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A CLASS OF SCHUBERT VARIETIES

YUNG-CHOW WONG

1. Introduction

Recently, the author proved that in a real, complex or quaternionic Grass-
mann manifold provided with an invariant metric, the minimum locus is a
Schubert variety and the conjugate locus is the union of two Schubert varieties
(cf. [7], [8]). The purpose of this paper is to study these Schubert varieties in
detail.

Let F be the field R of real numbers, the field C of complex numbers, or the
field H of real quaternions, Fn+m (n> 1, m > 1) an {n + m)-dimensional left
vector-space over F provided with a positive definite hermitian inner product,
and G w (F n + m ) the Grassmann manifold of rc-planes in Fn+m. The Schubert
varieties which we shall study are defined by

Vt = {Ze Gn(Fn+m): dim (Z Π P) > /} ,

where P is a fixed p-plane in Fn+m,0 < p < n + m, and I is a nonnegative
integer. It is easy to see that Vt — Gn(Fn+m) if / — max (0, p — m), and Vt

is empty if / > min (n,p).
Let Wι = Vι\Vt+ι and let k be an integer such that max (1, p — m + 1) < k

< min {n, p). Then

vk = wk u wk+ι u ... u ̂ min(n,p).

Roughly speaking, our main result is:
Vk is the disjoint union of a Grassmann manifold Wmin(n^p) (which reduces

to a point if p = ή) and min (ft, p) — k "tensor" bundles Wt(k < I < min(π, p)
— 1) whose base space is Gt(Fv) X Gn_ι(Fn+m-p), whose standard fiber is the
tensor product (Fn~1)* ®Fv~ι of an (n — l)-dimensional right vector space and
a (p — lydimensίonal left vector space, and whose group is the tensor product
GL(n - /, F) ® GL(p -IF).

In §2, we describe a covering of Gn(Fn+m) by coordinate neighbourhoods.
In § 3, we prove that each Vx is a Schubert variety and obtain the local equa-
tions of Vι in a coordinate neighbourhood in Gn(Fn+m), which show that Vι+1

is the singular locus of Vt. In §4, we obtain a covering of the manifold Wt
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by coordinate neighborhoods. In § 5, we complete our study of Vk by analysing

the bundle structure of Wt.

2. Local coordinate systems in a Grassmann manifold

For the moment, we use the symbol Gn(Fn+m) (n > 1, ra > 1) to denote the
set of all n-planes in Fn+m. We shall define on it an atlas which will turn it
into an analytic manifold. In Fn+m, let {x19 ,xn+m\ be a fixed system of
rectangular coordinates defined by an orthonormal basis {e1? , en+m}. Denote
by £/<!...*„ the subset of Gn(Fn+m) consisting of all those /i-planes with equations
of the form

where zίlcaγ are scalar constants, 1 < k < n, 1 < γ < m, and (i15 , in, a19

• , am) is a certain derangement of (1, , n + m) such that ix < < in,
at < < am. This determines a local chart (UijL...in9Ziim..in) in Gn(Fn+m),
whose coordinate neighbourhood is Uiimm.in and whose local coordinates are the
nm elements of the nx m matrix Ziχ...in = [zίka ]. By means of the coordinates
Zika 9 w e identify Uilt..in with a Euclidean rcra-space.

The following lemma will be proved:
Lemma 2.1. (a) The coordinate neighbourhoods Uiim..in, for all possible

choice of (i19 , in) from (1, , n + m) such that ix < < in, form a
covering of Gn(Fn+m).

(b) The two sets of local coordinates for an n-plane belonging to Uh...in Π
Ui'...i' cire rationally and analytically related.

Thus, provided with the atlas determined by the local charts (Uh...in, Z ί l # . . ί n)
whose indices ix < < in take on all their possible values, the set Gn(Fn+m)
becomes an analytic manifold of F-dimension nm, the Grassmann manifold
Gn(Fn+m). An important special case is the projective space FPm = G^F™*1)
of F-dimension m. In particular, FPι is the "circle".

For the proof of Lemma 2.1 (a) and for later use, we first give a definition
and prove Lemma 2.2 below.

