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CONSTANT HERMITIAN SCALAR CURVATURE 
EQUATIONS ON RULED MANIFOLDS 

YING-JI HONG 

In this paper we prove an existence result for Kahler metrics with 
constant Hermitian scalar curvature (CHSC) on ruled manifolds. This 
is part of a research program suggested by Simon Donaldson, [6], which 
is closely related to Tian's work, [16], and Yau's conjecture on Einstein-
Kahler metrics. The main result (Theorem A) of this paper has been 
announced in [9], where a partial proof has been given. We recall the 
statement (and assumptions) of Theorem A as follows: 

[X] Assume that (M : % ) is an m-dimensional compact Kahler 
manifold with constant Hermitian scalar curvature and n : E —> M is 
a simple holomorphic vector bundle of rank n over M with an Einstein-
Hermitian metric HE- Let A denote the Einstein-Hermitian connection 
on E induced by HE- Let F(E) denote the projectivization of E over 
M. Then ¥(E) is an (m + n — l)-dimensional complex manifold. Let 
L be the universal line bundle over ¥(E). Then the Einstein-Hermitian 
metric HE induces a Hermitian metric HE* on L* over ¥(E). Thus 
there is a representative 

of the Euler class e (L*) of L* on ¥(E) induced by the Hermitian metric 
HE*- Note that the representative (^FHL,) of e(L*) on F(E) induces 
the Fubini-Study metric on each fiber of n : ¥(E) —> M. Thus, for 
each k G N large enough, 

YFHL* ) + k • ÏÏ*UM 
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is a Kahler form on ¥(E). 

Theorem A. Under the assumption [fl we assume further that there 
is no nontrivial infinitesimal deformation of Kahler forms in the Kühler 
class [LOM] on M with constant Hermitian scalar curvature. Then, for 
each k G N large enough, there exists a Kühler form on F(E) in the 
Kühler class 

-^-FH* +k- TT*U>M 

with constant Hermitian scalar curvature. 

Remark. When E is stable, it is known that there exists an 
Einstein-Hermitian connection on E by the results of Donaldson ([4] 
and [5]), Uhlenbeck and Yau ([17]). Conversely, when E is simple and 
admits an Einstein-Hermitian connection, it is known that E must be 
stable ([10]). 

Instead of proving Theorem A directly, we shall actually establish 
the following result in this paper. 

Theorem B. Under the assumption [fl we assume further that there 
is no nontrivial infinitesimal deformation of Kahler forms in the Kühler 
class [LOM] on M with constant Hermitian scalar curvature. Then there 
exists 7o > 0 such that the following statement is true: 

Given 7 > 7o there exists g7 G N such that the following statement is 
true: Given q > g7 there exists -W(7:g) G N such that for each N > N^:q) 
there exists correspondingly krTq.N\ G N such that, for each k > kr^.q:N\, 
there exists a unique Kahler form 

Nu>[k] +iddip 

lying in the Kahler class 

YFHL* + k • K*UM 

with 
IMIlfP7+4] < k-" 

carrying constant Hermitian scalar curvature. Note that ip depends on 
the parameters N and k. 

Here fW[j.j is defined as follows: 

U[k] = 0U[k] + MOVO + ^ _ W ~ 
0=1 
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with each cßg, 0 < 6 < N, being defined via the Induction Scheme 
introduced in [9]. H^ 11 #[27+4] is the _ff[27+4]-norm of ip with respect to 
the Hermitian form (metric) ù on ¥(E): 

ll^llff[27+4]^ll^ll + l|v^|| + --- + | | v 2 ^ V | | 

with ||«II being the Z/2-norm of • with respect to the Hermitian form 
(metric) to on ¥(E). 

Note that Theorem A follows from Theorem B. Actually Theorem B 
provides high regularity and good approximations for the solution of the 
constant Hermitian scalar curvature equation, depending on k G N large 
enough, on F(E). Thus standard theory of elliptic partial differential 
equations suffices to show that the solutions found in Theorem B are 
smooth. 

Roughly speaking, the idea behind Theorem A and Theorem B is 
as follows: Suppose that there is a family of Kahler metrics, depending 
on k G N, on ¥(E) with constant Hermitian scalar curvature. Then it 
is natural to expect that the "limit", as k —> +00, induces a Kahler 
metric on M with constant Hermitian scalar curvature, and induces an 
Einstein-Hermitian metric on E over M. However, to establish The­
orem A directly, we will inevitably encounter the fact that the CHSC 
equation, which depends on k G N, will tend to become degenerate 
as k —> +00. On the other hand, the "degeneracy speed" of the CHSC 
equation is well understood. Thus we start with constructing sufficiently 
good approximations for the solution of the CHSC equation, depending 
on k G N, to "improve" the degeneracy of the CHSC equation. We are 
successful in this a t tempt [9]. Actually, in [9], we have established the 
following result: 

Corollary A of [9]. Under the assumption [fl we assume further 
that there is no nontrivial infinitesimal deformation of Kahler forms in 
the Kahler class [OJM] on M with constant Hermitian scalar curvature. 
Then, for each 7 > 0 and each large N G N, there exist constants 
k(~f:N) G N and C(7.jv) > 0 such that, for k > k^.N^, we have 

( — l + m + n ) ( — 2+m+n) 

_ ( _ I + m + n) . Ck . {_llm+n}[ + NS[k] A (_^m+n)! 
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Here N^[k\ *s ^ e representative of —e(K) induced by the Kahler form, 

NU[k] = 0U[k] + iddcpQ + ^ ke 
0=1 

on F(E) with each <pg being constructed via the Induction Scheme (in­
troduced in [9]). | |«He is the C1-norm of • with respect to the Hermitian 
form (metric) Co on F(E). 

Now the next step is to show that the linearizations of the CHSC 
equation, depending on k G N, at these approximate solutions N^[k] a r e 

"almost uniformly invertitile" (effectively invertible). With these results 
established, we then show that the nonlinear part of the CHSC equation, 
depending on k G N, is effectively contractive, when expanded in a small 
neighborhood around a sufficiently good approximate solution. Hence 
a family of genuine solutions, depending on k G N large enough, can be 
found through the Contraction Mapping Theorem. 

Most calculations involved in this paper are essentially direct but 
rather lenghty (because we are dealing with rather nonlinear 4-th order 
elliptic partial differential equations). We introduce certain notation 
in Section II to make most expressions more effective and easier to be 
handled with. Certain basic results, used in [9] and to be used in this 
paper, will be proved in the Appendix. Notation of [9] will be retained 
in this paper. 

I. N o t a t i o n and s o m e fundamenta l results 

To make this paper more self-contained we begin with some concepts 
and notation introduced in [9]. 

Note that the Einstein-Hermitian connection A on E defines one 
smooth distribution % of horizontal spaces on F(E): 

T(F(E)) = V®U. 

Here V is the sub-bundle of T (F(E)) over F(E) consisting of tangent 
vectors which are tangential to the fibers of TT : F(E) —> M. Let V*-*' 
denote the maximal sub-bundle of T* (J?(E)) over F(E) whose action 
on H. is identically zero. Then the decomposition T (F(E)) = V © % of 
T (F(E)) over F(E) induces the following corresponding decomposition 

T* (F(E)) = V[*] © ir* (T*(M)) 
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of T* (F (E)) over F (E). Thus we have the following decomposition 

A*T*{F{E)) =Cv®Cm®CM 

of A*T* (F(E)) over F(E). Here Cv = A*VM and CM = A*TT*T*(M). 

Besides Cm is the sub-bundle of A*T* (F(E)) over F(E) consisting of the 
mixed components of A*T* (F(E)). Thus we have the following diagram 

Cv <^~ A*T* (F{E)) - ^ » CM 

of projection maps over F(E) such that id. = Tlcv © LIem © TlcM on 
A*T* (F(E)). Let r (P(E) : K) denote the space of smooth M-valued 
functions on F(E). We introduce one Hermitian form (metric) Co on 
F(E) by setting 

ù = UCv {^bFHL* ) + TT*UM-

Note that the derivation operator 

d : r (F(E) : M) —• T (P(E") : T* (P(#)) <g> R) 

can be expressed as 
d = G?y + dM 

in which 
dy : r (F(E) :R) —>• T (F{E) :R®V[* 

and 
rfM:r(P(E) :R) —>T(F(E) : R <g> n* (T*(Af))). 

Let dy and dM be respectively the adjoint operators of dy a n d du with 
respect to the Hermitian form (metric) to. Then we have 

A = d* o d = Ay + A M 

in which Ay = dv o dy and A M = dM o djw- Similarly we have d = 
dv + 9M and 9 = 9y + <9M- Let Ay and AM be respectively the adjoint 
operators of 

and 
TT*LOM A 
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on ¥(E) with respect to the Hermitian form (metric) Co. We will use 
the symbols (dd)v and (dd) M to denote respectively Hcv ° (dd) and 

nCMo(aô): 

(dd)v = Ucv°{dd) and {Bd)M = UCMo(dd). 

Similarly we use the symbol (dd) to denote Ilcm ° (dd) : 

(dd)m = UCmo(dd). 

Then we have the following results. 

Propos i t i on I .A. Given f G T (¥(E) : M) we have the following 
equalities 

t.Avo(dd)vf = ^ -

and 

i-AMo(8d)Mf = - ¥ - . 

Propos i t i on I .B . A M ° A y = A y o A M -

These results will be proved in the Appendix of this article. 
Since the restriction of (^FHL* ) on each fiber of TT : F(E) —> M 

is simply the Fubini-Study Kahler form, there is a well-defined vector 
bundle W over M whose fiber over each point z G M is the eigen-
space of the lowest non-zero eigen-value of the (Fubini-Study) Laplacian 
on 7[~1(z). On the other hand, integration along the fibers maps one 
smooth function on ¥(E) onto one smooth function on M. Thus for 
each smooth M-valued function / G Y (F(E) : M.) on F(E) we have 

f = Hf)®a(f)®ö(f)i 

in which (<T(/) : a(f)) G T (M : R) © T (M : W) and the restriction of 
â(f) on each fiber 7r_1(z) of n : F(E) —> M is orthogonal to both 
the space of constant functions on f~l(z) and the space Wz. Here 
r (M : W) is the space of smooth sections of W over M , and Wz is the 
fiber of W over z G M. Note that the smooth distribution H. defines 
one connection V ^ on the fiber bundle TT : ¥(E) —> M preserving the 
bundle W over M. 

Now we state an important result about a special kind of quadratic 
combination of traceless Hermitian quadratic forms. 
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Proposition A of [9]. Assume that ({J1 and P(C") are respectively 
endowed with the standard Hermitian metric H = ^ öaß • wa • Wß on 
C™ and the Fubini-Study metric on P (Cn). Then for any traceless Her­
mitian quadratic form q = Y qaß • wa • Wß on C" (with Y g77 = 0) the 
function 

-47T • (X) 5aß • Wg • Wß) • Yl g«7 • Q",ß -Wg-Wß 

(E<W* • wa 'Wß)2 

(4TT + 2nn) • ( ^ qaß • wa • wßf 

(Y Öaß 'Wa -Wß) 

on P (C" ) is orthogonal to the eigen-space of the lowest non-zero eigen­
value of the (Fubini-Study) Laplacian on P(C n ) . 

