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RIGIDITY OF AMALGAMATED PRODUCTS IN

NEGATIVE CURVATURE

Gérard Besson, Gilles Courtois, & Sylvain Gallot

Abstract

Let Γ be the fundamental group of a compact riemannian man-
ifold X of sectional curvature K ≤ −1 and dimension n ≥ 3. We
suppose that Γ = A ∗C B is the free product of its subgroups
A and B amalgamated over the subgroup C. We prove that the
critical exponent δ(C) of C satisfies δ(C) ≥ n−2. The equality oc-
curs if and only if there exist an embedded compact hypersurface
Y ⊂ X, totally geodesic, of constant sectional curvature −1, whose
fundamental group is C and which separates X in two connected
components whose fundamental groups are A and B respectively.
Similar results hold if Γ is an HNN extension, or more generally
if Γ acts on a simplicial tree without fixed point.

1. Introduction

In [17], Y. Shalom proved the following theorem that says that for
every lattice Γ in the isometry group of the hyperbolic space and for
any decomposition of Γ as an amalgamated product Γ = A ∗C B, the
group C has to be “big”. In order to measure how “big” C is, let us
define the critical exponent of a discrete group C acting on a Cartan
Hadamard manifold by

δ(C) = inf{s > 0 | Σγ∈Γe−sd(γx,x) < +∞}.

Theorem 1.1 ([17]). Let Γ be a lattice in PO(n, 1). Assume that Γ
is an amalgamated product of its subgroups A and B over C. Then, the

critical exponent δ(C) of C satisfies δ(C) ≥ n − 2.

An example is given by any n-dimensional hyperbolic manifold X
which contains a compact separating connected totally geodesic hyper-
surface Y . The Van Kampen theorem then says that the fundamental
group Γ of X is isomorphic to the free product of the fundamental groups
of the two halves of X − Y amalgamated over the fundamental group
C of the incompressible hypersurface Y . Such examples do exist; this is
the case in dimension 3 thanks to the W.Thurston’s hyperbolization the-
orem. In these cases there is equality in Theorem 1.1, i.e., δ(C) = n− 2

Received 09/22/2005.

335



336 G. BESSON, G. COURTOIS, & S. GALLOT

where C is the fundamental group of Y , and Y. Shalom suggested in
[17] that the equality case in the Theorem 1.1 happens only in that
case. In any dimension, A. Lubotsky showed that any standard arith-
metic lattice of PO(n, 1) has a finite cover whose fundamental group is
an amalgamated product, cf. [12]. In fact, A. Lubotsky proved that
any standard arithmetic lattice Γ has a finite index subgroup Γ0 which
is mapped onto a nonabelian free group. A nonabelian free group can
be written in infinitely many ways as an amalgamated product, so one
gets infinitely many decompositions of Γ0 as an amalgamated product
by pulling back the amalgamated decomposition of the nonabelian free
group.

The aim of this paper is to show that Theorem 1.1 still holds when
Γ is the fundamental group of a compact riemannian manifold of vari-
able sectional curvature less than or equal to −1, and characterize the
equality case.

Theorem 1.2. Let X be an n-dimensional compact riemannian man-

ifold of sectional curvature K ≤ −1. We assume that the fundamental

group Γ of X is an amalgamated product of its subgroups A and B over

C, and that neither A nor B equals Γ. Then, the critical exponent δ(C)
of C satisfies δ(C) ≥ n − 2. Equality δ(C) = n − 2 happens if and

only if C cocompactly preserves a totally geodesic isometrically embed-

ded copy H
n−1 of the hyperbolic space of dimension n − 1. Moreover,

in the equality case, the hypersurface Y n−1 := H
n−1/C is embedded in

X and separates X in two connected components whose fundamental

groups are respectively A and B.

Remark 1.3.

(i) By the assumption on A or B not being equal to Γ we exclude the
trivial decomposition Γ = Γ ∗C C where A = Γ and C = B can
be an arbitrary subgroup of Γ, for example any cyclic subgroup,
in which case the conclusion of Theorem 1.2 fails. Also note that
because of this assumption on A and B, we have A 6= C and
B 6= C .

(ii) Let us recall that standard arithmetic lattices in PO(n, 1) have
finite index subgroups with infinitely many non-equivalent de-
compositions as amalgamated products, cf. [12]. In fact, among
these decompositions, all but finitely many of them are such that
δ(C) > n − 2. Indeed, by Theorem 1.2, if δ(C) = n − 2 then
C is the fundamental group of an embedded totally geodesic hy-
persurface in X, but there are only finitely many totally geodesic
hypersurfaces by [23].

When a group is an amalgamated product, it acts on a simplicial tree
without fixed point and Theorem 1.1 is a particular case of
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Theorem 1.4 ([17], Theorem 1.6). Let Γ ⊂ SO0(n, 1), n ≥ 3, be a

lattice. Suppose that Γ acts on a simplicial tree T without fixed vertex.

Then there is an edge of T whose stabilizer C satisfies δ(C) ≥ n − 2.

In the case Γ is cocompact, the conclusion of Theorem 1.4 holds for
the stabilizer of any edge which separates the tree T in two unbounded
components, and the proof of this is exactly the same as the proof of
Theorem 1.2. In particular, when the action of Γ on T is minimal,
(i.e., there is no proper subtree of T invariant by Γ), the conclusion of
Theorem 1.4 holds for every edge of T , in the variable curvature setting,
and we are able to handle the equality case.

Theorem 1.5. Let Γ be the fundamental group of an n-dimensional

compact riemannian manifold X of sectional curvature less than or equal

to −1. Suppose that Γ acts minimally on a simplicial tree T without fixed

point. Then, the stabilizer C of every edge of T satisfies δ(C) ≥ n − 2.
The equality δ(C) = n− 2 happens if and only if there exists a compact

totally geodesic hypersurface Y ⊂ X with fundamental group π1(Y ) = C.

Moreover, in that case, Y with its induced metric has constant sectional

curvature −1.

Another interesting case contained in Theorem 1.5 is the case of an
HNN extension. Let us recall the definition of an HNN extension. Let
A and C be groups and f1 : C → A, f2 : C → A two injective morphisms
of C into A. The HNN extension A∗C is the group generated by A
and an element t with the relations tf1(γ)t−1 = f2(γ). For example, let
X be a compact manifold containing a non-separating compact incom-
pressible hypersurface Y ⊂ X. Let A be the fundamental group of the
manifold with boundary X − Y obtained by cutting X along Y and let
C be the fundamental group of Y . The boundary of X − Y consists in
two connected components Y1 ⊂ X −Y and Y2 ⊂ X −Y homeomorphic
to Y . By the incompressibility assumption, these inclusions give rise to
two embeddings of C into A, and the fundamental group of X is the
associated HNN extension A∗C . Such examples do exist, cf. [13].

Theorem 1.6. Let Γ be the fundamental group of a compact rie-

mannian manifold X of dimension n and sectional curvature less than

or equal to −1. Suppose that Γ = A∗C where A is a proper subgroup of

Γ. Then, we have δ(C) ≥ n − 2 and equality δ(C) = n − 2 if and only

if there exists a non separating compact totally geodesic hypersurface

Y ⊂ X with fundamental group π1(Y ) = C. Moreover, in that case, Y
with its induced metric is of constant sectional curvature −1, and the

HNN decomposition arising from Y is the one we started with.

Let us summarize the ideas of the proof of Theorem 1.2. We work on
X̃/C. The amalgamation assumption provides an essential hypersurface

Z in X̃/C, namely Z is homologically nontrivial in X̃/C. The volume
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of all hypersurfaces homologous to Z is bounded below by a positive
constant because their systoles are bounded away from zero. We then
construct a smooth map F : X̃/C → X̃/C, homotopic to the identity
which contracts the volume of all compact hypersurfaces Y by the factor( δ(C)

n−2

)n−1
, namely voln−1F (Y ) ≤

( δ(C)
n−2

)n−1
voln−1Y . This contracting

property together with the lower bound on the volume of hypersurfaces
in the homology class of Z gives the inequality δ(C) ≥ n − 2. This
map is different from the map constructed in [3]; in particular, it can be
defined under the single condition that the limit set of C is not reduced
to one point. Moreover, its derivative has an upper bound depending
only on the critical exponent of C.

The equality case goes as follows. When δ(C) = n − 2, the map

F : X̃/C → X̃/C contracts the (n − 1)-dimensional volumes, i.e.,
|Jacn−1F | ≤ 1. This contracting property is infinitesimally rigid in

the following sense. Let us consider a lift F̃ of F . If |Jacn−1F̃ (x)| = 1

at some point x ∈ X̃, then F̃ (x) = x, there exists a tangent hyperplane

E ⊂ TxX̃ such that DF̃ (x) is the orthogonal projection of TxX̃ onto E,

and the limit set ΛC is contained in the topological equator E(∞) ⊂ ∂X̃

associated to E. By topological equator E(∞) ⊂ ∂X̃ associated to
E, we mean the set of end points of those geodesic rays starting at x
tangent to E.

We then prove the existence of a point x ∈ X̃ such that

(1.1) |Jacn−1F̃ (x)| = 1.

If there would exist a minimizing cycle in the homology class of Z in
X̃/C, any point of such a cycle would satisfy 1.1. As no such minimiz-

ing cycle a priori exists because of non-compactness of X̃/C, we prove
instead the existence of an L2 harmonic (n − 1)-form dual to Z, which
is enough to prove existence of a point x such that 1.1 holds.

At this stage of the proof, there is a big difference between the con-
stant curvature case and the variable curvature case.

In the constant curvature case, any topological equator bounds a
totally geodesic hyperbolic hypersurface H

n−1, and therefore, as the
group C preserves ΛC ⊂ E(∞) = ∂H

n−1, it is not hard to see that C
also preserves H

n−1 and acts cocompactly on it, and the hypersurface
of the equality case in Theorem 1.2 is H

n−1/C, [2].
In the variable curvature case, we first show the existence of a C-

invariant totally geodesic hypersurface Z̃∞ ⊂ X̃ whose boundary at
infinity coincides with Λ(C), and then we show that Z̃∞ is isometric
to the real hyperbolic space. We then show that Y =: H

n−1/C, which

is compact, injects in X = X̃/Γ and separates X in two connected
components whose fundamental groups are A and B respectively.

In order to show the existence of such a totally geodesic hypersurface
Z̃∞, we first prove that C is a convex cocompact group, i.e., the convex
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hull of the limit set of C in X̃ has a compact quotient under the action of
C, and that the limit set of C is homeomorphic to an (n−2)-dimensional
sphere.

The convex cocompactness property of C and the fact that the limit
set Λ(C) of C is homeomorphic to an (n − 2)-dimensional topological
sphere are the two key points in the equality case.

