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CONVEXITY CONDITIONS RELATED WITH 1/2 ESTIMATE
IN BOUNDARY PROBLEMS WITH SIMPLE

CHARACTERISTICS. II

MASATAKE KURANISHI

Choose a submanifold (not necessarily closed) Jίλ of S*E/, which is transversal
to Cλ and intersects Cλ only at (jt°, ζ'O0)). Pick a nonzero u in W\x\ ζλ(x0)) =
the image of p{(x\ ζ'O0)). Then the function

viewed as a function on Jίλ is of class C°° and nonnegative, and (JC°, ζλ(x0)) is
its isolated zero, i.e., an isolated critical point of fu on Jίλ.

Definition 2.3. Assume that the characteristics of A is smooth. We say
that a characteristic (jc°, ζ;(jc0)) of A is nondegenerate if and only if (x°, ζx(x0))
is a nondegenerate critical point of fu on Jίx for all nonzero u in Wλ(x°, ζλ(x0)).
We say that the characteristics of A are nondegenerate when each characteristic
is so.

Since fu on Jίι takes the minimum value at (JC°, ζ^Oc0)), the above condition
means that the Hessian of fu on Jfλ at (jc°, ζλ(x0)) is positive definite. In terms
of a chart (θ19 , θk) of Jίλ with center (JC°, ζ^JC0)), this means that the k X k-
matrix (d2fu/dθrdθr,) (0) is positive definite. If (*°, ζ^Λ:0)) is nondegenerate for a
choice of a pair of Jfι and a local trivialization of E, it is also so for any other
such choice. We can check this by writing down how fu and its Hessian change
when we make a different choice. Note on this connection that a(x°, ζλ(x0))
. pl(x°, ζλ(x0)) = 0.

Because of (9) and (10), {(w, (ζλ(x°) + χ ) / ( l + |χ|2)*) w e Nλ and χ JL ζλ(x0)}
forms a submanifold ζλ as above. Hence by (11) and (15), the nondegeneracy
condition means that Fλ(x° ;w,χ)\ Wλ(x°, ζλ(x0)) is injective for all w € Tτ0N

λ and
χ J_ ζ^jc0). Thus we have

Proposition 2.1. Assume that the characteristics of A are smooth and the
projection Cλ —> Ό is bijectίve, and further that (JC°, ζλ(x0)) is a nondegenerate
characteristic. Then Fλ(x°;w, χ), restricted to W(x°,ζx(x0)), is injective for
sufficiently small w e Nλ and any χ _L ζλ(x°) provided (w, χ) ψ 0.

Lemma 2.8. Under the assumptions in Proposition 2.1, for any ε > 0 we
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can find δε > 0 satisfying the following condition: For any δε > δ > 0 there
is Cεγ such that

0t<Kλ

δ2(x,D)u,ύ) + CεJQ(u)\\2 > -ε\\u\\l

for all uζ Q° (£/,£/ X Lo), provided we choose U sufficiently small and φλ with
its support sufficiently close to Cλ.

Proof. By Proposition 2.1, Fλ(y; w,χ) on Wλ(y,ζλ(y)) is injective when
(w, χ) Φ 0 and χ _L ζλ(y) provided \y\ and \w\ are sufficiently small. On the
other hand, Hλ

2(x, ξ) is of order at least 3 in (w, χ(x, ?)). Hence for any δ > 0
there is <5(ε) > 0 such that

<δF'(y; w(ζ\y), £>, χ)*f*(y w<CW, f>, x) + Hl{x, ξ)u, u} > 0 ,

whereχ = χ(y, f)for all nonzero u e Wx(y, ζλ(y)) provided \y\, \w\ and {ξ^χiy, ξ)
are less than δ(e). Since Wλ(y9 ζλ(y)) is the image of p[(y, ξ)9 we see by (22) that

<Xi2(jc, f)«, u) > 0

for all w e Lo, provided we choose t/ sufficiently small and φλ with its support
sufficiently close to Cλ. Hence by Theorem 1.4,

> > - < L ( J C , D)u, uy

where

) = Σ id + |f|2)
+ (1 + \ξ\2)-ϊbJkd

2Kλ

δ2(x, ξ)/dxjdxk + terms of lower orders,

and αjk, bjk are given in (12) of § 1. By (22) and (23) we see easily that each
component of the matrices d2Kλ

δ2(x, ξ)/dξjdξk and d2Kλ

δ2(x, ξ)/dXjdxk can be
written as φ\x, ξ)\δt(x, ξ) + h(x, ξ)) + s(x, ξ)9 where t and h are independent
of the choice of φλ and Supp s(x, ξ) does not touch the characteristics. More-
over, h(x, ξ) is of order at least 1 in w19 , wn_19 χχ(jc, ξ), , χn-i(x> f) Thus
we can suppose that \φλ(x, ξ)\δt(x, ξ) + h(x,ξ))\/\ξ\ is as small as we wish,
when δ and U are sufficiently small and Supp φλ(x, ξ) is sufficiently close to Cλ.
From this together with Lemma 2.3, we therefore see that

\@<L{x,D)u,u)\ < ε{\\u\\h)
2 + CQ(u) .