This result can be expressed equivalently in the following way: 
Letups = —-^ddlogH be the Fubini-Study Kahler form on P(C"). 

We define the function Q (-^ : -^) on P (Cn) as follows: 

( - l+n) (-3+n) 

Then the function 

-(2n-n-§)-(2ir.n-§)+Q(§:§) 

on P (C" ) is orthogonal to the eigen-space of the lowest non-zero eigen­
value of the (Fubini-Study) Laplacian on P(C n ) . 

Actually for any traceless Hermitian quadratic form q = Y laß ' wa • 
Wß on C" we have 

- (2TT • n • jj) • (2TT • n • §) + Q {§ : §) + 4TT2 • £ Qaß • Qßa 

= -TT • (-47rn • id. + AF_s) ( & • £ ) • 

Here Ap_s is the Laplacian operator induced by the Fubini-Study Kahler 
form UJFS on P(C"). Note that the constant function An2 • £ Qaß " Qßa 
on P (Cn) associated with q = Y laß ~wa -Wß only depends on the unitary 
group orbit of q. 

Remarks. Some remarks about this Proposition now follow. 
• Note that the eigenspace of the lowest non-zero eigen-value Ann of 

the (Fubini-Study) Laplacian on P (O1) simply consists of the quotients 
of traceless Hermitian quadratic forms on C" by the Hermitian metric 
H = Y daß ' wa ' Wß on C™. It is well-known in Kahler geometry that 
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this eigenspace represents the tangent space at i f = ^ öaß • wa • Wß of 
the moduli space of Einstein-Kahler metrics on P (C"). 

• Though in this Proposition we only consider a special kind of 
quadratic combination of a single traceless Hermitian quadratic form 
q on C n it is obvious that similar result holds for the same kind of 
quadratic combination of two possibly different traceless Hermitian qua­
dratic forms on C n . We can infer this easily by considering the infinites­
imal deformations of q. This simple corollary will be referred to as the 
infinitesimal version of the Proposition above. 

• We now indicate the power of the above Proposition (and its in­
finitesimal version) briefly. When dealing with the CHSC equation, 
depending on k G N, on F(E) we often encounter some special kind of 
quadratic combination of sections of W over M. At first sight it may 
seem that such kind of nonlinear combination of sections of W con­
tributes nontrivial sections of W over M. However, in reality, such kind 
of (nonlinear) quadratic combination of sections of W over M only con­
tributes the zero section of W over M as indicated by the Proposition 
above. It is this interesting phenomenon which makes the Induction 
Scheme developed in [9] possible. 

Now we set 
O - M 

" M = — r ra! 
and 

o = <i>(-lw") (n<y (^ i^)) ( " 1 + r a )
 A r ^ 

(—l + ra + n)! (—1 + n)! m! 

Let Am a xT* (F(-E')) denote the trivial bundle over F(E) consisting of 
differential forms on P(£") of maximal degree. Then we can identify 
functions on F(E) with sections of Am a xT* (P(#)) over F(E) through 
the following map 

Similarly we can identify functions on M with sections of / \ m a x T* (M) 
over M through the map 

Here /\maxT* (M) is the trivial bundle over M consisting of differential 
forms on M of maximal degree. Besides functions on ¥(E) which are 
constant along the fibers of n : F(E) —> M will be identified with 
functions on M. 
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We now recall the main result of [9] briefly. Let 

oU[k] = f ^FHL* +k- TT*U)M 

and 0H[k] be the Kahler metric on ¥(E) induced by the Kahler form 

0(jJ[k]- Suppose that , for each k G N large enough, w^j is the (possible) 
Kahler form (lying in the Kahler class [0

w[fe]]) o n ̂ {E) which carries 
CHSC. Let K be the canonical line bundle of F(-E'), and S^ the repre­
sentative of -e{K) = e (K*) induced by uj[k] on F(E). Then the CHSC 
eqaution for w^j is as follows: 

(—2+m+n) (—1+m+n) 

£\ki A T-^ TT = ( - 1 + m + n) • ck • —^ - . 
m ( - 2 + m + n)! V ' k ( - 1 + m + n)! 

Here the constant Cfc, depending on k G N, is determined topologically 
by the following identity: 

(—2+m+n) ( — L+m+n) 

[ % ] A ( "ol M M = / ( - l + m + n ) - c f c - ^ 
h(E) ( - 2 + m + n)! P(E) ( - 1 + m + n)! 

Let KM denote the canonical line bundle of M. It is easy to see that ck 

admits the following asymptotic expansion: 

( - 1 + n) - n 1 m -e(KM) , ^lu-2\ 
ck = i—: T + T ' i—; T ' \- O (k ) . 

(—1 + m + n) k (—1 + m + n) LOM 

Here the constant — — ^ = — ——^ is defined through the following 

COM UM ° ° 
equality 

e{KM) uM [ -e(KM) A J~1+m) 

u U>M ml M m ( - 1 + m)! 

Let FJJE be the curvature form on M induced by the Einstein-Hermitian 
metric on E. Note that the Einstein-Hermitian condition implies that 

(^*)"Ac4-1+m) 

(E-H) + {^FHJ-l+n)
 AJ~1+^ A^trace^i^) 

= 0. 
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Let HM be the Kahler metric on M induced by the Kahler form COM-
Since HE is Einstein-Hermitian it can be checked directly (using the 
Special Coordinate System introduced in the Appendix) that 

1 

—ddlogdet 0H[k] =n- {^FHht) + 7r*trace(^JFff£) 

+ 7 r * t r a c e ( ^ ^ M ) + 0 C M ( A ; -
1 ) 

+ 0Cm{k-2) + Oev(k-2). 

Here FHM is the curvature form of the holomorphic tangent bundle of 
M induced by the Kahler metric HM on M. In [9] it is shown that the 
asymptotic expansion 

, -ÄAJ. , V ^ idd(j)0 

ö=i 

of the (possible) solutions, depending on k G N large enough, of the 
CHSC equation on F(E) can be uniquely determined (solved) by choos­
ing the M-valued functions <j>$ and <f)\ on T(E) satisfying the following 
conditions: 

cr((/>o) = 0 = â(4>o) and ò"(</>i) = 0 

so that <j>Q = â((j>o) and <f)\ = â(4>i) © o(<p\). Here each <pg is a smooth 
M.-valued function on F(E). Because this asymptotic expansion is in­
ferred through expanding the CHSC equation for u;^] in the powers of j 
Corollary A of [9] then follows directly from the existence result of the 
asymptotic expansion of the (possible) solutions, depending on k G N 
large enough, of the CHSC equation on F(E). Because of this we will 
call, for each JVeN, 

N 
iddcßß 

Nu[k] = oU[k] -t- IOOÇO -i- ^ — g r 

1 
W[/t] = 0U[k] + iddcßo + ^ 

an approximate solution for the CHSC equation depending on k G N. 
We will use NHu.i to indicate the Kahler metric on F(E) induced by 
the Kahler form Nuj^y 

Now we introduce certain linear operators which will appear nat­
urally in the next section. We define the operators Qy (• : <p\) and 
Qm (• : 4>i) o n ̂ (E) by setting 

Qv(V^i)-£ i^j?Aa,S 

= i {Bä)v^M{Bä)v4>i A f g ^ A ^ 
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and 

Q m ( ^ ^ l ) - ' ( V l + B ) , ^ 

= » (ä?)ro v> A i (äa)m ^ A ^ X l ^ - i + T T 

\A/> G r (P(E) : M). By the infinitesimal version of Proposition A of [9] 
we have 

(1.3) a ( - ^ • ^ § M + Qv (a (V) : </>i)) = 0 

Vi/)ET (P(£) : M). Besides we define the operator QM (•) on F(E) as 
follows: 

m! 
(-2+m) 

QMW-e(L*)(-1 +")A^-

= e (L*)(-1+") A p ^ A i BdM^A i BdM fo + UcMe (L*) 

Then we have the following simple result. 

Lemma I.A. Assume that f G T (M : R). We define the smooth 
function QM (/) on F(E) as follows: 

A , , . e (L* ) ( - 1 + " )AwS _ e ( L * ) ( - 1 + n » A ^ 2 + m )
 A . / ^ , A 

QMU)- (_i+„)!.m! - (-l+n)!-(-2+m)! A * WM / A 

(n • nC Me (X*) + if*tracedFHE)). 

Then for $ G T (P(#) : M) we ftave 

A v Q f W ) =Q M (âW). 

This result can be expressed equivalently as follows: 

AvQtàm • e (£*)(-1+"> A ffi = ^ g g A i (äa)M â WA 

(e (L*f + e (L*)("1+") A Torace (£FH £) 

V^ G r (F(E) : R). 
Besides for ip G T (F(E') : R) w/e ftave 

AyQM(â(V))Gr(M:Ty). 
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Proof of this result can be found in the Appendix of this article. 
Lemma LA will only be used in the next section. 

Now we discuss the relation between the invertibility of A M on 
L (M : W) and the simplicity of E over M. Let <1A_ denote the exterior 
derivation operator acting on smooth Horn (E : £')-valued differential 
forms on M induced by the Einstein-Hermitian connection A on E. Let 
d*A denote the adjoint of d,A_- Then by the Kahler identities (for sections 
of Horn {E : E) over M) we have 

d*Aod,A 
d*A ° 9A = - ^ = d*A o 8A, 

because the WM-component of the curvature form of Horn (E : E) is zero 
by the Einstein-Hermitian condition. Here 8A and BA_ are respectively 
the d-component and the ô-component of <IA} 

d,A = 8A + BA-

Thus E is simple if and only if the kernel of d*Aod,A on Y (M : Horn {E : E)) 
only consists of transformations of E of the following form 

c • id. 

where c G C. 
Now we discuss the action of A M on T (M : W). Let H denote the 

standard Hermitian metric on C™. Note that the space of quotients 
of traceless Hermitian quadratic forms on C" by H can be naturally 
identified with the space 

i • su (Cn : H) 

of traceless linear Hermitian transformations of C". Actually the stan­
dard Hermitian metric H on C n is preserved by SU (C 1 : H), and we 
have the following Lie algebra decomposition 

si (C") = su (Cn : H) ® i • su (C1 : H) 

of si (C n ) . Since the Lie algebra of PGL (C") is naturally isomorphic to 
si (C n ) , the above Lie algebra decomposition is thence valid for the Lie 
algebra of PGL (C"). Now we note that for s G Y (M : W) 

$ o A M s = d*A o dA&s. 
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Here $ : W —> i • su (E : HE) is the natural isomorphism between the 
bundles W and i • su (E : HE) over M as described above. Thus E is 
simple if and only if the kernel of A M on T (M : W) is trivial. 