This compactness property then allows us to prove the existence of a
mimimizing current in the homology class of the essential hypersurface
Z ⊂ X̃/C. By a regularity theorem this minimizing current Z̃∞ is a
smooth manifold except at a singular set of codimension at least 8. By
the contracting properties of our map F , Z̃∞ is fixed by F and the
geometric properties of F at fixed points where the (n − 1)-jacobian of

F equals 1 allow us to prove that Z̃∞ is totally geodesic and isometric
to the hyperbolic space.

Let us now briefly describe the proof of the convex cocompactness
property of C in the equality case.

The group C (or a finite index subgroup of it) actually globally pre-

serves a smooth cocompact hypersurface Z̃ ⊂ X̃ which separates X̃
into two connected components and whose boundary ∂Z̃ ⊂ ∂X̃ coin-
cides with ΛC ⊂ E(∞). In the case where C would not be convex
cocompact, we are able to find a horoball HB(θ0) centered at some

point θ0 ∈ ΛC in the complement of the hypersurface Z̃.
The contradiction then comes from the following.
Consider a sequence of points θi ∈ ∂X̃ converging to θ0 and geodesic

rays αi starting from the point x ∈ X̃ at which |Jacn−1(x)| = 1 and

ending up at θi. These geodesic rays have to cross Z̃ at points zi which
are at bounded distance from the orbit Cx of x, and therefore the shad-
ows Oi of balls centered at these zi lit from x must contain points of ΛC

by the shadow lemma of D. Sullivan. On the other hand, we show that
it is possible to choose the sequence θi in such a way that these shadows
Oi do not meet ΛC . This property Oi ∩ΛC = ∅ comes from a choice of
θi such that the distance between zi and the set H of all geodesics rays
at x tangent to E ⊂ TxX̃ tends to ∞. Intuitively, in order to chose zi

as far as possible from H, the points θi have to be chosen tranversally
to ΛC . This transversality condition is not well-defined because the
limit set ΛC might be highly non-regular. Thus, in order to prove that
such a choice is possible, we argue again by contradiction. If for any
choice of a sequence θi converging to θ0, the distance between zi and H
stays bounded, then the Gromov distances d(θi, θ0) between θi and θ0

satisfy d(θi, ΛC) = o(d(θi, θ0)), and therefore any tangent cone of ΛC at

θ0 would coincide with a tangent cone of ∂X̃ at θ0, which is known to
be topologically R

n−1. But on the other hand, the existence of a point
x such that |Jacn−1(x)| = 1 and the fact that C acts uniformly quasi-

conformally with respect to the Gromov distance on ∂X̃ imply that the
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Alexandroff compactification of the above tangent cone of ΛC at θ0 is
homeomorphic to ΛC , which is contained in a topological sphere Sn−2,
leading to a contradiction.

From convex cocompactness of C and the fact that the limit set of C
is a topological (n−2)-dimensional sphere, there is an alternative proof
of the existence of a totally geodesic C-invariant copy of the hyperbolic
space H

n−1
R

⊂ X̃ that consists of observing that the topological dimen-
sion and the Hausdorff dimension of the limit set Λ(C) are equal to n−2,
and then using the following result of M. Bonk and B. Kleiner (which we
quote in the riemannian manifold setting although it remains true for
CAT (−1) spaces) instead of the (simpler) minimal current argument.

Theorem 1.7 ([4]). Let X be a Cartan Hadamard n-dimensional

manifold whose sectional curvature satisfies K ≤ −1, and C a convex

cocompact discrete subgroup of isometries of X with limit set ΛC . Let

us assume that the topological dimension and the Hausdorff dimension

(with respect to the Gromov distance on ∂X̃) of ΛC coincide and are

equal to an integer p. Then, C preseves a totally geodesic embedded

copy of the real hyperbolic space H
p+1, with ∂H

p+1 = ΛC .

The authors would like to express their gratitude to Alex Lubotsky,
Jean Barge, Marc Bourdon, Gilles Carron, Jean Lannes, Frédéric Paulin,
and Leonid Potyagailo for their interests and helpful conversations.

2. Essential hypersurfaces

Let Γ be a discrete cocompact group of isometries of a n-dimensional
Cartan-Hadamard manifold (X̃, g̃) whose sectional curvature satisfies

Kg̃ ≤ −1. Let us assume that the compact manifold X = X̃/Γ is
orientable. Let us also assume that Γ = A ∗C B is an amalgamated
product of its subgroups A and B over C.

The goal of this section is to construct a C-equivariant hypersurface
Z̃ ⊂ X̃ such that Z̃/C is a compact essential hypersurface in X̃/C. By
essential hypersurface we mean the following:

Definition 2.1. A compact smooth orientable hypersurface Z of an
n-dimensional manifold Y is essential in Y if i∗([Z]) 6= 0 where [Z] ∈
Hn−1(Z, R) denotes the fundamental class of Z and i∗ : Hn−1(Z, R) →
Hn−1(Y, R) the morphism induced by the inclusion i : Z →֒ Y .

Before finding the essential hypersurface Z ⊂ X̃/C, let us show that

under the assumption of Theorem 1.2 we have Hn−1(X̃/C, Z) 6= 0.
We first reduce to the case where [Γ : C] is infinite.
Namely, if [Γ : C] < ∞, then the critical exponent δ(C) = δ(Γ) ≥

n − 1, and the inequality in Theorem 1.2 holds.
We then can assume that [Γ : C] = ∞.
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Lemma 2.2. Let Γ = A ∗C B be as above, with [Γ : C] = ∞. If

neither A nor B equals Γ, then Hn−1(X̃/C, Z) 6= 0.

Proof. The Mayer-Vietoris sequence coming from the decomposition
Γ = A ∗C B writes (cf. [6], Corollary 7.7),

Hn(X̃/C, Z) → Hn(X̃/A, Z) ⊕ Hn(X̃/B, Z) → Hn(X̃/Γ, Z) → ...

... → Hn−1(X̃/C, Z) → ...

As [Γ : C] = ∞, Hn(X̃/C, Z) = 0 thus, if furthermore Hn−1(X̃/C, Z) =

0, we deduce from the Mayer-Vietoris sequence that Hn(X̃/A, Z) ⊕
Hn(X̃/B, Z) is isomorphic to Hn(X̃/Γ, Z). As Hn(X̃/Γ, Z) = Z, we
then deduce that either [Γ : A] = ∞ and B = Γ, or [Γ : B] = ∞ and
A = Γ. q.e.d.

In fact, in the sequel we will make use of a smooth essential hyper-
surface Z in X̃/C and the end of this section is devoted to finding such
an hypersurface.

Let us recall a few facts about amalgamated products and their ac-
tions on trees, following the Bass-Serre theory, [16]. Let Γ = A ∗C B
be an amalgamated product of its subgroups A and B over C. Then, Γ
acts on a simplicial tree T̃ , called the Bass-Serre tree with a fundamen-
tal domain T ⊂ T̃ being a segment, i.e., an edge joining two vertices.
Let us describe this tree T̃ . There are two orbits of vertices ΓvA and
ΓvB, the stabilizer of the vertex vA (resp. vB) being A (resp. B). There
is one orbit of edges ΓeC , the stabilizer of the edge eC being C. The
fundamental domain T can be chosen as the edge eC joining the two
vertices vA and vB. The set of vertices adjacent to vA (resp. vB), is in
one to one correspondance with A/C (resp. B/C). Note that as neither
A nor B are equal to Γ, [A : C] 6= 1 and [B : C] 6= 1, and therefore

for an arbitrary point t0 on the edge eC we see that T̃ − t0 is a disjoint
union of two unbounded connected components. This fact will be used
later on.

Let us consider a continuous Γ-equivariant map f̃ : X̃ → T where T
is the Bass-Serre tree associated to the amalgamation Γ = A ∗C B. One
regularizes f̃ such that it is smooth in restriction to the complement
of the inverse image of the set of vertices of T . Let t0 a regular value
of f̃ contained in the edge of T which is fixed by the subgroup C, and
define Z̃ = f̃−1(t0). Z̃ is a smooth orientable possibly not connected

hypersurface in X̃, globally C-invariant.
Let us write Z = Z̃/C. We will show Z ⊂ X̃/C is compact and that

one of the connected components of Z is essential.

Lemma 2.3. Z ⊂ X̃/C is compact.
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Proof. Let us show that for any sequence zn ∈ Z̃, there exists a sub-
sequence znk

and γk ∈ C such that γkznk
converges. As Γ is cocompact,

there exists gn ∈ Γ such that the set (gnzn) is relatively compact. Let

gnk
znk

be a subsequence which converges to a point z ∈ X̃. By continu-

ity, the sequence f̃(gnk
znk

) converges to f̃(z), and by equivariance we
get

gnk
f̃(znk

) = gnk
t0 → f̃(z)

when k tends to ∞. As Γ acts simplicially on the tree T and transitively
on the set of edges, the sequence gnk

t0 is stationary, i.e., gnk
t0 = t′0 = gt0

for k large enough. Thus, g−1gnk
= γk ∈ C for k large enough since it

fixes t0 and γkznk
= g−1gnk

znk
converges to g−1z q.e.d.

The smooth compact hypersurface Z we constructed might not be
connected. Let us write Z = Z1 ∪ Z2 ∪ . . . ∪ Zk where the Zj ’s are
the connected components of Z. Each Zj is a compact smooth oriented

hypersurface of X̃/C.
The aim of what follows is to prove that at least one component Zi

of Z is essential.

Lemma 2.4. There exists i ∈ [1, k] such that Zi is essential in X̃/C.

Proof. If there exists a Zi which does not separate X̃/C in two con-

nected components one can easily show that Zi is then essential in X̃/C.

So we can assume that every Zj , j = 1, . . . , k, does separate X̃/C in two
connected components. In that case we will show that there exists a Zi

that separates X̃/C in two unbounded connected components, which
easily implies using the Mayer-Vietoris sequence that Zi is essential.

Let us denote Ul, l = 1, 2, . . . , p, the connected components of X̃/C−
∪k

j=1Zj .

Claim 2.5. At least two components Um, Um′ are unbounded.

Assuming the claim, let us finish the proof of the lemma. For each
Zj we denote Vj , V ′

j the two connected components of X̃/C \Zj . Then

Um = W1 ∩ W2 ∩ ... ∩ Wk where for each j, Wj = Vj or Wj = V ′
j . In

the same way, Um′ = W ′
1 ∩ W ′

2 ∩ ... ∩ W ′
k. As Um ∩ Um′ = ∅, there

exists i ∈ [1, k] such that Wi ∩ W ′
i = ∅; thus Um ⊂ Vi and Um′ ⊂ V ′

i

or Um ⊂ V ′
i and Um′ ⊂ Vi, so Zi separates X̃/C into two unbounded

components. This proves the lemma. q.e.d.

