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CONFORMAL CHANGES OF RIEMANNIAN METRICS

KENTARO YANO & MORIO OBATA

0. Introduction

Let M be an n-dimensional differentiable connected Riemannian manifold
with metric tensor g. Since we consider several Riemannian metrics on the same
manifold M, we denote by (M, g) the Riemannian manifold M with metric tensor
g. The Riemannian metric g defines, in the tangent space at each point of the
manifold, the inner product g(X, Y) of two vectors X and Y at the point and
the angle 6 between two vectors by cos § = g(X, Y)/[Vg(X, X) - +/g(Y, Y)]. Let
there be given two metrics g and g* on M. If the angles between two vectors
with respect to g and g* are always equal to each other at each point of the
manifold, we say that g and g* are conformally related or that g and g* are
conformal to each other. A necessary and sufficient condition that g and g* of
M be conformal to each other is that there exist a function p on M such that
g* = e?g. We call such a change of metric g — g* a conformal change of
Riemannian metric. Yamabe [21] proved

Theorem A. For any Riemannian metric given on a compact C* differentia-
ble manifold of dimension n > 3, there always exists a Riemannian metric
which is conformal to the given metric and whose slalar curvature is constant.

So in the study of conformal properties of a compact M we can assume the
scalar curvature of M to be constant.

In the above discussion, what has been changed is the Riemannian metric
g at each point of the manifold M. We are now going to consider point trans-
formations which induce a conformal change of metric of the manifold.

Let (M, g) and (M’, g’) be two Riemannian manifolds, and f: M— M’ a diffeo-
morphism. Then g* = f~!¢’ is a Riemannian metric on M. When g* and g are
conformally related, that is, when there exists a function p on M such that g*
= e**g, wecall f: (M, g) — (M, g') a conformal transformation. In particular,
if p = constant, then f is called a homothetic transformation or a homothety;
if p = O, then f is called an isometric transformation or an isometry.

The group of all conformal (homothetic or isometric) transformations of
(M, g) on itself is called a conformal transformation (a homothetic transfor-
mation or an isometry) group and is denoted by C(M) (H(M) or I(M)). We
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denote the connected components of the identity of C(M), H(M) and I(M) by
C,(M), H(M) and I (M) respectively.

If a vector field v defines an infinitesimal conformal transformation, then v
satisfies & ,g = 2pg, where ., denotes the Lie derivative with respect to v,
and p is a function on M. v defines an infinitesimal homothetic transformation
or an infinitesimal isometry according as p is a constant or zero.

Riemannian manifolds with constant scalar curvature admitting an infini-
tesimal non-isometric conformal transformation have been studied by Bishop
[2], Goldberg [2], [3], [4], [5], [6], Hsiung [8], [9], [10], Kobayashi [4], [5], [6],
Lichnerowicz [14], Nagano [15], [16], [26], Obata [17], [18], [19], [27], Sawaki
[28] and Yano [22],[23], [24], [25], [26], [27], [28]. A typical result may be
quoted as follows.

Theorem B (Goldberg [3], Obata [18],[19], Yano [23]). Suppose that a
compact Riemannian manifold M of dimension n > 2 with constant scalar
curvature K admits an infinitesimal non-isometric conformal transformation v
so that £,8 = 2pg, p + const. Then a necessary and sufficient condition for
M to be isometric to a sphere is

ijinPidV =0,
o

where G;; = K;; — (1/n)Kg;;, p* = p,8", 0, = V0, K, is the Ricci tensor,
and dV is the volume element of M.

It is now a well-known conjecture that a compact Riemannian manifold with
constant scalar curvature admitting a one-parameter group of non-isometric
conformal transformations is isometric to a sphere.

Riemannian manifolds with constant scarlar curvature admitting a non-
homothetic conformal transformation have been studied by Barbance [1],
Goldberg [7], Hsiung [11], Kurita [13], Liu [11], Obata [17] and Yano [7].
A typical result may be quoted as follows.

