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SIGN CHANGES, EXTREMA, AND CURVES
OF MINIMAL ORDER

H. GUGGENHEIMER

Let {pk(t)} be a set of polynomials with real coefficients indexed by the
degree. If the moments of a continuous function f(t) for these polynomials
vanish, that is, if

Jlf(t)pk(t)dt = 0 , 0 < k < n ,

and if f(t) does not vanish identically, then /(*) has at least n + 1 changes of
sign in (0,1). A similar result holds for trigonometric integrals, namely, if

Γ/(ί) cos 2π kt dt = Γf(t) sin 2π kt dt = 0 , 0 < k < n ,
o o

then /(ί) has at least In + 1 sign changes in (0,1) unless it vanishes identical-
ly. The theorems and the technique of proof are explained in Pόlya-Szegδ [1,
p. 65, Problems 140 et seq.].

The theorem about the connection between the vanishing of the Fourier
coefficients and the number of sign changes of a function has many important
applications in geometry. A survey of these applications is given in [2].

In this note we give a general theorem based on an order property of curves
in n-space, and during the course of this investigation we are led to an inter-
esting unsolved problem about curves in Λ-space. We also give, as applications,
some new vertex theorems in differential geometry and differential equations,
and obtain a much shortened proof and a generalization of a theorem about
intermediate values [2, Theorem 3].

1. We say that a continuous curve in Cartesian n-space

u: [Q, 1]-+Rn

is of minimal order if no (n — l)-plane intersects {«(*)} in more than n points,
or in Haupt's terminology, the set {«([0,1])} is a continuum of POW n for
the (n — l)-ρlanes in Λ-space. Hence [3, §5.2.4, 2. Satz], u is a simple arc
or a simple closed curve. In fact, the existence of a multiple point can be
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excluded by a simple continuity argument. Take an (n — l)-plane through the
multiple point and n — 1 other points. If the other points are kept fixed and
the first point is varied, there must exist situations in which more than n points
are in one in — l)-plane.

The coordinate functions of u are denoted by ut(t)9 1 < i < n.
Theorem 1. Let jit) be a continuous, real-valued junction not identically

zero on (0,1), and uii) a curve of minimal order in Rn. By ij we denote non-
negative integers. Ij

lfit)u\>it) . . 4* W dt = 0 , 0<£ij<k ,

then jit) changes sign at least kn + 1 times in (0, 1).
We assume first that /(/) has exactly kn sign changes in (0,1), which occur

at tt, 1 < i < kn, and that tx < ti+ι. If jit) should vanish on an interval and
changes sign, we arbitrarily assign one of the points of the interval as tt. Let

Ljix) = 0 , 1 < / < k ,

be the equation of the in — l)-plane through the n distinct points

»(tj+sk) 0 < s < n - 1 .

Then no other point u(f) is in the plane. Hence, the sign can be chosen so
that Liuitj+1)) > 0, and the curve u(t) must cross the plane L/x) = 0 at all
n points of intersection. If uit) would be in one closed halfplane for t in a
neighborhood of tj+Sok, then for small enough ε the plane through the uitj+sk),
s Φ sQ, and uitj+8ok + ε) must have n + ί points of intersection with u. Hence,
Ljiuit)) changes sign only at all values ίJ+sfc, 0 < s < n — 1. The function

changes sign exactly at ti9 1 < i < kn, and j(t)P(t) never changes sign. In

particular, \ j(t)P(t) dtφO. Since P(t) is a polynomial of degree k in u{(t),
0 Λ l

wn(0, by our hypothesis I f(t)p(t) dt = 0 for any polynomial p(t) of degree
0

< k in the ut(t). In particular, this holds for p(t) = P(ί), and the contradic-
tion shows that /(/) cannot have exactly kn changes of sign.