Now we introduce Sobolev spaces. Assume that 

• G r (F(E) : <g>ör* (F(E)) 
Here 9 G Z and 6 > 0. We will use the symbol ||«|| to indicate the 
L2 norm of • with respect to the Hermitian form (metric) Co on F(E). 
Besides we use V to indicate the covariant derivation operator 

V : 0 r F(E) : ®6T* (¥(E)) 
e 

—> 0 r (F(E) : (®0T* (F(E)) ®T* (F(E)) 
e 

so that for s G 0 r (F(E) : ®eT* (¥(E))) we have 
e 

(Vs)x = Vxs 

V x e T (F(E)). Assume that f e T (F(E) : R). Given 7 G N we define 
the if™-norm of ip as follows: 

HWHM = H\\ + IIVVII + --- +II v ^ | | . 
Thus iï"W is the Sobolev space obtained by completing the space 
r (¥(E) : R) with respect to the i?M-norm. 

Now we consider the infinitesimal deformation operator VM for the 
constant Hermitian scalar curvature equation on (M : % ) . Note that 

( - l+m) , . (-1+m) 

( 1 j _ \ ( — 2 + m ) 

+ ( ffiS A i (OÖ)M . Antrace ( £ F H J . 

Standard theory of elliptic linear partial differential equations shows 
that 

\\f\\Hm<c-\\vMf\\ 
V/ G r (M : M) satisfying the normalization condition 

/ • Q M = 0. 
M 

Here C > 0 is one constant independent of N and k. 
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II. Linearizat ions of the constant H e r m i t i a n scalar 
curvature equat ion at approx imate so lut ions 

Our goal in this section is to establish (11.12) and Proposition ILA. 
These results will be used in the next section to establish apriori es­
imates for ip G r (P(P) : R) satisfying the normalization condition 

ip • Q = 0. Most efforts in this section are devoted to the simplifi-
P(E) 

cation of the expression of the linearizations of the CHSC equation at 
approximate solutions. Before proceeding we introduce some guidelines 
for the simplification process. Two linear partial differential operators 

Plk] 
A y O (-47T •n-id. + AV)+AVO^L + ^ o A V + ^O^M. 

and 
1 V M 

k • k O M 

are of central importance. Note that P^ j , when acting on the different 
components of T (F(E) : R) = F (M : R) © T (M : W) © à o F (F(E) : R), 
has different degeneracy speeds because P[fc] depends on the parameter 
k G N. When P[fe] acts on à o F (F(E) : R) we have at least L2 esti­
mate, independent of k G N, as will be indicated in (III.2). But when 
P[fc] acts on r (M : W) the estimate we have, as will be indicated in 
(ULI), does have degeneracy speed of magnitude O (^) . So when deal­
ing with the linearizations of the CHSC equation at approximate solu­
tions any partial differential operator, with degeneracy speed of magni­
tude < O {JY) , must be considered carefully when acting on F (M : W). 
Similarly when dealing with the linearizations of the CHSC equation at 
approximate solutions any partial differential operator, with degeneracy 
speed of magnitude < O ( f ^ ) , must be considered carefully when act­
ing on r (M : R) .It turns out that when computing the linearizations 
of the CHSC equation at approximate solutions two different leading 
linear partial differential operators are found: 

• When acting on F (M : W) © à o F (P(P) : R) the leading linear 

partial differential operator is km • ^—8™
 n>' • Pnu. 

• When acting on F (M : R) the leading linear partial differential 
operator is | ^ • (—2 + m + n)\ • ^ i £ . 

It is exactly this phenomenon which makes the derivation of the 
linearizations of the CHSC equation at approximate solutions rather 
tedious: When considering the linearizations of the CHSC equation, 
depending on k G N, acting on different components of F (¥(E) : R) 
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attention to be paid to the various partial differential operators involved 
is inhomogeneous - it is done according to the magnitudes of degeneracy 
they carry. 

•Some notation 

It takes lengthy calculation to express the constant Hermitian scalar 
curvature equation effectively. Here we want to introduce some notation 
to simplify the expression of the linearizations of the CHSC equation 
at approximate solutions. Suppose that U is one coordinate open sub­
set of T(E). Let r (U : R) denote the space of smooth functions on U. 
Then we can form the ring r (U : ffi) [-r] consisting of polynomials in 
the parameter ^ with coefficients in V (U : M). Note that the sub-class 
of elements in T (U : R) [^] with the zero-th order terms being nowhere 
zero on U forms one multiplicative monoid. We will denote this multi­
plicative monoid by j/M [^]. 

Now we elaborate on the genuine meaning of the symbol 

oz (*-') 

introduced in [9]. Here Z is one vector bundle over F(-E'), and 9 G Z 
satisfies 6 > 0. We start by treating the case e = 0. Oz (k~0) is used 
to indicate one family of smooth sections of Z over F(-E'), depending 
on the parameter ^, such that over each coordinate open subset U of 
f(E), Oz (k~°) can be expressed as the quotient of one polynomial in 
-ç, with "coefficients" in T (U : Z), divided by some element in jjM [^]. 
In our context, Z is usually related to some natural bundle over F(E) 
whose transition functions are certainly independent of the parameter 
p Thus it is clear that Oz (k~°) admits formal power series expansion 
in j with "coefficients" being globally defined smooth sections of Z over 
¥{E). Now, for 9 > 0, Oz {k~e) simply means k~e • Oz (k~0). We 
also adopt the convention, as in [9], that when Z is the trivial bundle 
R x F(E) over F(E) the symbol O (k~e) will be used instead. 

We demonstrate the ideas by considering the case where Z is the 
trivial bundle Z = R x ¥(E) over ¥(E) related to the holomorphic 
tangent bundle of F(E). Assume that 0H[k] and NH^ are respectively 
the Kahler metrics on F(E) induced by the Kahler forms 0o;nu and 
NiO[ky Then det 0H[k] and det NH^ are essentially not functions on 
F(E). But 

det NH[k] 

det 0if[fc] 
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is. Thus detNH[k] *s o n e element of the form Oz (k ° ) . However it is 

usually impossible to express d e t
 N

H
 [k] as the quotient of globally defined 

functions on ¥(E). This example is central to our consideration: all the 

other cases considered in our context are similar to this situation. 

Similar consideration applies to partial differential operators on F(E). 
Suppose that U is one coordinate open subset ofF(E). We will use the 
symbol j/2) to indicate the class of linear partial differential operators 
on U, acting on functions, with the zero-th order terms being identically 
zero. Thus for D G jj2) we have 

D(f) = D(f + constant) 

for any smooth function / G T (U : ffi) on U. The symbol ^2)® is then 

used to indicate the sub-class of linear partial differential operators in 

jj2) with order < d. ^2) [j\ is thus the ring of polynomials in ^ with 

"coefficients" in ^-2) . We will use the symbol dDt" (k~°) to indicate 

one family of linear partial differential operators acting on functions on 

P(E'), depending on the parameter ^, such that , on each coordinate 

open subset U of f(E), dDt" (k~°) can be expressed as the quotient 

of one element in ^-2) [T] divided by some element in jjM [^]. Be­

sides it is always assumed that dDt" (k~°) admits formal power series 

expansion in ^ with "coefficients" being globally defined linear partial 

differential operators on F(E). Actually, in our context, d D 0 (Ar°) al­

ways appears as some natural partial differential operators acting on 

functions related to certain natural bundles over F(E) whose transition 

functions are certainly independent of the parameter p Now, for 9 > 0, 

the symbol D® (k~ ) will be used to indicate one element of the form 

k-0- dD®{k-Q). 

Note that the class of linear derivation operators along the fiber 

directions of the fiber bundle n : F(E) —> M is closed under the Lie 

bracket operation. We will use, for each 9 > 0, the symbol dDy (k~e) to 

indicate one linear partial differential operator of the form dD® (k~0) in­

volving only derivation operators along the fiber directions of 

7T : ¥{E) —> M. 

Here we indicate a simple fact which will be used frequently but 

without being mentioned explicitly in the rest of this section: Given a 

function / G T (M : W) the L2 (or L°°) norm of dB\r ( Ä T ° ) / on each 

fiber of n : ¥(E) —> M is controlled by the L2 (or L°°) norm of / on the 

same fiber in a uniform manner over M. Because of this we sometimes 
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write (less precisely) 2L>0 (A;"0) o u for 2L>0 (A;"0) o dD% (k~0) o u. 

•Explicit expression of the linearizations of the CHSC equation 
at approximate solutions 

Assume that ip is a smooth M-valued function on F(E) satisfying the 
normalization condition 

(N) 4>-n = o. 
~P(E) 

Let 

NU[k] <t-tp>= Nu>[k] + t • iddip 

and NH[kj < t • ip > be the Kahler metric on T(E) induced by 

Noj[k] < t • ip >. Then we have 

d 
~n ((Arw[*]<*-^>) 2+m+n A(-ck- Nid[k]<t-il» + ̂ ddlogdet N H[k]<t-ip>)j ^=Q 

in which 

Ne[k] (V) = ( - 2 + m + n)- Nu>[-*+rn+n) A idd^ A ̂ ö ö log det NH[k] 

(in) + M+m+n) A -Bd f l ( d e t j vf [ f c ] <J^> } |^) 
V ; " [k] ^ detNH[k] 

- ck • ( -1 + m + n) • Nu)^2+m+n> A iddip. 

Note that ^ 6 ^ is the linearization of the CHSC Equation at the ap­
proximate solution NLO[ky 

In the following computation the representative (J^FHL*) of e (L*) 
on P(E") will be fixed. Thus e (I/*) will be identified with (^FHLt ) when 
there is no confusion. 

We will now compute those terms on the right-hand side of (II. 1) 
more explicitly. Note that 

(II.2) log det NH[k] = log det 0H[k] + \ • ( ^ + ^ ) + O {k~2) 
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and 

&{detNH[k]<t-il>>)\t=Q 

det NH[k] 

^ + i-Qv(Tp--4>i)-i + ] : - ^ + o(k-i) 

(II.3) + | - % ^ + ^ - ^ # M + Q M W 

, J _ -AMip (_rn
 e(E) i &M4>O 

~r fc-fc ' 2 ' ' " ' U M + 2 

+ 2 ^(A;- 2 )V+ 2 i} 0 (A;- 3 )</>. 

Let Cfe = (—1 + m + n) • Cfc. Then we have 

(-2+m+n) 

2 + m + n)! (_2 + n) 

n ( - i + „ ) . <-2+">+«>< 
- 1 + m)! • ( -1 + n)! 

. e ( j L *) ( - l+n) A ( A , . W M ) ( - l+H 

/ ! , N ( -2 + m + n)! 
- n ( - 1 + n ) - ( m - l ) ! - ( - l + n ) ! - ( - 1 + n ) 

_ L ( _ 2 + n ) A ! a ^ Ì A (_1+ra) 
A; 

1 e(üfM) ( -2 + m + n)! 
+ - • m & ujM ( - l + m ) ! - ( - l + n)! 