Theorem C (Goldberg & Yano [7]). Let (M, g) be a compact Riemannian
manifold with constant scalar curvature K and admitting a non-homothetic
conformal change g* = e*g such that K* = K. If

fu‘"“GjiufuidV >0,

M

where u = e~*, u; = V,u, u* = u,g**, then (M, g) is isometric to a sphere.
The purpose of the present paper is to establish some theorems on infini-
tesimal conformal transformations and conformal changes of metric, and to
generalize the results obtained in Goldberg and Yano [7].
In the sequal, we need the following two theorems.
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Theorem D (Obata [18]). If a complete Riemannian manifold M of dimen-
sion n > 2 admits a non-constant function p such that V ¥V ;0 = —c’pg;;, where
¢ is a positive constant, then M is isometric to a sphere of radius 1/c in (n + 1)-
dimensional Euclidean space.

Theorem E (Ishihara & Tashiro [12], Tashiro [20]). If a complete Rieman-
nian manifold M of dimension n > 2 admits a non-constant function p such
that V V.0 = (1/n)dpg;;, where dp = gV V0, then M is conformal to a
sphere in (n + 1)-dimensional Euclidean space.

Throughout the present paper, we assume that the Riemannian manifold M
under consideration is compact and orientable. If M is not orientable, we need
only to take an orientable double covering of M.

1. General formulas for infinitesimal conformal transformations

By g;i {;*:}, Vi Kiji"» K;; and K, we denote, respectively, the metric tensor,
the Christoffel symbols formed with g;;, the operator of covariant differenti-
ation with respect to {,*;}, the curvature tensor, the Ricci tensor and the scalar
curvature of M.

We put
1
(1.1 Gji =K;; — ;ngi s
(1.2) Zy;t = Ky — *I——K(c?%gﬂ — 0780 »
nn — 1)

(1.3) Wi = aZyy" + b0iGy — 083Gy + G850 — Gy™8xd)

where a, b are constant and G,* = G,g"*. The tensor G;; (respectively Z, ;")
measures the deviation of the manifold M from being an Einstein space (respec-
tively a space of constant curvature), and both tensors satisfy

(1.4 G;8" =0, Z,;'=Gu, Wy'={a+ (n—-2)b}Gy;.
Ifa + (n — 2)b = 0, then
(1.5) ijih = aijih s

where C,;;” is Weyl’s conformal curvature tensor. Using Bianchi’s identity,
we can check
n—2

(16) VjGji = n ViK ’

where V7 = g'\l,.



56 KENTARO YANO & MORIO OBATA
1.1. Formulas for an infinitesimal conformal transformation
When v”* defines an infinitesimal conformal transformation, we have
(1.7 L8y =V, + Vv, = 208,

where p = (1/n)V 0.
Equation (1.7) and a general formula (see Yano [22]) for Lie derivatives,

L") = 38"V (L o8i) + ViL8s) — V(L 08s)}
give
(1.8) Lo} = 040 + 0Fo; — 80" -
Equation (1.8) and a general formula (see Yano [22]),
LoKysi" = VilLo{ P — V(L {e"D
give
(1.9) LoKiji" = — 0V 00 + 03V 0 — Vip"85: + Vo™i »

from which follow

(1.10) LK = —m— 2,0, — dpgji »
(1.11) LK = —2(n— Ddp — 20K,
where

(1.12) do =gl V0.

From (1.9), (1.10) and (1.11) we have
(1.13) LGy = —(n =DV 00— doz.).

Loyt = —0pV 0, + W ps — Vo850 + V0"81s

1.14
( ) + %Ap@,’c‘gji — 0"8ks)

LW = {a + (n — 2)bY{—0LV ;0, + 0V 4p:

1.15
( ) — V"85 + Vjphgm' + %Ap(ﬁi‘gﬁ — 3?81”')} .

From (1.13),(1.14), (1.15) and &,g"* = —2pg'"*, we have
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(1.16) ZL(G,GY) = —2(n — DGyt — 4pG,,G'*

(1.17) LAZisnZE) = —8Gpipt — 4pZy ;280"
LW, WEIR)

(1.18) Wyin

= {a + (n —2)bY(—8G, W' pi — 4pW o, WEI) .

