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REMARKS ON CLOSED MINIMAL SUBMANIFOLDS
IN THE STANDARD RIEMANNIAN m-SPHERE

WU-YI HSIANG

Introduction

An r-dimensional minimal submanifold Nr of a Riemannian manifold Mm

is a regularly imbedded sub-Riemannian manifold, which locally gives an
extremal for r-dimensional volume, with fixed boundary, and therefore is the
r-dimensional generalization of a geodesic curve [3, §52]. For this type of
global geometric variational problem, it is naturally interesting to find the
closed r-dimensional minimal submanifolds of a given Riemannian manifold
Mm in this respect, very few such submanifolds are known even in the sim-
plest and nicest case in which Mm is the standard sphere Sm. Intuitively,
closed minimal submanifolds of codimension one should be "fewer" than
those with higher codimension, and hence "harder" to get. So far, all the
known examples of closed minimal submanifolds of codimension one in Sm

are "homogeneous" (see [6] for definition) and they are the extremal orbits
of suitable isometry subgroups respectively.

In this short note, we shall begin with an observation that every homogene-
ous minimal submanifold Nr in Sm is algebraic in the following sense:

Consider Sm as the unit sphere in the euclidean space Rm+1. Let Nr <Ξ Sm

be a closed minimal submanifold in Sm, O the origin of R™*1 and Ox the ray
from O passing through a point x € Rm+1. Then it is clear that the cone

ONr — the union of Ox with x € Nr

is also minimal in the euclidean space Rm+1 [1, §§6.15, 10.2]. We shall call
Nr real algebraic if ONr is a real algebraic cone.

It is well known that every complex algebraic cone is always minimal in
Cn = R2n [4, §§4.2, 4.10]. However, the codimension of a complex algebraic
cone is at least two. Hence the problem of real algebraic minimal cones of
codimension one seems to be more delicate than the complex case. Another
motivation to investigate closed minimal subminifolds of codimension one in
the standard sphere 5m is due to their closed relationship with the problem of
interior regularity for non-parametric solutions to Plateau's problem in codi-
mension 1 and higher dimensional generalizations of Bernstein's theorem [2].
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In § 1, we give a complete list of one-codimensional homogeneous minimal
submanifolds in the standard spheres by using the representation theory of
compact Lie groups. We also derive a simple algebraic condition for the equ-
ation of an algebraic cone to be minimal, and then use the condition to show
the following interesting coincidence:

The classically known examples of closed minimal submanifolds of condi-
mension one in 5TO, namely, those of the type S™"1 and Sp x SQ, (p + q =
m — 1 p, q > 1), are exactly the real algebraic minimal submanifolds of
degree 1 and 2.

In addition to the homogeneous examples given in the list of observation
2, §1, we produce some new algebraic minimal submanifolds which are no
longer homogeneous. Hence the set of algebraic minimal submanifolds in Sm

is essentially larger than that of homogeneous ones. It is then quite interest-
ing to classify real algebraic minimal submanifolds of degree higher than two
up to equivalence under the orthogonal transformations. It turns out that the
algebraic difficulties involved in such a problem are rather formidable.

As a by-product, we derive the existence of some kind of a normal form
for homogeneous polynomials of arbitrary degree and arbitrary number of
variables over real closed fields with respect to the orthogonal linear substitu-
tions, and also the following theorem, which is an analogy of a theorem of
Frankel [5], on the geometry of one-codimensional closed minimal submani-
folds of compact homogeneous Riemannian manifolds.

Theorem, Let Mm == GjH be a compact connected manifold with homo-
geneous Riemannian metric, and N19 N2 two closed minimal submanifolds of
codimension one in Mm. Then either N1Γ\ N2Φ φ or Nu N2 are geodesically
parallel.

1. Observations

Observation 1. Every homogeneous minimal submanifold of Sm is real
algebraic.

A minimal submanifold Nr in a Riemannian manifold Mm is called homo-
geneous if Nr is also an orbit of a suitable isometry subgroup, G £ ISO(Mm),
of Mm. It was proved in [6, p. 5] that a submanifold Nr Q Mm is homogene-
ous minimal if and only if it is an extremal orbit of a suitable isometry sub-
group G £ ISOiM™-). In the particular case in which Mm = 5m and we are
interested, G acts orthogonally on Rm+ι. It is well known in the classical in-
variant theory that there exists a finite basis, say {Pifo, , xm+1), i = 1, 2,
• , s}, of the ring of invariant polynomials, S)(G), with respect to G. It is
clear that invariant functions of G may be naturally considered as functions
of the orbit space Rm+1/G, In the case where G is a compact linear group, we
have the following lemma:

Lemma 1. // G is a compact linear group operating on Rm+1, then the set
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of fundamental invariant homogeneous polynomials {Pi(x), z = 1, 2, , s)
separates points as functions of the orbit space Rm+1/G.