(II.4) -e(L*){-1+n) A(k-ioM){~1+m) 

(-2 + m + n)! 
— n — 1 + n) • rT -v ' ( -2 + m)!-n! 

•{e(L*)+i8dfo)n A (k • üüM){-2+m) 

(-2 + m + n)! 
- n ( - 1 + n ) - m ! - ( - 2 + n ) ! - ( - 2 + n ) 

_e ( r ) ( - 3 + n ) A iddfa A 

A; 
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1 e (KM) ( -2 + m + n)! 
_|_ — . yyi . . 

k UJM frû ' (—2 + n)\ 
• e(L*)(-2+")A(fc-WMr 

+ km • 0 A ( -2+n) T »( P ( Ê ) ) (k )/\UM 

+ k • 0A(-2+m+n)T*(p(£;)) [k ) • 

By using the equalities (II.2)-(II.4) we can now express (II. 1) more 
explicitly. We introduce one linear partial differential operator 

£[fc] : r (F(E) : M) —> F (F(E) : AmaxT* (F(E))) 

on ¥(E) as follows: 

£[fc]^ =-fe2TTOr-e(i*) (-3 + n )A(fc-c,M)mAi(99)v^A^(ä9)v logdet 0HW 

+ ( -^7-^L) ! -^ ) ( " 2 + n ) A(fc^M) ( - 1 + -V<^) M ^A^(^) y l0gde t o g w 

+(-1
(;^-+^L)!-

e(L,)("1+n)A(fc^M)(-2+m)A<a9)M^A^aaiogdet0gw 

+{5|±f JSr-e(^)(-2+")A( f c .c,MrA^(öa)y(^) 

+{5|±iSr-e(^)(-2+")A( f c .c,MrAè(Sa)y(i.%*) 

+ ( - 1
( ^7- + r^ ) ! -^) ( - 1 + " ) A(fe^M) ' - 1 + ' " 'A^(äa) M (^) 

+ ( - ^ 7 - ^ L ) ! - ^ ) ( - 1 + " ) A ( f e ^ M ) ' - 1 + ' " ' A ^ ( ä a ) M ( i . ^ ) 

+{5 |±f J ^- e (L*) ( - 2 + " ) A^^ 

- n ( - l+n ) . ((:
2

2+^+^,' •e(L*)(-2+")A(fc.cM)'"Ai(äa)v^ 

- n(-l+n)- ( J ^ + f f L ) . -e(L')<-1+"> A(fe-o,M)(-1+'") Ai(äa)MV 

+ i ^ ^ - ( _ ^ 7 _ + r ^ ) ! - ^ ) ( - 1 + " ) A ( f e ^ M ) ' - 1 + ' " ' A i ( ä a ) M ^ 

- n ( - l+n)- ^ ( - ^ •e(L*)"A(fc^M)(-2+'")Ai(aa)M^. 

Then we find that 

N&[k]W =£[k]'<P + *£[k]'<P 

(II.6) + £WV + A:m • e (L*)("1+") A uM • X (k~2) V 

+ km • e (JL*)(-1+™) A ÜÜM •
 4D® (k~3) V, 

in which the linear partial differential operators 58^] and £[£.], bring­
ing r (F (E) : JR) to r(P(E") : AmaxT* (F(£))), are respectively defined 

(II.5) 
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as follows: 

»[* ]^ ^+^ . (_3 + „) . e ( L.) ( -4 + ») A i ( f£k* l A ( f c . a ; M )« . A 

i(dd)vi>A^(dd)vlogdet „H[k] 

' - 2 + m + n ì !
 :(L*)(-2+n)A(fe-WM)(-1+m)Aj(a9)yVA2V9aiogdet 0ff[fc] 

(II.7) 

(-2+m+n)! 
' t ' l+m)!-(-2+n)! 

J ^ + H ± | ^ . ( _ 2 + „ ) . e ( L » ) ( - 3 + n ) A î ( a 9 ) M ( / ) o A 

(fe-W M) (-1 + m )Aj(ö9)yVA2V(ä9)ylogdet0ffw 

z 2 + ^ . ( _ 2 + n ) . e ( L . ) ( - 3 + n ) A ! ( ^ t ó A ( f c . W M r A _ v ( a 9 ) ^ 

1
( ; ^ K - " + » ) l -

e ( L ' ) ( " 1 + n ) A ( f e - ^ ) ( " 1 + m ) A ^ ( ^ ) v 

2 

A F f 

1
( ;^r ( t^n ) , - ( - l+»)-e(L')(-2+")Ai(aa)M0oA(/8-a ,M) (-1 + ' " )A 

* F ( ^ ) V ^ 

7--m 

- « ( - l + ™ ) - ^ ^ - ( - 2 + n ) - e ( L * ) ( - 3 + « ) A ^ % ^ A ( f e . W M ) - A i ( 9 a ) v ^ 

^ • ë ^ f - e ( i * ) ( - 2 + " » A ( k . , M ) " ' A ! ( a a ) ^ 

(-1+n)- ( - i ;%f" ( t f f„ ) . •e(L-)(-1+")A(fc.^M) (-1+ '" )Ai(aa)v^ 

(-l+n)- (_1
(;^r (l^n),-(-l+»)-e(L')(- i !+")A 

i(9a)M</»oA(fe-wM)(-1+m)Aj(ä9)vv 

and 

( H i 

l ^ ^ . e ( L . ) ( - 3 + » > A ( f c . W M r A ^ 

+ (J,2
(
+-^)

),'-e(£')(-2+")A(fc-a;M)" ,A 

A-^(*»)v[z%£i-(-m-!^+^fl)] 

+(-1
(;^r(^n).-(-1+")-e(L')("2+")A(fe-^)( 

+ ( - 1
( ^ K - l + n ) ! - ( - 1 + " ) - e ( L , ) ( " 2 + " ) A ( f c - ^ ) ( " 1 + m ) A 

Ä ^ A - ( ^ ) m ( ^ ) 

+ ( - 1
( ; ^ K ^ n ) | - ^ ' ) ( - 1 + n ) A ( f e ^ M ) ( - 1 + ' " ) A 

f * ( â a ) M ( - ^ - ^ + Q v ( ^ i ) ) 

\ ( - l + m ) ^ 
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+ { 5 | ± ^ - n - e ( L * ) ( - 1 + « ) A , ( S a ) M ^ A ( f e . W M ) ( - 2 + - » A ^ ( a 9 ) M ( ^ ) . 

Since the detailed terms of those items on the right-hand side of 
(11.6) are still rather complicated, we need to simplify (II. 6) further. 
So we compute the term ^rôôlogdet 0H[k] involved in (II.5) and (II.7). 
Note that 

1 

—ddlogdet 0H[k] =n • {^FHL») 

(11.9) + r trace ( ^FHE J + r t r a c e ( ^FHM J 

+ OcM{k-1)+0Cm{k-2)+Ocv{k-2)J 

a n d 2̂ f (<9<9) y log det 0H[k] induces the Fubini-Study Kahler form on 
each fiber of n : F(E) —> M. (It is easy to establish (II.9) using 
the Special Coordinate System introduced in the Appendix.) Thus we 
have the following results: 

(11.7) <8WV = % ] V + km • e (L*)(-1+") A u $ • *D*V {k~2) ^ 

and 

2[k]i/> = % V + km • e (L*)(-1+") A o $ • X (k~2) i> 

(II.5) + km • e (JL*)(-1+™) A UJZ • 4D$ (k~3) V-

Here the linear partial differential operators 

%[k] : r (F(E) : M) —> T (F(E) : AmaxT* (F(E))) 

and 
£[fc] : r (F(E) : M) —> F (P(£") : AmaxT* (F(E))) 

on F(E) are respectively defined by 

» [ ^ =(-i (;a^"t), • e (L^-1+n) A (k • a,M)(-1+m) 

A£(dd) (^ V 2 

(-2+m+n)! / r * N ( - 2 + J I ) . / , \ ( - l + m ) 
(-l+m)!-(-2+n)! 

A i ( ö ö y ^ A 7 r * t r a c e ^ J F f f £ 

(ILIO) +iêm$- • M + n) • e (^*) (-3 + n ) A « ^ 

A (A; • a;M)m A \-n • i (dd)vi/> + é ( ^ ) y (^ 
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and 

W=^-ëFS3r-e(^)(-1+n)Aa,S 

A y o (—4-7T • H • 1p + Ay1p) J_ 
' 8 T T 

. A A M . A M A , A M A M . 

+S---^-Ffe^&jî- (^) ( - 1 + B ) A 
Wfc1 + m)Ai(ôô)MV 

fcm (-2+m+n)! _ , r*\(-l+n) . J - 2 + ™ ) A 

^k-k (-l+n)!-(-2+m)! e ^ J /N W M A 

(11.11) i{dd)Mil>Mk*t™e{±FHM) 
fc™ ( - 2 + m + n ) ! , „ > ( - i + n ) m 

+ fc (-l+n)!-m! e\lj > A W M 

fcm (-2+m+n)! _ J - 2 + ™ ) A „• (äfl\ ,/.A 
+ fc-fc ( - l + n ) ! - ( - 2 + m ) ! W M ^l00)M^"X 

^e (L*)" + e (L*)(-1+") A r t r a c e ( ^ J P ^ ) ) . 