Let B be an π-plane in Fn+m, and BL its orthogonal complement, so that

Fn+m = B φ B± (direct sum). Then the projection πB: F
n+m -> B is the map

which sends each element of Fn+m into its component in B. For another n-
plane Z in Fn+m, we say that Z projects onto B if the restriction πB\Z: Z-+ B
is an onto map.

Lemma 2.2. An n-plane Z in Fn+m belongs to Uίχ...ίn iff Z projects onto
the n-plane spanned by the vectors eh, , ein.

Proof. By definition, Ze Uix...in iff the equations of Z can be reduced to
the form (2.1). Thus, an π-plane Z e Uil...ίn is the set of vectors

(2-2)
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where xik are scalar parameters. Since the projection of this set of vectors in
the /i-plane B spanned by eh, , eίn is the set of vectors £ xikeik, Z projects

onto B.
To prove the converse, we assume that Z projects onto B, and let/ίjfc be the

vectors of Z which project onto the vectors eijc of B. Then we have

A ~ eik = Σ *:**«,*«,>

where zi]ca are nm scalars. Obviously, the n vectors fi]c are linearly independent,
and therefore span the n-plane Z. Hence Z is the set of vectors (2.2), and con-
sequently, has equations (2.1).

We now prove Lemma 2.1(a). By Lemma 2.2, it suffices to show that, for
any given rc-plane Zin Fn+m, there exist, among the vectors e19 -,en+myn
vectors eh, , eίn such that Z projects onto the n-plane spanned by them.
Let

Ir = Σ /jA (\<i<nA<λ<n + m)

be a set of n linearly independent vectors which span Z. Then there exist
suitable linear combinations/^, ,fin of f17 ,fn such that

(2.3) fίk = ^ + J? t(eβ l, , O d < Λ < w) ,

where each of the <£k means "some linear combination of", and 0'15 , in,
Mi, - - -, am) is a derangement of (1, , n + m). Now we can see at once
from (2.3) that Z projects onto the rc-plane spanned by the vectors eil9 -etn,
as was to be proved.

To prove (b) of Lemma 2.1, let Z be an w-plane belonging to t/^...^ Π 1/^...^.
Then Z can be represented by either of the following two sets of equations

(2.4) x»r =

Let us eliminate the m variables xa from these 2ra equations by substituting
(2.4) in (2.5). Then the result is a set of m homogeneous and linear equations
in the n independent variables xir Equating the coefficients of xίjc to zero, we
obtain a set (*) of nm equations in the local coordinates zίΊ,a and zifa>, each
of the terms in these equations being of the form

(2.6) I » ^ v 2 « ί f O Γ W ' W

Since (2.4) and (2.5) are two sets of equations representing the same n-plane
belonging to J7ίl...ίnΠ Uif..mί,, (2.5) is uniquely determined when (2.4) is given
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and vice versa. Therefore, equation(*) must admit, in Uiχ...in Π U^...^, a unique
solution for z ί / β, in terms of zίkaγ and a unique solution for zίkaγ in terms of
zVa'\ moreover, because of the special forms (2.6) of the terms in (*), the
Zi>a, and the zίkaγ are rational functions of each other (see Van der Waerden
[6* § 37]). This completes the proof of (b).

The above proof of Lemma 2.1 may seem trivial at first sight, but we have
made sure that it is valid not only for the cases F = R and F = C but also for
(the non-commutative) case of F = H.

3. The Schubert variety VL and its local equations

We first explain what the Schubert varieties are (cf. [1, Chap. 4], [3, Vol.
II, Chap. 14]). Let

(3.1) 0 < f l l < . . . <an<m

be a non-decreasing sequence of integers, and

be a nested sequence of vector subspaces of Fn+m, whose dimensions are indi-
cated by their subscripts, and suppose that

(a19 , an) = {Z<= Gn(Fn+™): dim (Z Π Laj+J) >j (1 < j < n)} .

Then (a19 , an) is a closed sub-variety of Gn(Fn+m), whose F-dimension is
equal to the sum aγ + + an. We call (a19 , an) a Schubert variety, and

(3.3) dim (Z Π Laj+,) > j (1 < / < n) ,

the Schubert conditions.
The Schubert variety (fl^ , an) depends not only on the sequence of in-

tegers a19 , an9 but also on the choice of the sequence of vector subspaces
(3.2). However, with a fixed sequence of integers a19 -,an satisfying (3.1),
the Schubert varieties defined by different sequences (3.2) are congruent to one
another in Fn+m, so that they are also congruent under the induced group of
transformations in Gn(Fn+m).