Hence α<KU(x,D)u9 u} + CQ(u) > — eCHwl̂ )2. q.e.d.
By Lemmas 2.7 and 2.8, we have
Lemma 2.9. Under the assumptions in Lemma 2.8, for any ε > 0 we can

find δε such that for any δε > δ > 0 we have

CifJβ(n) + e||«||J > (1 - δ)\\F'{φλ(x,D)pi(x,D)}u\\2 (u e Q(ί/, U X Lo)) ,
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provided C,tδ is sufficiently large, U is sufficiently small, and Supp ψλ is suffi-
ciently close to Cλ.

We further reduce the problem to a case of a differential operator with
constant coefficient in w(ζλ(y)9 D> and χ(x, D).

Lemma 2.10. Under the assumptions in Proposition 2.1, for any ε > 0 we
can find δε such that for any 0 < δ < δε we have the following: // U is suffi-
ciently small and Supp φλ is sufficiently close to Cλ, then

>, χ(y,D)){φ\x,D)Pi(x,D)}U\\2

- (1 - 3) | | n θ ; w(ζKy),Dy,χ(y,D)){φK

> ε\\u\\l - C\\uf - \\R(x,D)u\\>

for all u e C^(U, U X Lo), where R(x, ξ) depends on φλ, is of order 1, and
Supp R is outside of the characteristics.

Proof. By Proposition 2.1 there is a constant c > 0 such that

\Fλ(y;w,χ)u\2>c(\w\2 + \χ\2)\u\2 ,

provided y,w are sufficiently small, χ J_ ζλ(y), and u/\u\ is in a sufficiently
small neighborhood of W(x°,ζλ(x0)). Since Fλ(y; w,χ) is linear in w and χ, it
follows

for all w € Lo and x e U, provided U is sufficiently small and Supp <pλ is suffi-
ciently close to Cλ. For any εx > 0 we may also assume that U is so small that

n y ; w,χ)u\2 - i n O ; w,χ)uf\ < εγ{\w\2 + \χ\2)\u\2 .

Set

G(x, ξ) = F*(y w(ζKy), f>, χ(y, f)) ,

GO(JC, f) = F^(0; w<P(y), O , Z(^, f))

Then

- δ)(\G(x, ξ)φKx, ξ)pίix9 ξ)u\2 - \G0(x,

For a given δ > 0 we choose εx so small that ^c — (1 — δ)ε1 > 0. Then

C, ξ)2J(x, ξ)u, u) > 0, where
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/(*, ξ) = pl(x, ξXGix, ζ)*G(x, ξ) - (1 - 3)G,(*, ξ)*Gt(x, ξ))pi(x, ξ) .

Hence by Theorem 1.4,

φ'(x, D)2J(x, D)}u, «> > -®(L{x, D)u, «> ,

where

Ux,ξ) = ψ\x,ξf Σ (id + Wajkd
2J{x,ξ)ldξβξk

+ id + \ξ\)^bjkm{x,ξ)ldxjdxk) + Rfaξ)

+ terms of lower orders,

where R^x, ξ) is a sum of terms containing derivatives of φ\x, ξ) and hence
its support does not touch the characteristics. By (12) of § 1, we may choose
g(x) in Theorem 1.4 in such a way that the absolute value of each component
of the matrix Σ i d + I? l 2 )"*^*^/^, Θ/SJC^JC* is less than βΊfl d2J(x, ξ)/dξjdξk

is a sum of terms which contain as a factor G(x, ξ)*G(x, ξ) — (1 — δ)G0(x, ξ)*
•G0(x, ξ) or its partial derivatives in ξ. Since these partial derivatives can enter
only through partial derivatives of <ζ*(y), ξ} or of χ(y, ξ), each term contains
a factor of the form (a(y) — (1 — δ)a(0))b(x, ξ), so that if we choose δ and U
sufficiently small, its absolute value can be made to be less than ε'\ξ\. Thus for
any ε > 0 we find for a sufficiently small choice of ε', δ, and U that

\ζ{φλ(x,DyL(x,D)}u,u}\ < ε\\u\\\ + KΛ^JC,Z))iι, u)\

for all u 6 C0°°(ί/, U X Lo). Therefore

\\FKy; w<C(y),z>>,χ(

- (1 - 3) IIFa(

- ε||w||| -

where 5(x, ξ) is of order 1 and can be calculated by means of the formula for
the symbols of compositions and adjoints of pseudo-differential operators.
Hence it remains to show that we may assume

(26) \a<B(x,D)u9u>\ < ε||w||| + \<R2(x,D)u9u>\ + | < ϊ > , i ι > | ,

where R2(x, ξ) is of order < 1 and does not touch the characteristics. We see
easily that each term of the 1st order part of B(x, ξ) contains either φλ(x, ξ)2