1.2. Integral formulas for an infinitesimal conformal transformation

We now assume that the manifold M is compact and orientable, and let
there be given a vector field v in M. By a straight forward computation of

Vj[{Vjvi +Vw; — -%(Vc’vt)gn} 'vi]
n

and integration over M, we obtain

n—2
n

f{g”VjViv" + K;*vt +

M

(1.19) + % f {vaf + Pivi — E(!7gvt)g“}
n
M

V”(Vivi)} 0,dV

Arpit v, = 2o omgar = o,
n

where dV is the volume element of M.
If v* is a gradient vector field v* = F'*p, then (1.19) becomes

[{errrior + Kot + "= 2o puav
(1.20) *
w2 it = e} {70 — —pav = 0.
M

Since we have
(1.20) I W o = K;*pt + V*(dp) ,
(1.20) can be reduced to

n—1

f (KﬂPjPi +

iniAp) av
1.21) x

n
1 . 1

Jgh — Ji 0, — 4dV =0

+ !;{V 0 n(Ap)g HV]pl n(AP)gjz} ’

or
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{sz-p"pi -z - ! (AP)Z} av
(1.22) u
+ [ = ~aoe 7o, — ~WUpgfdv = 0.
M

If a non-constant function p satisfies 4p = kp with a constant k, k being
necessarily negative, (1.22) becomes

(1.23) "
L L L
M

or

n

[l
(1.24) o

— 1kgn> plo'dV
n
1, 1
+ f (prt - —kpg“> (Vjpi _ —kpgﬁ) av =0,
i n n
by virtue of
f kgdV + f ke o'pidV = 0,
M M
derived from

3do* = pdp + 8;0°0" = kp* + 8,070 -

Integral formulas (1.19), (1.20), (1.21) and (1.22) are valid for an arbitrary
vector field v* and an arbitrary function p, while integral formulas (1.23) and
(1.24) for a function p satisfying 4o = kp.

If a Riemannian manifold with K = const. admits an infinitesimal conformal
transformation 2", then from (1.11) we have

(1.25) do= — 1 Ko,
n—1

and consequently (1.24) becomes

ijinPidV
(1.26) ¥ . 1
Vigh + 1 g ﬂ)(V 1 g )dV:O.
+ ‘!,\( o+ w1 08 ioi + W —1) 083
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On the other hand, since /G, = 0, we have
Vi(Gjipp) = Gyip'0" + oGl 70" -

By substituting (1.16) for G;;/'/p’ in the above equation and integrating over
M we obtain

1.27) f G;p'pidV = (—1:7) f {40°G ;G + pZ (G ;,G')}dV .
M M

2(n

Similarly, substitution of (1.17) and (1.18) for G, V7ot gives, respectively,

(1.28) f Gup'p'dV = % f A0 Zo 025 4 0L (ZiyinZ AV
M M

Gip'p'dV

(1.29) *

1

= 0 {4p2ijthkjih 4+ 1
u

{a + (n — 2)b}?

P-va(WmnW"j”‘)} av,
fora + (n — 2) + 0.

2. Theorems on infinitesimal conformal transformations

We denote by (C) the following condition :
(C): The Riemannian manifold M is compact with constant scalar curvature K
and admits an infinitesimal non-isometric conformal transformation v* so that
L.8j1 = 2p8;:, p # constant.

Then, first of all, from (1.26) we have

Theorem 2.1 (Obata[19]). Suppose that M of dimension n > 2 satisfies (C).

Then
@.1) f GppidV <0,
M
equality holding if and only if
1
P+ —— Kpg;; =0,
it w1y P

that is, if and only if M is isometric to a sphere.
Theorem 2.2 (Yano [23]). Suppose that M of dimension n > 2 satisfies (C).
If

(2'2) ijlpjpldV 2 0 s
M
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then M is isometric to a sphere.

Theorem 2.3 (Goldberg [3]1, Obata [19], Yano [24]). Suppose that M of
dimension n > 2 satisfies (C). Then in order that M be isometric to a sphere,
it is necessary and sufficient that

2.3) f Gpp'dV = 0.
M

Suppose that M of dimension n > 2 satisfies (C) and one of the following
conditions:

(2.4) 2(G,G =0,
2.5) 40G,;,GT + Z,(G;,G') =0,

(2.6) ZL(G,,G) = koG, G (k> —4),
@.7) 2(G ;G = kg**'G,G7 (k> 0, t: integer) ,

then we see from (1.27) that (2.2) is satisfied and consequently that M is iso-
metric to a sphere. Conversely, if M is isometric to a sphere, then G;; vanishes
identically and all the conditions above are satisfied.

