (8" (1 ul0<C0). D) + bLX, ) u,u) + T, (x, Dy wy

(5)

which together with (5) thus implies our formula. q.e.d.

Let V’ be a vector space with a hermitian metric, and assume that we have,
for all ¢ with sufficiently small absolute value, a linear map

g: R"*39— g e Hom (W, V"),

which depends differentiably on 4.
Lemma 3.2. Assume that for an integer d > 1 we have the following :

(i) g"gt =g'gl (s,t=1,.--,2n—2),
(i), glp*glp) — g,(P*g.(n) = 6¢+'h,(y) ,

where h,(y) depends differentiably on 6, and
i X (reu)E"s — grgiu,u) > ot |uf
for all ue W and all sufficiently small 6 > 0. Assume further that

(Av) e, Ou, uy > (3 | X (x, Huf) .
Then for sufficiently small 6 > 0
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gXul* + Collul* = —Co***ully + 6<%, Dou, uy
+ (L E(x"), DYu, uy + {(Ti(x, D) + R’(x, X))u, up

for all ue C3(U, W), where T{(x’, &) = O for all &, R’(x, ) is linear in v, and
L, e Hom (W, W) such that {L,u,uy > 0 for all u.
Proof. By Lemma 3.1,

| COUIP = Ry, (5, Dy + & E (a8 (T (xXE0), D

+ bIzXT)) u, u> + A{gy(X)u, hy(h(x))u) + {T4(x,D)u, u)y .
Thus for 0 <6 < 1

gXulf = 6llg(Xul* + (1 — 0)||g,(X)ul?
+ (1 — )(lgXulP — [|g,XulP)
= (1 — 0)|g(X)ul? + #(34,(x,D) + (1 — 5)(4,(x, D)
— dg,(x, D))u, uy

ray <%f(ags‘gt + (1 — 0)(g"g" — gret){Li), Ddu, u>
+ ZUR(x,x) + T¢*(x, D)u, u> .
Hence

lgXulf + Collulf
2 '%<(5Ag(x9 D) + (1 - 5)(Ag(-x9 D)_ Agﬁ(x’ D)))U, u>

+ 23 %@n(ags*g‘ + (1 — 0)(g"8" — 88)L(x), Dyu, uy
+ Z <R (x, X)u, uy .
By (ii), and (iv),

<(5Ag(x: E) + (1 - 5)(Ag(x’ 'E) - Ago(xi &)))u, u>
= 06, 256 | Xo(x, ulf — (1 — 6)0°*'Cho(X (x, ))u, )

For ¢ > 0 and 6 = #¢*%, the right hand side of the above inequality becomes
044y 2o | X(x, O)ul* — (1 — [0 )8 < hy(X(s, §)u, 1)) .
Therefore for sufficiently small 4, by Theorem 1.4 we have

(7) <(@4y(x,D) + (1 — 8)(dg(x, D) — 4y (x, D)u, uy > —C,60?*H|ull;,
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where § = #¢*%, By (iii), we have for § = #¢**

% (reu@087s' + (1 — (@78 — ggD)CE, Dy, u)
> Cf? (X", Dyu, uy — 621 |ullf + <LyCH(x), Dpu, uy
together with (6) and (7)

1gXulf + Cyllull* = ¢,8* <), Dyu, uy — 6% cllulf;
+ AR (x, X)u, uy + A{T{(x, D)u, uy
+<L0<Cl(x0)’ D>u5 u> ’

where T%(x’, &) = (.

Theorem 3.1. Let A be a pseudo-differential operator of order 1 mapping
Ce(M, L) into C3(M, E). Assume that the characteristics of A are smooth, of
fiber dimension O, and nondegenerate, and further that, for each x"e¢ M and
each component of the characteristics C* passing over x°, the indirect symbol
g(n) of the localized operator of A at x° relative to C* satisfies conditions (i),

(ii)4, and (iii), (for an integer d > 1) in Lemma 3.2. Then there is a constant
¢ > 0 such that

[ Aulf + [[ul* = cflulj

for all ue C>(M, E).