Proof of the claim. We have already noticed that T −{t0} is the disjoint
union of two unbounded connected components T1 and T2. As C acts
on T isometrically and simplicially, then T/C − {t0} = T1/C ∪ T2/C
is the disjoint union of two unbounded connected components. Let
f̄ : X̃/C → T/C be the quotient map of f̃ . For each component Ui, we
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have f̄(Ui) ⊂ T1/C or f̄(Ui) ⊂ T2/C, which thus proves the claim since
f̄ is onto. q.e.d.

In the sequel it will be convenient to have Zi of Lemma 2.4 as a
quotient of some connected hypersurface Z̃ ⊂ X̃ by C. This may be not
possible so we have to replace C by a subgroup, as we shall now see.

Let π : X̃ → X̃/C be the natural projection. For any i = 1, 2, . . . , k,

let us denote {Z̃j
i }j∈J the set of connected components of Z̃i =: π−1(Zi).

For each i ∈ [1, k], we claim that C acts transitively on the set {Z̃j
i }j∈J .

Namely, let us consider z̃ ∈ Z̃j
i , z̃′ ∈ Z̃j′

i , and write z = πz̃ ∈ Zi and
z′ = πz̃′ ∈ Zi. Let α be a continuous path on Zi such that α(0) = z and
α(1) = z′, and α̃ the lift of α such that α̃(0) = z̃. We have πα̃(1) = z′

and α̃(1) ∈ Z̃j
i ; thus, there exists c ∈ C such that c(α̃(1)) = z̃′, and

therefore cZ̃j
i = Z̃j′

i Let us denote Cj
i the stabilizer of Z̃j

i , and Zj
i =

Z̃j
i /Cj

i ⊂ X̃/Cj
i . Let us write p : X̃/Cj

i → X̃/C the natural projection.

Lemma 2.6. The restriction of p to Zj
i is a diffeomorphism onto Zi.

In particular, Zj
i is compact.

Proof. Let z and z′ be the two points in Zj
i such that p(z) = p(z′).

Let z̃ and z̃′ be lifts of z and z′ in X̃. These two points z̃ and z̃′ which

are in Z̃i actually belong to the same connected component Z̃j
i because

for j 6= j′, (
⋃

j′ 6=j Z̃j′

i )/Cj
i ∩ Z̃j

i /Cj
i = ∅. As p(z) = p(z′), there exists

c ∈ C such that z̃′ = cz̃; thus c ∈ Cj
i , and z = z′, and therefore the

restriction of p to Zj
i is injective. The surjectivity comes from the fact

that π−1Zi =
⋃

j∈J Z̃j
i and C acts transitively on the set {Z̃j

i }j∈J .
q.e.d.

Let us consider the integer i ∈ [1, k] as in Lemma 2.4, i.e., such that

Zi →֒ X̃/C is essential, and choose Z̃ l
i one component of π−1(Zi). After

possibly replacing C l
i by an index two subgroup, we may assume that

C l
i globally preserves each of the two connected components U l

i and V l
i

of X̃ − Z̃ l
i .

Lemma 2.7. Let i, l and C l
i be chosen as above. The compact hyper-

surface Z l
i = Z̃ l

i/C l
i is essential in X̃/C l

i . Moreover, the two connected

components U l
i/C l

i and V l
i /C l

i of X̃/C l
i − Z l

i are unbounded.

Proof. Let us consider p : X̃/C l
i → X̃/C. By Lemma 2.6, the restric-

tion of p to Z l
i is a diffeomorphism onto Zi, and therefore Z l

i is essential

in X̃/C l
i because Zi is essential in X̃/C. As C l

i preseves U l
i and V l

i , Z l
i

separates X̃/C l
i into two connected components U l

i/C l
i and V l

i /C l
i , and

as Z l
i is essential in X̃/C l

i , U l
i/C l

i and V l
i /C l

i are unbounded. q.e.d.
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In the sequel we will denote Z̃ ′ = Z̃ l
i, C ′ = C l

i, and Z ′ = Z l
i =

Z̃ l
i/C l

i . Notice that C l
i may not be of finite index in C.

3. Isosystolic inequality

In this section we summarize facts and results due to M. Gromov,
[10]. These results will be used later on to give a uniform lower bound

of the volume of hypersurfaces of X̃/C homotopic to the hypersurface

Z ′ = Z̃ ′/C ′ constructed in Section 2.
Let Z be a p-dimensional compact orientable manifold and i : Z →֒ Y

an embedding of Z into Y where Y is an aspherical space. We suppose
that i∗([Z]) 6= 0 where i∗ : Hp(Z, R) → Hp(Y, R) is the morphism
induced by the embedding Z →֒ Y . Let us fix a riemanniann metric g
on Z. For each z ∈ Z we consider the set Cz of the loops α at z such
that i ◦ α is homotopically nontrivial in Y .

Let us define the systole of (Z, g, i) at the point z by

Definition 3.1. sysi(Z, g, z) = inf{length(α); α ∈ Cz},

where the length is taken with respect to the metric g and the systole
of (Z, g, i) by

Definition 3.2. sysi(Z, g) = inf{sysi(Z, g, z); z ∈ Z}.

The following isosystolic inequality, due to M. Gromov says that the
volume of any essential submanifold Z of an aspherical space Y relative
to any riemanniann metric on Z is universally bounded below by its
systole.

Theorem 3.3 ([10]). There exists a constant Cp such that for each

p-dimensional riemanniann manifold (Z, g) and each embedding Z →֒ Y
into an aspherical space Y such that i∗([Z]) 6= 0 where i∗ : Hp(Z, R) →
Hp(Y, R) is the induced morphism in homology,

volp(Z, g) ≥ Cp(sysi(Z, g))p.

In the above theorem, volpZ stands for the riemannian volume of the
p-dimensional manifold (Z, g). We will apply this volume estimate to

the essential hypersurface i : Z ′ →֒ X̃/C ′ that we constructed in Lemma
2.7.

The following lemma is immediate.

Lemma 3.4. Let C ′ be a discrete group acting on a simply connected

manifold X̃, Z̃ ′ a C ′-invariant hypersurface of X̃ and i : Z ′ = Z̃ ′/C ′ →֒
X̃/C ′ the natural inclusion. Let g any riemanniann metric on Z ′ and

g̃ the lift of g to Z̃ ′. Then for any z ∈ Z ′, we have

sysi(Z
′, g, z) = inf{dg̃(z̃, γz̃); γ ∈ C ′},

where z̃ ∈ Z̃ ′ is a lift of z ∈ Z ′ and dg̃ is the distance induced by g̃ on

Z̃ ′.
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Proof. Let α a loop based at z ∈ Z ′. As i◦α is an homotopically non

trivial loop at i(z) = z in X̃/C ′, its lift ĩ ◦ α at some z̃ ∈ Z̃ ′ ends up at
γz̃ for some γ ∈ C ′ q.e.d.

4. Volume of hypersurfaces in X̃/C

Let (X̃, g̃) be a n-dimensional Cartan-Hadamard manifold whose sec-
tional curvature satisfies Kg̃ ≤ −1, and C a discrete group of isometries

of (X̃, g̃). We assume that the group C is non-elementary, namely C

fixes neither one nor two points in the geometric boundary ∂X̃ of (X̃, g̃).
The aim of this section is to give a general construction of a C-

equivariant map F̃ : X̃ → X̃ whose p-jacobian is related to the critical
exponent δ(C) of C, namely such that for any p, 2 ≤ p ≤ n and any

x ∈ X̃, we have

|Jacp(F̃ (x)| ≤
(δ(C) + 1

p

)p
.

This map gives rise to a quotient map F : X̃/C → X̃/C which dilates

the volume of compact hypersurfaces Z of X̃/C by the above factor,
namely,

voln−1(F (Z)) ≤
(δ(C) + 1

n − 1

)n−1
voln−1(Z)

where voln−1(Z) stands for the (n−1)-dimensional volume of the metric
on Z induced from g.

For every subgroup C ′ ⊂ C and any hypersurface Z ′ of X̃/C ′ the lift

F ′ : X̃/C ′ → X̃/C ′ of F will also clearly verify

voln−1(F
′(Z ′)) ≤

(δ(C) + 1

n − 1

)n−1
voln−1(Z

′).

In order to construct the map F̃ , we need a few preliminaries. We
consider a finite positive Borel measure µ on the boundary ∂X̃ whose
support contains at least two points. Let us fix an origin o ∈ X̃ and
denote B(x, θ) the Busemann function defined for each x ∈ X̃ and

θ ∈ ∂X̃ by
B(x, θ) = lim

t→∞
dist(x, c(t)) − t

where c(t) is the geodesic ray such that c(0) = o and c(+∞) = θ.
Let us recall that B(x, θ) →−∞ when x tends to θ and that B(x, θ) →

+∞ when x tends to a point θ′ 6= θ in ∂X̃.
Let Dµ : X̃ → R be the function defined by

(4.1) Dµ(y) =

∫

∂X̃
eB(y,θ)dµ(θ).

A computation shows that

(4.2) DdDµ(y) =

∫

∂X̃
(DdB(y,θ) + dB(y,θ) ⊗ dB(y,θ))e

B(y,θ)dµ(θ).
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When Kg̃ ≤ −1, the Rauch comparison theorem says that for every

y ∈ X̃, and θ ∈ ∂X̃,

(4.3) DdB(y, θ) + dB(y,θ) ⊗ dB(y,θ) ≥ g̃.

We then get

(4.4) DdDµ(y) ≥ Dµ(y)g̃,

thus DdDµ(y) is positive definite and Dµ is strictly convex.

Lemma 4.1. If the support of µ contains at least two points, we have

limy→∂X̃ Dµ(y) = +∞.

Proof. Let yk ∈ X̃ be a sequence such that

(4.5) lim
k→∞

yk = θ0 ∈ ∂X̃.

As the support of µ contains at least two points, we have supp(µ) ∩
(∂X̃ \{θ0}) 6= ∅, thus there exists a compact subset K ⊂ ∂X̃ \{θ0} such
that µ(K) > 0. Therefore,

(4.6)

∫

∂X̃
eB(yk,θ)dµ ≥

∫

K
eB(yk,θ)dµ → +∞.

q.e.d.

Corollary 4.2. Let µ a finite borel measure on ∂X̃ whose support

contains at least two points. The function Dµ has a unique minimum.

This minimum will be denoted by C(µ).

Let us now consider some discrete subgroup C ⊂ Isom(X̃, g̃). Recall
that a family of Patterson measures (µx)x∈X̃ associated to C is a set of

positive finite measures µx on ∂X̃, x ∈ X̃, such that the following holds
for all x ∈ X̃, γ ∈ C,

(4.7) µγx = γ∗µx

(4.8) µx = e−δB(x,θ)µo,

where o ∈ X̃ is a fixed origin, B the Busemann function associated
to o and δ the critical exponent of C. We now assume that supp(µo)

contains at least two points and define the map F̃ : X̃ → X̃ for x ∈ X̃
by

(4.9) F̃ (x) = C(e−B(x,θ)µx).