'W<.ζλ(y),ξ>><Pλ(χ>ξyχ(y>&> a f a c t o r o f t h e f o r m (flO0 - d - δ)a(0)), or a
derivative of <pλ(x, ξ). The sum of the terms of the last type is R2(x, ξ). We may
assume that the absolute values of other terms are less than ε'|f |. Hence for a
sufficiently small choice of ε' we have the formula (26). q.e.d.
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By Lemmas 2.9 and 2.3 we have the following:
Proposition 2.2. Assume that the characteristics of A are smooth, Cλ —> fCx

is bijective, and the characteristics are nondegenerate at (x°, ζλ(x0))- Then, for
any ε > 0 by a choice of a sufficiently small neighborhood U of xQ and ψ\x, ξ)
with its support sufficiently close to C\

Ce||Q(w)||2 + e||w||J > \\Fλ(xQ; w(ζλ(y),D}, χ(y, D)){φ\x,D)p{(x,D)}u\\2

for all u € CQ(JJ, U X Lo) provided Cε is sufficiently large.
Expanding a(x, ξ) pl(x, ξ)pλ

2(x, ξ) = 0 in Taylor series in (w,χ) at
(y, <f, ζKy)}ζλ(y)) and noting that a(y, ζλ(y))pl(y, ζλ(y)) = 0 we find that

In particular,

(27) F\x° w, χ)pi(x°, ζ\x0)) = 0 ,

and we may consider that

(28) F\x° w, χ) e Horn (W\x\ ζ\x«)), Eo) .

Definition 2.4. Assume that the characteristics of A are smooth. We say
that the characteristics are of fiber dimension 0 if and only if, for each point
x° of M and for each component Cλ of the characteristics passing over x°,π: Cλ

—» Ό is bijective.
Proposition 2.3. Assume that the characteristics of A are smooth, of fiber

dimension 0, and nondegenerate, and further that there is r > 0 such that for
each λ we have, for all sufficiently small Θ > 0,

+ Cθ\\v\\2

for all v € Co°°(£/, W\x\ ζλ(x0))), where Lθ is an endomorphism of W\x\ ζ,\xQ))
such that (Lθv, v} > 0 for all v, T{θ is of order 1, Tf (jc°, ξ) = 0 for all ξ, and
Rθ(x; w, χ) w linear in (w, χ). ΓAen, for a sufficiently small neighborhood U of
x°,Q(u) > c\\u\\l for all u e Q ( t / , U X Lo).

Proof. For simplicity we set pλ = $(JC°, ζ;(x0)). Clearly

(29) ||^{^(Λ,Γ»pί(Λ, J5)}«Hi < C||nib + Cγ\\u\

where Cx may depend on φλ. Put
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rf(, ξ)K" w<p(y\ξ>, χ(y, ξ))*Fι(x*

Since the characteristics are nondegenerate,

(30)

for a constant ct. Therefore, since £(*, £) is of order 1, Theorem 1.4 implies
that

(31) <£(*, D)«,«> > c,||M||| - C||«||2 .

On the other hand, by Lemmas 2.3 and 2.6 together with Proposition 2.2,

<K{x,D)u,ιi) < εWuWi + C.Q(u)
( 3 2 ) + Σ « W ) . Dy^^ix, D)pl(x, D)u, Pγ(x, D)p[{x, D)u> .

Thus, by our assumption,

2 || W ; w<C(y),Dy,χ(y,

C, £>)M ||2 , (by (27))

ζ̂ U»), D}pY(x, D)pl(x, D)u, pψ(x, D)p\(x, D)u}

R»(χ; w<ζW,D),

D)p\(x,D)u,Py{x,D)pi{x,D)uy) + γ

> -<r+V||w| | | + c,^«A:(αr,Z))M,iι> - β||u||t - C,Q(u))

+ <Γf (Λ, Z))M, U) + γ , (by (29) and (32)) ,

where Γf(jc, f) = Σ ^(* , f)(Γf (je, f) + Ru(x; χ{x, ξ)))φ\x, ζ)Yρi(x, ξ), and

γ = <£,<«*•), £»V{^,D)/>ίU, £>)}«, ptW(x,D)(ttx, D)}u>. By choosing
^ sufficiently close to Cx and U small, we may assume that

<Lβ(ζKxί>), £V(*, f)y^(jc, f)ιι, p'pl(x, ξ)u> > 0, so that γ > -Cβ\\u\\\ Hence
by (31),

Σ \\F\x°; w^(y),D},χ(y,D)){ψ'(x,D)pi(x,D)}uf + C,\.Q{u)

> c.nc, - (e + θtc'))\\u\\l + <Tl(x,D)u,uy .
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Choose Θx and ε so small that cx — (ε + θ\c') > 0. Then, for constants c > 0
and C > 0 (setting Tx(x9 ξ) = T^CJC, £)),