Proof. If g() satisfies the conditions in Lemma 3.2 for d > 1, and m is
an integer m > 1, then g(z) satisfies the conditions for dm, so that we may use
the common d for the indirect symbols relative to the components C?, . . ., C%,

- ... Hence our theorem is an immediate corollary of Proposition 2.3 and
Lemma 3.2. q.e.d.

We further study the conditions in Lemma 3.2. For g(y) = }, g%, they are
conditions on g**g* ¢ Hom (W, W). Thus if we have another 4(3) ¢ Hom (W, E,)
such that ~A**h* = g¥g’ for all s,z =1,---,2n — 2, and if g(») satisfies the
conditions, then so does A(3). g induces a linear mapping g: W ® R"** - E,,
and vice versa, and g and g are related by

gu®e) = g'u (wew),

where {e‘} is the standard base of R**~2. We impose the hermitian metric on
W &® R*~* induced by that of W. Let & be the positive semidefinite hermitian
square root of g*g, and A(y) e Hom (W, W @ R**~%) be defined by A as above.
Then <h**htu, u"y = (hu, By = (h(u®et), h( Q@ ef) ) ={gu®et), g Q e*)>
= {g*"g'u, u’y, i.e., h*"h* = g*'g*. Thus we may replace g by 4. Moreover

(8) kerg = kerh .
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Hence we may assume without loss of generality that ¥V = W @ R*™~?, and
that g is a positive semidefinite hermitian metric. If g, as in Lemma 3.2 exists,
we may assume also that g,(y) e Hom (W, W ® R*~%), or equivalently g, €
Hom (W ® R*™*, W @ R*™"?). Then the first condition says that g*g = g¥g,,
i.e., g = vg, where v is a unitary transformation of W @ R*"~*. Replacing g,
by vg, we may assume that g, = g.

We first study the conditions in Lemma 3.2 for the case d = 1. Write

8 =8+ 0r (mod &) .
Then (ii), and (iii), are equivalent to
(i), g7 + r'gt + g + r'g' =0,
(i), <i,cg,(gs*rt + rgu, u> <0
i
for all nonzero u in W, where ¢!, = ¢, (x?). In order to write these conditions

more concisely, we introduce an automorphism z of Hom (W ® R**%,
W & R*?%) defined by

(9) ru®e),u e =ru@e), v & e)
for all u,u’ e W ands,t = 1, ---,2n — 2. Then (ii); is equivalent to
(ii)y g*r + r*g + (g*r + (r*g) =0,
Let J: R*»~% — R*™"? be defined by
2n -2
J) = ) et .
=1
Then for r, g e Hom (W @ R** %, W @ R**"?),
2L rgtu, uy = 3 {ch8(u® e, rw’ ® e))
s,t

= ), 8 cye), rv & e))
= <rrel @Nu®e), v e,

where I is the identity map of W. This suggests us to introduce a linear mapp-
ing try,: Hom (W @ R, W @ R** %) — Hom (W, W) defined by

(10) Lrphu,u’y = 3 <h(u @ e), u’ ®e*) .

s

Then (iii); can be written as

i)y try(i(g*r + r*9)I®J) > 0.
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Thus we have the following:

Lemma 3.3. Cornditions (i), (ii),, (iii), in Lemma 3.2 are satisfied if and
only if we can find r e Hom (W @ R™ %, W & R*™?) such that

(ii); g*r + r*g + (8*n + (r*gr =0,
(i) trypi(g*r + r*9)I®J)) > 0.

Let V, V, be vector spaces with hermitian metrics. Then we always consider
the vector space Hom (V, V) with a hermitian metric defined by

(r,g> = Trg*r (g,re Hom (V,V))) .

The subspace over R of Hom (V, V) consisting of all self-adjoint transforma-
tions of ¥ will be denoted by Her (V, V), so that

dimg (Her (V, V)) = (dim, V)* .