Proof. Suppose A and B are two different orbits of G in Rm+1, Since G is
compact, A, B are compact and there exists a continuous function / of Rm+1

with constant values 0 and 1 on A and B respectively. We may approximate
/ over a large compact set containing A, B by a polynomial function / . Let

where dσ is the normalized Haar measure of G. Then fΎ is an invariant poly-
nomial such that fλ(A) Φ f2(β). But it is well known that any invariant poly-
nomial can be expressed integrally in terms of the fundamental invariants
Pi(x). Hence, we must have Pi(A) Φ Pt(B) for at least one i, namely, the set
of functions {Pi(x)} separates points on the orbit space Rm+1/G.

Observation 1 follows readily from Lemma 1.
Observation 2. By using the representation theory of compact Lie groups

and some computations in the invariance theory, one gets the following list of
one-codimensional homogeneous minimal submanifolds of the standard sphere
Sm and the degree of the algebraic equations of their corresponding cones.

G

SO(m)

SOip + 1) x SO(q + 1)

50(3)

SUQ)

Sp{2)

SO(n) x SO(2)

SU(n) x SU(2)

Sp(n) x SpO)

G2

F4

Φ

Pm®θ

Pp+l®Pq+l

σ2p3 - θ

AdsuiZ)

AdSpw

Pn®p2

μn®cti*

AdGs

Λ

m

m

P + q + l

4

7

9

2Λ 1

An 1

8/i 1

13

25

Sm-i

SP x5«

50(3)/to + zύ

51/(3)/Γ2

sPa)iτ>

SO(ή) x 5O(2)

5 0 ( Λ - 2) X z2

smn) x sua)
SUin - 2) X Γ1

Spin) x SpO)

Spin-2)χSpil)2

G2/Γ

F4/Spin(8)

degree of the
equation of

1

2

3

3

4

4

4

4

6

where pn, μn and v2n are the natural representations of SO(ri), SU(n) and
Sp(n) on Rn, Cn and β n = C2n respectively. As an example, let us work out
the third case in detail.
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Let ©3 be the vector space of quadratic forms of 3 real variables, and ©3
the subspace of quardratic forms with trace zero. It is clear that SO(3) acts
naturally on ®3 as linear substitutions and ©3 is invariant with respect to the
action of SO(3). As usual, one may represent ©3 as the set of 3 X 3 sym-
metric matrices, and the above SO(3) action is then given by conjugation. It
is a well known fact that every symmetric matrix can be transformed into a
diagonal matrix by orthogonal conjugation, and the coefficients of its charac-
teristic polynomial form a complete set of invariants. By looking at the
stability subgroups of those diagonal matrices, it is quite easy to see that the
principal orbit type is SO(3)/(z2 + z2) and of codimension one in the unit
sphere, S\ of ©3. Further analysis of the orbit structure will show that the
largest principal orbit A in S4 £Ξ ©3 is characterized by tr(̂ 4) = 0 and det(/ί)
= 0.

Observation 3. Let F(x0, JC15 , xm) be a homogeneous irreducible poly-
nomial such that F(x0, xly , xm) = 0 defines an m-dimensional cone # in
Rm+\ Then <β is minimal if and only if

(i) ( Σ ^ ) ( Σ ( ^ ) Ί - 2 - ? * - . a?L.iL == 0 (mod*).

Proof. Let VF be the gradient vector field on <g9 and X, Y two tangent
vectors of % at a regular point p ontf. Then the so-called second fundamen-
tal bilinear form of # at p is given by

Bp(X,Y) r

\vt 1
where DXVF is the directional derivative of the gradient vector field with
respect to X. Hence, ^ is minimal if and only if its mean curvature

(2) m(p) = trace BP(X, Y) = 0

for all regular points p e <β. It is not difficult to show that (2) is equivalent to
(1). If we denote the Laplacian and Hessian operators by Δ and H respective-
ly, then (1) may be abbreviated as

(10 (ΔF) |FF|2 - VF HF - VF' = 0 (mod F).