Remark 4.3.

The construction of this map is close to the one worked out in [1],
[3]. In these papers we used the functional D′

µ(y) =
∫
∂X̃ B(y, θ)dµ(θ)

instead of Dµ and defined the barycenter of µ as the unique critical
point of Dµ. This construction required properties of the measures µx

that we cannot ensure in our setup. This is the reason why we modify
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the construction as above. Furthermore, the new construction turns
out to be technically easier to handle and provides a map with better
properties.

Here are a few notations. For a subspace E of TxX̃, we will write
JacEF̃ (x) the determinant of the matrix of the restriction of DF̃ (x) to E

with respect to orthonormal bases of E and DF̃ (x)E. For an integer p,

we denote by JacpF̃ (x) the supremum of |JacEF̃ (x)| as E runs through

the set of p-dimensional subspaces of TxX̃.

Lemma 4.4. The map F̃ is smooth, homotopic to the Identity, and

verifies for all x ∈ X̃, γ ∈ C and p ∈ [2, n = dim(X)],

i) F̃ (γx) = γF̃ (x)

ii) |JacpF̃ (x)| ≤
(

δ+1
p

)p
.

Proof. The map

(x, y) →

∫

∂X̃
eB(y,θ)−B(x,θ)dµx(θ) =

∫

∂X̃
eB(y,θ)−(δ+1)B(x,θ)dµo(θ)

is smooth because y → B(y, θ) is smooth. For all x the map y →∫
∂X̃ eB(y,θ)−(δ+1)B(x,θ)dµo(θ) is strictly convex by 4.4 and tends to in-

finity when y tends to ∂X̃ (cf. Lemma 4.1); thus the unique minimum

F̃ (x) is a smooth function of x. The equivariance of F̃ comes from the
cocycle relation B(γy, γθ) − B(γx, γθ) = B(y, θ) − B(x, θ).

For each x ∈ X̃ let cx be the geodesic in X̃ such that cx(0) = x,

cx(1) = F̃ (x) and which is parametrized with constant speed. The map

F̃t : X̃ → X̃ defined by F̃t(x) = cx(t) is a C-equivariant homotopy

between IdX̃ and F̃ .
It remains to prove (ii).

The point F̃ (x) is characterized by the implicit equation

(4.10)

∫

∂X̃
dB(F̃ (x),θ)e

B(F̃ (x),θ)−B(x,θ)dµx(θ) = 0.

In order to simplify the notation we will denote by νx the measure

eB(F̃ (x),θ)−B(x,θ)µx and δ instead of δ(C). We will also write DF̃ (u)

instead of DF̃ (x)(u). By differentiating 4.10 we get the following char-

acterization of the differential of F̃ : for u ∈ TxX̃ and v ∈ TF̃ (x)X̃, one

has
∫

∂X̃
[DdB(F̃ (x),θ)(DF̃ (u), v) + dB(F̃ (x),θ)(v)dB(F̃ (x),θ)(DF̃ (u))]dνx(θ)

(4.11) = (δ + 1)

∫

∂X̃
dB(F̃ (x),θ)(v)dB(x,θ)(u)dνx(θ).
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We define the quadratic forms k and h for v ∈ TF̃ (x)X̃ by

(4.12) k(v, v) =

∫

∂X̃
[DdB(F̃ (x),θ)(v, v) + (dB(F̃ (x),θ)(v))2]dνx(θ)

and

(4.13) h(v, v) =

∫

∂X̃
dB(F̃ (x),θ)(v)2dνx(θ).

The relation 4.11 becomes, for u ∈ TxX̃ and v ∈ TF̃ (x)X̃:

(4.14) k(DF̃ (u), v) = (δ + 1)

∫

∂X̃
dB(F̃ (x),θ)(v)dB(x,θ)(u)dνx(θ).

We define the quadratic form h′ on TxX̃ for u ∈ TxX̃ by

(4.15) h′(u, u) =

∫

∂X̃
dB(x,θ)(u)2dνx(θ),

and one derives from 4.14 by applying the Cauchy-Schwarz inequality

(4.16) |k(DF̃ (x)(u), v)| ≤ (δ + 1)h(v, v)1/2h′(u, u)1/2.

One can now estimate JacpF̃ (x). Let P be a subspace of TxX̃, with

dimP = p. If DF̃ (P ) has dimension lower than p, then JacpF̃ (x) = 0.

Let us assume that dim DF̃ (P ) = p. Denote by the same letters H ′

[resp. H and K] the selfadjoint endomorphisms (with respect to g̃)
associated to the quadratic forms h′ [resp. h, k] restricted to P [resp.

DF̃ (P )].

Let (vi)
p
i=1 be an orthonormal basis of DF̃ (P ) which diagonalizes

H and (ui)
p
i=1 an orthonormal basis of P such that the matrix of K ◦

DF̃ (x) : P → DF̃ (P ) is triangular. Then,

(4.17) detK·|JacP F̃ (x)| ≤ (δ+1)p(Πp
i=1h(vi, vi)

1/2)(Πp
i=1h

′(ui, ui)
1/2),

and thus,

(4.18) det K · |JacP F̃ (x)| ≤ (δ + 1)p
(traceH

p

)p/2(traceH ′

p

)p/2
.

In these inequalities one can normalize at each point x the measure

νx = eB(F̃ (x),θ)−B(x,θ)µx

such that its total mass equals one, which gives

(4.19) traceH = Σp
i=1h(vi, vi) ≤ 1,

the last inequality coming from the fact that for all θ ∈ ∂X̃

(4.20) Σp
i=1dB(F̃ (x),θ)(vi)

2 ≤ ||dB(F̃ (x),θ)||
2 = 1,

and from the previous normalization. Similarly,

(4.21) traceH ′ = Σp
i=1h

′(ui, ui) ≤ 1.
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We then obtain from 4.18

(4.22) det K · |JacP F̃ (x)| ≤
(δ + 1

p

)p
.

Thanks to 4.3, we have detK ≥ 1, so that

(4.23) |JacP F̃ (x)| ≤
(δ + 1

p

)p
.

We get (ii) by taking the supremum in P . q.e.d.

As the map F̃ : X̃ → X̃ is C-equivariant, then for every subgroup
C ′ ⊂ C, F̃ gives rise to a map F ′ : X̃/C ′ → X̃/C ′ and so does the

homotopy F̃t between F̃ and IdX̃ . We easily get the

Corollary 4.5. The map F ′ : X̃/C ′ → X̃/C ′ is homotopic to the

Identity map and verifies for all x ∈ X̃/C ′ and p ∈ [2, n = dimX]

|JacF ′
p(x)| ≤

(δ + 1

p

)p
.

The C-equivariant map F̃ : X̃ → X̃ constructed in Lemma 4.4 satis-
fies

|JacF̃p(x)| ≤
(δ + 1

p

)p
,

for 2 ≤ p ≤ n = dim X̃. When δ = p − 1, we then have |JacF̃p(x)| ≤ 1.

In particular, when δ = n − 2 we get |JacF̃n−1(x)| ≤ 1.

Let us now analyze the equality case, |JacF̃n−1(x)| = 1 when δ =

n − 2. Let x ∈ X̃ and E ⊂ TxX̃ be a codimension one subspace. For
each u ∈ TxX̃ with g̃(u, u) = 1, one considers the geodesic cu defined
by cu(0) = x and ċu(0) = u. We define the equator E(∞) associated to

E as the subset of ∂X̃

(4.24) E(∞) = {cu(+∞)/u ∈ E}.

Proposition 4.6. We suppose that δ = n − 2. Let x ∈ X̃ such

that |Jacn−1F̃ (x)| = 1. Then there exists E ⊂ TxX̃ such that the limit

set ΛC satisfies ΛC ⊂ E(∞). Moreover, F̃ (x) = x and DF̃ (x) is the

orthogonal projector onto E.

Proof. Let x ∈ X̃ such that |Jacn−1F̃ (x)| = 1. By compactness there

exist a subspace E ⊂ TxX̃ such that |JacEF̃ (x)| = 1. By (4.18) and
detK ≥ 1, we have

|JacEF̃ (x)| ≤ (n − 1)n−1
(traceH

n − 1

)n−1

2

(traceH ′

n − 1

)n−1

2

(4.25)

≤ (n − 1)n−1
( 1

n − 1

)n−1
.
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In particular, as |JacEF̃ (x)| = 1, we have equality in the inequalities
4.17 and 4.18; thus, traceH = trace(h) = 1, which implies

(4.26) H =
1

n − 1
IdDF̃ (x)(E).

Let us recall that the quadratic form h is defined by

h(v, v) =

∫

∂X̃
dB(F̃ (x),θ)(v)2eB(F̃ (x),θ)−B(x,θ)dµx(θ)

where µx is the Patterson-Sullivan measure of C normalized by

(4.27)

∫

∂X̃
eB(F̃ (x),θ)−B(x,θ)dµx(θ) = 1.

We then have

1 = trace(h) = traceH = Σn−1
i=1 h(vi, vi)

=

∫

∂X̃
Σn−1

i=1 dB(F̃ (x),θ)(vi)
2eB(F̃ (x),θ)−B(x,θ)dµx(θ)

≤

∫

∂X̃
||dB(F̃ (x),θ)||

2eB(F̃ (x),θ)−B(x,θ)dµx(θ) ≤ 1,

because Σn−1
i=1 dB(F̃ (x),θ)(vi)

2 ≤ ||dB(F̃ (x),θ)||
2 = 1 for all θ ∈ ∂X̃. There-

fore for µx-almost all θ ∈ supp(eB(F̃ (x),θ)−B(x,θ)dµx(θ)) = supp(µx), we
have

(4.28) Σn−1
i=1 dB(F̃ (x),θ)(vi)

2 = ||dB(F̃ (x),θ)||
2 = 1.

In 4.28, Σn−1
i=1 dB(F̃ (x),θ)(vi)

2 represents the square of the norm of the

projection of the gradient ∇B(F̃ (x), θ) on E. By continuity of B(x, θ)
in θ, one then gets ΛC = supp(µx) ⊂ E(∞).

Let us now prove that F̃ (x) = x. When JacF̃E(x) = 1, we have
equality in the Cauchy-Schwarz inequality 4.16, and therefore for each
i = 1, . . . , n − 1 and θ ∈ ΛC we get dB(F̃ (x),θ)(vi) = dB(x,θ)(ui). There-

fore we deduce from 4.28 that ∇B(x,θ) = Σn−1
i=1 dB(x,θ)(ui)ui, which im-

plies with 4.10 that

(4.29)

∫

∂X̃
dB(x,θ)e

B(F̃ (x),θ)−B(x,θ)dµx(θ) = 0.