Σ || W ; w<F(y),D>,χ(y,D)){<ff(x,D)pt(x,D)}u\\* + CQ{ύ)
(33)

for all M 6 CQ{U, U X Lo), provided U is sufficiently small and Supp φx is suf-
ficiently close to Cλ. Now by applying Proposition 2.2 to the left hand side of
(33) for a sufficiently small choice of e, for constants c > 0 and C > 0 (where
c is independent of but C is dependent on the choice of φλ) we find that

Since !-,(*, ξ) = Σ (Άθχ(.x, f) + ̂ t f l(x; χ(*, f)))^U, f)Wfe f) and T{\x\ ξ)
= 0, 7\(;t, f)/|f I can be made arbitrarily small by choosing U sufficiently small
and Supp 9' sufficiently close to C\ Hence for such choice of U and <pλ,

^\\u\\\<CQ(u).

Definition 2.5. Fλ(x»; >v<ζλ(y),D>,χ(v,D)) will be called the localized
operator of A at Jt° for the characteristics C\ For η = (3^, , τ]2n_2) e R2^n~ι\
gλ(η) = FA(JC°; ηλ, , ̂ - 2 ) will be called the indirect symbol of the localized
operator. (We recall w and y are considered as functions of x.)

In order to make the writing easy, we fix λ once for all and set for
/ = 1, >,n — 1

(34)

(35)

(36)

Thus we

Xj(x,ξ) = w

*.-,•,(*,«) =

can write

j(χKζ\y(,*

χ/*> f) >

:°) = V ,

:)),f>.

^^(X°)

XJ = Xj(x,D),

— ^71 (^J ^))

, __ jn-i+j ^

(37) F> = F'ίJc" w<p(y), D>, χ(y, £>)) = *£fX. ,
S = l

By direct calculation we find that for s, t = 1, , In — 2

(38) Z*Z t - Z*Z S = Icsί(jc)<ζXy),D> + *Σ br

u(x)Xr ,

where cβί(^) is a real valued function, skew-symmetric in s91, given by,
for /, k = 1, , n — 1,
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cjk{x) = 0 ,

(39) cn_ι+jk(x) = iXn_1+jwk(x) (modw) ,

cn.1+jn_1+k(x) = KXn-i+jζi(x) - Xn+i+kζλj(x)) , (modζO .

Another way of writing down these functions are as follows:

dwj = Σct+j icXkiy, dx) (mod <ζ;(j), dx» ,
k

dC = Σ iCn-i+k n-i+jXj(y, dx) A χk(y, dx) , (mod <ζiCy), dx}) ,
j ,k

where ζλ denotes the differential form <ζ2Cy(jc)), dx) = Σ ζλj(y(x))dxj.

3. Study of the characteristic parts

In this section we fix vector spaces W, V, and a linear mapping

( 1 ) g: R2n~2 3 η -> φj) € Horn (JV, V) .

We write

( 2 ) g(η) = 27ΣSsVs ,
β = l

where gs e Horn ( ^ , F). U will be as in § 2, 7^ will denote as in § 2 the pseudo-
differential operators of order / which may change from formulas to formulas,
and X19 , X2n-2 will have the same meaning as in § 2. For u e CQ(U, W)
we set

( 3 ) g{X)u = Σ ***.« ,

which is in CQ(U, V). We are interested in an estimate of the type described
in Proposition 2.3. To this end we apply our results to the case where g(η) =
Fλ(x°; η),W = Wλ(x\ ζλ(xQ)) and V = EQ. Assume that we are given hermitian
metrics on W, V, and set

( 4 ) άt(x, ξ) = g(X(x, £))* g(X(x, ξ)) .

Lemma 3.1. For u <= CQ(U, W),

+ (g{X)u,g{h(x))u)

where hs(x) is a C°° function, cst(x) and bζt(x) are defined in § 2 of (38).
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Proof. Clearly, X* = Xs -\- hs(x), where hs(x) is a C°° function. Thus

giX)*g(X)u = Δg{x,D)u + Σ gstgt(dXs(x,ζ)/dξj)Ytj(x,ξ)u

+ g(h(x))* g(X)u ,

where YtJ = (l/i)dXt(x,ξ)/dXj, and therefore

, D)u, M> + % ( ! ) « , g(h(x))u}

+ &Σ WidXsix, ξ)/dζj)Yt](x, D)u, u> .