Observation 4. Naturally, we shall first look at real algebraic minimal
cones of lower degrees. It is obvious that every linear homogeneous equation
is minimal, and that all linear homogeneous equations are congruent to each
other under the group of motions, and their intersections with the unit sphere
Sm are those "equators." If one tries to classify minimal quadratic cones
under the group of motions, one finds that there is exactly one minimal
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quadratic cone Q(p, q) in Rm+1 for each non-ordered integer pair p, q > 0
and p + q = m — 1. The equation of Q(p, q) can be put into the following
normal form

(3) q.{x* + x\ + . + 4 ) - p ( 4 + 1 + + x2j = 0 .

The intersections of Q(p, q) with the unit sphere Sm are exactly the classically
known examples of minimal hyper surf aces in Sm of the form Sp X Sq, p + q
= m — I. Hence, it is quite interesting to notice that those classical examples
are just the real algebraic examples of degrees one and two.

Proof. Suppose Q{x) is a minimal quadratic. One may assume that Q(x)

is already in the normal form, namely, Q(x) = Σ aiχ2iίao > ai > * > a

P >

0 > ap+1 > > am). It follows from equation (Γ) that

ΔQ-\VQ\2 — PQ HQ PQ* = k Q

for a suitable constant k. That is,

or

Direct computation shows that

a0 = ai = ' ap a n d ap + l = * = aτn\ aθ/am = ~ IIP -

On the other hand, it is easy to see that the equation for the examples
Sp X SqQSm given in the list may be written as (3). Notice that the set
Sp X SqQSmQR m + 1 = Λp+1 X Rq+1 is given as follows:

((£, 2)) € Rp+1 X Rq+1 is a point of S? X Sq if and only if

+

2. Some new examples

As one observed in §1, the classical examples of one-codimensional closed
minimal submanifolds in Sm are exactly the real algebraic ones of degrees one
and two. It was also observed that if one applies a theorem of [6] and some
representation theory, then one obtains many more new examples, which are
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again homogeneous and hence real algebraic of degree greater than two.
However, they are rather scattered dimensionally. For example, we get only
two minimal cubic equations in five and eight variables respectively and only
one minimal cone of degree six in 14 variables. It is very unlikely that they
are the only minimal algebraic cones. In this section, we shall apply the
classical invariance theory to get two new minimal cubics.

Lemma 2. The differential operator

MF= (ΔF)'\VF\~ -V

is invariant under orthogonal linear substitutions.
tn

Proof. Let xt = £ ai>i%j be an orthogonal linear substitution, so that
; = 0

A — (ai3) is an orthogonal matrix. Put

_
F(x) = F(x), Δ=

i = 0

V = (9/9*0, 9/9JC15 , 9/dxJ and H =

Then

ι,k=o dXιdxk

\ dXi I u=o dxt dxt -

Hence P F = trace Ή F = trace H F = J F, and

M F = (ZF)>\FF\2-PF'HF-VFt

Corollary. In particular, if F is an invariant polynomial with respect to a
given group G of orthogonal transformations, then so also is MF.

Example 1. Let ©4 = R9 be the vector space of 4 X 4 real symmetric
matrices with trace zero. Then 0(4) operates naturally on it. Let X be an
arbitrary element in ©1, and the characteristic polynomial of X be

χ{X) = det(Z - 31) = λ<- tr(Z)/3 + βΊ(X)λ* - βz(X)λ + det(Z)

= /4 + β2(X)λ2 - βz(X)λ + det(Z) .

It is well known that β2(X), βz(X) and det(Z) form a complete set of basic
invariants with respect to the natural 0(4) action; notice that their degrees
are 2, 3 and 4 respectively.
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We claim that βz(X) = 0 gives a new minimal cubic cone of 8 dimension
in ©J = R9.

Proof. By Lemma 2, M-βz{X) is also invariant, and hence M βz(X) can
be expressed integrally in terms of the basic invariants β2(X), βz(X) and
βA(X) = det(Z). Since the degree of M-βz{X) is 5, the only possible such ex-
pression is

M βz(X) = k β2{X).βz(X) = 0 (mod. βz(X)) .

Hence βz(X) is a minimal cubic in 9 variables according to observation 3 in

§ 1 .
Example 2. Let 2I3 be the Lie algebra of SU(4) with SU(4) operating na-

turally as conjugations. 2ί3 may be represented as the set of 4 X 4 skew Her-
mitian matrices with trace zero and is a real vector space of dimension 15.
Again, let X e 2ί3 be an arbitrary element, and the characteristic polynomial
be

χ(X) = det(Z - λl) = λ4 + Ϊ2(X)λ2 - γz(X)λ + det(Z) .