We now prove
Theorem 3.1. Let {xl9 , xn+m] be a fixed rectangular coordinate system

in Fn+m determined by the orthonormal basis {e19 , en+m), p an integer such
that 0 < p < n + m, and P the p-plane spanned by the vectors eί9 , ep.
Let I be any integer such that max (1, p — m + 1) < / < min (n, p). Then

Vι = {Ze Gn(Fn+™): dim (Z Π P) > 1}

is the Schubert variety
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(a19 --,al9 aι+l9 ,an) = (p - /, . . ,p - l,m, . , m) ,

whose F-dimension is equal to nm — l(m — /? + /).

Proof. Let us construct the sequence (3.1) by using the following integers:

aγ = = aι = p - Z , aι+ι = . . . = an = m ,

and the sequence (3.2) by using the following vector subspaces of Fn+m:

Γ — y(p . . . P Λ — Γn + m
•^dn + n — °^ v 'iJ ? Vp + q/ — z ?

where Jδ? means "the vector subspace spanned by". Now it can easily be
verified that in this case the set (3.3) of Schubert conditions is equivalent to
the single condition dim (Z Π P) > L Hence our theorem is proved.

We have seen in § 2 that when a rectangular coordinate system is fixed in
Fn+m, the Grassman manifold Gn(Fn+m) is covered by the local coordinate
systems (Uiί...in,Zίl...in), where iλ < < in run through all the integers 1,
• , n + m. In the following, we shall use the coordinate neighbourhoods
Ui1.-iha1...an-h9 where h is some integer such that 1 < h < min («, p),iλ <
• < ih run through the integers 1, , p, and ax < < an_h run through
the integers p + 1, , n + m.

We now prove
Theorem 3.2. Let I and h be two integers such that

max (1, p — m + 1) < /, h < min (n, p) .

Then the Schubert variety Vt defined in Theorem 3.1 has the following

properties:

(a) // h < I, then Vt Π C/<1...<Λ«1...βJι_Λ is empty.

(b) If h>l, then the equations of Vtf] Uίv..ihai...an_h express the con-

dition for the h X (m — p + h) matrix

(3.4)
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to be of rank < h — I.
(For definition and main properties of the rank of a matrix with elements in

a field, not necessarily commutative, see [3, Vol. I, pp. 66-70].)
Proof. Let us use the following index systems:

l<a<h, l<af <p - h ; l<b<n-h, l<b'<m-p + h ;

h < - - - < k , / ί < < ίp-κ are complementary in (1, , p)

ax < <an_h , aί < < a'm_p+h

are complementary in (p + 1, , n + m) .

The equations of an π-plane Z e Uίl...ihai...an_h are

Xi'a> = Σ XiaZiai'a' + Σ X«b

Z«bi'a> >

( 3 5 )

 x . - T x z • + T x z '
a b

Therefore, the equations of Z Π P are these and the following together:

(3.6) xab = 0 , xai, = 0 .

But on account of (3.6), equations (3.5) split up into the following two sets
of equations

(3.7) Xi'a, = Σ XiaZial'a' '
α

(3-8) 0 = Σ **βz*β«ί,
a

Since the m + n — h equations (3.6) and (3.7) are independent, dim (ZΠP)
< h. On the other hand, it is seen from (3.8) that dim (ZΠP) is h, h — 1,
• according as the h X (m — p + h) matrix [ziaa'bf] is of rank 0,1, .
From this it follows that if h < /, then dim(ZΠ P) cannot be > /, i.e., if
h < /, then Vt Π ^ . . . ^ . . . ^ ^ is empty. For h > /, d im(Z ΠP) > / iff the
above matrix is of rank < h — I. Hence our theorem is proved.