7 defined by the formula (9) is a hermitian unitary transformation of order 2
of Hom (W ® R, W ® R*"%?) and preserves Her (W ® R*™ %, W ® R**7%).
We set

an S = {oz eHer W@ R, W R™ Y, o = a} ,
(12) St={BeHer WO R L, WQR"; Ff=—p}.

For a subspace F of V, p, generally denotes the orthogonal projection of V to
F. We can now rewrite Lemma 3.3 as follows:

Proposition 3.1. Conditions (i), (ii),, (iii), in Lemma 3.2 are satisfied if
and only if there is 8 ¢ S* such that

1) pxBex =0 where K = ker g ,
2) try(BU®T) > 0.

Proof. Assume that there is r as in Lemma 3.3. Then g = g*r + r*gis in
$4 and satisfies 1) and 2). Conversely, assume that g satisfies 1) and 2). Since
B is hermitian, the condition 1) implies that there is r ¢ Hom (W @ R*"?,
W @ R*™?) such that 8 = g*r + r*g. Then this r clearly satisfies (ii);" and
Gi);. q.e.d.

In order to study these conditions further, we define a linear map (over R)
: Hom (W @ R, W ® R**"*) — Her (W @ R *, W @ R*"?) by

13) 0(r) = g*r + r*g .

r is in Ker @ if and only if ir*g is hermitian. Since ir*g is zero on Ker g, we
thus have a linear map
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Ker § — Her Img,Im g) ,

where Im g denotes the image of g (being hermitian, it is the orthogonal com-
plement of Ker g). It is easy to check that this map is surjective and the kernel
is isomorphic to Hom (W @ R**~?, Ker g). Thus

dim, Ker § = (dim; Im g)* + 2m(2n — 2) dim, Ker g

(14) . .
= ((2n — 2)m)* + (dim, Ker g)* (m = dimgw) .

When V is a vector subspace of W @ R**~%,re Hom (V, V) can be identified
with an element in Hom (W ® R**~%, W ® R**~?%), which coincides with r on
V and is zero on the orthogonal complement of V. Thus we always consider
Hom (V, V) as a subspace of Hom (W ® R*™~%, W ® R**~?). We denote by
the projection to S of S @ §* = Her (W ® R**%, W ® R**%). Clearly

ﬂ's(h) = l(h + hf) .

Lemma 3.4. (Im (zg06))* NS = Her (Ker g, Ker g) N S, where | istaken
in Her (W ® R*™ %, W ® R™?).
Proof. ain Sisin (Im (x50 @)+ N S if and only if

(15) rg + g*r + (r'g) + (g*r),ap =0

for all r e Hom (W ® R*™*, W ® R**™?%). Since {r,qy = <r’,q") and h(rq) =
h(qr), we see easily that the right hand side is 4%tr r*ga. Therefore (15) is
satisfied for all r if and only if g = 0. Since « is hermitian, it follows that the
condition is equivalent to « € Her (Ker g, Ker g).

Lemma 3.5. Imé N $* = {y — r*; r € Her (Ker g, Ker g)}+ N S*.

Proof. 1If BelImaged N S*, then for any y ¢ Her (Ker g, Ker g),

RBy 1 — 17> = 2R, 1) = 2Rtr vB = 2Rtr y(r*g + g*r)
= 4Atr (r¥gy) =0 .
Thus the left hand side is contained in the right hand side. We prove the

equality by counting the dimension of both sides. Set @ = Her (Ker g, Ker g)
N S. Then the real dimension of the right hand side is equal to

dim,, $* — (dimg Ker g)* + dim @ .

Since the left hand side is equal to the image by 6 of Ker 7506, its dimension
is equal to
dim,, (Ker 750 0) — dimy (Ker 6)
= dim, (Hom (W ® R***, W ® R*™™%)) — dim, (Im 750 )
— dimg (Ker 6)
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= 2(m(2n — 2))* — (dimg S — dimg, @) — ((M(2m — 2))*

+ (dim, (Ker g)%) (by Lemma 3.4 and (14))
= (m(2n — 2))* — dim, S) + dim, @ — (dim, Ker g)*
= dimg §* — (dim, Ker g)* 4+ dim, @ . q.e.d.