Then γ2(X), γz(X) and γA(X) = det(Z) are the set of basic invariants. The
same reason will show that γz(X) = 0 gives a new minimal cubic in 15 vari-
ables.

The above two examples show that the concept of real algebraic closed
minimal hyper surf aces in Sm is, indeed, broader than that of homogeneous
minimal hypersurfaces in Sm. Although the procedure for getting the above
two new examples is of quite special nature, there is no reason to believe that
the two cubics in the examples are "isolated" minimal. It is then quite natural
to ask the following problems of various depths.

Problem 1. How does one classify irreducible minimal cubic forms in m
variables, m > 4, with respect to the natural action of 0(m)? Or we may ask
a weaker question, namely, whether there are always irreducible minimal
cubic forms in m variables for all m > 4.

Problem 2. For a given dimension m, m > 4, are there irreducible homo-
geneous polynomials in m real variables of arbitrary high degree, which give
minimal cones of codimension one in RmΊ Or, if the degree is bounded, how
does one express the bound in terms of ml

Problem 3. Are there any closed minimal submanifolds of codimension
one in Sm which are not algebraic? Or, if possible, show that every closed
minimal submanifold of codimension one in Sm is algebraic.

Due to the fact that the differential operator M is very difficult to handle
and the understanding of forms of degree higher than two is rather poor, the
above problems seem to be far beyond our reach. We shall try instead a
somewhat modest approach to some problems related to the ones stated
above, which may help us to understand the difficulties involved.
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3. Normal forms of homogeneous polynomials under
orthogonal substitutions

It is well known that every quadratic form in n variables can be trans-
formed into a "normal form" of sum of squares by suitable orthogonal linear
substitution. As we can see in observation 4 of §1, such a simple normal
form for quadratics was very helpful for classifying minimal quadratic cones.
One will naturally ask whether similar "normal forms" with respect to ortho-
gonal substitutions exist for homogeneous polynomials of higher degree. To
be precise, let us define what we mean by "normal forms."

Definition. Let ξfn be the vector space of homogeneous polynomials in n
real variables of degree r. Then 0(ri) acts naturally via linear substitutions on
ξ>;, and the action is orthogonal with respect to the natural inner product on
£>£. A linear subspace 9i of !gζ is called a space of normal forms if $1 is a
linear subspace of least possible dimension which intersects every orbit of the
above 0(n) action. Since dim 0(ή) = n(n — l)/2, it is not difficult to see that

dim 5ft > (dim φ ; - — (n - 1)\.

Proposition 1. Let Aζ$Qr

n be a point on orbit G(A) of maximal dimen-
sion. Then the linear subspace %l(A) of all normal vectors of G(A) at A is a
space of normal forms in φj.

Proof. We need to show that SSl{A) meets every other orbit G(β), Be$r

n.
Since G{A) and G(B) are compact and disjoint, there exist A; e G(A) and
Br € G(B) such that the segment A!B' realizes the shortest distance between
G(A) and G(B). Surely, AΊΪ' is normal to both G(A) and G(B). But, on the
other hand, there exists a suitable element g <= 0(n) which is an orthogonal
linear transformation of $Qr

n such that g Ά = A. Hence, we see clearly that

In the particular case where r = 2, the principal isotropy subgroups are
the z2-maximal tori (H) of 0(n). It is not difficult to see that ^(A) = F(H) for
a suitable z2-maximal torus H ίΞ 0(n). Since all z2-maximal tori of 0(ή) are
conjugate, we see that the various subspaces of normal forms are also con-
jugate. Such phenomena cease to happen for r > 3 since the principal isotropy
subgroups of the natural 0(n) action reduce to the trivial one, {e}, for r > 3.
Hence, for r > 3, there are no "canonical" normal forms, and 9Ϊ(/1) depends
essentially on the choice of A.

As an example to illustrate the algebraic meaning of the above proposition,
m

we may take A = Σ ** for r > 3. Let
ί = l

B = Σ βii,.'.,ir

XiiXi2' ' 'Xir

where j3flt...ιir are symmetric with respect to all indices. Then a direct com-
putation will show that B e Ji(v4) if and only if
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βi,j,. ,j = βj u- i for a l l z < / \

Notice that the above n(n — l)/2 conditions are linearly independent and
hence the codimension of Ji(Λl) is n(n — l)/2.