Next, we assume that /(/) has kn — I, 1 < I < n — 1, sign changes at tu

1 < i < kn — I. The same contradiction as before is obtained if we put
hn-i+i = hn-n.2 — ' - - = hn = l For / = n, the first proof applies with k
replaced by k — 1. Hence, it is impossible for f(t) to have less than kn + 1
changes of sign.
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Remark 1.1. If /(*) is periodic of period 1, the number of sign changes
in [0,1) is even. For kn = 0(mod 2), we obtain an additional sign change.

Remark 1.2. If ω(t) > 0 is a continuous function on (0, 1), the function
f(t)ω(t) can replace /(ί) in the hypothesis of Theorem 1.

2. Theorem 2. Let u(t) be a continuously differentiable curve of minimal
order, and f(f) a continuous function of bounded variation, periodic of period
l.If

t h f ftOH A = o,

< Σ h <k.

and either u is closed («(0) = α(l)) or /(O) = /(I) = 0, then f(f) has at least
kn + 1 relative extremain (0,1).

By Remark 1.1, in the second case the number of relative extrema in [0,1)

is > 2 Γ-

The theorem is non-trivial only if we assume that /(/) has only a finite num-
ber of maxima and minima in one period. This means that df(t) changes sign
only a finite number of times. Let the sign changes be fixed at tt. Then
the hypotheses of the theorem are equivalent to

j
0

V ω «ί»ω dm = o, o < Σ h <

Hence, also I P{i)df{t) = 0 for every polynomial of degree < k in the «,(/).
0

If we assume that df{t) has < kn sign changes and construct P{t) as in the

proof of Theorem 1, it follows that I P{t)df{i) Φ 0. The contradiction proves
0

the theorem.
Remark 2 1 A closed curve in Rn meets every {n — l)-plane in an even

number of points, and the first alternative in Theorem 2 is possible only for
an even n.

3. Many important applications of Theorem 2 refer to the case k — 1. If
we put u'(t) = υ(t), the integral conditions reduce to

lf{t)υ{i)dt = 0 ,

and the curve u does not appear explicitly in the formulation of the theorem.
Hence, there is a certain interest in the characterization of the curves ι;(0
whose integral curves
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u{t) = u0

are of minimal order. In the much deeper context of order geometry, the
problem appears to characterize the cotingent of continua of low orders. In
this context, necessary conditions for v have been enunciated by Hjelmslev
and proved by Deny and Kϋnneth. They proved [3, §5.3.9] that a conti-
nuous curve u of minimal order has one-sided tangents at all points (and two-
sided tangents at almost all points), and the intersection of the tangent half-
cone (the parallels to the forward halftangents starting from a fixed point)
with any (n — l)-plane is a curve piecewise of minimal order in Rn~ι.

We solve the converse problem for continuous v(t) and n = 2, 3. For higher
dimensions, we have only a conjecture to offer.

For n = 2, the Hjelmslev condition says that no point Φ 0 is covered
more than once by the rays, which start from 0 and carry the vectors ι?(0
This means that v(t) is a star-shaped curve in R2. The integral curve of a star-
shaped curve is locally convex. It is a closed convex curve if

(*) Jlv(t) dt = 0 ,
0

which is the condition on v replacing the condition on u in the first case of
Theorem 2.

We denote the determinant of the vectors a and b by [α, A], and also let

= ί + 1 ) i f

U 1, if
, if arctan v2/vι is an increasing function of /,

arctan v2/v1 is a decreasing function of t.

The curve u is convex iff p(0) and ι?(l) point to different half planes of the
line which joins u(0) and κ(l), i.e., iff

(•*) e Γι (O), jl

V(t) dίj > 0 > εL(l), jlv(t) dίj .
0 0

Proposition 3.1. A plane curve v(t) is the derived curve of a convex curve
iff it is star-shaped for the origin and (**) holds.

For n = 3, the Hjelmslev condition says that the intersection of the tangent
half cone and any plane not through 0 is a piecewise strictly convex curve. If
u is everywhere differentiable, the intersection curves are strictly convex.

Proposition 3.2. // the rays carrying the vectors v(t) form a strictly convex
cone in R\ then the integral curve u is of minimal order.