Hence we have established the following simpler expression of N&UA'-

N&[k]i> =£[k]ïl> + %\k$ + £[*]^ 

(11.12) + km • e (L*)(-1+") A wM • 4 4 (A:"2) V 

+ &m • e (L*)(-1+") A wM • 4 ^ 0 (^"3) V-

•Concise expression for £[fcj + 25^ + C^j 

Now we discuss some special properties of the expression (11.12) in 
order to understand N&[k] better. We start by simplifying the expres­
sion (II.8). We have, by applying the Einstein-Hermitian condition to 
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the 4-th item on the right-hand side of (II.8), 

+ MÜL (-2+m+n)! (_l+n) 
^ k-k ( - l + m ) ! - ( - l + n ) ! *- 1^"'> 

(ILS) + E - ë f ^ - ^ ) ( - 1 + " ) A ^ . ^ f ( - ^ ^ . ^ + Q v ( ^ 1 ) ) + 
fcm ( - 2 + m + n ) ! , , - » s ( - l + „ ) m A y ^ A M / A v ^ \ 
k-k m ! - ( - l + n ) ! ^ ' A W M 2 4TT ^ 2 

+ ^A-l+^+rV..e{Lt)nAJ-2+rn) .g, J ^ ) 
k-k ( —2+m)!-n! v ' M 2-K \ /M 2 

+ F¥'(-2+m)!.n!-ra'e(L )l
 ^ H ^ J M ^ ^ M

 A 2̂  (Ö 9)M ( 2 J " 

Thus we have 

^ W =E • ("2 + m + n)\ • ̂  ( « A i l + QM W ) 

+{;.(-2 + m + n ) ! . ( - m . ^ + ̂ ).^^) 

- E • M^acefei^)! . ( _ 2 + m + n ) , . A ^ A M ^ 

+ & - ( - 2 + m + n ) ! - ^ . ^ ( ^ ) 

(11.13) +££ • ( -2 + m + n)! • ^ f ( - ^ • ̂  + Q y & : ^ ) ) 

+e- ( -2 + m + n ) . ^ . ^ ( ^ ) 

+E • X (*-°) AM^ + E • 2^0 (A"0) A ^ 
and, by applying the Einstein-Hermitian condition to the right-hand 
side of (11.10), 

%1 W=^-^±^-AMrtrace(^FHE) 

(11.14) -Ay o (-Avip + 4TT • n • ip) 

+ !Ç-2Dl (k-°) (-47T • n • V + AyV)-
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Since Vn preserves the spaces 7r*T (M : M) and Y (M : W) we infer from 
(11.11) the following results through Lemma LA and (1.3) respectively: 

%]V> krn 

k-k 2 + m + n ) ! - ^ W ^ 

(11.15) +fk-°l2D®(k-°)vM} 

and 

£[k]il> 

+f^-(-2 + m + n)!-QM(â(V)) 

(11.16) +JT-V 
2 0 fl«rVW + E ^ 2 ^ 0 ^ - O ^ W 

+iî^[^(*-vw]-
Let P[fc] denote the linear partial differential operator on P(E') defined 
as follows: 

V 
A 

A y o (-47T -n-id. + A y ) + A y o 
/s 

. ^ M A . A M A M 
H — o A y H — o 

M 

A; A; & 

V/ G r (P(i£) : R). Since preserves the spaces 7r*r (M 
r (M : W), from (11.11) we obtain that 

and 

0
 £ M ^ =km (-2+m+n)! m+n)! ,-> ~ / i \ 

+ 
km (-2+ro+w)! 

47T 

A y o Ay^i Aya(lp) 
2 

(11.17) +v-^ 
2 + QV {<! {4>) • 4>l) 

+^f^(*->W]+lî-î[^(t-VM] 
through Lemma I.A. Besides we note that 

(11.14) 
^[k]i> &[k]ä{j>) km 4 U ?-44(*-Vw-
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In order to summarize the results established so far we introduce some 
notation. We use the symbols 2D$ (k~°) * 2B\ (k~°) and 2D\ (k~°) * 
2D® (k~°) to indicate respectively the finite sums of the following forms 

2D® (jfc-°) o 2D% (k-°) 

and 
2Dl (k-°) o 2D® (k-°) . 

Then, by (11.13), we have 

a 
C[fc]^ 

k-k a 

(11.18) +frk-° 
+ — • (T 

2D®(k-0)*2Dl{k-°)a(<<P) 

2D">(k-0)* 2 J ) t ( r ° ) â W 
2Dl{k-°)AM<<p 

+{5-â[2^(*-°)AvV]. 
Finally, an application of Lemma LA to (11.13) yields: 

a 
g[fc]^ ^ • ( - 2 + m + n) ! -Q M (â (V)) 

+ F I ^ 
2 D 0 (A;"0) * 2D\ (k-°) oW) 

+ %r<T[*D*{k-°)<TU,)] 

+&-°[2B»(k-°)*U>)] 
(11.19) +frk-° 

+foi-° 
+{5-a[2^(*-°)AvV] 

and 

a 
C[fc]^ 

fc-fe O" 

(11.20) 

+ F I - ^ 

+ F I ^ 

+ F I ^ 

+ F I ^ 

2 ^ ( A ; - 0 ) * 2 £ 0 (A;"0) a (</>) 

2 ^ ( Ä - ° ) * 2D0 (fc-°) à (V) 
2D0 (A;"0) * 2D% (k-°) a (V) 

2D">(k-0)* 2 J ) [ ( r ° ) â W 
2 < (fc-o) AM^ 
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We can now summarize these results established so far in the following 

Proposition H.A. Assume that ip G T (F(E) : R). Let 

fi 

(11.21) + ¥ • * 

+ F I ^ 

XTien w/e /îawe 

a (P[fc]V>) =*»» • (- 2 +
8 :+ w ) ! • ^ (STT • n • a (^) + ^ a ty) 

+ f ^ . 2 - ( - 2 + m + n)!-QM(â(V)) 

+f^[2f lt(r°)àW 

+¥k-v 

+^-a[2^(*-°)AvV] 
and 

^(p#)^- ( " 2 r ) ! -^FW 
, fcm (-2+m+n)! 

(11.22) 

•a 

+ ¥ • * 

+ F f c ^ 

+ F f c ^ 

+tk-â 

+ J S - â [ ^ ( i f e - 0 ) a W ] + K - â [ ^ ( * - 0 ) ^ W ] 

^ ( f c " 0 ) * 2 £ 0 (A;"0) a (</>)" 

^ ( f c " 0 ) * 2D® (k-°) à (V)" 

2 i } 0 (jfc-°) * 2 D y (jfc-°) a (</>)" 

2D®(k~0)* 2Dl(k-°)ä(tP) +TTk-â 

+tk-à X (k-°) AMÌJ 

+JS-â[^(ife-o)A^]. 
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Moreover, 

a 
VMÔ'(V') p [ ^ = E - ( - 2 + ̂  + ™)! 

+E-â[ 2 ^(fc-°)âW] 
(11.23) km 

k 

k-k 

km 

k-k 

km 

k-k 

Ò 

Ò 

Ò 

Ò 

42?{,fc-°ôr(V) 
2 P 0 (k-°) * 2Dl k-° a (i/,) 

2 P 0 ( Ä ; - 0 ) *
 2Dl(k-°)ä(tP) 

2D$ (fc-O) A M ^ 

+S-â[2^(ife-0)AvV]. 

-Here P^j is i/ie linear partial 
follows: 

operator on F(E) defined as 

[*]j A y 4TT • n • id. + A y ) + A y o %£ + AM 0 A y + AM 0 AM 

V / Ê T (P(£) : 

III. Estimates 

Our goal in this section is to establish apriori estimates (Proposition 
III.C and Corollary III.C) for ip through fundamental results of the 
theory of elliptic linear partial differential equations. Our derivation is 
based on the effective expression of 
Proposition ILA and (11.12). 

N
 n

[k] established in the last section: 

Convention. In this section C will always be used to indicate a 
positive constant independent of k G N. 

Let VV and M V be respectively the fiber-directional component 
and the horizontal component of V so that 

V M V. 

We define AW and [^V as follows: 

M 
[k] Vk 
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and 
[k] 

y v ® 9 yv©^v. [k] 

Proposition III.A. Let P^j denote the linear partial differential 
operator on F(E) defined as follows: 

P[k]i> 

A y o (-47T • n • id. + A y ) + A y o ^M- + % ^ o A y + % ^ o % ^ Ì> 

VV> G r (P(E") : M). T/ien 

IkWII 
k 

(ULI) 
+ 
+ 
+ 

Vcr(V>) 

+ 
VoMV<j(^) 

v°:vo>w M T 

[k] v " [fc] v " [*] 

[fc] [k] [k] v [*] 

<C-\\aP[k]^ 

and 

+ || [fc] Ver (tp) || + || [fc] V o w Vff (V>) II 

(III .2) + || [fc]V o w V o w V à ( V ) | | 

+ ||[fe]Vo [ t ] V o [ t ] V o [fc]Vôr(V)|| 

< C - | | à ( P w ^ ) | | . 

Besides for ip £ F (F(E) : M) satisfying the normalization condition 

<<P-n = o a(<<p)-n = 0 
r (E) p(E) 

we have the following estimate 

Mvâ(^)|| + ||MVoMvâ(v) 
M V o M V o M V â ( ^ ) | | (III.3) 

+ 
+ 
+ 

MVo Mvo Mvo Mvâ(v) 

< c- &*(V0 

Here 

VM* 
(-l+m) 

'J_M A i (do) 
( - l + m ) ! M 4TT 

/ i I \ (-2+m) 

i T^ \ (-l+m) 

A M » e(JjTM) " M + m " M 

+ ( - l+m)! 

( - l+m)! 

M (Bd)M* Antrace (^FHM) 

A i (3d) 
M 
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is the infinitesimal deformation operator for the constant Hermitian 
scalar curvature equation on (M : OJM)-

Proof. (III.3) follows from standard theory of elliptic linear partial 
differential equations. 

Note that A y and A M preserve the decomposition id. = a © o © o: 

A o a © A o a © A Off = ffoA w V y CTO A y ©CTO A V 

and 

A M off® A M ° o © A M 00 = 00 AM © o o AM (Boo AM-

We will use these results implicitly in the following derivation of (ULI) 
and (III.2). 

To show that (ULI) is true we note that 

(III.4) a P w ^ = 8 7 r - n - a ( ^ ) + ^ O A M C T ( V , ) . 

Standard theory of elliptic linear partial differential operators shows 
that 

(III.5) M + 
Vs 

+ 
M r r „ M v 7 „ < c- A 

Vs G r (M : W) . On the other hand, by the Stokes' Theorem we have 

< 87m •id. + ^ L s : s >=8nn- < s : s > 
(III.6) 

and thence, by the Schwarz inequality, we have 

+ <gVs:gVs> 

(III.7) s + Vs < C 8-K-n-id. + ^ s 

Vs G r (M : W). Now using the Stokes' Theorem again we obtain 

< [fc]v° [fc]vs: [fe]v° [ fe ] v s >=< [fc]vs: [fc]v ° [fc]v° [fe]vs> 

= < [ f c ] V s : [ f c ] V ° [ f e ] V ° [ f e ] V s > 

+ < S V S 
[fc]V • [fc]V ° S V S > 

(III.8) < [fc]v ° [fc]vs : [fc]v ° [fc]vs > 

+ < S V S : 
[fc]V • [fc]V o ^ V s > [fc] 
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Vs G r (M : W). Here ^ V * is the adjoint of ^ V with respect to the 
Hermitian form (metric) to on ¥(E). Thus, by the Schwarz inequality, 

2 
< f i V o g V S : g V o g V S > < C < ^ S : ^ S > + C Vs 

(III.9) <C TT • n -id. + ^f- s 

+ C-\\s\\z + C Vs 

and thence 

(III.10) ||s|| + Vs + 

<C 

[ t ] V ° [fc]Vs 

A in-n-id. + ^ f s 

< C- 8-7T • n • id. + A 

Vs G r ( M : W). Using (III.5) and (III.10) we then obtain (ULI) via 
(III.4). 

Now we establish (III.2) through the same process as above. We will 
use the following inequalities: 

(III.11) v à(fW<C-< vVö{f): vVö{f)> 

and 
(III.12) 

\WW + (I VVâ(/)|f <C-< (-47m • id. + Av) ~a(f) : ~a(f) > . 