(Note that dXs/dξj is a function of x.) On the other hand, since YtJ(x, ξ) has
purely imaginary coefficients, we have

Σ

, D)u, u)

, D)u, u)

= \3t Σ < W (yCrtίJeXCW, Z>> + bζt(x)x)j u, u) + StζJJix, D)u, u) ,

which together with (5) thus implies our formula, q.e.d.
Let V be a vector space with a hermitian metric, and assume that we have,

for all θ with sufficiently small absolute value, a linear map

ft: R2n~2 3 η -> ft(5) 6 Horn (W, F') ,

which depends differentiably on θ.
Lemma 3.2. Assume that for an integer d > 1 we have the following:

( i ) gΎ = gζgl (s, t = 1, , In - 2) ,

(ϋλ. *(?)**(?) - g.(v>*g.(.v) = ^+1Λ,d?) ,

w/iere Λ^^) depends differentiably on θ, and

(ϋi)ί Σ (yc,t(jcOίs^β* - ίTίi)«, «) > c«θ* | u|2

for all u<zW and all sufficiently small θ > 0. Assume further that

(iv) <4(;c, f)«, u> > c,(Σ. |Jf.(

Then for sufficiently small θ > 0
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\\g(X)uf + Cβ\\u\f > -CP+iWuWt + cr«ff{x"),D-)u,u)

+ <L,<CmD>«,κ> + <(!?(*, Z» + R\x,X))u,u}

for all u e Cξ(U, W), where T[{x\ ξ) = 0 for all ζ, R'(x, η) is linear in η, and
L, e Horn (W, W) such that <L,u, u) > 0 for all u.

Proof. By Lemma 3.1,

\\gAX)u\\2 = @ζdgί(χ, D)u, u> + <%Σ j(sΐ8l(jcst(χ°χζ\y), D)

+. bζtXrή u, lΐ) + ®(gβ{X)u, *,(Λ(*))«> + <T»(x, D)u, u> .

Thus f or 0 < δ < 1

\\g(X)u\\> = δ\\g(X)u\\> + (1 - δ)\\gβ(X)uf

+ (1 - δ)(\\g(X)u\\2 - \\gl)(X)u\f)

= (1 - δ)\\gβ(XM + ®<(δΔg(x,D) + (1 - δ)(Δg(x,D)

- άtt(x,D)))u,u>

Hence

,D) + (1 - δ)(Δg(x,D)- Δgf(.x,D)))u,u>

+ ®Σ -~<cASgΎ + (i - δ)(g°y -

+ M<Rl>>\x,X)u,ύ) .

By (iOd and (iv),

<S.δΔg{x, ξ) + (1 - SXJ/*, f) - J ,/*, f)))H, «>

For 0 > 0 and δ = θd*^, the right hand side of the above inequality becomes

Therefore for sufficiently small θ, by Theorem 1.4 we have

( 7 ) <(δJg(*, £>) + ( ! - ί)(J,(jt, D) - J g ί(j
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where δ = Θd+K By (m)d we have for δ = θd+$

together with (6) and (7)

\\g(X)u\\2 + Cθ\\u\f >

θ>\x, X)u, u) + St(T[ix9 D)u9 u)

where T{(x\ ξ) = 0 .
Theorem 3.1. Let A be a pseudo-differential operator of order 1 mapping

CQ(M,L) into CQ(M,E). Assume that the characteristics of A are smooth, of
fiber dimension 0, and nondegenerate, and further that, for each x° e M and
each component of the characteristics Cλ passing over x°, the indirect symbol
g(η) of the localized operator of A at Λ:0 relative to Cλ satisfies conditions (i),
(ii)ώ, and (iii)d {for an integer d > 1) in Lemma 3.2. Then there is a constant
c > 0 such that

\\Auf + \\u\\* > c\\u\\l

foralluzC°°(M,E).
Proof. If g(jj) satisfies the conditions in Lemma 3.2 for d > 1, and m is

an integer m>\, then g(η) satisfies the conditions for dm, so that we may use
the common d for the indirect symbols relative to the components C\ , C\
• . Hence our theorem is an immediate corollary of Proposition 2.3 and
Lemma 3.2. q.e.d.

We further study the conditions in Lemma 3.2. For g(η) = Σ 8sVs they are
conditions on gs*gι e Horn (W, W). Thus if we have another h(τj) e Horn (W, E2)
such that hs*hι = gs*g* for all s, t = 1, . . , In - 2, and if g(rj) satisfies the
conditions, then so does h(η). g induces a linear mapping g: W (8) R2n~2 -^ Eλ,
and vice versa, and g and g are related by

g(u (x) es) = gsu (ueW) ,

where {es} is the standard base of R2n~2. We impose the hermitian metric on
W (x) R2n~2 induced by that of W. Let h be the positive semidefinite hermitian
square root of g*g, and h(η) e Horn (W, W (g) R2n~2) be defined by h as above.
Then (hs*hιu, ufS) = (hιu, hsu/s) = <h(u®eι), h(u'®es)} = (g(u(g)et), g(u'®es)}
= (g^tfu, ufs), i.e., hs*hι = gs*gι. Thus we may replace g by h. Moreover

( 8 ) ker g = ker h .
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Hence we may assume without loss of generality that V = W ® R2n~2, and
that g is a positive semidefinite hermitian metric. If gθ as in Lemma 3.2 exists,
we may assume also that gθ(η) € Horn (W, W (g) R2n~2), or equivalently gβ €
Horn (W <g> Λ271"2, W (g) R2n~2). Then the first condition says that g*g = g*g0,
i.e., g = vg0 where v is a unitary transformation of W ® i?2 w"2. Replacing gθ

by vg# we may assume that gQ = g.
We first study the conditions in Lemma 3.2 for the case d — 1. Write

gβ = g + θr (mod θ2) .