Suppose that M of dimension n > 2 satisfies (C) and one of the following
conditions:

(2.8) gv(zkjihzkjih) =0,
(2.9 4kajithjih + gv(zkjihzkjih) =0,
(2.10) L NZyjinZH") = kpZy ;i ZH" - (k> —4),

Q11)  LZnZH) = kP Z,,,ZF (k> 0, t: integer)

then we see from (1.28) that (2.2) is satisfied and consequently that M is iso-
metric to a sphere. Conversely, if M is isometric to a sphere, then Z, ;;, vanishes
identically and all the conditions above are satisfied.

Similarly, suppose that M of dimension n > 2 satisfies (C) and one of the
following conditions :

(2.12) LWy jinWHhit) = 0,
1
{a + (n — 2)b}?
2.14) 2L,W,;, Wtitt) = {a + (n — 2)bYkoW  ;;, WHitt k> -4,
Lo (Wi W) = {a + (n — 2)bPkp"*' W j;, WEI
(k > 0, t: integer) ,

(2.13) 4Pijianjm + gv(ijthk“h) =0,

(2.15)
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a + (n — 2)b being different from zero. Then we see from (1.29) that (2.2) is
satisfied and consequently that M is isometric to a sphere. Conversely, if M is
isometric to a sphere, then W,,* vanishes identically and all the conditions
above are satisfied. Thus we have

Theorem 2.4. Suppose that M of dimension n > 2 satisfies (C). In order
that M be isometric to a sphere, it is necessary and sufficient that one of the
conditions (2.4)-(2.15) be satisfied.

3. General formulas for conformal changes of metric

In this section, we consider a conformal change of metric
3.1 8 = €7g;; .

When 2 is a quantity formed with g, we denote by 2* the similar quantity
formed with g*.

3.1. Formulas for conformal changes of metric

We have
(3.2) K3 = Kiy" — 0ps0 + 070k — 06”850 + 05 8ki >
(3.3) Kt =K, — (n — Dpji — 081 »
(3.4 eK* = K — 2(n — Dp,*,
where
pe=Vip, "= pg",
(3.5) pii = V00 — pso1 + %pa‘o"gﬁ ) " = ;8" ,
n—2

po” = dp + pap®>  do = 8" 0. .
From (3.2), (3.3), (3.4) and the definitions of G,;, Z;;;", W;;,* we find

(.6 Gh=Gu— (=W — psp) + = 2 Up — pap™8ye»

Zt = Zyy" — 0k 00 — ) + 07V pi — prpo)
(3.7) — (0" — pu0M8si + 730" — pipM8us

2
+ F(AP — 000785 — 07844 »
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Wit = Wi 4+ {a + (n — 2)b}

ﬂ—%Wm—mm%+Wﬂm—mM

3.8) — Frp" — pupM8ji + V30" — 008k
+%w—mwm@—mm
If we put
(3.9 u=-=e>", u, =V"Vu,

then we have
(3.10) Vi, = —ul ;0. — p;00
(3.11) du = —u(dp — pp* ,

and consequently, from (3.4), (3.6), (3.7) and (3.8),

(3.12) K* = v’K + 2(n — Dudu — n(n — Duut,

(3.13) Gt =G, + (n —2)P,;,

(3.14) ZEr = Zyy + Qi s

(3.15) Wk = Wit + {a + (n — 2)b}Q,,"

where

(3.16) P, = u“(Vjui — iAugji) , P;» = P;gi",
" n

(3.17) Qi = OpP;; — 5?Pm' + P."g;; — Phgy; .