On the other hand, as
∫
∂X̃ dB(F̃ (x),θ)e

B(F̃ (x),θ)−B(x,θ)dµx(θ) = 0 and

H = 1
n−1IdDF̃ (x)(E), the support of µx cannot be just a pair of points;

therefore the barycenter of the measure eB(F̃ (x),θ)−B(x,θ)µx defined in
[3], see the remark in Section 4, is well defined and characterized as the

unique point z ∈ X̃ such that
∫

∂X̃
dB(z,θ)e

B(F̃ (x),θ)−B(x,θ)dµx(θ) = 0.
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Thus 4.29 and 4.10 imply x = F̃ (x).

It is now easy to check that DF̃ (x) is the orthogonal projector onto
E. q.e.d.

Let C ⊂ Isom(X̃, g̃) be as above, i.e., such that the support of the
Patterson- Sullivan measures contains at least two points and with crit-
ical exponent δ. Let C ′ ⊂ C be a subgroup. We now explain how we
can prove the inequality δ(C ′) ≥ n − 2 from Corollary 4.5.

Let us consider a compact hypersurface Z ′ ⊂ X̃/C ′. Denote F ′k =
F ′ ◦F ′ ◦ . . . ◦F ′ the composition of F ′ k-times. If we knew that F ′k(Z ′)

were a submanifold of X̃/C ′ with volume bounded below by a positive
constant independent of k, then the inequality δ(C ′) ≥ n − 2 would
follow from the remark that if δ(C ′) < n − 2, by Corollary 4.5 one
would get

voln−1F
′k(Z ′) ≤

( δ + 1

n − 1

)k(n−1)
voln−1Z

′ → 0

when k tend to ∞.
As F ′k(Z ′) may not be a submanifold of X̃/C ′, we cannot apply

directly Theorem 3.3 to get a lower bound on voln−1F
′k(Z ′). Thus,

below in Section 5 we shall work with a perturbation of the symmetric
two tensor gk = (F ′k)∗g.

For ǫ > 0, the following symmetric 2-tensor gǫ,k is a riemanniann

metric on X̃/C ′

(4.30) gǫ,k = gk + ǫ2g.

Let us denote hǫ,k its restriction to Z ′. The following shows that if
δ < n − 2 then there exist a sequence ǫk tending to 0 as k tends to ∞
such that

lim
k→∞

voln−1(Z
′, hǫk,k) = 0.

Lemma 4.7. Let hǫ,k be the restriction of gǫ,k to the hypersurface Z ′

and gZ′ the restriction of g to Z ′. Let Φǫ,k : Z ′ → R the density defined

for all x ∈ Z ′ by dvhǫ,k
(x) = Φǫ,k(x)dvgZ′

(x). For any sequence ǫk such

that limk→∞ ǫk = 0, there exists a sequence ǫ′k, limk→∞ ǫ′k = 0, such

that for all x ∈ Z ′,

0 < Φǫ′k,k(x) ≤ |Jacn−1F
′k(x)| + ǫk.

In particular,

Φǫ′k,k(x) ≤
( δ + 1

n − 1

)k(n−1)
+ ǫk

and

vol(Z ′, hǫ′k,k) ≤
[( δ + 1

n − 1

)k(n−1)
+ ǫk

]
vol(Z ′, gZ′).
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Corollary 4.8. Under the above asumptions, if δ < n−2 there exists

a sequence ǫ′k such that limk→∞ ǫ′k = 0, and limk→∞ vol(Z ′, hǫ′k,k) = 0.

Proof of Lemma 4.6. Let us fix k an integer. Let x ∈ Z ′ and u ∈ TxZ ′.
We have gǫ,k(u, u) = hǫ,k(u, u) = g(DF ′k(x)(u), DF ′k(x)(u))+ǫ2g(u, u),
thus hǫ,k(u, u) = g(Ax,ǫu, u) where Ax,ǫ ∈ End(TxZ ′) is the self adjoint

endomorphism Ax,ǫ = DF ′k(x)∗◦DF ′k(x)+ǫ2Id, where we have written

DF ′k(x)∗ the adjoint of the endomorphism DF ′k(x) : (TxZ ′, g(x)) →
(DF ′k(x)(TxZ ′), g(F ′k(x))).

By compactness of Z ′ and continuity of Ax,ǫ, there exist ǫ′k such that

Φǫ′k,k(x) = detA
1/2
x,ǫ′k

≤ det Ax,0 + ǫk.

Thus
Φǫ′k,k(x) ≤ |Jacn−1F

′k(x)| + ǫk.

The lemma then follows from Corollary 4.5. q.e.d.

5. Proof of the inequality of Theorem 1.2

This section is devoted to the proof of the inequality of Theorem 1.2.
Let Γ be a discrete cocompact group of isometries of a n-dimensional
Cartan-Hadamard manifold (X̃, g̃) whose sectional curvature satisfies
Kg̃ ≤ −1. We assume that Γ = A ∗C B. At the end of Section 2 we

constructed a subgroup C ′ ⊂ C and an orientable hypersurface Z̃ ′ ⊂ X̃
such that C ′.Z̃ ′ = Z̃ ′ and Z ′ = Z̃ ′/C ′ is compact in X̃/C ′. Moreover,

Z ′ is essential in X̃/C ′ i.e., i∗([Z
′]) 6= 0 where i∗ : Hn−1(Z

′, R) →
Hn−1(X̃/C ′, R) is the morphism induced on homology groups by the

inclusion i : Z ′ → X̃/C ′ and [Z ′] the fundamental class of Z ′.

Proof of the inequality in Theorem 1.2. In order to prove the inequality
in Theorem 1.2, let us assume that δ < n−2 and derive a contradiction.
Let hǫ′k,k be the sequence of metrics defined on Z ′ in Lemma 4.7; then

by Corollary 4.8 we have

(5.1) lim
k→∞

vol(Z ′, hǫ′k,k) = 0.

We now show that the systole of the metric hǫ′k,k on Z ′ is bounded below

independently of k, which will give the desired contradiction. Recall
that the systole of i : Z ′ → X̃/C ′ at a point z ∈ Z ′ with respect to a
metric hǫ,k can be defined by

(5.2) sysi(Z
′, hǫ,k, z) = infγ∈C′dist(Z̃′,h̃ǫ,k)(z̃, γz̃),

where z̃ is any lift of z and h̃ǫ,k the lift on Z̃ ′ of hǫ,k (cf. Lemma 3.4).

Let α(t) be a minimizing geodesic between z̃ and γz̃ on (Z ′, h̃ǫ,k). By

definition of h̃ǫ,k we have

(5.3) dist(Z̃′,h̃ǫ,k)(z̃, γz̃) ≥ lg̃(F̃
k ◦ α)
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where lg̃ stands for the length with respect to g̃ on X̃. We get

(5.4) dist(Z̃′,h̃ǫ,k)(z̃, γz̃) ≥ dist(X̃,g̃)(F̃
k(z̃), γF̃ k(z̃)) ≥ inj(X̃/C ′),

where inj(X̃/C ′) is the injectivity radius of X̃/C ′. We then have

(5.5) sysi(Z
′, hǫ,k) ≥ inj(X̃/C′),

and from Theorem 3.3 we obtain

(5.6) vol(Z′, hǫ′
k
,k) ≥ Cn

(
inj(X̃/C′)

)n−1
,

which contradicts 5.1. q.e.d.

The next sections 6–11 are devoted to proving the equality case of
Theorem 1.2. We will assume from now on that δ(C) = n − 2.

6. The limit set ΛC of C is contained in a topological equator.

The goal of this section is to prove, under the assumption δ = δ(C) =
n−2, that the limit set ΛC of C is contained in some topological equator,
namely:

Proposition 6.1. Let us assume that δ = δ(C) = n − 2; then there

exists an equator E(∞) such that ΛC ⊂ E(∞).

Recall that for x ∈ X̃ and E ⊂ TxX̃ a codimension one subspace, the
equator E(∞) associated to E is the subset of ∂X̃

(6.1) E(∞) = {cu(+∞)/u ∈ E},

where cu is the geodesic such that cu(0) = x and ċu(0) = u.

Recall that C ′ ⊂ C globally preserves an hypersurface Z̃ ′ such that
Z̃ ′/C ′ ⊂ X̃/C ′ is compact and essential.

Let us also recall that we have constructed a C-equivariant map F̃ :
X̃ → X̃ such that, for all x ∈ X̃,

(6.2) |Jacn−1F̃ (x)| ≤
( δ + 1

n − 1

)n−1

where the critical exponent δ of C satisfies δ = n− 2, and we thus have

(6.3) |Jacn−1F̃ (x)| ≤ 1.

Proposition 6.1 is a direct consequence of Proposition 4.6 and the fol-
lowing

Proposition 6.2. Let us assume that δ = δ(C) = n− 2. Then there

exists a point x in X̃ such that |Jacn−1F̃ (x)| = 1.

Proof. If we knew that there exists a minimizing hypersurface Z0 in
the homology class of Z, then all points x∈Z0 would verify |Jacn−1F̃ (x)|
= 1. We unfortunately do not know if there exists such a minimizing
hypersurface or a minimizing current in the homology class of Z by
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lack of compactness. Instead, we will consider an L2(X̃/C ′) harmonic
(n − 1)-form dual to the homology class of Z.

We need the following lemmas in order to prove the existence of such
a dual form.

Let λ1(X̃/C ′) be the bottom of the spectrum of the Laplacian on

(X̃/C ′, g̃), i.e.,

(6.4) λ1(X̃/C ′) = inf
u∈C∞

0
(X̃/C′)

{∫
X̃/C′ |du|2
∫
X̃/C′ u2

}
.

Lemma 6.3. Let C ⊂ Isom(X̃, g̃) be a discrete group of isome-

tries with critical exponent δ = n − 2 where (X̃, g̃) is an n-dimensional

Cartan-Hadamard manifold of sectional curvature Kg̃ ≤ −1. Then for

any subgroup C ′ ⊂ C we have λ1(X̃/C ′) ≥ n − 2.

Proof. Thanks to a theorem of Barta, cf. [19] Theorem 2.1, the

lemma reduces to finding a positive function c : X̃/C ′ → R+ such that
∆c(x) ≥ (n − 2)c(x). Here, the Laplacian ∆ is the positive operator

i.e., ∆c = −traceDdc. We consider the smooth function c̃ : X̃ → R+

defined by c̃(x) = µx(∂X̃) where {µx}x∈X̃ is a family of Patterson-
Sullivan measures of C. The function c̃ is C-equivariant, therefore it
defines a map c : X̃/C ′ → R+ for any subgroup C ′ ⊂ C. Let us show
that

(6.5) ∆c(x) ≥ δ(n − 1 − δ)c(x) = (n − 2)c(x).