Let us assume that a given plane intersects u at »(*<), 0 < tx < t2 < tz < 1.
Without loss of generality we may assume that an eventual fourth point of
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intersection belongs to a value T > ί3 of the parameter. The four points u(tt),
i = 1,2, 3, and u(T) are coplanar iff

«i(0) + J\dt u2(0) + Jtlv2dt w3(0) + V\zdt
0 0 0

κ,(0) + J ί av,dί κ2(0) + j''v2dt u3(0) + V'viit
0 0

0 = "... ° °
["vydt «2(0) + I \dt κ3(0)

0 0

κ,(0) + JTvtdt «2(0) + Γv2dt M3(0)
0 0

where the bracket indicates the determinant of the three vectors.
By the convexity condition, the first vector of the last determinant is in the

half space spanned by 0, i (^) and υ(t2), and this half space does not contain
any vector v(i), ί > t2. A similar remark holds for the second vector and the
plane spanned by 0, v(t2) and ι;(r3) so that its halfspace does not contain any
vector v(i), t > ί3. Hence, the vectors v(t), tz < t < T, are all in one halfspace

vdt, I vdt, whose determinant cannot vanish

so that u is of minimal order.
For higher dimensions, a satisfactory result is still missing. Since closed

curves of minimal order are possible for n = 2k, some relation generalizing
(**) is needed. An interesting corollary of Proposition 3.2 is

Remark 3.3. If I v(τ)dτ is of minimal order in Λ3, then j g(τ)v(τ)dτ is
to to

of minimal order for all continuous g(t) > 0. The author conjectures that this
property remains true for all odd dimensions.

4. A number of additional theorems can be proved for k = 1. Some are
restricted for the time being to n = 2 or 3, pending a solution of the converse
problem of § 3 for higher dimensions.

Proposition 4.1. Let f(t), g{f) be continuous, of bounded variation and
periodic of period 1, g(t) > 0, and n = 2. // v(t) is continuous and star-shaped
from the origin, and

jlf(t)v(t)dt = jlg(t)v(t)dt = 0 ,
0 0

then f(t)/g(t) has at least four relative extrema in [0,1).
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ft

Here we put u(t) = u0 + I g(τ)v(τ)dτ. Then n(O) = α(l) and the hypo-
0

theses of Theorem 2 are satisfied for k = 1 and the function //g.

For π = 3, the condition Γ g(t)v(t)dt = 0 is impossible for p on a strictly

0

convex cone and g(t) > 0. Therefore, we must use the second alternative in
Theorem 2. We see that

= 0 , /(0) = /(I) = 0

implies that fit)/git) has at least 3 + 1 = 4 relative extrema for arbitrary
positive continuous git). Hence, the extrema must have different signs:

Proposition 4.2. // n = 3, /(0) = /(I) = 0, Γfit)vit)dt = 0, /(*) is conti-

and of bounded variation, and v(t) is the derived curve of a smooth
curve of minimal order, then f{t) changes sign at least four times in [0, 1).

The last result can also be obtained as a special case of
Proposition 4.3. // vif) is the derived curve of a differentiable curve of

minimal order, f(t) is a continuous function of bounded variation, and periodic
of period 1, and

then f{t) has at least n + 1 extrema in (0,1).

In fact, the hypothesis implies I u(t)df(t) = 0, and he proof then proceeds

as for Theorem 2.
5. Theorem 5. //

Jlf(tMt)dt = / J'uWdt, / = J«0Λ ,
0 0 0

then fit) is equal to its mean value f at least n + 1 times in (0,1).
Here again the result can be improved by one for even n and periodic /(/).