From (3.16) and (3.17) we obtain
(3.18) P,.Pii = u {(Vfui)(Vjui) — l(Au)Z} ,
n

(3.12) Qi jin@"" = 4(n — 2)P;;P7t
respectively. We also have, from (3.13), (3.14) and (3.15),

(3.20) G}G*'' = uG ;G + 2(n — 2)G,;,P? + (n — 2)*P,,P'%},
(3.21)  Z¥,Z¥0iin = WM Z,;,,Z8" + 8Gy PPt + 4(n — 2)P,,Pi},
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(3.22) Wk Wit = u{W, ;, Wit + 8(a + (n — 2)b)*G,,Pit
+ 4(n — 2)(a + (n — 2)b)*P,;,P7*},

respectively. For the expression G;;P/% in (3.20), (3.21) and (3.22), from (3.16)
follows readily

(3.23) G, Pt = u'G, i .

Proposition 3.1 ([17], [21]). Suppose that K* becomes a constant by a
conformal change of metric. If K is nonpositive, then so is K*.
Proof. From (3.12) we have

K*fu‘ldV = qudV — n(n — 1) fu‘luiuidV .
M M M

and consequently, if K < 0, then K* < 0.

Proposition 3.2. Equation K* = u’K never holds unless u = const.
Proof. If K* = u’K holds, then we have, from (3.12),

2udu — nuut = 0,

which implies

fu‘luiu‘idV =0,

M

and consequently u; = 0, and u = const.

3.2. Integral formulas for a conformal change of metric

From (3.20) and (3.23) we can easily obtain
f WGKGH — uG .GV
M
—(n— 2)2[_ Ly kav + | tuinidV]
M n M
by virtue of (1.6). Thus
f W GHG* — UG ,,G)dV

G2 (n— 2)2[% i (dwKdV + £ tuz-P”dV] ‘

Similarly, using (3.21) and (3.22) we can prove, respectively,
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f(u—azfjinz*kjm - qujithjih)dV

G2 2| L [wkav + @2 [up,prav|,
on M

f(u—Serjth*kﬁh - Uijthkjih)dV

(3.26) * = 4(n — Dfa + (n — 2)b}2[—,11— f (4wKdv + f tuiP”dV] -

From (3.20) we can easily obtain
UHGHGH — GGV = [ — w6, Grav

G2 "
- 2)2[% f wKdV + f tuinidV] ,

by virtue of

[epuav =2 ~2 [(wKav.

Similarly, using (3.21) and (3.22), we obtain, respectively,

fu—a(Z;ckjihZ*kjih — ijihzkjih)dV
M

(3.28) = f(u — U Zy i ZEIdV
un

+ 4n — 2)[i f (AwKdV + f uPﬁP”dV] ,
n
M M

fu—s(W;kjth*kjih — W nWEinAV
u
(3.29) = f(u — UYW ;i WEirdV
u

+ 4 — 2fa + (n — 2)b}2[% f (AwWKAV + f uP,.,.PﬁdV] .

Proposition 3.3. If K* = K and ¥ ;,K = 0, where % ,, denotes the Lie
derivative with respect to u", then, for an arbitrary integer p,
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f WG uiutdV f up+ P, PIdY
M o

= —(n+p— 2)[fup'z(Vjui)ufuidV
(3.30) o

1 J‘ _ _ .
— = | P! — uP)KuutdV
t 2n(n — 1) M( )

+ % f ul""(uiui)dV] :
M

In particular, if p = 2 — n, then

(3.31) f WG uidV f un s PHAY = 0.
M M

Proof. From (3.18), by integration, directly computing V ;(u?~'u,V'7u?) and
V(u~'u‘4u), and using (1.20)’, which is true for any scalar function p, we
easily obtain

f WP, PIAY = —(p — 1) f w7 uuiuidV
M

M

_ f WK aiidy — 1 f Wl AudV
M n o

+ tifup'zuiuidudl/ .
n
M

Substituting

1

Au:?
2(n — 1)

(! — wk + %nu‘luiui R

obtained from (3.12), in the above equation and using (1.1) an elementary
computation leads readily to the required formula (3.30).
Proposition 3.4. If K* = K and ¥ ,,K = O, then

(3.32) f w NG iutdV ﬁ f U Q) QFdY = 0.
u n—2) 4

Proof. From (3.19) and (3.31), we obtain (3.32).
Proposition 3.5. If £ ,,K = 0 and G}G*/* = G;,G*?, then, for an arbitrary
integer p,
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WP — up=%)G,,G¥dV