Then (iiX and (iiiX are equivalent to

s'V + r'V = 0 ,

for all nonzero u in W, where c°st = cst(x°). In order to write these conditions
more concisely, we introduce an automorphism τ of Horn (W (x) R2n~2,
W (x) R2n~2) defined by

( 9 ) <rτ(μ ® es), uf (g) ^> = <r(w ® eθ, w7 (g) es>

for all w, wr e W and s , ί = 1, , 2n — 2. Then (ii)ί is equivalent to

(iiX' g*r + r*g + (g*r)* + (r*g)τ = 0 ,

Let /: R2n~2 -> i?274"2 be defined by

J(es) - ' '
ί

Then for r, g e Horn (Ψ ® Λ271'2, ίF (x)

Σ < Φ ΎM, M7) = Σ
s,t

= Σ
= Σ

where / is the identity map of W. This suggests us to introduce a linear mapp-
ing trw: Horn (W ® Λ2"-2, W ® Λ2""2) ^ Horn (Ψ, if) denned by

(10) φrwh)u, u') = Σ <h(u ® e% ιϊ ® es> .

Then (iii)ί can be written as

(iiiX' trw(i(g*r + r*g)(! <8> /)) > 0 .
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Thus we have the following:
Lemma 3.3 Conditions (i), (ii)1? (m\ in Lemma 3.2 are satisfied if and

only if we can find r e Horn (W ® R2n~2, W ® R2n~2) such that

(ii)i' g*r + r*g + (g*r)* + (r*g)τ = 0 ,

trw(i(g*r + r*g)(I ® /)) > 0 .

Let V, V1 be vector spaces with hermitian metrics. Then we always consider
the vector space Horn (V, VJ with a hermitian metric defined by

<r, g} = Tr g*r (g, r e Horn (V, Vx)) .

The subspace over R of Horn (V, V) consisting of all self-adjoint transforma-
tions of V will be denoted by Her (V,V), so that

dimΛ (Her (V, V)) = (dimc V)2 .

τ defined by the formula (9) is a hermitian unitary transformation of order 2
of Horn (W (x) R2n~2, W ® R2n~2) and preserves Her (W ® R2n'2, W ® R2n~2).
We set

(11) S = {a € Her (JV ® R2n~2, W ® R2n~2) aτ = a} ,

(12) SΛ = {β e Her ( ^ Θ R2n~2, W ® Λ271"2) ^ = -/3} .

For a subspace F of F, pF generally denotes the orthogonal projection of V to
F. We can now rewrite Lemma 3.3 as follows:

Proposition 3.1. Conditions (i), (ii)1? (iiiX in Lemma 3.2 are satisfied if
and only if there is β € SΛ such that

1) 9κβpκ = 0 where K = ker g ,

2) ίrτ|r(ii8

Proof. Assume that there is r as in Lemma 3.3. Then β = g*r + r*g is in
5^ and satisfies 1) and 2). Conversely, assume that β satisfies 1) and 2). Since
β is hermitian, the condition 1) implies that there is r e Horn (W ® R2n~2,
W ® tf271"2) such that /3 = g*r + r*g. Then this r clearly satisfies (ii)i' and
(iii)ί'. q.e.d.

In order to study these conditions further, we define a linear map (over R)
θ: Horn (JV ® R2n~2, W ® Λ271"2) -> Her (Ψ ® /? 2 n ' 2 , W ® Λ271'2) by

(13) β(r) - ^*r + r*^ .

r is in Ker0 if and only if ir*g is hermitian. Since ir*g is zero on Kerg, we

thus have a linear map
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Ker θ —> Her (Im g, Im g) ,

where Im g denotes the image of g (being hermitian, it is the orthogonal com-
plement of Ker g). It is easy to check that this map is surjective and the kernel
is isomorphic to Horn (W (g) R2n~\ Ker g). Thus

dimΛ Ker θ = (dimc Im g)2 + 2m(2n — 2) dim c Ker g

= ((2/i - 2)m)2 + (dimc Ker g)2 (m = dim c w).

When V is a vector subspace of W ® R2n~2, r <~ Horn (V, V) can be identified
with an element in Horn (W (g) R2n~2, W (x) R2n~2), which coincides with r on
V and is zero on the orthogonal complement of V. Thus we always consider
Horn (V, V) as a subspace of Horn (W (x) I?271"2, W <g) jR271"2). We denote by τr5

the projection to S of 5 0 #* = Her (W <g) Λ271"2, W ® /?2ri"2). Clearly

π f i(A) = J(A + A') .