The function F(t) = Γf(τ)dτ - ft is periodic, F(0) = F(l) = 0 and

J l 0

F(t)u'(t)dt = 0 by integration by parts. By Theorem 2, F'(t) changes sign
0

at least n + 1 times in (0,1).
Remark 5.1. If uit) is of minimal order, so is every translate of u. The
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condition of Theorem 5 can be reworded to say that the conclusion holds if

f(t)u{t)dt — 0 for that particular translate u of u for which I uif)dt = 0.
0 0

In this form, special cases of Theorem 5 appear in the literature [2].
6. If n — 2m, a curve of minimal order can be closed. We are interested

in curves which are point-symmetric with respect to the origin. Since an (π— 1)-
plane through the origin and n — 1 generic points on the curve contains
other n — 1 points by symmetry, point-symmetric curves of minimal order
exist only for 2(n — 1) < n or n < 2. A point-symmetric plane convex curve
shall always be referred to a parameter σ, 0 < a < 1, which expresses the
symmetry by

Proposition 6. //

= 0 ,

for a periodic, continuous f(σ) of bounded variation and a point-symmetric
plane convex u(σ), then the equation

= f(a + 1 )

is satisfied at least k + 1 times in 0, — j for an even k and k + 2 times for

an odd k.

Define D(σ) = f(σ) - flσ + —). Then the function D(σ) satisfies the con-

ditions of Theorem 1. In fact, if D(σ) = 0 identically, there is nothing to prove.

Otherwise, we may assume £>(0) Φ 0. Then by Remark 1.1, D(σ) changes

sign at least 2k + 2 times in (0,1). Since the sign changes appear in pairs,

there are at least k + 1 changes in (0, — j . But the number of sign changes

must be odd, hence the result.
7. The algebraic curve u = (/, t2, - , tn) of order n in w-space is of

minimal order. In fact, the determinant whose vanishing implies the linear
dependence of u(t) on u{t^), -,u(tn) is a van der Monde determinant and
vanishes only for t = ti9 1 < i < n. Theorem 1 for this curve and k = 1
yields the theorem on moments quoted in the introduction.

The circle is a symmetric plane convex curve. The known theorems on
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Fourier coefficients result from the fact that the monomials in cos / and sin *
are linear functions of the trigonometric functions of multiples of the argument.
The vanishing of the Fourier coefficients up to order k implies the hypothesis
of Theorem 1 for u = (cos27rf, sin2τrί), and that of orders 1 to k implies the
hypothesis of Theorem 2 (see [2] for references and applications). The special
case of Theorem 6 for the circle is contained in [4] for k = 1 it is contained
in Suss' proof of the assertion of Blaschke that a smooth convex plane curve
admits three pairs of points with equal radii of curvature and parallel tangents.

The six vertex theorem of unimodular affine geometry [5] is a special case
of Remark 1.1 for k — 2 and n = 2. Proposition 4.1 for the circle is a basic
theorem of relative differential geometry [6], and it is also known for a closed
convex curve v [6].

8. Let C be a closed convex curve, which is the union of a straight segment
Co and a strictly convex and differentiable arc Cϊ9 and let the origin 0 be a
point in the interior of C. The couple (C, 0) defines a norm in the plane for

which the vectors OP, PεC, are the unit vectors. This norm satisfies the posi-
tivity condition and the triangle inequality but \\ax\\ = α| |x| | is true only for
αr>0.

The polar reciprocal of C for the euclidean unit circle of center 0 is rotated
by — ίr/2. The resulting curve T is the isoperimetrix of the geometry [7], and
is closed convex and differentiable except for one cusp at which the half-
tangents make an angle supplementary to the angle of the rays from 0 to the
endpoints of Cx. Therefore, T with a suitable parametrization can serve as a
curve u. We choose the cusp uQ as the point / = 0 on T and for the parameter
of ii 6 Γ twice the area of the sector ifoθif of Γ. It is easily checked [8] that u\i)
= v(t) is a unit vector in the (C, 0) norm, and the curve v is a parametrization
of C1 and satisfies (*)..

A differentiable curve x in the plane has a tangent image (under the Gauss
map) by its unit tangent vectors. We call a curve admissible in this Minkowski
geometry if its tangent image is in C P If an admissible curve is convex, it can
be parametrized by t as parameter of its tangent directions. The Minkowski
radius R(f) of curvature of a curve x(t) is defined by

4jL = R(t)v(t) .
at

J 2 areaΓ
R(t)υ(i)dt = 0. Hence

0

Proposition 8. In a Minkowski geometry whose isoperimetrix is rough at
one point, the radius of curvature of an admissible closed convex curve has at
least three extrema.