Remarks, (i) In view of a theorem of Tarski [7] parallel arithmetric
statements are provable for every real closed field. To produce a direct alge-
braic proof of such a result for abstract real closed fields seems to be quite
difficult.

(ii) Partly due to the lack of "canonical" normal forms for r < 2 and
partly due to the rapid rate of increase of the dimension of φ£ with respect
to r, the little help obtained from the normal forms is not enough to solve the
problem of classifying minimal algebraic cones of higher degrees. For ex-
ample, it is very difficult to solve even the following very special equation:
F(x) = 0, where F(x) is an irreducible cubic form in n variables such that

Since the above equation is invariant with respect to the orthogonal linear
substitutions, we may assume that F is given in some kind of "normal form"
which amounts to reduce the number of indeterminant coefficients by
n(n — l)/2. A systematic attempt to solve the above equation will involve the
job of solving over-determined simultaneous algebraic equations of many va-
riables. So far, we have only four non-trivial solutions (cf. §§1,2), but there
is no reason why there should be no others.

4. A theorem on the geometry of closed minimal submanifolds
of compact homogeneous spaces

Theorem. Let Mm = GjH be a compact connected manifold with homo-
geneous Riemannian metric, and Nl7 N2 two minimal submanifolds of codi-
mension one in Mm. Then either NΛ Π N2 Φ φ or N19 N2 are geodesically
parallel.

In order to prove the above theorem, we need the following
Lemma 3. Let Mm — GjH be a compact connected manifold with homo-

geneous Riemannian metric, and xλ, x2 two arbitrary points on Mm. Then
there exists a one-parameter subgroup of isometries A(f) <Ξ G such that

, = xt9 δ(y, A(t) y) < δ(xl9 Λ(t) x,) < δ(x19 x2)

for all y € GjH and 0 < t < 1, where δ is the usual distance function.
Proof. Since Mm is connected, we may assume that G is also compact

connected. The homogeneous Riemannian metric on G/H may be obtained
as follows. We first impose on G a Riemannian metric such that it is invariant
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with respect to both right and left translations. It is well known that the
cosets gH are then totally geodesic submanifolds and every geodesic curve
may be considered as a part of a coset of certain one-parameter subgroups of
G. It, then, naturally induces a Riemannian metric on the coset space Mm =
G/H such that δ(x, y) = the shortest distance between the two cosets *, y in
the metric of G for all x, y ε G/H.

Without loss of generality, we may assume xΎ = {e} = [Ή] and x2 = aH.
Since both H and aH are compact in G, there exists a geodesic arc ha! which
realizes the shortest distance δ(xl9 JC2). If we translate ha! by a right transla-
tion /?Λ_!, then the length of the geodesic arc e(a/h~1) = δ(Xj, x2). Let X be
the element in the Lie algebra © of G such that the geodesic arc e(a'h-χ) is
given by {Exp tX; 0 < t < 1}. We claim that A(t) = Exp tXQG has all the
desired properties. Let y = #•# be any point in G/H. Then we have

= ί(ff, g-ιA(t)gH) < δ(e,

/ ί/ze theorem. Suppose NιΠN2 = φ. Then <5(N1? iV2) > 0. Since
Nl9 N2 are compact, there exist xx € Λ/j and x2 e N2 such that δ(xly x2) = δ(Nx,
N2). By Lemma 3, there exists a one-parameter subgroup of isometries A(t)
such that

A(t) Nλ Π N2 = φ for all 0 < t < 1

and N{ = ^4(1)^ touches N2 at jca. Let ?! be the common normal vector of
NJ and N 2 at J:2. Then we may choose suitable local coordinates (w15 u2, ,
Mm) around x2 and express the hypersurfaces NΊ and N2 by

« ι = / ( " 2 , ? " m ) 5 " i = ^ ( « 2 , • • - , " « )

respectively. Since N'l9 N2 are minimal, /, g satisfy the usual second order
elliptic equation, and hence (f-g) satisfies another second order equation which
is also elliptic. Since N[ lies completely on one side of N2, (f-g) has a local ex-
tremal at origin. It then follows from a theorem of E. Hopf (see, for instance,
[8, p. 26]) that f-g = 0 locally. By the analyticity of N[, N2 we see either that
N[ = A(\) -N1 = N2, or that Nλ and N2 are geodesically parallel.
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