By the Stokes' Theorem we have 

< (Ay + ^)v(f) : 0(f) >= < y V à ( / ) : y V à ( / ) > 

+ < fóVa(/) : fóVatf) > 

and 

< A 47rn • id. + Ay) + ^ *( / ) : *( / ) > 

= < ( - 4 ™ • id. + A y ) c r ( / ) : c r ( / ) > 

V/ G r (F(E') : M). Thus, using of the Schwarz inequality yields 

(III.13) 
| 5 ( / ) l l + i r V o ô r ( / ) | | + fóVa(/) [k] 

<c A Ay + ^ l à ( / ) 
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and 

W ) l l + i r V ô r ( / ) | | + fóVcr(/) 

Ann • id. + Ay) + ^ Hf) 
(III.14) 

< C • (-Ann • id. + Ayj k 

V/ G r (P(E') : M). Now by the Stokes' Theorem again we obtain 

< [fc]Vo [fc]Và(/) : [fc]Vo [fc]Vcr(/) > 

= < [*]Vcr(/) : W V * o w V o w V ä ( / ) > 

(III.15) = < w V â ( / ) : w V o wV*o w V ä ( / ) > 

+ < [*]Vä(/) : [[fc]V* : [fc]V]o [fc]Vcr(/) > 

= < [fc]V*o [fc]Vcr(/) : [fc]V*o w V ä ( / ) > 

+ < W V ä ( / ) : [WV*: [ fc]V]o [ fc]Vâ(/)> 

V/ G r (P(#) : M). Here [fe]V* is the adjoint of [fc]V with respect to the 
Hermitian form (metric) Co on ¥(E). Thus by the Schwarz inequality 
we have 

< [*]Vo [fc]Vcr(/) : [t]Vo [fc]Và(/) > 
2 

Ay + A (III.16) <C-

+ C-\\[k]Vâ(f)\\\ 

Hence, using (III. 13) and (III. 14), we get 

* ( / ) 

(III.17) 

and 

l^(/)ll + ||[fc]Và(/)|| + | | w V o [ f c ] V à ( / ) 

< c • Ay + ^ ~a{f) 

(III.18) 
^(/)ll + ||[fc]Và(/)|| + | | w V o [ f c ] V à ( / ) 

<c- A 4vr • n • id. + Ay) + ^f-Hf) 

Vf €T(¥(E) :M). Since 

(III.19) = \ A V o (-Awn-id. + Av) + A v ^ + ^ A v + n f " ^ ] * WO 

= [(-4TT • n • id. + Ay) + ^ f ] o [Ay + n f ] à (VO 

+4TT • n • ^f-à (ip), 
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we deduce from (III.17) and (III.18) that 

0" 

(III.20) 

+ | | [ f c ]Và(V' ) | | + || [fc]Vo [fc]Vôr(V)| | 

+ || [fc]V o H V o [fe]Và(^)|| 

+ || [fc]V o [ t ] V o [ t ] V o [ f c]Và(^)| | 

<C-\\â{P[k^)\\+C A M 
k cr (^ ) 

VV> G r (¥(E) : M). Thus (III.2) is true once we have shown that 

(III.21) f ^ W <c-| |^^]V'| | -

But this follows from the following result: 

< à (P[k]tp) : A y à (V) > 

= < (-47T •n-id. + A y ) o A y à (ip) : A y à (ip) > 

+ < ^ V + oAyà (V) : ^ V o Ayà M > 

(III.22) + < g V + oAyà (V) : g V o Ayà M > 

+ < 
y V o ^ f à W : ^VoAâi^(^)> 

> < (-47T -n-id.+ A y ) o A y à (V>) : A y à (ip) > 

+ < vV o A M ^ (^) . v v 0 M ~ w > 

and the Schwarz inequality. q.e.d. 

By standard theory of elliptic linear partial differential operators 
and Proposition III.A we have the following obvious result. 

Corollary I I I .A . Let Prw denote the linear partial 
erator on F(E) defined as follows: 

op-

P[k]i> 

A y o (-47T •n-i«i . + A y ) + A v o M + M0AF + M0M V 
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\A/> G r (P(E') : R). Then for 7 G N we have the following estimates: 

-\\a[(Av + AM) 

(III.23) 

1 

and 

(III.24) 

+ - | | M V a [ ( A y + A M ) 7 ^ 

+ i | | M V o M V a [ ( A y + A M 

+ llfiVoMVoMVa[(Ay + A M) >] 

+ M 
WV°SVogVogVa[(Ay + A M J >] 

| à [ ( A y + A M) 

<C^-\\a[(Av + AMyoP[k]ip] 

+ ||[fc]Và[(Ay + AM)7V] 

+ ||[fc]V°WVà[(Ay + A M ) 7 > ] | | 

+ II [fc]Vo w V o [fc]Ver [(Ay + A M ) 7 V] II 

+ || [fc]Vo M Vo M Vo [k]VCT [(Ay + A M ) 7 V>] 

< C W - | | à [ ( A y + AM) 7oP [ f c ]^] | | . 

Besides for ip G T (P(E") : M) satisfying the normalization condition 

P(E) 

we have the following estimate: 

¥(E) 
&(iß)-n = o 

IHAM^]|| + 
(III.25) + 

+ 

^VâA>|| + |rVo^Vâ[A7
M^ 

MVoMVoMVâ[A^]|| 
MVoMVoMVoMVâ[A^]|| 

< c[7] • A;^^W M nM 

Here 

VM* 
WM 

(-1+m)! 
A i (53 ) 

/•y^ \ ( - 1 + m ) 

AMI + m . £(£M) . £ M _ _ A » (äö) M 4TT % (-1+m)! M 
( 1 j _ \ ( — 2 + m ) 

+ (-&)• A < (öö) M • M*trace (^FHM) 

is the infinitesimal deformation operator for the constant Hermitian 
scalar curvature equation on (M : OJM)-
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Now we derive estimates for the elliptic linear partial differential 
operator 

[k] n Q n 
based on Proposition ILA and Proposition III.A. We have the following 
result. 

Proposition III.B. Assume that tp G T (¥(E) : M) satisfies the nor­
malization condition 

Let 

P(E) 

be defined as follows: 

u(i/>)-n = 0. 
F(E) 

km 

k-k \0~ 

^ k-k II VCT W | | ^ k-k 

F I 

k-k 

M V o MVCT(V0 
MVo M v o Mvâ(v)|| 
M V o M V o M V o MVâ(V>)|| 

+¥•11" 
, kr_ 

~r k 

+ ^ . | | M V C T W 

M Vo MVa(tp) 

(III.26) +km 

+km 

+km 

SV oSSV owwwo 
È V o g V o g V o j W W 

I^WII + ||[fc]Vcr(V)|| 

|| [Ar] V o [ f c]Vcr(^) | | 

| [ * ]Vo [ fc]Vo [fc]Vôr(V)|| 

|[fc]Vo w V o [t]Vo [fc]Và(^)||. 

Then there exists ko G N such that for k > ko we have 

(III.27) HIHIHI <C- | |P [ f c ] V| | . 

Here the constant C > 0 is independent of k G N. 

Proof. Note that 

y Vo y Vo y Vo y VCT (VO = y Vo y Vo y VCT (VO 

= y Vo y VCT (VO = y VCT (VO = 0 
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and 

| | y V o y V o y V o yVCT(V)|| + | | y V o y V o y V a ( ^ ) | | 

+ | | y V o y V(r(^) | | + | | y V a ( ^ ) | | 

<c- lkWII-

These results will be used implicitly in the following derivation of (III.27). 
Similar results are valid for the covariant derivatives of a (ip) and a (ip). 
Besides we will use the symbol Cg to indicate a positive constant inde­
pendent of k G N. Here 6 G N. 

By (11.23) and (III.3) we have 

k (III.28) II11̂  Willi < Ci 

By (11.21) and (ULI) we have 

| | | k W I I I I < C 2 - | ^ - | | Q M ( â W ) 

(III.29) 

+ C 1 - | | â (P [ f c ] V)| | . 

+ C3.Mfl + c3.\\*(P[k]1l,) 

< C 4 - | | | | â ( ^ ) | | | | + C 3 - ^ 

+ C 3- | |a(P [ f c ]V)| | . 

Considering the sum 

2 • C4 • (III.28) + (III.29) 

leads to 

(III.30) 
I^WIIII + ll lkWIIII<C5-| |^(P[ib]^) 

+ C 5 - | | a P [ f c ] V | | + C 5 - ^ p . 

Now by (11.22) and (III.2) we have 

\AV O ( - A ^ l . A z | M + Qv {o W : ^ lapilli < C 6 - ^ - a 

(111.31) + C 7 - M + C7- | |à(P [ f c ]V)| | 

<C 8 • ||||a (V) || || + C7 • « I + c 7 • ||à (P[fc]V) (I . 

Considering the sum 

2 • C8 • (III.30) + (III.31) 
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leads to 

(III.32) < C 9 + c9-||P[fc]v||. 

Hence for k G N satisfying k > 2 • Cg we obtain 

(III.33) Ululili < 2- C9-| |P [ fc ]V||. 

This completes the proof. q.e.d. 

The following result can be proved by Corollary III.A and the method 
used in the proof of Proposition III.B. 

Corollary III.B. Assume that ip G F (F(E) : 
malization condition 

satisfies the nor-

tp-n = 0 u(i/>)-n = o. 
F(E) F(E) 

Then for each 7 G N there exists k7 G N such that for k > k7 we have 

(III.34) (HI (Av + A M ) 7 Villi < C[7] • ||(Ay + A M ) 7 o P[fc]^|| . 

Here the constant C™ > 0 is independent of k G N. 

Proposition III.C. Assume that ip G F (F(E) : R) satisfies the nor­
malization condition 

F (E) F (E) 

Then there exists a constant C > 0, independent of both N G N and 
k G N, such that the following statement is true: Given N > 2 there 
exists &jv G N such that for k > kjy we have 

(III.35) <C 4N 
Proof. By (11.12) we have 

Ne[k] * = p [ ^ + E • X *-° v- + n [k\ k-k ^ k-k-k 

Thus from (III.27) it follows that for k large enough, 

D0 (it-0) V-

<c- ^ + L/ "k~k 

(III.36) 1 fi km 

<c- e ^ 

4 D 0 (it-0) V 
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Here the constant jyC > 0 depends on N but is independent of k. 
Thence (III.35) is true when k is sufficiently large. q.e.d. 

The following result can be proved by Corollary III.B and the method 
used in the proof of Proposition III.C. 