It follows from the definition of Vt that Vί+1 is a subset of Vt for which
dim (Z DP) > / + 1, and its complement Wt = Vt\Vι+ί is the set for which
dim (Z ΠP) = /. By Theorem 3.2, if h > I + 1, Vι+1nUiim..ihai.m.an_h is the
subset of VιΓ[Uil...ίhai...an_h whose points are such that the matrix (3.4) is
of rank < h — I — 1, and its complement WtΠ Uίl...ίhai...an_h is the set of
points for which the matrix (3.4) is of rank h — I. For these reasons, we may
call the points in Wι the simple points of Vu and those in Vι+1 the singular
points of Vt. Of course, this definition is legitimate; moreover, it can easily
be verified that, in the case where F = R or F = C, Vι+1 is indeed the set of
singular points of Vt as defined in algebraic geometry (cf. [3, Vol. II, Chap.
10, § 14]).
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4. The set Wι = Vt\Vι+ι as a manifold

Let F t be as defined in Theorem 3.1, Wt = Vt\Vι+ι, and k any integer
such that max (1, p — m + 1) < k < min (n, p). Then

Wt = {Ze G n (F» + w ) : dim (Z Π P) = /} ,

where the W's are all disjoint, and

f=Gn(F*) if p > / i ,

W if p = w ,

G m ( F n + m " ^ ) if/? < n .

In fact, if p > n, then Wn = {Z: Z c P}. If p = n, then PFTO = {Z: Z = P}.
If p < n, then Wp = {Z: Z D P} = {Z: Z 1 C P x } which is homeomorphic
to Gm(Fn+m-p). Here ZL,FL are respectively the orthogonal complements of
Z , P in F n + m .

We now prove
Theorem 4.1. (a) The subset Wt of Gn(Fn+m) defined by (4.1) can be

covered by the coordinate neighbourhoods

where the indices have the ranges 1 < ix < < it < p, p + 1 < ax <

< αn_ι < n + m.
(b) Γ/ι̂  equations of Wtf] Vίl...ίιai...an_ι in the local coordinates

in C/i1...iIβχ...βn_ϊ

where the indices are as in the proof of Theorem 3.2 only with h replaced by L
(c) Wt is an analytic submanifold of Gn(Fn+m) of F-dimension

nm — l(m — p + ΐ) .

Proof, (b) is a special case of Theorem 3.2, and (c) follows immediately
from (a) and (b). Therefore, we need only prove (a).

For convenience, we put q = n + m — p, and denote by Q the orthogonal
complement of P in Fn+m and by πQ the orthogonal projection Fn+m —> Q.
We recall that P is the p-plane spanned by the vectors e19 , ep, so that Q is
the g-plane spanned by the vectors ep+ϊ9 , ep+q(= en+m).
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By Lemma 2.2, to prove (a), it suffices to prove that for any n-plane Z e Wl9

there exist, among the vectors el9 , en+m, n vectors eiχ9 , eίv eaχ9 , ean_t

such that Z projects onto the n-plane spanned by them. Let Z^Wt and X =
Z Π P, and let Y be the orthogonal complement of X in Z. Since X is an /-
plane in P, it follows from Lemmas 2.1 (a) and 2.2 that there exist among the
vectors e19 , ep9 I vectors eh, , eH such that X projects onto the /-plane
spanned by them. Let fiχ9 ,fu be the vectors in X, which project on eiχ9

• , eiv respectively. Then

(4.2)

/<ι = eh + &ι(eψ '->ei>p.)

Here and in what follows, Jδf, Jδf', f̂/7 each mean "a linear combination of".
Let

J\ — - ^ l V ^ p + 1? * * j βp + q) "Γ <=>£ 1 V^l? * * ' j ^p/ 5

(4.3)

f n - ι = & n - ι ( e p + 1 , , e p + q ) + S e ' l M x * - - , e p )

be any set of n — I vectors which span the (n — /)-ρlane Y. Since Z Π P is
the kernel of the projection πQ\ Z and dim ( Z Π P ) = /, τrQZ is an (n — /)-plane
in β . But it is seen from (4.2) and (4.3) that this (n — Γ) plane is spanned by
the n — / vectors

which must therefore be independent. Hence, it follows from (4.3) that there

exist suitable combinations fai, ,fan_ι of fλ, ,fn-ι such that

fai = eai + i f i + 1 fe , , ep, ea,, , «βj_n+ι) ,

(4.4)

fan.t = ean_t + Sen{fi» > ,ep9 ea,, , ea,q_n+ι) .