For y e Her (W ® R*™ %, W @ R*™?), set
(16) C() = try iy @ D)) = 3 ich,y* e Hom (W, W) .
Since J* = —J, C(y) is hermitian. If H e Her (W, W), then

HHQT) =tr(—(H®Jy) =itr(HQ DU ® Diy)
= itr(H triy(iyd ® 1)) = i{C(y), H) .

Thus

a7 H®T) = KC(),Hy  (HeHer (W, W)) .
Set

(18) Z={peS"; C(p =0}.

Then by (17), BeS* is in Z if and only if (B, HRJ) =0 for all
H e Her (W, W). Hence

(19) S'=Z@Her (W, W)®)),

where @ indicates an orthogonal decomposition.
Lemma 3.6. Set G = {r — 7*; r € Her (Ker g, Ker g)}. Then

G=pZDG N HerW,W)RJ)) .

Proof. By (19), Z is orthogonal to Her (W, W) ® J, so that p,Z is orthogo-
nal to G N (Her (W, W) ®J). Let ve G be orthogonal to pzZ. Then v is
orthogonal to Z. Since v is in $4, it is in Her (W @ W) ® J by (19) and hence
inG N Her(W,W)®J). q.ed.

Proposition 3.2. Assume that not all ¢}, are zero, and define ¥ C
Her (W, W) by

L Q®J={r—r;reHer(Kerg,Kerg)} N (Her (W,W)®J) .

Then conditions (i), (ii),, (iii), in Lemma 3.2 are satisfied if and only if there
is a positive definite hermitian form on W orthogonal to & .
Proof. Assume that g e §4 satisfies conditions 1) and 2) in Proposition 3.1.

By 1), (B, 7> =<{F7r>= —<B, 7y = —tryp=0 for all y e Her (Ker g, Ker g),
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so that g is orthogonal to G. Thus for He &,{C(f),Hy) = —iB, H®J> =0
(cf. (17)). Hence C(B) = try(ifo (I ®J)) is orthogonal to ¥ and is positive
definite by 2). Conversely, assume that 4 is a positive definite hermitian form
on W and is orthogonal to . Take B, ¢ S* such that C(8,) = h. Then
B, £ ®Ty = iKC(B,), £» = 0, so that b, is orthogonal to G N (Her (W, W)
®J). Thus by Lemma 3.5, 8, € G+ + psZ, where G+ is the orthogonal com-
plement of G in §*. Since p;Z C Z + G+, it follows that §, ¢ G+ + Z. Write
B =B+ ¢, where e GL and { € Z. Then C() = C(B,) — C({) = C(8) = h.
Thus C(8) > 0. Since 8 e G+, for any y e Her (Ker g, Ker g) we have <8, 7> =
3B, v — r> = 0. Thus #r By = 0 for all y ¢ Her (Ker g, Ker g), and hence g
satisfies condition 2) in Proposition 3.1. q.e.d.

By considering the conditions in Lemma 3.2 for d = 2, we obtain a more
general condition for half-estimate. We can write down these conditions parallel
to Proposition 3.1 as follows:

Proposition 3.3. Conditions (i,) (ii),, (iii), in Lemma 3.2 are satisfied if
and only if there is B e $* such that

1) pxBox >0 where K = ker g ,
2) try((BU®J) > 0.

Proof. Assume that g, satisfies (i), (ii),, and (iii),, Write
g8 =8+ 6r + 0q (mod. &) .
Then (ii), and (iii), are equivalent to
(20) gir + r'g + (g*r + r*gy =0,
2D g*q + q*¢ + r'r + (&*q + g*¢ + r*'r* =0,
(22) itry(0(g*r + r*g) + 6°(g*q + q*g + r*mMU ® Nu, uy > c6’|uf
for all sufficiently small § and all u ¢ W. Set
H, = itry((g*r + r*')U ® ), H = itry,((g*q + q*¢ + r'nI ®J)) .
(22) implies that for a sufficiently large real number a, aH, + H, > 0. Set
f=q+ar, B=¢g%+ g+ rr,