(3.33) x
—2(n —2)p f WG aduidV + (n — 2) f urHP,PIAV = 0 |
M M

In particular, if p = 2 — n, then

[ —we,Gray

(3.34) ¥
+2(n — 2y f WG udV + (n — 2 f un PPV = 0 .
M M

Proof. From (3.20) and (3.23), by integration, directly computing
Vi(u?G;;u?) and using

-2

WGt =" =2 ypx — " —2
2n

gduKz()’

we can easily obtain the required formula (3.33).
Proposition 3.6. If £,,K = 0 and Z};,,Z**it = Z, ., Z*3i*, then, for an
arbitrary integer p,

f WP — uP)Zy W2 AV

(3.35 *
— 8pfup“GjiufuidV + 4(n — 2)fu1’“PjiP”dV =0.
M M

In particular, if p = 2 — n, then

U — uDZ, , ZERdY 4 8(n — 2) f w G wudV
M

(3.36)
+ 4n — 2)fu—n+lpﬂpfde —0.
M

Proof. (3.35) follows immediately from (3.21) and (3.23) in the same way
as in the proof of Proposition 3.5.
Proposition 3.7. If %,,K = 0, W§, W*tiit = W, W*/ir and
a+ (n—2)b +0,

then, for an arbitrary integer p,
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Jwrn — ww, qwrsedy
M

(3.37) — 8{a + (n — 2)bp f WG uidV
M
+ 4(n — 2)fa + (n — )by f wpP,PIdV = 0.
M
In particular, if p = 2 — n, then
f(u‘"‘r3 — U W WErdY
M
(3.38) + 8(n — 2){a + (n — 2)b}2fu’"+1Gﬁufw’dV
M
+ 4(n — 2{a + (n — 2)bY f wn P PV = 0.
M

Proof. (3.37) follows immediately from (3.22) and (3.23) in the same way
as in the proof of Proposition 3.5.

4. Lemmas

Lemma'4.1. Let F be a C* function on a compact Riemannian manifold
M such that

deVgo,
M

and f be a C> function such that

c<f in the domain F<O0,
0<f<c in the domain F>0,

where c is a positive constant. Then
f fFdV < 0.
M

Proof.
f fFdV = f fFAV + f fFav
M F<0 F>0

gchdV—l-chdV:chdVgO.

F<0 F>0 M
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Lemma 4.2. If f(Au)KdV:O or fi”duKdV =0, and G},G*''=G;,G%,
M

M
then, for an arbitrary non-positive p,

@.1) f W+ — w=9G,,GHdV < 0.

M

In particular, if p = 2 — n, then

.2) f W — UGGl < 0.
M

Proof. Now (3.27) implies
f(u - u—3)GjiGjidV g 0 .
M
Thus, if we put F = (u — u=%G;;,G’%, f = u®, then the assumptions in Lemma

4.1 are satisfied, and consequently we have (4.1).
Similarly, we can prove

Lemma 4.3. If f (UwKdV = 0 or f LoKdV = 0, and Z¥, Z*eiin =
M M

ZyjinZFh, then

(4.3) f W™ — uNZ, ZRdY <0 .

M

Lemma 4.4. If f (4uKAV = 0 or f Lo KdV = 0, and W, WHkiin —

WyjinWer, a + (n — 2)b + 0, then

4.4) f(u‘"+3 — DWW Weitdy < 0.
M

Lemma 4.5. If K* = K, ¥,,K = 0, then

fu‘"”Gjiufu"dV <0,

M

equality holding if and only if

4.5) 7, — L dug, = 0.
n
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Proof. The lemma follows immediately from (3.31) and (3.16).
Lemma 4.6. If K* = K, %,,K = 0, and

(4.6) f wm NG udV > 0,
M

then (4.5) holds.

Proof. Lemma 4.5 and the assumptions give the proof.

Lemma 4.7. If K* = K, %,,K = 0, and G}G*/* = G;,G’¢, then (4.5)
holds.

Proof. (3.31),(3.34) and (4.2) imply (4.6), and hence (4.5) holds by
Lemma 4.6.

