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OF SURFACES WITH K > 0

EDGAR KANN

1. Introduction

Classical methods of proving infinitesimal rigidity of convex surfaces use an
auxiliary vector function y and integral identities involving it. In this paper a
new method will be given using y. The main tool is the Lemma (3.0). The
lemma applies directly to surfaces (bounded or not) with spherical image in a
hemisphere. Where this assumption does not hold the well-known projective
transformation of Darboux is used to obtain a surface and a deformation to
which the lemma can be applied.

Infinitesimal rigidity is proved for various standard cases, including surfaces
with fixed boundaries, Rembs boundaries (along which the unit surface normal
is constant) and closed convex surfaces. If the spherical image does lie in a
hemisphere, various results seem to be new, namely, Theorems (4.1), (4.2),
and also (4.3), in which rigidity is proved while allowing the deformation
(velocity) field to have different constant values on different boundary
components. What also seems new is that these results hold even if the surface
is not convex in the large, e.g., if the surface intersects itself or is many-sheeted.

The differentiability assumptions throughout will be (C"5 C") (that is the
surface and the deformation respectively are both of class C") as contrasted
with (C'",C'") for classical methods, e.g., of Blaschke [1, p. 75], and with
(C", C") for the method of Minagawa and Rado [3] (the latter assume C " for
the surface in a neighborhood of a Rembs boundary).

The method has the unifying feature that for all the problems solved here
the boundary conditions are expressed in the form yn — const. cf. (4.1).

This work was initiated while the author was a Visiting Member of the
Courant Institute of Mathematical Sciences.

2. General remarks

We state here definitions and hypotheses, which will hold throughout, as
well as some general results of the theory of infinitesimal deformations. For
a complete discussion see [1, Chap. VI].

r = r(u, v) is the radius vector of a surface S (two-dimensional differentiate
manifold) immersed in euclidean 3-space, joining the origin (0, 0, 0) to a point
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(x(u,v),y(u, v),z(u, v)) of S. The functions x,y,z are assumed to be C "
functions of u, v. In case S has a boundary (which is not assumed to be part
of S) we assume that S plus boundary is contained in a C" surface on which
r(u, v) is C", and that x, y, z and their derivatives of the first two orders are
given the induced values on the boundary of S. S will always be assumed
regular, i.e., ru X rυ Φ 0 on S plus boundary.

A vector field z = z(u, v) — (X, Y, Z) of class C" called the deformation
field will be defined on S and extended so as to be C" on the boundary in the
same manner as r was. A family of surfaces deformed from the first is given
by r* = r + εz, where ε is a real parameter. A necessary and sufficient
condition that the arc length of a curve on r* remain constant to the first order
in ε is

(2.1) Zu ru = 0, zu'rv + Zυ'ru = 0 , zυ-rv = 0 ,

or in differential form dz-dr = 0. In this case the deformation z is called an
infinitesimal b ending.

In consequence of (2.1) there exists a unique vector field y — y(u, v) € C
such that

(2.2) y x ru = zu , y X rv = zv ,

or in differential form dz — y X dr. y is called the rotation field.
It follows from zuυ = zυu that there exist real scalars a, β,γ such that

(2.3) yu = aru — βrυ , yυ = γru — arυ , so ndy = 0 .

If we regard z and y as position vectors, they describe two surfaces (which
may be degenerate) called the deformation surface and the rotation surface
respectively.

A deformation z is said to be trivial \tz = cXr+d, where c, d are constant
vectors. A trivial deformation coincides with the velocity field of a rigid motion.
Two deformations which differ by a trivial deformation are called equivalent
(clearly an equivalence relation on the set of all C" deformations).

Obviously if one of two equivalent deformations is trivial, so is the other.
If a surface admits only trivial bendings, it is said to be infinitesimally rigid.
If there are restrictions on z on the boundary the surface is said to be infini-
tesimally rigid with respect to those restrictions.

3. The main lemma

We shall consider surfaces which are immersions in E3 of parameter domains
of the following topological types:

1. An open disk with a finite number (possibly zero) of closed disks
removed.
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2. A sphere.
(3.0) Lemma. Let S be a surface (possibly unbounded) with parameter

domain D of type one such that
1. K > 0 ,
2. the spherical image of S lies in an open hemisphere.

Then yn Φ 0 on the boundary of D implies yn Φ 0 in the interior of D.
Remark, y n — 0 at a point of D if and only if the point corresponds to

a singular point of the deformation surface. Liebmann considered these points
in his early work on infinitesimal rigidity [2], however his method is otherwise
dissimilar.