We have

c̃(x) =

∫

∂X̃
e−δB(x,θ)dµo(θ);

therefore

∆c̃(x) =

∫

∂X̃
[−δ∆B(x, θ) − δ2]dµx(θ).

The sectional curvature Kg̃ of (X̃, g̃) satisfies Kg̃ ≤ −1. We thus have
−∆B(x, θ) ≥ n − 1, and as δ = n − 2 we get

∆c̃(x) ≥ [δ(n − 1) − δ2]c̃(x) = (n − 2)c̃(x).

q.e.d.

The following lemma is due to G. Carron and E. Pedon, [9]. For a
complete riemannian manifold Y , we denote H1

c (Y, R) the first coho-
mology group generated by differential forms with compact support.

Lemma 6.4 ([9], Lemme 5.1). Let Y be a complete riemannian man-

ifold with λ1(Y ) > 0 and such that each end of Y has infinite volume,

then the natural morphism

H1
c (Y, R) → H1

L2(Y, R)
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is injective. In particular, any α ∈ H1
c (Y, R) admits a representative ᾱ

which is in L2(Y, R) and harmonic.

Corollary 6.5. Let C ′ be as above and assume that there exists a

compact essential hypersurface Z ′ ⊂ X̃/C ′. Then there exists an har-

monic (n − 1)-form ω in L2(X̃/C ′) such that
∫
Z′ ω 6= 0.

Proof.

Let α ∈ H1
c (X̃/C ′, R) be a Poincaré dual of [Z ′] ∈ Hn−1(X̃/C ′, R).

By definition of α, for any β ∈ Hn−1(X̃/C ′, R), one has

(6.6)

∫

Z′

β =

∫

X̃/C′

β ∧ α,

([5] p. 51, note that X̃/C ′ has a “finite good cover”). Notice that the
above equality makes sense also when α and β are L2. After Lemma
6.4, α admits a non trivial harmonic representative ᾱ in L2(X̃/C ′). In

order to apply the Lemma 6.4, one has to check that all ends of X̃/C ′

have infinite volume, i.e., for a compact K ⊂ X̃/C ′ each unbounded

connected component of X̃/C ′ − K has infinite volume. This comes

from the fact that the injectivity radius of X̃/C ′ is bounded below

by the injectivity radius of X = X̃/Γ and the sectional curvature is
bounded above by −1. The (n − 1)-harmonic form ω = (−1)n−1 ∗ ᾱ,

where ∗ is the Hodge operator, is in L2(X̃/C ′) and verifies after 6.6

(6.7)

∫

Z′

ω =

∫

X̃/C′

ω ∧ ᾱ =

∫

X̃/C′

ω ∧ ∗ω = ||ω||2
L2(X̃/C′)

6= 0.

q.e.d.

We now can prove Proposition 6.2. Let us briefly describe the idea.
We consider the iterates F ′k of F ′ : X̃/C ′ → X̃/C ′. As F ′ is homo-
topic to the identity map, F ′k(Z ′) is homologous to Z ′, and if ω is the
harmonic form of corollary 6.5 we have

(6.8)

∫

Z′

(F ′k)∗(ω) =

∫

Z′

ω = a 6= 0.

We do not know if F ′k(Z ′) converges or stays in a compact subset of

X̃/C ′, but we will show that F ′k(Z ′) cannot entirely diverge in X̃/C ′

and that there exists a z′ ∈ Z ′ such that F ′k(z′) subconverges to a point

x ∈ X̃/C ′ with |Jacn−1F
′(x)| = 1.

Let us now give the details. From 6.8 one gets

(6.9) 0 < |a| = |

∫

Z′

(F ′k)∗(ω)| ≤

∫

Z′

|JacTZ′F ′k(z)|.||ω(F ′k(z))||dz

where

|JacTZ′F ′k(z)| = ||DF ′k(z)(u1) ∧ DF ′k(z)(u2) ∧ . . . ∧ DF ′k(z)(un−1)||
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with (u1, . . . , un−1) is an orthonormal basis of Tz(Z
′).

Let us define

B = {z ∈ Z ′, |JacF ′k
TZ′(z)| does not converge to 0}.

For z ∈ Z ′ we define the sequence zk by z0 = z and zk = F ′(zk−1) =

F ′k(z) ∈ X̃/C ′.

Lemma 6.6. There exists z ∈ B and a subsequence zkj such that zkj

converges to a point x ∈ X̃/C ′ with |Jacn−1(x)| = 1.

Proof. We first remark that limx→∞ ||ω(x)|| = 0. This comes from

the following facts: ω is harmonic, ω ∈ L2(X̃/C ′), and the injectivity

radius of X̃/C ′ is bounded below by a positive constant. Let us assume

that for all z ∈ B the sequence zk diverges in X̃/C ′. We then have, for
all z ∈ B,

(6.10) ||ω(zk)|| = ||ω(F ′k(z))|| → 0

whenever k tends to ∞ because of the previous remark. On the other
hand, as ||ω(F ′k(z))|| ≤ C and |Jacn−1F

′k| ≤ 1, it follows from 6.9 that

lim
k→∞

|

∫

Z′

(F ′k)∗(ω)|

≤ lim
k→∞

[ ∫

B
||ω(F ′k(z))||dz + C

∫

Z′−B
|JacZ′F ′k(z)|dz

]
= 0,

which contradicts our assumption.
Thus, there exists a point z ∈ B such that zk = F ′k(z) does not

diverge, and therefore there exists a subsequence zkj = F ′kj (z) with

(6.11) lim
j→∞

zkj = x ∈ X̃/C ′

and

(6.12) |JacZ′F ′k(z)| → α 6= 0.

Let us define
E0 = TzZ

′, E1 = DF ′(z)(E0)

and
Ek = DF ′(zk−1)(Ek−1) ⊂ Tzk

(X̃/C ′).

As zkj → x we can assume, after extracting again a subsequence, that

Ekj → E ⊂ Tx(X̃/C ′). On the other hand, we also have
(6.13)

|JacZ′F ′k(z)| = |JacEk−1
F ′(zk−1)| · |JacEk−2

F ′(zk−2)| · · · |JacE0
F ′(z)|.

We know that |JacEk
F ′(zk)| = 1 − ǫk where 0 ≤ ǫk < 1. As z ∈ B, we

have

lim
k→∞

k∏

j=1

(1 − ǫj) = α > 0;
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therefore limk→∞ ǫk = 0, and by continuity we have |JacEF ′(x)| = 1.
q.e.d.

This finishes the proof of Proposition 6.2. q.e.d.

We now can finish the proof of Proposition 6.1. Let us consider a lift
of x in X̃ and a subspace E in TxX̃ that we again call x and E. We
then have |JacEF̃ ′(x)| = 1, and by Proposition 4.6, we get ΛC′ ⊂ E(∞).

q.e.d.

Let us remark that Corollary 4.5 and 6.8 give another proof of the
inequality δ ≥ n − 2, which does not use the isosystolic inequality, i.e.,
Theorem 3.3.

7. The weak tangent of ∂X̃ and ΛC

The goal of this section is to introduce some tools which we will use
later.

We first recall the definition of the Gromov-distance on ∂X̃. For two
arbitrary points θ and θ′ in ∂X̃ let us define

(7.1) l(θ, θ′) = inf{t > 0/dist(αθ(t), αθ′(t)) = 1}

where αθ denotes the geodesic ray between a fixed origin o and θ and

(7.2) d(θ, θ′) = e−l(θ,θ′);

then d is a distance on ∂X̃.
We now recall a few definitions following [4]. A complete metric space

(S, d̄) is a weak tangent of a metric space (Z, d) if there exist a point 0 ∈
S, a sequence of points zk ∈ Z and a sequence of positive real numbers
λk → ∞ such that the sequence of pointed metric spaces (Z, λkd, zk)
converges in the pointed Gromov-Hausdorff topology to (S, d̄, 0) where
(Z, λkd) stands for the set Z endowed with the rescaled metric λkd.

In the sequel, we shall denote B(x, R) a ball of radius R centered at x
without mentioning in which metric space it lies if there is no ambiguity.
Let us recall that the sequence of metric spaces (Zk, dk, zk) converges
to (S, d̄, 0) in the pointed Gromov-Hausdorff topology if the following
conditions hold (cf. [7], Definition 8.1.1).

Definition 7.1. A sequence of metric spaces (Zk, dk, zk) converges to
(S, d̄, 0) if for any R > 0, ǫ > 0 there exists k0 such that for any k ≥ k0

there exists a (not necessarily continuous) map f : B(zk, R) → S such
that

(i) f(zk) = 0, for any two points x and y in B(zk, R),
(ii) |d̄(f(x), f(y)) − dk(x, y)| ≤ ǫ, and
(iii) the ǫ-neighborhood of the set f(B(zk, R)) contains

B(0, R − ǫ).
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For a metric space (Z, d) we will denote WT (Z, d) the set of weak
tangents of (Z, d).

Let Γ be a cocompact group of isometries of (X̃, g̃), an n-dimensional
Cartan-Hadamard manifold of sectional curvature Kg̃ ≤ −1, and C ′ be

a subgroup of Γ. The limit set ΛΓ of Γ is the full boundary ∂X̃, namely
a topological (n−1)−dimensional sphere Sn−1. We endow ∂X̃ with the
Gromov distance d defined in 7.2. In [4] Lemma 5.2, M. Bonk and B.
Kleiner show among other properties the following:

Lemma 7.2. For any weak tangent space (S, d̄) in WT (∂X̃, d), S is

homeomorphic to ∂X̃ less a point, thus to R
n−1.

In fact, the crucial asumption in the above lemma, coming from the
cocompactness of Γ, is the property that any triple of points in ∂X̃ can
be uniformly separated by an element of Γ, i.e., there is ν > 0 such
that for any three points θ1, θ2, θ3 ∈ ∂X̃ there exists a γ ∈ Γ such that
d(γθi, γθj) ≥ ν for all 1 ≤ i 6= j ≤ 3. Following the argument of M.
Bonk and B. Kleiner one can show that if C ′ is a subgroup of Γ and L a
C ′-invariant subset of ∂X̃ such that one weak tangent (S, d̄) of (L, d) is

in WT (∂X̃, d), and enough triples of points of (L, d) can be uniformly
separated by elements of C ′, then S is homeomorphic to (L, d) less a

point. In particular, (L, d) is homeomorphic to ∂X̃. We will apply later
the following lemma to the case of L being either the limit set ΛC′ or a
hemisphere of ∂X̃.

Lemma 7.3. Let L ⊂ ∂X̃ be a closed C ′-invariant set and θ0 ∈ L.