We have thus constructed, in (4.2) and (4.4), a set of n vectors fil9 ,/ ί £,
/«i' * * * >/«»_!> which span the n-plane Z. It is easy to see from the expressions
of these vectors that Z projects onto the rc-plane spanned by eiχ9 , eίp eai, ,
ean_v Therefore, by Lemma 1.2 we see that Z e t/ ί l... ί ι β l...β n_ ι, and part (a) of
our theorem is proved.

5. The manifold Wι = Vt\Vι+1 as a fiber bundle

We now prove the following main
Theorem 5.1. Let P be any fixed p-plane in Fn+m (0 < p < n + m), and
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/ any integer such that max (1, p — ra + 1) < / < min (n, p) — 1. Then the
[nm — l(m — p + l)]-dimensional submanifold

Wt = {Z e G n ( F w + w ) : dim ( Z Π P ) = /}

6>/ Gn(Fn+m) is a "tensor" bundle whose base space is the product manifold
Gt(Fp) x G n _ ι (F n + m " ί ) ) , wftαse standard fiber is the tensor product (Fn~1)* (g)
Fp~ι of an (n — ϊ)-dimensional right vector space and a {p — ΐ)-dimensional left
vector space, and whose group is the "tensor" product GL(n — /, F) ®
GL(p — Z, F) vwί/i the two subgroups acting on (Fn~1)* and Fp~ι, respectively.

Let (x,y) be any point in Gt{Fp) x G ^ . ^ F 7 1 ^ " ^ ) . Then the fiber of Wt

over (x, y) is the set of n-planes Z in Fn+m such that Z ΓϊP is the fixed l-plane
x in P, and πQZ, i.e., the projection of Z in Q, is the fixed (n — ΐ)-plane y
inQ.

Let U(n 4- ra, F) be the group of motions in Fn+m regarded as a group of
transformations in Gn(Fn+m). Then the subgroup U(p,F) x U(q,F) of
U(n + m, F), which leaves P invariant, leaves Wt invariant. It does not act on
Wt transitively, but induces a transitive group of transformations in the set of
fibers of Wt.

Proof. We first prove some preliminary results. For brevity, we shall
denote Uίl...ίιai...an_ι by t/ ( i β ). Let us first consider the transformations of local
coordinates in Gn(Fn+m). Any n-plane Z belonging to

UM Π UUβ) C Gn(F^)

has the following two equivalent sets of equations:

Xi'a, = Σ XiaZtai>a, + Σ XabZabt>a, ,

(5.1)
χ*b, = Σ χtaziaait, + Σ χabzab.b,

ΣXj'a, = Σ Xic£jaJ'af

(5.2) " . * „
Xϊ>h, — Σ XJaZJaβ{)f + Σ XβbZβbβb, 9

where the z's and z's are the two sets of coordinates of Z and

1 < a < l , 1 < af <p - I , l < b < n - l ,

1 <V < p - n + l ( = m - p + I)

h < - < h , ζ < < ip-ι are complementary in (1, . , p)

cίi < < an_ι , a[ < < α£_ra + ί

are complementary in (p + 1, , p + q(= n + ra)) .
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The transformation (z) = (z)gUβHia) between the coordinates z's and z's are
obtained by eliminating xv , and xa,f from the 2ra equations (5.1) and (5.2) and
then equating to zero the coefficients of xίa and *α& in the resulting equations
(cf. proof of Lemma 2.1(b)). As is well known, in

uiia) n uUβ) n uikr) c Gn(Fn+m),

the transformations between the three sets of coordinates satisfy the following

compatibility condition:

W 3) 8(jβ){ίa)Όg{kγ)(jβ) = 8{kγ)(ia)

Let us now consider Wt which is covered by the coordinate neighbourhoods
U(ia) = Uil...ίιai...an_ι (cf. Theorem 4.1). Since the equations of Wt Π Uiίa) in
U{ia) are ziaa>t = 0, and those of Wt Π UUβ) in UUβ) are zjaβbf = 0, the relations
between the two sets of coordinates for the same π-plane in (Wt Π Uiia)) Π
(Wt Π UUβ)) is obtained in a similar way from the following two sets of equa-
tions (cf. (5.1) and (5.2)):