Proof. Suppose, by way of contradiction, that yn Φ 0 on the boundary
of D, but yn = 0 at some point inside D. Then the set of zeros of yn is
contained in the interior of a compact subset Dr of D. We choose the xyz
cartesian coordinate system so that the spherical image of S lies in the open
"upper" half of the unit sphere centered at (0,0,0).

Claim: There exists a constant vector e such that

(3.1) y - e ^ o on£>',

(3.2) (y — e) n Φθ onthe frontier of D' ,

(3.3) (y — e) n = 0 at a point in Df .

Proof of Claim: y n Ξ£ 0 on D'. Suppose j n > 0 (<0) at some point of
D''. Since the spherical image of Df is a compact subset of the open upper
hemisphere, en > 0 (<0) on Df for any constant vector e whose direction is
sufficiently close to that of the positive (negative) z axis. The set of such
vectors e form a solid half-cone opening upward (downward) with vertex at
(0,0,0).

The rotation surface y cannot contain an open subset of E3, hence the
intersection of any ball with center (0,0,0) and the half-cone always contains
a point not on the surface y. A vector e from (0, 0, 0) to such a point satisfies
(3.1).

On the frontier of D', which is compact, there is an m such that \y-n\ > m
> 0. Hence (3.2) is satisfied if \e\ < m.

yn takes, on D\ a maximum (minimum) M. If \e\ < \M\ then, at the
maximum (minimum) point j / ι > ^ / ι > 0 ( j / ι < ^ /ί<0). Since (y — e) n
< 0 (>0) at a zero of yn it changes sign and hence vanishes at some point
of D\

Thus a vector e exists satisfying the claim. For each such e we define a new
deformation ze — z — (e X r). ze is equivalent to z and has the rotation vector
ye = y — e. By (3.3) there is a point Po in Dr at which yen = 0. Not both
(ye'n)u and (ye-n)v vanish at Fo, for then yenu = 0 and yenυ = 0 by (2.3)
while nu, nυ and n are linearly independent. This contradicts (3.1).
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By the Implicit Function theorem there exists a neighborhood of Po in which
the set of points for which j β « = 0 is a smooth curve segment which, by
(3.2), is a subset of the interior of D\ The endpoints of the segment lie also
in Όf and we may, by repetition of the argument, extend it indefinitely in both
directions to a curve σ lying in the interior of D'. (It is not hard to show that
a must be a closed curve, but this is not explicitly needed here.)

Let σ be represented by r — r (s), — oo < s < oo. On σ, ye ri — 0 (the prime
indicates differentiation with respect to s). Since the second fundamental form
is definite, v'' ri Φ 0.

We can conclude that ye x r' Φ 0 on σ, for the angle between #•' and ri is
never a right angle on σ while the angle between ye and ri is a right angle.

Thus we can represent ye X rr — λn where λ is a scalar bounded away from
zero. Let / be a constant vector parallel to the z axis. Then (f-ZeY = / * ye

X r' = λf n is bounded away from zero; hence fze is unbounded, which is
a contradiction.

4. Surfaces with spherical image in a hemisphere

(4.1) Theorem. Let S be a surface with parameter domain of type 1
with a finite number ( > 1) of piecewise smooth boundary curves B3, - 9Bn.
Suppose

1. K > 0 on S, except on a denumerable set,
2. the spherical image of S plus boundary lies in an open hemisphere, i.e.,

there exists a constant vector e such that en > 0 on S plus boundary,
3. y-n = 0 on Bo and on each of the remaining Bt,yn either vanishes

identically or not at all. Then y = 0 on S.
Note. We do not assume K> 0 on Bt, the immersion of D in E3 need not

be an imbedding, and S, in the large, need not be a piece of a convex surface.
Throughout this paper the hypothesis 1 of (4.1) is assumed. It is an open

question whether the method can be extended to the case K > 0 on a dense
set (as in [3]).

Proof. Choose the xyz coordinate system such that the spherical image of
S plus boundary lies in the open upper half of the unitsphere with center at
(0,0,0). Then (0, 0, c)>n > 0 ( < 0 ) on S plus boundary if c > 0 ( < 0 ) . We
can choose the values of c from an arbitrary deleted neighborhood of zero on
the real line so that y> n — (0, 0, c) n Φ 0 on the union of the boundary of S
and the set of zeros of K on S.