Lemma 3.4. (Im (π^ o 0)) 1 Π 5 = Her (Ker g, Ker ^) Π 5, where J_
in Her ( ^ (x) j?2w"2, W (x) /J2 w"2).

Proof, a in S is in (Im (πs o ̂ ))-L Π 51 if and only if

(15) <r*# + g*r + (r*^)Γ + (g*r)% α> = 0

for all r e Horn (W ® /?2w"2, ίF ® /?2 n"2). Since <r, ^> = <r% qτ} and A(rg) =
A(gr), we see easily that the right hand side is A£%tr r*ga. Therefore (15) is
satisfied for all r if and only if ga = 0. Since a is hermitian, it follows that the
condition is equivalent to a e Her (Ker g, Ker g).

Lemma 3.5. Im θ Π SΛ = {γ - γτ γ e Her (Ker g, Ker g)}± Π SA.
Proof. It βe Image ^ Π SA, then for any γ e Her (Ker g, Ker g),

*gγ) = 0 .

Thus the left hand side is contained in the right hand side. We prove the
equality by counting the dimension of both sides. Set Φ = Her (Ker g, Ker g)
Π S. Then the real dimension of the right hand side is equal to

dimΛ S
Λ — (dimc Ker g)2 + dimΛ Φ .

Since the left hand side is equal to the image by θ of Ker πs o θ, its dimension

is equal to

dimΛ (Ker πs o θ) — dimΛ (Ker θ)

= dimΛ (Horn (W <g) R2n~2, W (x) R2n~2)) - dimΛ (Im πs o β)

- dimΛ (Ker θ)
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= 2(m(2n - 2))2 - (dimΛ S - dimΛ Φ) - ((m(2m - 2))2

+ (dimc (Ker g)2) (by Lemma 3.4 and (14))

= (m(2n - 2))2 - dimΛ 5) + dimΛ Φ - (dimc Ker g)2

= dimRSΛ — (dim cKerg) 2 + dim Λ Φ . q.e.d.

For γ e Her (W <g) R2n'2, W <g) R2n~2), set

(16) C(γ) = trw{iγ{l ® /)) = Σ < r s ί e Horn (JV, W) .

Since /* = - / , C(γ) is hermitian. If H e Her (»Γ, »0, then

<7 , H®J> = tr(-(H<g) J)γ) = i tr((H

= ίtr{Htrw(ίγ{l®]))) = i

Thus

(17) < r , H®J> = i(C(r), H> (H z Her

Set

(18) Z = {βeSΛ

Then by (17), β e SΛ is in Z if and only if <j8, i ϊ <g> J> = 0 for all
Ψ,W0. Hence

(19) 5 ^ Z 0 (Her (W, W)®J),

where 0 indicates an orthogonal decomposition.
Lemma 3.6. Set G = {γ — γτ\ γ 6 Her (Ker g, Ker g)}. Then

G = pGZ®(G Π (Her (W, W) <g> /)) .

Proo/. By (19), Z is orthogonal to Her (W, W) (g) /, so that pGZ is orthogo-
nal to G Π (Her (W, W)(g)J). Let v € G be orthogonal to ^ Z . Then v is
orthogonal to Z. Since v is in S ,̂ it is in Her (W ® W) ® / by (19) and hence
in G Π (Her (ϊ^, WO (x) / ) . q.e.d.

Proposition 3.2. Assume that not all cQ

st are zero, and define 3? c:
Her (P ,̂ »0 by

if(g)/ = { r_ r- reHer(Kerg,Ker^)} Π (Her (^, W) (g) 7) .

ΓΛ^ conditions (i), (ii)1? (iii)x m Lemma 3.2 are satisfied if and only if there
is a positive definite hermitian form on W orthogonal to ££'.

Proof. Assume that β e SΛ satisfies conditions 1) and 2) in Proposition 3.1.
By 1), </3, f > - </3% r> = - <j8, r> - - tr γβ = 0 for all γ ε Her (Ker g, Ker ̂ ),



112 MASATAKE KURANISHI

so that β is orthogonal to G. Thus for H e JSP, <C(/3), # > = —/<ft # <g) /> = 0
(cf. (17)). Hence C(/3) = trw(iβ o (I ® J)) is orthogonal to jSf and is positive
definite by 2). Conversely, assume that h is a positive definite hermitian form
on W and is orthogonal to Se. Take ft € SΛ such that C(ft) = h. Then
<ft, JS? ® /> = /<C(ft), J*?> = 0, so that ft is orthogonal to G Π (Her (W, W)
® /) . Thus by Lemma 3.5, ft e G x + ρGZ, where G-1 is the orthogonal com-
plement of G in SΛ. Since pGZ a Z + G1, it follows that ft € G 1 + Z. Write
ft = β + ζ, where /3 β G-1- and ζ € Z. Then C(/3) = C(ft) - C(ζ) = C(ft) = h.
Thus C(/3) > 0. Since β e GL, for any γ e Her (Ker g, Ker ^) we have <ft ^> =
K/5' Γ — ΓΓ> = 0 τ h u s trβγ = 0 for all p 6 Her (Ker g, Ker ^), and hence β
satisfies condition 2) in Proposition 3.1. q.e.d.