Then try, (i ® J)) > 0 by (22), and fe S* by (20) and (21). Moreover,
oxBox = pxr*rpx > 0. Thus B satisfies our conditions. Conversely, as-
sume that there is g ¢ $* satisfying our conditions. Write pxf px = r*r, where
r e Hom (Ker g, Ker g). Then px(8 — r*r)px = 0, and therefore there is
q € Hom (W @ R***, W ® R*™?) such that



CONVEXITY CONDITIONS. II 113

B—rfr=g*q + q*g .
Noting r*g = g*r = 0 since Im g | Ker g, we see easily that g, = g + 6r +
#%q satisfies our requirements (20), (21) and (22).

Appendix

Proof of Theorem 1.4. Set (&) = (1 + |&P)*. Expanding J(x, & + z(§)%)
in Taylor’s series in z, multiplying by bt g(z)?, integrating over R™ in z, and
noting that g(z) is an even function, we find that

13) J(x, 8) = Ji(x, &) — (@ (x, £)/0€;06)a;:{E> + R(x, ) ,

where
(14) 10,8 = [J6e.6 + Kgrdz,
and R(x, &) is of order [ — 2. Set

(15) 1068 =J08, n@d=70d,

where A indicates Fourier transform in the space variables. Then by applying
a change of variables z = {&)>~#{ — &) to (13),

(16) né = fr(x, &)g({EHL — &HKE™dL .

In view of (13) we are interested in estimating f <y — &), u(y)Hdédy

from below. However, instead of 7, we first consider
r 8 = [106, 088 + D7C — & — )& + D7
8ETHE — HKE AL
= [1 8 + 2hee + e — )
K&+ g EHdz

a7

and then study the difference 7, — 7,.
From the first defining formula of 7,(y, &), it follows that

(18) f Gy — &, ©)a®), aly)>dedy = f G, D), u,(x)>dxd |

where 4.(§) = g({&>~HE — &){&)~™*i(§). Therefore by our assumption,
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(19) 2 [ — & 9, 4)>dsdy > 0.
By (2) and the second defining formula of 7,(x, &) in (17),

10 &) — 1y &) = f 1 € + 206
{BLE + 1 — PIE + D-E — g(D)e@)dz .

(20)

Note that

E+ =1 —al&d7E ) + R, )
|Ru(p> )| < Col)72(p! e+,

where (&, y) is the inner product of ¢ and y. Therefore

8(& + D 7HeEHE — PIE 4 0 O™ — 8(2)
= —(n/4E)E, 18l — GLETHE, Vz; + (6 4,08/ 0z,
+ 3 x0°8 /02,026 + Si(x, €, 2)
18:(x> &, 2| < CLE A pp*z)*

for a sufficiently large k. Since

706 & + 2N = 1(1, &) + &)y, 8) /08, + Sy, &, 2) »
18:(x, 6, 2)] < CN<5>_1<Z>k<X>—N s

it follows then by (20) that
1 & — (0 §) = 31r( ) e f (6°g/02,02)8(2)d2
— 106, 8076 0 [00/4) + 3 [ 2,8 08 02 e}
— x50, £)/95%) f 2,8(2)(9g/0z;)dz + S(x, &)
= 3100 O b + T &) + S, &)
where [S(y, £)| < Cy(EX"¥X >V, T(x, §) is of order | — 1, and
(21) RLT(x, Ou, uy = 0
for all u. The above equations together with (13), (18) and (19) therefore give

R (x, Dyu, uy > —RAAx, D)u, uy + R{T(x, D)u, uy + R{S(x, D)u, uy .
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Since Z{T(x, D)u, uy = 0 we can apply our argument to {T(x, D)u, uy. Note
that we have not used the hermitian assumption of J(x, §) except for getting
(21). Since T(x,&) is of order I — 1 we find that |Z<{T(x, D)u, uy| >
+ RS (x, D)u, uy where S’'(x,&) is of order <! — 2. This completes the
proof of our theorem.
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