We assume that there exists a sequence of positive real numbers λk → ∞
such that the sequence of pointed metric spaces (L, λkd, θ0) converges

in the pointed Gromov-Hausdorff topology to (S, d̄, 0) where (S, d̄, 0) is

a weak tangent of (∂X̃, d). We also assume that there exist positive

constants C and ν, a sequence of points θk
0 = θ0, θ

k
1 , θk

2 ∈ L and a

sequence of elements γk ∈ C ′ such that C−1λ−1
k ≤ d(θk

i , θk
j ) ≤ Cλ−1

k

and d(γkθ
k
i , γkθ

k
j ) ≥ ν for all 0 ≤ i 6= j ≤ 2. Then, S is homeomorphic

to L less a point. In particular, L is homeomorphic to ∂X̃.

The proof of this lemma is postponed to the Appendix. In the sequel
it will be applyed twice; a first time in the proof of proposition 8.8 with
L being the limit set of C ′, and a second time in the proof of proposition
9.3 where L is a topological hemisphere.

Let C ′ a discrete group of isometries of X̃ and ΛC′ ⊂ ∂X̃ the limit
set of C ′. The following lemma amounts to saying that if ΛC′ is very
“irregular” near a point θ0 ∈ ΛC′ , then weak tangents of ∂X̃ are weak
tangents of ΛC′ .

Lemma 7.4. Let us assume that for every sequence θi 6= θ0 of points

in ∂X̃ converging to θ0, limi→∞
d(θi,ΛC′ )
d(θi,θ0) = 0. Let λk → ∞ be such
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that the sequence of spaces (∂X̃, λkd, θ0) converges to a space (S, d̄, 0)
in the pointed Gromov-Hausdorff topology; then the sequence of spaces

(ΛC′ , λkd, θ0) also converges to (S, d̄, 0).

Proof. Let us define

r(ǫ) =: sup{
d(θ, ΛC′)

d(θ, θ0)
, θ 6= θ0, d(θ, θ0) ≤ ǫ}.

The assumption says that

(7.3) lim
ǫ→0

r(ǫ) = 0.

For an arbitrary metric space (Y, d) and Y ′ a subset of Y , let us denote
B(Y,d)(y, R) the closed ball of (Y, d) of radius R centered at y ∈ Y , and

U
(Y,d)
ǫ (Y ′) the ǫ-neighborhood of Y ′ in (Y, d). For a metric space (Y, d)

and a positive number λ, let us denote, for sake of simplicity, by λY the
rescaled space (Y, λd). By definition of the function r, we have for any
R,

Bλk∂X̃(θ0, R) ⊂ Uλk∂X̃
ǫk

BλkΛC′
(θ0, R + ǫk)

(7.4) ⊂ Bλk∂X̃(θ0, R + 2ǫk)

where ǫk =: Rr(R/λk).
Let us fix α > 0. By Definition 7.1 of Hausdorff-Gromov conver-

gence, for any R > 0, ǫ > 0, and any k ≥ k0 there exists a map
f : Bλk∂X̃(θ0, R + α) → S such that for k ≥ k0,

(i) f(θ0) = 0,
(ii) |d̄(f(x), f(y)) − λkd(x, y)| ≤ ǫ for any two points x and y in

Bλk∂X̃(θ0, R + α) and,

(iii) B(S,d̄)(0, R + α − ǫ) ⊂ U
(S,d̄)
ǫ f(Bλk∂X̃(θ0, R + α)).

Moreover, let us prove that

(iv) B(S,d̄)(0, R − 2ǫ) ⊂ U
(S,d̄)
ǫ f(Bλk∂X̃(θ0, R)).

Indeed, let z ∈ B(S,d̄)(0, R−2ǫ). By (iii), there exists θ ∈ Bλk∂X̃(θ0, R

+α) such that d̄(z, f(θ)) ≤ ǫ. Since d̄(z, 0) ≤ R − 2ǫ, we thus deduce
from the triangle inequality that d̄(f(θ), 0) ≤ R − ǫ, and therefore we
get, using (i) and (ii), that λkd(θ, θ0) ≤ R.

By 7.3, for ǫ small enough, there exists k1 ≥ k0 such that for any
k ≥ k1, 2ǫk ≤ ǫ and

Bλk∂X̃(θ0, R + 2ǫk) ⊂ Bλk∂X̃(θ0, R + α).

Therefore, by 7.4 and the above properties (i), (ii), (iii) and (iv) of the
map f , and the triangle inequality, we get

B(S,d̄)(0, R − 2ǫ) ⊂ U (S,d̄)
ǫ f(Bλk∂X̃(θ0, R))

⊂ U (S,d̄)
ǫ f(Uλk∂X̃

ǫk
BλkΛC′

(θ0, R + ǫk))
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⊂ U
(S,d̄)
2ǫ+ǫk

f(BλkΛC′
(θ0, R + ǫk)).

About the second inclusion above, let us recall that f is not everywhere

defined. However, we just have to remark that the Uλk∂X̃
ǫk

BλkΛC′
(θ0, R+

ǫk) is contained in Bλk∂X̃(θ0, R + 2ǫk) ⊂ Bλ∂X̃(θ0, R + α), so that we
can apply f to this set. From the above inclusions we obtain

B(S,d̄)(0, R − 2ǫ) ⊂ U
(S,d̄)
3ǫ+2ǫk

f(BλkΛC′
(θ0, R)),

which implies the convergence of (ΛC′ , λkd, θ0) to (S, d̄, 0). q.e.d.

Remark 7.5. Note that Lemma 7.4 is a purely metric property and
remains valid for any metric space Z instead of ∂X̃ and any subset
Y ⊂ Z instead of ΛC′ ⊂ ∂X̃. Namely, the proof does not make use of
special properties of ∂X̃ or ΛC′ .

8. The limit set ΛC′ of C ′ and the limit set ΛC of C are equal

to a topological equator

The goal of this section is to prove that if δ = δ(C) = n − 2, then
the limit set ΛC of C and the limit set ΛC′ of C ′ are equal to some
topological equator.

Proposition 8.1. Let us assume that δ(C) = n−2; then there exists

a topological equator E(∞) such that ΛC′ = E(∞) and ΛC = E(∞).

We have shown in Section 6 the existence of a point o ∈ X̃ and a
subspace E ⊂ ToX̃ such that F̃ (o) = o, |JacEF̃ (o)| = 1 and ΛC ⊂ E(∞)
where E(∞) is the equator associated to E.

Recall that there exists a subgroup C ′ of C which globally preserves
a connected hypersurface Z̃ ′ ⊂ X̃, and that Z̃ ′/C ′ ⊂ X̃/C ′ is compact.

Furthermore, Z̃ ′ separates X̃ into two connected components Ũ et Ṽ .
We can assume that Ũ and Ṽ are globally invariant by C ′ after having
replaced C ′ by an index 2 subgroup.

The limit set ΛC′ of C ′ is contained in ΛC ; therefore ΛC′ ⊂ E(∞).
In this section we will show that ΛC′ = E(∞).

For any subset W ∈ X̃ we define the boundary at infinity ∂W of W
by

(8.1) ∂W = Cl(W ) ∩ ∂X̃

where Cl(W ) stands for the closure of W in X̃ ∪ ∂X̃.

Our first goal is to show that if ΛC′ 6= E(∞), then ∂Ũ = ΛC′ or

∂Ṽ = ΛC′ . As Z̃ ′/C ′ is compact, Z̃ ′ is at bounded distance of the orbit

C ′z ⊂ Z̃ ′ of some point z in Z̃ ′, thus

(8.2) Cl(Z̃ ′) ∩ ∂X̃ = ΛC′

By definition we have ΛC′ ⊂ ∂Ũ and ΛC′ ⊂ ∂Ṽ .
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Lemma 8.2. Let us assume that ΛC′ 6= E(∞); then either ∂Ũ = ΛC′

or ∂Ṽ = ΛC′.

Proof. We know that ΛC′ ⊂ ∂Ũ and ΛC′ ⊂ ∂Ṽ .
Let us assume that the conclusion of the lemma is not true, so there

is ζ ∈ ∂Ũ − ΛC′ and θ ∈ ∂Ṽ − ΛC′ .
As ΛC′ ⊂ E(∞), ΛC′ 6= E(∞) and ∂X̃ is a sphere, any two points of

∂X̃ − ΛC′ can be joined by a continuous path contained in ∂X̃ − ΛC′ .
Let α be a path joining ζ and θ.

The set Z̃ ′ ∪ ΛC′ is a closed subset of X̃ ∪ ∂X̃, thus there is an open
connected neighborhood W of α in X̃∪∂X̃ contained in the complement
of Z ′ ∪ ΛC′ .

As ζ and θ can be approximated by points in Ũ and Ṽ , respectively,
there exist points x ∈ Ũ ∩ W and y ∈ Ṽ ∩ W that can be joined by a
continuous path by connectedness of W , which leads to a contradiction.

q.e.d.

Remark 8.3. In fact, the end of the section is devoted to showing
that under the assumption δ(C ′) = n− 2, it is impossible to have ∂Ũ =

ΛC′ or ∂Ṽ = ΛC′ .

For any x ∈ X̃ and θ ∈ ∂X̃ let us denote HB(x, θ) the open horoball
centered at θ and passing through x.

Lemma 8.4. Let us assume that ∂Ũ = ΛC′. Then there exist θ0 ∈
ΛC′ and z′ ∈ Z̃ ′ such that HB(z′, θ0) ⊂ Ũ .

Proof. Let us recall that X̃/C ′ − Z ′ = U ∪ V where U = π(Ũ) V =

π(Ṽ ) and π : X̃ → X̃/C ′ is the projection. By Lemma 2.7, we know that
U and V are unbounded. Let xn be a sequence of points in U such that
dist(xn, Z ′) → ∞. Let zn ∈ Z ′ such that dist(xn, Z ′) = dist(xn, zn). We

consider a compact fundamental domain D ⊂ Z̃ ′ of C ′. There exist lifts
z̃n ∈ D and x̃n ∈ Ũ such that dist(x̃n, Z̃ ′) = dist(x̃n, z̃n) tends to infinity.
By compactness we can assume that a subsequence x̃nj converges to a

point θ0 ∈ ∂X̃ and z̃nj also converges to a point z̃ ∈ D̄. Furthermore,

the sequence of open balls B(x̃nj , dist(x̃nj , z̃nj )) ⊂ Ũ converges to the

open horoball HB(θ0, z̃) ⊂ Ũ . q.e.d.

Let us now describe the idea of the proof of Proposition 8.1 and next
state some facts that we will need.

As ΛC′ ⊂ ΛC ⊂ E(∞) the proposition reduces to proving that
ΛC′ = E(∞). We will assume that ΛC′ 6= E(∞) and find a contradic-
tion. More precisely, we will show that for any sequence θi converging
to θ0, the geodesic starting at a point o such that |Jacn−1F̃ (o)| = 1 and

ending at θi crosses the hypersurface Z̃ ′ in a point zi. For an appro-

priate choice of such a sequence θi (roughly speaking, the sequence
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θi is chosen to be converging to θ0 ”transversely to ΛC′”), the shadow
(defined below) projected from o through some geodesic ball B(zi, r)
will not intersect ΛC′ . On the other hand, this shadow has to meet the
limit set ΛC′ because of the shadow lemma of D. Sullivan, which leads
to a contradiction.