By (3.0), (y - (0,0, c)) n Φ 0 on S. If c > 0 « 0 ) then (y - (0,0, c)) n
< 0 ( > 0 ) on Bo and hence on S. Since c is arbitrarily small, this means that
yn < 0 ( > 0 ) on S and hence that yn = 0. Then ynu = ynυ = 0, which
implies, since n, nu, nv are linearly independent, that y = 0.

(4.2) Corollary. Let the hypotheses be as in Theorem (4.1) except that
hypothesis 3 is replaced by: n is constant to first order in the deformation
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parameter on the boundary of S. Then y = 0.

Proof. Since n —> n + ε(yXn) under a deformation with parameter ε, the
hypothesis is equivalent t o j χ « = 0 o n the boundary. Hence y — (yn)n.
Differentiating along Bt we obtain

/ = (yn)ri + (y nYn .

From (2.3) it follows that (y n)' = 0 and thus yn — const, o n ^ . If y Λ = 0
on some Bt, (4.1) gives the result. If yn Φ 0 on any Bί7 then by (3.0), yn
Φ 0 on S. But the boundary integral of the identity

A n dz = 2 I I H(yn)dA, (#=mean curvature) ,
3S S

vanishes by (2.2), and we have a contradiction for, since H > 0, it follows
that yn = 0. To prove the identity let d denote the exterior differential
operator. Then

d(n dz) = dn Λ dz = dn A y X dr = —y-dr X dn = 2H(yn)dA .

Question. Does the result hold if the condition on the spherical image is
dropped?

(4.3) Theorem. Let S be a surface of type 1 with a finite number (>1)
of piecewise smooth boundary curves Bo, -, Bn. Then y = 0, if

1. K > 0 on S, except on a denumerable set,
2. the spherical image of S plus boundary lies in an open hemisphere,
3. z = c% = const, on Bt, i = 0, , m, with 0 < m < n,
4. n = dt = const, on Bi for i = m + 1, , n (i.e., Bt is a Rembs

boundary).
Proof. Along Bt, i = 0, , m, dz = 0 implies y is parallel to dr, hence

yn = 0. Along Bt, ί = m + 1, , rc, yn — const. Hence the theorem
follows from (4.1).

5. Rigidity for convex surfaces

We consider some surfaces without the restriction on the spherical image.
(5.0) Theorem. Let S be a surface defined on a parameter domain of

type 1 with piecewise smooth boundary curves BQ, , Bn. Then ^ Ξ O , //
1. K > 0 on S, except on a denumerable set,
2. S may be completed to a closed convex surface of class C" by the

addition of closed caps, each homeomorphic to a closed disk and having K > 0
at some point Po of one of the caps (say the one bounded by BQ),

3. z = 0onBt, i = 0, ,M, where 0 < M < N,
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4. n is constant on each Bt, i = M + 1, ,N.
Proof. Place the completed surface tangent to the xy plane so that

PQ = (0, 0, 0) and so that S lies in the half-space z > 0. Now the projective
transformation (of Darboux, cf. [1, §25, §95] and [3, § 1.2.3])

(5.1) JC' = J C / Z , y ' = y / z , z ' = l / z

transforms S into a surface S' with a representation in the form z! — z'(x'9 / ) .
Let the images of the Bt be B[ (Bo becomes the outer boundary). The
parameters x', y' vary in a region of type 1.

An infinitesimal bending field z! of class C" is defined on S' by z! = (X'9 Y', Z')
where

(5.2) X' = X/z, Y'=Y/z, Z / =-(r z)/z.

This implies immediately that the conditions z! — 0 hold on 2? , i — 0, , M.
nf is constant on each B\, i — M + 1, , N, because n constant on a boundary
curve implies that S is in contact with a plane along the boundary curve, and
a projective transformation preserves planes and tangency. Also, as is well
known, a projective transformation preserves the sign of the gauss curvature.
Now by (4.1), the rotation vector for z! vanishes identically; hence, by (2.2)
and the boundary condition z! = 0 on S', z = 0 on S follows from (5.2).

(5.3) Theorem. A closed convex surface with K > 0 {except on a
denumerable set) is infinitesimally rigid.

Proof. Choose a point P of the surface S at which the gauss curvature
is positive. Place S tangent to the xy plane so that P = (0, 0, 0) and S lies in
the half-space z > 0. Then z > 0 except at P.

We may assume without loss of generality that z = 0 and y = 0 at P. For,
if z* is any bending field with rotation field y*9 then z = z* — (y*(P) X r +
s*(P)) is an equivalent deformation.