( 5 β 4 ) V α ^ ϊ α ^ ' 6

 a» U ^ ' '

Λ « ί = ΣXa Za «l,
6 ' b b b b>

χ _ y^ j£. £ ., 4 - y x z
J α / —̂i Jα JaJaf ~ * ^δ Pb^a'

(5.5) ^ - " y * ~
δ

where the z's and z's are the two sets of coordinates of the n-plane Z. In this
case, however, there are the following special properties:

(a) The two sets of coordinates zα a. f and zβ β, t transform into each other
rationally and analytically in the same way as the two sets of coordinates for
an (n — /)-plane in

LJa ...a M Uβ ...Λ 7 C Cjn_ιyJr ) .

(b) The two sets of coordinates ziai>, and Zjay, transform into each other
rationally and analytically in the same way as the two sets of coordinates for an
/-plane in

£><,...* n uh...H c Gt(F>).

(c) The remaining relations between the two sets of coordinates for the n-
plane Z are reducible to

(5.6) zβbύ
r

a, — s u m °^ t e r m s of t n e form fcza a, )za & fg(zίai,,) ,

where / (resp. g) is some rational and analytic function of the coordinates zβ «/,
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(resp. ziai,a). (Consequently, when z M ^ and zβ&β,/ are held fixed, the two sets
of coordinates zttbi^f and z>$hya, transform into each other by a homogeneous
and linear transformation with two-sided coefficients.)

Thus, the transformation between the two sets of coordinates z's and 2's in
(Wt Π Uiia)) Π (Wι (Ί UUβ)) is split up into three parts. Moreover, on account
of the compatibility condition (5.3) for the three sets of coordinates in
Una) Π Uuβ) Π Uar) c Gn(Fn+m), each of the transformations of coordinates
described in (a), (b) and (c) above is compatible when three sets of coordinates
are involved. From these we can already see that Wt has the structure of a
vector bundle whose base manifold is Gt(Fp) x Gn_ι(Fn+m-p) and whose fiber
is the space of ordered (p — l)(n — /)-tuρles of F-numbers. Let us now study
this structure of Wt more carefully.

We take first the fibers in Wt. For brevity, let us denote Uiχ...i% and Uai...an_t

by t/ ( ί ) and ί/(β), respectively. Then the fibre over a point (x,y) e t/ ( t ) x £/(β)

of the base manifold Gt(Fp) x Gn_ι(Fn+m'p) consists of those rc-planes Z i n
Wι Π U{ίa) whose coordinates zίai>,, zaba',

 a n d *>a v, are such that ziai,, and
za a,, are respectively the coordinates of x in t/ ( ί ) and y in t/ (β), whereas za v ,
are arbitrary. To find out what this fiber actually is, consider the rc-plane
ZeWtPi U(ia) whose equations in Fn+m are (cf. (5.4)):

Xi'a, = Σ Xia

Ziai'a, + Σ * « Λ Λ ' '
(5.7)

2

Since the equations of P are xab = 0, xa, = 0, the equations of the /-plane
Z Π P in P are

Cb

Therefore Z Π P is the point x of Gt(Fp) in t/ ( i ) with coordinates ziai, . On
the other hand, since the equations of Q = PL are xia = 0 and Λ;4 , = 0, the
equations of the (n — /)-ρlane πQZ in Q can easily be seen to be

X — V r 7
ab> ~ Y Λ"b4'abab' *

Hence τrQZ is the point y of Gn_ι(Fn+m-p) in t/(σ) with coordinates za&«S/.
Thus we have found that the fiber of the bundle Wt over the point

(x,y) e Gt(Fp) x Gn_ι(Fn+m-p) consists of those n-planes Z in Fn+m such that
Z ΓΊ P is the fixed /-plane x and ττQZ is the fixed (n — /)-ρlane j .