9. Next, in euclidean Λ-space we consider curves referred to the arc length
s as parameter, and assume that the curve admits a continuous moving frame
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, 1 < i < n, whose Frenet equations are (see [9])

&0 = £ n = 0 .

If in addition the curvatures are continuous, the curve is called a Frenet curve.
By Theorem 2, we have

Proposition 9. Given a Frenet arc in n-space with parallel tangents at its
endpoints, if the curve e2is) is of minimal order, then the first curvature kλ(s)
has at least n + 1 relative extrema. If n is even and the curve is closed, the
minimal number of extrema is n + 2. The same statement holds for kn_x(s) if
en(s) is a closed curve of minimal order.

10. Outside of geometry, our theorems have interesting applications to dif-
ferential equations. For a Sturm-Liouville problem

y" + ip(t)y = o, a < t < b,

with positive pit), let φi(t) be the eigenfunctions. Then the eigenfunction expan-
sion of a continuous function fit) defined on [a, b] is / ~ 2 ciφί- Since pit) > 0,
the acceleration of the point

is always directed towards the origin. This means that the arc *(/) is convex in
a neighborhood of any of its interior points, and therefore is a simple closed
curve completely in one of the closed halfplanes defined by the «2-axis by the
known properties of eigenfunctions [10, p. 395]. Hence uii) is convex (of
minimal order).

Proposition 10.1. Given a Sturm-Liouville operator on a finite interval with
pit) > 0. // the coefficients of indices 0,1,2 of the eigenfunction expansion of
a continuous function vanish, then the function changes sign at least three times
in the interval of the definition of the operator.

We leave for the reader the proof of the assertion that

fid) = Kb) = ffiύφMdt = Jbfit)φ2it)dt = 0
a a

implies that /(/) has at least four relative extrema in [a, b].
Another type of result can be obtained for a Hill equation

/ ' + Q(t)y = 0 ,

Qit) periodic of period π, Q(f) > 0 and continuous.

We assume that the equation admits two coexisting periodic solutions and, in
particular, that these solutions correspond to a collapsed first interval of insta-
bility [11, Chap. VII]. Then it is known that any solution of the equation
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satisfies y(t + π) = — yif), and hence the curve u{t) = 0^(0, y2W) constructed
on two linearly independent solutions of our equation is closed convex (by the
argument leading to Prop. 10.1) and symmetric with respect to the origin so
that u(t + 7r) = —«(0- Then it is easily checked that Q{t) and u(t) satisfy the
hypotheses of the first case of Theorem 2 for fc = n = 2, 0 < ί < 2τr. Hence
Qit) has at least six extrema in a double period. Since a periodic function
must have an even number of extrema in one period, we obtain

Proposition 10.2 // the first zone of instability of a Hill equation with
continuous positive coefficient Q(t) is reduced to a point, then the coefficient has
at least four relative extrema in a half-open interval of periodicity.

The same result could have been obtained from the six-vertex theorem of
unimodular centro-affine differential geometry [6], but no similar statements
hold for the higher zones of instability. An example is Q(t) = (1 + a cos t)~z,
\a\ < 1, which has only two extrema and for which the second zone of insta-
bility collapses.

The same method leads to the more general theorem:
Proposition 10.3. // the differential equation

xam) + "Σ CiXm) + λQ(t)x = 0 ,

Q(t) > 0, Q(t + π) = β(0, Qit) continuous, ct constant,

admits a Im-fold eigenvalue of the Liapounoff boundary value problem

x(π) = -JC(O) ,

and if no hyperplane through the origin in Im-space intersects the curve

x(t) = (Xjί/), •• ,*2mW)

constructed on 2m linearly independent solutions xt(t) of that boundary value
problem in more than 2(2m — 1) points, then the function Q(t) has at least Am
relative extrema in [0, π).
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