Lemma 4.8. If K* = K, %,,K = 0 and Z};;,,Z**/* = Z, ., Z*/** | then
(4.5) holds.

Proof. (3.31),(3.36) and (4.3) imply (4.6), and hence (4.5) holds by
Lemma 4.6.

Lemma 4.9. If K* = K, %, K = 0, Wk, W*tiih = W, .. . W¥*ir and

at+(n—-2)b+0,

then (4.5) holds

Proof. (3.31),(3.38) and (4.4) imply (4.6), and hence (4.5) holds by
Lemma 4.6.

Lemma 4.10. If % ,,K=0, and (4.5) holds for a non-constant function u,
then M is isometric to a sphere.

Proof. From (4.5), by an argument in the proof of Theorem E, it follows
that the function u has exactly two critical points, P, and P_, where u takes
on the maximum and the minimum respectively. Then for each trajectory 7(¢)
of the gradient of u we have t1—>i£-l%a y() = P, and LEE‘L 7@ =P_.

Since ¥ ,;,K = 0, K is constant on each trajectory and hence on the whole
M by continuity of K at P, and P_. Then K must be positive [17]. Since M
has positive constant scalar curvature, (4.5) implies V;u; + kug;; = 0, k =
K/n(n — 1), [14],[27], and then, by Theorem D, M is isometric to a sphere.

5. Theorems on conformal changes of metric
Theorem 5.1. If M of dimension n > 2 admits a conformal change of
metric such that

f UKV =0,  GEG*' — uG,G"
M

then M is conformal to a sphere.
Proof. (3.24) implies P,;; = 0 so that (4.5) holds by (3.16). Hence by
Theorem E ([12], [20]) M is conformal to a sphere.
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Theorem 5.2. If M of dimension n > 2 with K = const. admits a conformal
change of metric such that G G*7* = u'G;,G’*, then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.1.

Theorem 5.3. If M of dimension n > 2 admits a conformal change of
metric such that

[wokdy =0, zg,z00n = wz, 2000,
M

then M is conformal to a sphere.

Proof. The proof is the same as that of Theorem 5.1 except that (3.24)
should be replaced by (3.25). :

Theorem 5.4. If M of dimension n > 2 with K = const. admits a conformal
change of metric such that Z}¥;;, Z**i‘* = w'Z, ;,,Z*7**, then M is isometric to a
sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.3.

Theorem 5.5. If M of dimension n > 2 admits a conformal change of
metric such that

J' UWKAV =0, Wi W iin — wW, ,,, Weiin
M

a+(n—2)b+0,

then M is conformal to a sphere.

Proof. From (3.26) and the assumption of the theorem we have P,; = 0,
and consequently M is conformal to a sphere.

Theorem 5.6. If M of dimension n > 2 with K = const. admits a con-
formal change of metric such that W, W*kiit = W, ;,,W*ii* a + (n — 2)b
#+ 0, then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.5.

Theorem 5.7. If a compact M of dimension n > 2 admits a conformal
change of metric such that K* = K, % ;K = 0, and (4.6) holds, then M is
isometric to a sphere.

Proof. (3.31) implies P;; = 0, and consequently, by Lemma 4.10, M is
isometric to a sphere.

Theorem 5.8. If a compact M of dimension n > 2 admits a conformal
change of metric such that K* = K, % ,,K = 0, GEG** = G;,G?, then M is
isometric to a sphere.

Proof. By Lemma 4.7 and the assumption, we have P;; = O and conse-
quently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.9. If a compact M of dimension n > 2 admits a conformal
change of metric such that

K*=K, L. K=0, Z;ckjihz*kjih — ijihzkjih ,
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then M is isometric to a sphere.

Proof. By Lemma 4.8 and the assumptions, we have P;; = 0 and conse-
quently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.10. If a compact M of dimension n > 2 admits a conformal
changes of metric such that

K* =K, LK =0, W;fij*ij = chjthkjih >
at+(n—2)b+0,

then M is isometric to a sphere.
Proof. By Lemma 4.9 and the assumptions, we have P,; = O and conse-
quently, by Lemma 4.10, M is isometric to a sphere.
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