Let us now find the standard fiber Fo and the group G of the fiber bundle
Wt. Guided by equations (5.6) and what we have just found out about the
fibers in Wl9 we take as FQ the tensor product (Fn~l)*®Fp-1 of an in - /)-
dimensional right vector space ( F n Ό * over F, and a (p — /)-dimensional left
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vector space Fp~ι over F. As the group G of the fibre bundle, we take the
tensor product GL(n — I, F) ® GL(p — /, F) and define its action on Fo by (cf.
[4, Prop. 2.4.1]):

Zi ® S2 -> fei ® &)(*i ® «2> = 8i(Zi) ® £2fe) ,

where Zi e (F w "0*, z2 6 F*~ l, & 6 GL(π - /, F), and g2 e GL(p - I, F). More
precisely, this means the following. Let/α* be a basis of (Fn~0* and/^ r a basis
of F*-*. Then f*b®fi>a, form a "basis"6 of (F*- 1)*®* 1*"* such that every
element z of Fo can be expressed uniquely in the form

z = Σ, (f«%Λ, ®fva) = Σ if*

where zα ^ , e F are the components of z> If

then we set

z = (gt (8) sXz) = Σ

= Σ [/.I Σ

We note that the components of I = (& ® ft)U) a r e

7 , — V pd) 7^«ϊiV — LA 5aζab<-ab
h. n.rb,a'

and equations (5.6) are of this from.
We can now describe the structure of Wt as a "tensor" bundle by exhibiting

its main ingredients [5, §2.3]:
(1) The protection π: Wι -* GL(FP) X Gn_i(Fn + m-^) from Wt to the base

space is defined by

Z-*(Z ΠP,πQZ) .

(2) The standard fiber Fo is the tensor product (F n "0* ® Fp~ι of an (n — /)-
dimensional right vector space and a (p — /)-dimensional left vector space.
We assume that a "basis" f* ®fVat has been fixed in Fo.

(3) The group G of the bundle is the tensor product

GL(n - I, F) (g) GL(p - /, F)

which acts on F o = (F»-*)* <8> F ^ 1 by fe ® ^ ( Z l ® z2) - ft(«χ) ® g2(z2).
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(4) The base manifold Gt(Fp) x Gw_ i(F 7 Z + m" : p) is covered by the family of
coordinate neighbourhoods U{ί) X UM such that, for each (ia), there is a
homeomorphism

Φn.): (£/(<) X t/(β)) X F o -> T Γ - 1 ^ ) X t/(α)) - Wt Π t/(<α) ,

defined as follows. Let ((x,y),z) be any element of (£/(ί) x C/(β)) X Fo, and
z ί Λ , , z α K , , andz β 6 i & / the respective coordinates of JC,J;,Z in J7(i), t/(α), and
Fo. Then 0(ία)((jc, j ) ,z) is the n-plane Z whose equations in Fn+m are (5.7).

(5) The homeomorphisms φiia) defined above have the following properties:

(i) πoφiia)((χ9y),z) = (x,y).
(ii) Let

be defined by setting

Then, for any two (ia) and (jβ) and for each (x, y) € (t/ ( ί ) X t/(β)) Π (Ϊ7 ( i ) X t/ (/ ϊ )),
the homeomorphism

Φu}β)(X,U)°Φ(ia)(x,y) ^0 " ^ ^0

is given by (5.6); therefore, it coincides with an element of G, defined above
in (3).

(6) Finally, for any (ia) and (jβ), the map

Sw>(*«>: (#(*> X t/(->) Π (t/ ( i ) X £/(^) -> G

defined by

is analytic because the linear transformation (5.6) depends on ziai,af and zβftβ&/

rationally and analytically.
This completes our proof that Wt has a fiber bundle structure.
Finally, let U(n + m, F) be the unitary group of transformations leaving in-

variant the hermitian inner product of Fn+m, i.e., the group of motions in Fn+m.
Then the subgroup U(p, F) x U(q, F) of U(n + m,F), which leaves invariant
the vector subspaces P and Q, leaves invariant the manifold Wu but it does
not act on it transitively; this is because for any two n-planes Z1 ? Z2 e Wu we
have in general dim (Zλ Γi Q) Φ dim (Z2 Π Q). However, the group U(p, F) x
U(q, F) carries fibers into fibers and acts transitively on the set of fibers. In
fact, if x, xf are any two /-planes in P, and y, / are any two (n — /)-planes
in Q, then there always exist some element hλ € U(p, F), which carries JC onto
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xf, and some element h2 <= U(q, F) which carries y onto / . Thus the element
(A1? /i2) 6 t/(p, F) x U(q,F) carries the fiber over (jt,j) onto the fiber over
(xf,yf). This completes the proof of Theorem 5.1.