Corollary I I I .C . Assume that ip G V (F(E) : M) satisfies the nor­
malization condition 

f iß.ci = o^^ [ â(i/))-n = o. 
~P(E) p(E) 

Then for each 7 G N there exists a corresponding constant C™ > 0 ; 

independent of both N G N and k G N, such that the following statement 
is true: Given N > 2 there exists krvN\ G N such that for k > kr^.N\ 
we have 

(111.37) | | | | ( A y + A M ) ^ | | | | < c W -

IV. P r o o f of T h e o r e m B via t h e Contract ion M a p p i n g 
T h e o r e m 

Assume that U is a coordinate open subset of F(E). One nonlinear 
partial differential operator & of polynomial form with smooth coeffi­
cients on U will be called "genuinely nonlinear" if and only if for any 
• G r (U : M) each single term of ©• can be expressed as the product of 
one smooth function on U and the product of at least two partial deriva­
tives of •. Thus any nonlinear partial differential operator of polynomial 
form on [7, without the zero-th order part, can be expressed as the direct 
sum of one linear partial differential operator on U and one genuinely 
nonlinear partial differential operator on U. 

Assume that if) is a smooth function on ¥(E) satisfying the normal­
ization condition 

f ^.n = o^^ [ a(i/))-Q = o. 
F (E) p(E) 

Let 

Nuj[k] <tp>= Nu)[k]+iddtp. 

(Ay + AM)7o^PV 
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Here „ u ^ j = 0^[k] + idd(f>o + ^e=i % h? 1S determined by the Induction 
Scheme introduced in [9]. We set NH[k] < ip > to be the Kahler metric 
on F(E) induced by „ u m < ip >. (Here k is supposed to be sufficiently 
large.) Let 

A (-Cfc • Nui[k] <tp> + 2 ^ ö o l o g d e t NH[k] < tp > ) . 

Then the constant Hermitian scalar curvature equation for ^ u m < ip > 
is 

(S) S[k](Nuj[k]<<<p>) =0. 

Note that 

(IV.l) S[k] {Nu;[k] <ip>)= S[k] {Nu;[k]) + { ^ % + w 0 [ t ] (V) , 

in which (_|V2+m+ni! a n c^ jv®[fc] W a r e respectively the linear part and 
the "essentially genuinely nonlinear1'' part . Elementary Calculus shows 
that , on each coordinate open subset U of P(-E"), the "essentially gen­
uinely nonlinear" partial differential operator N

 n
[k] can be expressed in 

the following form 

~ 1 T ~ -Ck " ^GW 

(IV.2) + " 
u^[k] 

det ^^[fc] < V > 

+ ^S] 
det NH[k] <ip> • (det „ify] < ip > 

with the following property being satisfied: 

• u^\k]
 k a n d all the numerators on the right-

hand side of (IV.2) are 4-th order genuinely nonlinear partial differential 
operators of polynomial form on U with coefficients depending on k and 
on the partial derivatives of elements of the following set 
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in the polynomial way. 

*[k] 
following set of variables 

Now we consider uGu
 k as one functional in the 

(VV> : V o V ^ : V o V o V ^ : V o V o V o V ^ ) . 

Let B be any given compact subset of U. Then by the Sobolev Embed­
ding Theorem and elementary Calculus (Chain Rule and Leibniz Rule) 
it is easy to see that there exists -% G N such that , for 7 > -%, 

J M ' " "N J ( W : V o W : V 0 V 0 W : VoVoVoV^i) € H[2"'] 

for any ip G Hy2"i+i\ with support on B C U. Similarly by the Sobolev 
Embedding Theorem and elementary Calculus (Chain Rule and Leibniz 
Rule) it is easy to see that there exists 70 G N such that , for 7 > -%, we 
have 

uG[
[k] ' " '" fcJV J (VV> : V o W : V 0 V 0 W : V0V0V0W) [ 27 ] 

det N i 7 w < V> > 

and 

c/G^ °' fe ' " '" fcJV J (VV> : V o W : V 0 V 0 W : VoVoVoV^) [ 27 ] 

(det N # w < V >) • (det Niî[fc] < V >) 

for any ip G ÌJPT+4] with small HP7+4]-norm and with support on B C 
U. (Here we certainly require that 70 is large enough so that det NH^ < 
ip > , in the denominators above, is at least continuous and bounded 
away from 0 on U for any ip G ff^°+ 4 J with small i ï ^ ° + 4 J - n o r m and 
with support o n B c U.) It is important to note that 70 and 70 are 
essentially independent of the choice of (k : N) because we will only 
consider the case where both k and N are large. 

Let jv;SH[fc] denote the inverse of -2^1*1. By the definition of „ 6 ^ , 
(ILI), it is obvious that 

(IV.3) f 4jM.O = 0, 
¥(E) ^ 

\A/> G r (P(E') : R) satisfying the normalization condition / ip-Q = 0. 
P(E) 

Thus for any 7 G N we have 

(IV.3) / Nn[k]M-n = o 
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and, by Corollary III.C 

ll ?M 
k 

(IV.4) || Nm[k] M| | f f [ 2 7 + 4 ] < c w • ^ • |M| f f P 7 ] 

Vy3 G Ì J P T ] satisfying the normalization condition / 93 • fì = 0. Be-
P (E) 

note that the "essentially genuinely nonli 
satisfies 
sides we note that the "essentially genuinely nonlinear" part N ^]— 

(IV.5) ^ M M . ft = 0 
¥(E) ^ 

because 

(IV.6) / S[k](Nuj[k]) =0= S[k](Nu)[k]<ip>) 
p(E) P(E) 

by cohomological consideration. 
Now for (7 : q : k) G N x N x N we set 

L G #[27+4] . f 

M 
qS

[^ = 4, G H^^\ : 4, • n = 0 and W\\Hlw < k~i . 
L J ¥(E) 

Let 7o = max (-% : %). Since all the "essentially genuinely nonlinear" 
partial differential operators N

 n
[k], depending on TV and on k, have the 

same "essentially genuinely nonlinear" form it is easy to see that , for 
each 7 > 7o, there exists g7 > 0 such that the following statement is 
true: Given q > g7 and N > 2 there exists one corresponding constant 
k(T.q:N) £ N such that the composition map 

Jv°[fc] 

n • </s[fc] (IV.7) ( - 2 + m + n) ! - ^ o 

is contractive with contraction constant < ^ for any k > k^.q:Ny 
We are now ready to solve the constant Hermitian scalar curvature 

equation S[k] (NU[k] < 4> > ) = 0 : 

(W ON S[k](N"[k]) N&[k] M ^ [ i ] W = n 
1 j fi ( - 2 + m + n ) ! - 0 fi 

Applying (—2 + m + n)\ • N9ï[k] to both sides of (IV.8) we obtain 

(IV.9) V> + ( - 2 + m + n ) ! . ( w* [ f c ] o ^ % ^ + NX[k] ° ^ % ^ ) = 0. 
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Now we want to apply the Contraction Mapping Theorem to (IV.9) for 
U 1 

ip G q7oS\l] • Thus we must require that 

S[k] (jV^[fc]) 
2 + m + n) ! - NM[k]o 

Q 
ff[27o+4] 

is sufficiently small when compared with k~qi° . However, by Corollary 
A of [9] and by (IV.4) (Corollary III.C), we can achieve this easily by 
choosing N G N suÆciently large. Now we fix one such N. Then it 
is obvious that (IV.9) can be solved uniquely whenever k is sufficiently 
large: there exists &(7o:g O-.N) É N such that (IV.9) can be solved uniquely 

in g7oSJu for each k > k^o.q .N^ by the Contraction Mapping Theorem. 
Note that this method can be used to prove the required existence 

result for any choice (7 : q) satisfying 7 > 70 and q > g7. Thus Theorem 
B is proved. q.e.d. 

A p p e n d i x 

In this Appendix we prove certain results which have been used in 
[9] and the former context of this paper. 

Proof of Proposition A of [9]. To show that 

-4TT • H •YJ<la1-<l1ß-wa-wß + (4TT + 2-nn) • q-q 

H-H 

on P (C" ) is orthogonal to the eigen-space of the lowest non-zero eigen­
value Ann of the (Fubini-Study) Laplacian on P (C" ) we only need to 
prove that 

/A A\ -4:iT-H-Y,qa~,-q~,ß-wa-Wß+(4:ir+2iTn)-q-q _ (-iim-id.+AF_s) 1 _q_ _ q_\ 
*> ' ' H-H 2 H H 

We can check this easily at the point [(0 : • • • : 0 : 1)] G P ( C " ) : Direct 
computation shows that at [(0 : • • • : 0 : 1)] G P (Cn) we have 

dd 
dw-, dw-, H H) — (Inn ' Qnn ° Ö77 "T ^ ' qn-y ' Q"/n "T ^ " qnn ' Q"/"/ 

V7 ^ n. Since at [(0 : • • • : 0 : 1)] G P ( C " ) 

dd 

dw~,dw~, 
77Ì71 ' ' 

AF_S = -4ir-J2 
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we have 

47rn • id. + AF_s) - | • - | = - 4TT • 11 ' Qnn ' Qnn Qn-f ' Q-fn 

7 7 E « 

+ (4vrn + 8?r) • qnn • qnn 

at [(0 : • • • : 0 : 1)] G F(C r a) because q is traceless: X]<?77 = 0- Thus 
(A.A) is valid at [(0 : • • • : 0 : 1)] G F ( C " ) . 

But this result actually suffices to show that (A.A) is valid every­
where on F ( C " ) : Any point on F ( C " ) can be transformed to 

[(0: • • • : 0 : 1)] G P ( C n ) 

via some unitary transformation of C n . Since Ap_s commutes with uni­
tary transformations of C", it can be checked directly that (A.A) is valid 
everywhere on F (C" ) by considering the action of unitary transforma­
tions of C n on q. q.e.d. 

Explic i t express ion for e l ement s of %. Assume that U is one 
coordinate open subset of M so that U can be holomorphically identi­
fied with some open neighborhood of 0 in O71. Given one holomorphic 
framing 

| s 7 G Yhoi (U : E) : 7 G N and 7 < n\ 

of E over U the bundle E\u can be identified with C" x U holomorphi­
cally. Thus the projection map n can be expressed explicitly as follows: 

7T : C" x U 3 {w : z) 1—>• z G U. 

Besides the Einstein-Hermitian connection A on E can now be inter­
preted as one gl (C")-valued one-form on U: 

Vs = sA. 

Let 

haß = HE (sa : Sß). 

We want to express elements of the distribution H. of horizontal spaces 
on ¥(E) induced by the Einstein-Hermitian connection A on E ex­
plicitly. Suppose that z G U and x G Tz (U). Then for w 7̂  0 the 
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C™-directional component of the horizontal lifting of x G Tz (U) at 
(w : z) G Cn x U is 

X K E - ^ 7 " A0i W ) f o ­

riere eg is the ö-th coordinate vector of C n . Suppose that < ^wg-eg > is 

the one-dimensional subspace of C n spanned by the element ^wg-eg ^ 0 

in C". Then <y^v ,e is the quotient space which makes the following 

sequence 

Cn 

0 — • < £ > f l • eg > — • Cn — • - ^ — • 0 

exact. Thus for the holomorphic projection map 

n : F(E) —> M 

the C-linear map from < E w g • eg > to <y-^,",e > defined by 

(A.B) E ™fl • eg — • [ E ( E - ™ 7 " ^ 7 W ) " <%] G < i : g . e 9 > 

is the P (C")-directional component of the horizontal lifting of 
x£Tz (U) at the point ( [£>f l • ee] : z) G F(C™) x U. 