We apply the transformation (5.1) to obtain an unbounded convex surface
S' of class C" with gauss curvature positive, except on a denumerable set,
which can be represented in the form z! — z!{x>', / ) on the entire x', yf plane.
P, of course, is mapped to infinity (cf. [3, § 1.2.3]).

Elementary calculation using (5.1) gives (with numerical subscripts denoting
components of vectors on the x, y, z and x'y'z! axes):

(5.4) {y'u X rζ)i = -(ru X rv\lz\ i = 1,2 ,

(rύ X K\ = \ru X rv\(r-n)/z3 .

Therefore the unit "outer" normal n of S is mapped into the unit "inner"
normal ri of S', and the spherical image of S' lies in the open "upper"
hemisphere of the unit sphere.
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As in the previous proof, (5.2) is used to obtain a bending field on S'. The
rotation field yf corresponding to z/ is given by

(5.5) y[ = s29 y'2 = — sl9 J s = — J>3> s[ = —y2, s'2 = y» si = s39

where s = z — y X r and s' = z' ~ y' X r'. (5.5) is a special case of the
transformation formula [1, §25, p. 60, (11)].

From (5.4) and (5.5) it follows easily that

(5.6) J/ JI' = [ (JX n\-y3(r.n)]/D,

where D = {n\ + n\ + (r /i)2)1/2.
Define zc = z — (0, 0, c) x r, where c is a real number. zc is a bending

equivalent to z with rotation vector yc = j — (0, 0, c). If we define sc = (sc —
yc X r) and substitute in (5.6) we obtain

( 5 ? ) D{y'e.nΓ) = [(zc ~ycXr)X n\ - (yMr n)

= (z X π)3 - ( j nk + φ-n).

Now 5 can be represented in a neighborhood of the origin in the xy plane
in the form z = z(x,y). Expansion by Taylor's theorem to terms of second
order using the conditions (2.2) and (2.3) at P shows that the first two terms
of the righthand side of (5.7) are o(x2 + y2) at P. The third has the sign of c,
since r- n > 0, and furthermore it dominates the first two terms in a neighbor-
hood of P, for it can be represented to terms of second order as

r n = -\{Lx2 + 2Mxy + Ny2) φ o{x2 + y2),

where L, M, N are evaluated at P.
It follows that y'cri > 0 « 0 ) if c > 0 « 0 ) , in some neighborhood of

infinity on S'. By (5.7) we may choose c arbitrarily close to zero so that
y'c.n

f Φ 0 on the denumerable set of points of Sf where K! = 0, i.e., if Q is
such a point we avoid the value c such that

0 = (z X 11)3 - 0> «)z + C(Γ Λ)

at Q.
Now by (3.0) y'e.n' > 0 « 0 ) on S' if c > 0 « 0 ) . Since the limit of y'e n'

as c approaches zero is y'-n', it follows that y' ή = 0. As before / = 0 on
5'. From (5.5) (cf. also [1, p. 60, (14) et seq.]) it follows that y = const, on
S. Hence y = 0 on S since y(P) = 0.

Theorem. 4̂ convex surface with a finite number of piecewise smooth
boundary curves on each of which n is const, is ίnfinitesimally rigid.

The proof is virtually identical to the previous one. We note that the
condition n = const, on a curve is preserved under a projective transformation,
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as mentioned above in the proof of (5.0). Therefore yf

cri is const, on each

boundary curve of S'. At the stage of the proof corresponding to the next to

last paragraph of the previous proof we avoid the finite number of values of c

for which y'c- ri — 0 on the boundary curves of S'.

6. Remarks

We conclude with some remarks on unbounded complete surfaces with
K > 0. Stoker [4] showed that the spherical image of such a surface lies on
an open hemisphere. From this it follows that there exists a unit vector e such
that en > 0 for all points P on S.

Theorem. Let y be the rotation vector of a deformation z such that \y-n\
= o(e n) as P —> oo. Then y = 0 on S.

Proof. Let c be a real number. Then there exists a neighborhood N(c) of
oo such that (y - ce)-n<0 ( > 0 ) if c > 0 « 0 ) when PeN(c). By (3.0)
the inequalities hold everywhere on S. Hence y- n = 0 which implies y = 0.

If the spherical image of S lies in a compact subset of a hemisphere, then
the hypothesis can be weakened to lim y n = 0, for then e may be chosen so
that en is positive and bounded from zero.

Stoker in [5] proved infinitesimal rigidity for complete unbounded convex
surfaces under the {c"r, d") hypothesis and the assumption that the deformation
z is bounded. It is not clear what the relation between this and the present
assumption on y n is.
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