Up to now, we have excluded the case / = max (0, p — m) = l0 because
Vlo = {ZeGn(Fn+m): dim (Z Γ\ P) > /„} is Gn(Fn+m) itself and our results
obtained so far do not hold in this case. Now Gn(Fn+m) is of F-dimension nm,
and

Vlo+1 = {Z e Gn(Fn+m): dim (Z ΓΊ P) > k + 1}

is a Schubert variety of F-dimension nm — (/0 + l)(/w — p + lQ + 1) < nm.
Therefore, Wlo = Gn(Fn+m)\Vlo+ι is an open submanifold of Gn(Fn + m), and

Gn{Fn + m) = WiQ y ^ Q + i U . . . U ̂ m i n ( n , p ) ,

where Wlo+1, , WmlMniP)_λ are "tensor" bundles as described in Theorem 5.1,
and Wminin^p) is a Grassmann manifold or a point as shown at the beginning
of § 4. Hence we have

Theorem 5.2. Corresponding to each integer p such that 0 < p < n + m,
there is a decomposition of Gn(Fn+m) into a disjoint union of a sequence of
min (n, p) — max (0, p — m) -\- 1 submanifolds of decreasing dimensions, con-
sisting of an open submanifold, a number of "tensor" bundles, and a Grass-
mann manifold (which reduces to a point if p = ή).

There are three cases of special interest.
Case 1. p = m (so that q = n). Let us take P to be the m-plane 0 x spanned

by the vectors en+1, , en+m, and let

Vι = {Z € Gn(F
n+™): dim (Z Π <μ) > /} ,

Wt = {Ze Gn(Fn+m): d i m ( Z Π O1) = /} .

Then Vo is Gn(Fn+m) itself, and Wo coincides with the coordinate neighbour-
hood Ulm..n both of these are of dimension nm. Moreover, Vλ = V0\WQ, which
is of dimension nm — 1, is the boundary of WQ = Ux...n. It turns out that V1 is
the cut locus of the point 0 e Gn(Fn+m) (see [7, Theorem 9(6)]).

Case 2. p = n (so that q = m). Let us take P to be the n-plane 0 spanned
by the vectors el9 , en, and let

Vt = {Z e G W (F* + -) : dim (Z Π 0) > /} .

It turns out that the conjugate locus of the point 0 in a Gn(Rn+m) is F 2 U V1

it n < m, is V2{JV2 if n = m, and is F 2 U Kw_m+1 if n > m, whereas the
conjugate locus of the point 0 in a Gn(Cn+m) or a Gn(Hn+m) is ^ (j F x if
n < m, and is V1 \j Vn_m+1 if n > m (see [8]).

Case 3. p = n = / + 1 (then q — m). This is the only case in which PΪ^
can be a line bundle. In this case, Wn_λ is a line-bundle whose base manifold
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is the product of the two projective spaces FPn and FPm. Let us choose P as
the n-plane 0 as in Case 2. Then Vn consists of the single point 0. Hence,
Vn_λ is the union of the line bundle Wn_1 and a point. In particular, for the
G2(RA), Wγ is a line-bundle over a 2-dimensional torus which can be made com-
pact by adding a point.

6. A remark

In their theory of harmonic functions on classical domains (i.e., the four
non-special types of irreducible bounded symmetric domains considered in the
theory of several complex variables), Hua and Look [2] proved that the
boundary of each of these domains is the disjoint union of a finite number of
product spaces (i.e., trivial fibre bundles), so that the closure of each of the
classical domains is a "chain of slit spaces" with the closures of the product
spaces as slits. Our results in this paper would seem to suggest that the
Grassman manifolds and certain Schubert varieties are "chains of slit spaces"
of a more general type on which a similar theory of harmonic functions might
be constructed. However, the referee kindly points out that this is not the case
because the more recent works of I.I. Pjatetski-Shapiro, A. Koranyi and J.A.
Wolf have shown that the more general spaces do not carry nonconstant holo-
morphic functions, nor do they carry much of a space of harmonic functions.
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