Special coordinate s y s t e m . Now we assume that 

haß = Öaß 

and 
,4 = 0 

at the point (0 : • • • : 0) G U. Besides we assume that 

^M (£- • -i • 7557 ) = ôu 

and 

dzu • * dzv - "ß" 

d ( ^ â f - : - ^ - | - = o 
at the point 0 G U. The following map 

C ( - i+n) xUB(w:z)^> ([(ti; : wn = 1)] : z) G P ( C " ) x [7 

defines one holomorphic coordinate system on the corresponding open 
subset of P (Cn) x U. Elements of % can then be expressed explicitly as 



508 YING-J I HONG 

follows: Given z G U and x G Tz (U) the O l+n> -directional component 
of the horizontal lifting of x G Tz (U) at 

([(():••• :0:l)]:z) G F ( C " ) XU 

IS 

(A.C) J]) - [» (Aen (x)) • £ + 9 (AM (*)) • 4 ] G T0 (d-1+")) . 

Here 5ß (•) and 3 (•) are respectively the real part and the imaginary 
part of •. Besides ug and v$ are the R-valued coordinate functions on 
£(-l+n). 

WQ = UQ +i • Vg. 

Assume that xß and yß are the R-valued coordinate functions on U: 

Zß = %ß T Uß-

Then for each / G T (¥(E) : M) we have the following result: Given 
z G U we have 

3v/ = E J t - ^ + £ E f t - M * ] - ^ 

and 

ôM/ = E^: -^ + E(E-f t -^ (4r ) ) -^ 

at the point ([(0 : • • • : 0 : 1)] : z) G P ( C n ) x U. (Note that , in these 
formulae, we have adopted the convention that w 7 = w 7 , V7 / n, and 
wn = 1.) Besides we note that 

dvf = E ft ' *^ 

and 
dMf = E ft •d^ 

at any point ([(w : 1)] : 0) G F ( C " ) x U. Now for the representative 

1 
— • <9<9 log i fL . 
Zir 
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of the Euler class e (L*) of L* on ¥(E) induced by the Einstein-Herniitian 
metric HE on E we have the following result: 

^•ddiogHL* 

+^-E 

(J2 haa-Wa)-J2 hTß-WT 

+ 
T-aß 

(Y.Kß-Wa-Wß)2 T,Kß-Wa-Wß 

E 
(Zhcß-wa-wß)2 J2haß-wa-wß 

dwß A dwa 

dwß A dzß 

(A.D) 

+^-E 

+^-E 

E dzu 
r-T.haß-Wß £ ^ 

+ (E^/3-ü-a-iüß)2 E ^ - ^ a - ^ 
efej, A dw0 

( E ^ f - ^ ^ ) - ( E ^ ^ ^ ) 

( E ^ - ^ a - l ü ß ) 
• dzy A d^ü 

T,haß-1JJa-Wß 
dzv A dzfj,. 

We will now use the Special Coordinate System to prove the un­
proved results stated in Section I. 

Propos i t i on I .A. Given f G V (F(E) : R) we have the following 
equalities 

i.Avo(8d)vf = ^ -

and 

A M O (59) 

2 

A M 
M 

Proof. We have 

A y = dy o dy = d* o dy = d* o dy + d* o By 

and 
A M = d*M O dM = d* O dM = d* O dM + d* O BM. 

Once we have proved that 

(A.l) d* ody = i-Avo(dd)v 
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and 

(A.2) d*odM = i-AMo{dd)M 

our assertion follows immediately because 

d* o dy = d* o dy = i • Ay o (ôô y = % • Ay o <9<9 
V 

and 

d* o 8M = d* o dM = i • A M ° Bd M = i • A M ° 8d M 

Now we prove that (A.l) and (A.2) are valid at the point 

([(0: ••• :: 1)] : 0) GP(C") X U 

using the Special Coordinate System. Note that 

d* duly L V_a_ + dw~j L V a *=E-( 
+ ^ I dzu L V ^ _ + dzu L V ^ _ 

at the point ([(0 : • • • : 0 : 1)] : 0) G F(C") x U. Here • L • is the C-
linear inner product acting on the complexified cotangent bundle of 
¥(E) induced by the Riemannian metric on ¥(E). Thus at the point 
([(0 : • • • : 0 : 1)] : 0) G P (Cn) x U we have 

Yd* o 0 V J 

a^n and /3^n 

ddf 

/ ^ 9w7 / y 
77E™ 

L; 
77^™ 

dwß L V_g_<itt>a + dwß 

dZfj, L V a dwry + d ^ L V_d_dw1 
dzfj, dzß 

aw 

• 2 T T + 

d 
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and 

d* o dM Z-^l dZa /—/ 
7 7 E « 

dWry L V _ d _ d Z ß + dWry L V 8 dZf,. 

S T̂ ' E [dZv L Vâfd^ + d*v L Vâfd^ 
9 9 / 

A ^ <9wfl [Z-^ dz^ 
. A 

6n dzu 

e^n 

Using (A.C) and (A.D) in the defining formula of the Levi-Civita con­
nection induced by the Hermitian form (metric) 

& = n C y 7TFHL* + J r 'WM 

on F(E) it can be checked directly that 

d* o dvf 

7 7 E « 

dzu 

6^n 

and 

^°3M/ = - E Ä + E Ä - [ E ^ 
ÖTin 

9zu 

at ([(0 : • • • : 0 : 1)] : 0) G P (Cn) x U. Since 4̂ is Einstein-Hermitian we 
have for Ö ^ n 

a t O G U. T h u s d * o d y / = i - A y o ( d d ) y / a n d ( f o d M / = i - A M ° ( 3 d ) 
M 

at the point ([(0 : • • • : 0 : 1)] : 0) G F ( C " ) x U and thence everywhere 
o n P ( E ) . q.e.d. 

Propos i t i on I .B . 

A M O A y = A y o A M -

Proof. Assume that / G T (P(E") : M). By Proposition LA we have 

^ • ö i ( - l+n ) ! -m! ~~ lUUJ /N ( -2+n)!-m! 



512 YING-JI HONG 

and 

(A4] ^ll e(L*r^^Z _ ißaf A e(L')(-1+"Wa7
1+"'> 

y^-^) 2 (-l+n)!-m! ~ hUUJ /N (-l+n)!-(-l+m)! • 

Now we use the Special Coordinate System to show that 

A M O A y = A y o A M 

at the point ([(0 : • • • : 0 : 1)] : 0) G F ( C " ) x U. Using (A.D) and (A.3) 
it is easy to see that 

c e aC a Avf (_1+n) 

2 ' (-l+n)!-m! 

e(L*Y-2+^A[CJÌ_oCjì_e(L*)]AL0l 

(A.5) 

A y / 
2 (-2+n)!-m! 

C o oC g iddf)Ae(L*)(-2+n^Acül 
öin Ozß 

(-2+n)!-m! 

ia9/Ae(L*)(-3+")A(£ a o£ ö e ( L * ) A w ™ 

+ (-3+n)!-m! 

by applying £_§_ o £_a_ to both sides of (A.3). Now by (A.D) we have 
dzß dzß 

UCv ° [y^£-ä- oC_d_e(L*) I = — • V " dwßAdwa 

a^pn and P7=n 

E / _ ddhaß h ddKn \ 

=0, 

because HE is Einstein-Hermitian. Thus we infer from (A.5) 

A M fAvf\ e(L*)(-1+"»Aa;S 
9 2 ( —l+n)!-m! 

£ a o £ a A y / , , 
, A fix _ ^ Olï ëz^ e(L»)(-1+")Ao>^ 
^ • u ^ 2 ' (-l+n)!-m! 

e ( L . )(-2+n)A w^ 
*y C_a_ o C_a_iddf A (-2+n)!-m! 
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at the point ([(0 : • • • : 0 : 1)] : 0) G F ( C " ) x U. Similarly it is easy to 
see that 

77^™ 

C a o C a AM 
e(L»)(-1+")Ao>^ 

(—l+n)!-m! 

(A.7) 

by applying 

e(L*)( - 1 + "W- 1 + m ) 

7 7 E « 

77^™ 
dw~« du 

to both sides of (A.4) and using the following result: 

UCv o 2TT • Y " C^L_ o C^e (L 
1 ' ~ 

77E™ 

ÖUW Ôîi 

(A.E) 

a^n and ß^n 

^ (^«7 " ^7/3 + ^a/3 - ^77) 

=i • n • y~] dw^ A dw^ 
77^™ 

= -2TT-n-UCv °e(L*) 

at the point ([(0 : • • • : 0 : 1)] : 0) G F (C™) x U. Now we infer from (A.7) 
and (A.6) that 

_ A y / A M A _ e(L*)(-l+n)A[t,m 

2 2 (-l+n)!-m! 

e(L*)<--1+^Aj-1+m) 

( - l+n)!-(- l+m)! A 2TT • £ ^ _ o C^iddf 
\ ^ 77^™ 

Uf-j- ÖW-^ 

s ( L » ) ( _ 2 + n ) 

( -2+n)!V^ ^ £ j _ ° £ ^ / 

(-l+n)!-m! 

at the point ([(0 : • • • : 0 : 1)] : 0) G P ( C ) x [7. Thus A M o A y = 
A y o AM at the point ([(0 : • • • : 0 : 1)] : 0) G P (Cn) x U and thence 
everywhere on ¥(E). q.e.d. 
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Proof of Lemma I.A. By using the Special Coordinate System we 
only need to show that 

AvQtàm =QM(àW) 

at ([(0 : • • • : 0 : 1)] : 0) G F (C") x U. Actually it is easy to see that 

AyQM(<5-(^)) - ( - l + n ) 
e(L A 

i N ( - 2 + m ) 

(-2+m)! 

• ™ 

7 7 E « 

by applying 

to both sides of 

2-7T • 2 . £_â_ ° £_â_ 
77^™ 

Q M ( â ( V ) ) - e ( L * ( - l + n ) w 

e(X * ( - l + n ) 

/ x m! 
(-2+m) 

Afë+^Ai(aô)Mâ(VO 
A ( i ( o ô ) M ^ o + n C M e ( L * ) ) 

and using (A.E). However by (A.D) it is easy to see that 

2-7T • 2_. £-S— ° £ s n r M e (L*) =i • 2 , dzv A dzß 

77^« 

at the point ([(0 : 

= - 2TT • ( t r a c e ( ^ i ^ J + n • UCMe (L*) 

0 : 1)] :0) e P ( C ) x U. Thus 

A V Q M ( Ô - W ) 
4-7T 

follows immediately. 
To see that AVQM (à (ip)) £ T (M : W) we simply consider the ac­

tion of unitary transformations of C™ on the expression of 

( t r a c e ( _ L i ^ ) + n . n C M e ( L * ) ) 

in Special Coordinate Systems. q.e.d. 
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