By considering the conditions in Lemma 3.2 for d = 2, we obtain a more
general condition for half-estimate. We can write down these conditions parallel
to Proposition 3.1 as follows:

Proposition 3.3. Conditions (i,) (ii)2, (iii)2 in Lemma 3.2 are satisfied if
and only if there is β € SΛ such that

1) 9κβ Pκ>0 where K = ker g ,

2) trw(iβ(I ® J)) > 0 .

Proof. Assume that gθ satisfies (i), (ii)2, and (ϋi)3, Write

gθ = g + θr + θ2q (mod. θ3) .

Then (ii)2 and (iii)2 are equivalent to

(20) g*r + r*g + (S*r + r*g)' = 0 ,

(21) g*q + q*g + r*r + (g*q + q*g + r*r)* = 0 ,

(22) <i trwWg*r + r*g) + θ\g*q + q*g + r*r))(I ® 7)iι, w> > c^2|uf

for all sufficiently small θ and all w β W. Set

fli - i trw((g*r + r*g)(I ® /)), fl - ί ^ ( f e * ^ + q*g + r*r)(I ® /)) .

(22) implies that for a sufficiently large real number a, aHx + # 2 > 0. Set

/ = <? + ar , /3 - g*f + /** + r*r ,

Then trw{iβ{I®J)) > 0 by (22), and β e SΛ by (20) and (21). Moreover,
9κβpκ = Pκr*r'PK > 0. Thus β satisfies our conditions. Conversely, as-
sume that there is β <~ SΛ satisfying our conditions. Write pκβpκ = r*r, where
r e Horn (Ker g, Ker g). Then pκ(β — r*r)ρκ = 0, and therefore there is
q e Horn (W (g) R2n~\ W (g) R2n~2) such that
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β _ r*r = g*q + q*g .

Noting r*g = g*r = 0 since Im g J_ Ker g, we see easily that gθ = g + θr +
θ2q satisfies our requirements (20), (21) and (22).

Appendix

Proof of Theorem 1.4. Set <?> = (1 + |?|2)*. Expanding /(*,£ + z<£>*)
in Taylor's series in z, multiplying by btg(z)\ integrating over Rn in z, and
noting that g(z) is an even function, we find that

(13) J(x, ξ) = J&, ξ) - (3VU, ξ)/dξjdξk)ajkφ + R(x, ξ) ,

where

(14) Jx(x, ξ) =

and R(x, ξ) is of order / — 2. Set

(15) r(χ, f) = 7(χ, f) , nOc. f) = Λ(χ, f) >

where Λ indicates Fourier transform in the space variables. Then by applying

a change of variables z = <f>~*(ζ — f) to (13),

(16) n(χ> f) =

In view of (13) we are interested in estimating \ <jx(χ — ξ)ύ(ξ),ύ(χ)}dξdχ

from below. However, instead of γx we first consider

- ξ - S-n/4

and then study the difference γι — γ2.

From the first defining formula of γ2(χ, ξ), it follows that

(18) J<.n(x - ξ, ξ)m, ύ(χ)}dξdχ =

where ύζ(ξ) = g « ί > ' έ ( ζ - ί))<ί>""/4w(ί) Therefore by our assumption,
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(19) &f<h(χ - ξ, l)«(ί), ύ(χ)}dξdχ > 0 .

By (2) and the second defining formula of γ2(χ, ξ) in (17),

.f)-r»(z»f)= f r(z. ί +

χ>-"/4<f>B/4 - g(z)}g(z)dz

Note that

(£> χ) + Λ.(χ, f ) ,

where (f, χ) is the inner product of ξ and χ. Therefore

+

for a sufficiently large /:. Since

r(χ, ξ + z<f>*) = r(χ, f) + z<f>*3r(z. f)/3f. + % , f, z)

it follows then by (20) that

. f) - r*Oc» f) = έr(χ,

)dz + S(χ,ξ)

-'XjXkbj, + t(χ,ξ) + S(χ,ξ) ,

where \S(χ, ξ)\ < CNφι-3/χχy-N, T(x, ξ) is of order / - 1, and

(21) ®<J{x, ξ)u, u) = 0

for all u. The above equations together with (13), (18) and (19) therefore give

0t<J{x, D)u, «> > -0t<LHx, D)u, M> + 0l<T(x, D)u, u) + 0l(S{x, D)u, u) .
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Since &(T(x, D)u, u) = 0 we can apply our argument to (T(x, D)u, u). Note
that we have not used the hermitian assumption of J(x, ξ) except for getting
(21). Since T(x,ξ) is of order / - 1 we find that \St<T(x, D)u, u)\ >
+ &(S'(x,D)u,u} where S'(x,ξ) is of order < I — 2. This completes the
proof of our theorem.
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