Precisely, by Lemma 8.2 and Lemma 8.4 we know that ∂Ũ = ΛC′ and
that there exists an open horoball HB(θ0, z̃) ⊂ Ũ centered at a point

θ ∈ ΛC′ , and whose closure contains a point z̃ ∈ Z̃ ′.
Let o ∈ X̃ and E ∈ ToX̃ a hyperplane such that F̃ (o)=o, |JacEF̃ (o)|

= 1, and ΛC′ ⊂ E(∞) where E(∞) is the topological equator associated

to E. For each θ ∈ ∂X̃ we denote by αθ the geodesic starting from o
and such that αθ(+∞) = θ.

Let θi ∈ ∂X̃ \ΛC′ j ∂Ṽ \∂Ũ = ∂Ṽ \ΛC′ be a sequence converging to
θ0. By continuity, for each i large enough, the geodesic αθi spends some

time inside the horoball HB(θ0, z̃) ⊂ Ũ and ends up inside Ṽ because

θi converges to θ0 and θi belongs to ∂Ṽ − ∂Ũ .
Thus αθi eventually crosses Z̃ ′. Let zi ∈ αθi ∩ Z̃ ′ such that zi tends

to θ0. As Z̃ ′/C ′ is compact, there is an element γi ∈ C ′ such that
zi = γi(xi) where xi is a point in the closure D̄ of a fundamental domain

D for the action of C ′ on Z̃ ′. The points γi(xi) and γi(o) stay at bounded
distance because dist(γi(xi), γi(o)) = dist(xi, o) ≤ dist(o, D) + diamD.
In particular, limi→∞ γi(o) = θ0.

We have proved

Lemma 8.5. Let us assume ΛC′ = ∂Ũ . Let θi ∈ ∂X̃ \ E(∞) be a

sequence which converges to θ0 ∈ ΛC′. There exists a constant A such

that for i large enough, there exists zi ∈ Z̃ ′ ∩ αθi and γi ∈ C ′ such that

dist(zi, γi(o)) ≤ A, and both zi and γi(o) converge to θ0.

Let x and y be two points in X̃. We define the shadow O(x, y, R) ⊂
∂X̃ of the ball B(y, R) lit from the point x by

(8.3) O(x, y, R) = {α(+∞)}

where α runs through the set of geodesic rays starting from x and meet-
ing B(y, R). Let {µx}x be a family of Patterson measures associated to
the discrete group C ′ with critical exponent δ′ = δ(C ′).

The following lemma, called the shadow lemma, is essentially due to
D. Sullivan.

Lemma 8.6 ([20], [15], [22]). There exist positive constants C and

R such that for any y in X̃,

µy(O(y, γ(y), R)) ≥ Ce−δ′d(y,γ(y)).

In particular, by Lemma 8.6, the shadow O(y, γ(y), R) intersects the
support of µy and hence ΛC′ .
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Corollary 8.7. Let zi be defined in Lemma 8.5; then we have O(o, zi,
R + A) ∩ ΛC′ 6= ∅ for i large enough.

We now prove that for a good choice of θi, the shadow O(o, zi, R+A)
(with zi associated to θi as in Lemma 8.5) never meets ΛC′ for all
sufficiently large i, i.e., for any θ ∈ ΛC′ the geodesic αθ does not cross
B(zi, R + A) which will lead to a contradiction. We have no control on
the radius R coming from the shadow lemma, nor on the constant A,
but we will show

Proposition 8.8. There exists a sequence θi ∈ ∂X̃ − ΛC′ such that

θi converges to θ0 and

lim
i→∞

inf
θ∈ΛC′

dist(zi, αθ) = +∞,

where zi = Z̃ ′ ∩ αθi has been constructed in Lemma 8.5.

Corollary 8.9. There exists a sequence θi ∈ ∂X̃ −ΛC′ such that for

i large enough, O(o, zi, R + A) ∩ ΛC′ = ∅, where zi = Z̃ ′ ∩ αθi has been

constructed in Lemma 8.5.

Corollary 8.7 and Corollary 8.9 lead to a contradiction, which will
complete the proof of Proposition 8.1. The remainder of this section is
devoted to proving Proposition 8.8.

Lemma 8.10. Let θi 6= θ0 be a sequence of points in ∂X̃ converging

to θ0 and zi constructed in Lemma 8.5. If

lim inf
i→∞

infθ∈ΛC′
dist(zi, αθ) = C < +∞,

then limi→∞
d(θi,ΛC′ )
d(θi,θ0) = 0.

Proof. We first show that

(8.4) lim
i→∞

dist(zi, αθ0
) = ∞.

Recall that, for any z̃ ∈ X̃ and θ ∈ ∂X̃, B(z̃, θ) equals the decreasing
limit as t tends to infinity of dist(z̃, αθ(t))−dist(o, αθ(t)) where αθ(t) is

the geodesic ray joigning o to θ. Therefore, as the points zi ∈ Z̃ belong
to the complement of the fixed horoball HB(z̃, θ0), we have

(8.5) dist(zi, αθ0
(Ti) ≥ Ti + B(z̃, θ0)

where Ti is chosen so that dist(zi, αθ0
(Ti)) = dist(zi, αθ0

). On the other
hand, as zi tends to θ0, Ti tends to infinity, so 8.4 is proven.

Let ti be such that zi = αθi(ti). By 8.4, we have

(8.6) lim
i→∞

dist(αθi(ti), αθ0
(ti)) = ∞.

Let ui be such that

(8.7) dist(αθi(ui), αθ0
(ui)) = 1;
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then in particular ui ≤ ti for i large enough, and by the triangle in-
equality we have

(8.8) dist(αθi(ti), αθ0
(ti)) ≤ 2(ti − ui) + 1.

By 8.6, we get

(8.9) lim
i→∞

(ti − ui) = +∞.

Let us assume there exists a sequence θ′i ∈ ΛC′ and a constant C such
that

(8.10) dist(zi, αθ′i
) ≤ C < +∞.

We can assume that C ≥ 1. Let vi be such that

(8.11) dist(zi, αθ′i
) = dist(zi, αθ′i

(vi)).

By the triangle inequality

(8.12) |ti − vi| ≤ C

and

(8.13) dist(αθ′i
(ti), αθi(ti)) ≤ 2C.

On the other hand, as the curvature of X̃ is bounded above by −1, a
classical comparison theorem gives for any t ∈ [0, ti]

(8.14) sinh

(
dist(αθ′i

(t), αθi(t))

2

)
≤ sinhC.

sinh t

sinh ti
.

Let si be such that

(8.15) dist(αθ′i
(si), αθi(si)) = 1.

If si < ti, we get from 8.13 and 8.14 the existence of a constant A such
that for any i,

(8.16) si ≥ ti − A,

and this inequality also trivially holds when si ≥ ti. From 8.16, we get

(8.17)
d(θi, θ

′
i)

d(θi, θ0)
= e−si+ui ≤ eAe−ti+ui ;

therefore, thanks to 8.9, we obtain

(8.18) lim
i→∞

d(θi, θ
′
i)

d(θi, θ0)
= 0,

which ends the proof of Lemma 8.10. q.e.d.

The two lemmas 8.10 and 7.4 imply the following:
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Corollary 8.11. Let us assume that for every sequence θi of points

in ∂X̃ − ΛC′ converging to θ0 and zi the sequence of points constructed

in Lemma 8.5, lim infi→∞ infθ∈ΛC′
dist(zi, αθ) < +∞. Let λk → ∞ be

such that the sequence of spaces (∂X̃, λkd, θ0) converges to the space

(S, d̄, 0) in the pointed Gromov-Hausdorff topology; then the sequence of

spaces (ΛC′ , λkd, θ0) also converges to (S, d̄, 0).

We will show now that there exists a sequence of points θk
1 , θk

2 ∈ ΛC′

converging to θ0, such that the mutual distances d(θk
1 , θk

2), d(θk
1 , θ0),

d(θk
2 , θ0) are tending to zero at the same rate, and the triple θk

1 , θk
2 , θ0

can be uniformly separated by elements γk ∈ C ′.

Lemma 8.12. Assume that every weak tangent of (∂X̃, d) at θ0 be-

longs to WT (ΛC′ , d); then there exist positive constants c, ν, a sequence

ǫk tending to 0 when k tends to ∞, a sequence γk ∈ C ′, and a sequence

of points θk
1 , θk

2 ∈ ΛC′ such that for i = 1, 2,
c−1ǫk ≤ d(θk

1 , θk
2) ≤ cǫk,

c−1ǫk ≤ d(θk
i , θ0) ≤ cǫk and

d(γkθ
k
1 , γkθ

k
2) ≥ ν, d(γkθ

k
i , γkθ0)) ≥ ν.

Proof. For any x ∈ X̃ ∪ ∂X̃ and y ∈ X̃ ∪ ∂X̃ let us define αx,y as the

geodesic ray joining x and y. Let o ∈ X̃ and E ∈ ToX̃ be such that
|JacEF̃ (o)| = 1 and E(∞) the equator associated to E. Let γk ∈ C ′ be
a sequence such that γk(o) converges to the point θ0 ∈ ΛC′ which is the
point coming from Lemma 8.4. In particular, according to that lemma,
there exists a point z′ ∈ Z̃ ′ such that the hypersurface Z̃ ′ is contained
in the complement of the open horoball HB(z′, θ0). We define D :=

dist(z̃, o). As Z̃ ′ lies outside the open horoball HB(z′, θ0), the points
γk(o) belong to the complement of the open horoball HB(αz̃,θ0

(D), θ0).
By standard triangle comparison argument (comparison with the hy-
perbolic case) the angle ∠(αγk(o),θ0

, αγk(o),o) between the two geodesic
rays αγk(o),θ0

and αγk(o),o satisfies :

(8.19) lim
k→∞

∠(αγk(o),θ0
, αγk(o),o) = 0.

By equivariance we have ΛC′ ⊂ (γkE)(∞) where γkE ⊂ Tγk(o)X̃. For

any v ∈ TX̃ let αv be the geodesic ray such that α̇v(0) = v. Let us
denote by uk the unit vector in γkE such that αuk

(+∞) = θ0 and let
us choose some wk ∈ γkE such that < uk, wk >= 0 (this is possible
because n − 1 ≥ 2).

We claim now that there exist unit vectors vk ∈ γkE such that the
angle between vk and wk is not too far from 0 or π, namely

(8.20) |〈vk, wk〉| ≥
1

(n − 1)1/2
,

and αvk
(+∞) ∈ ΛC′ or αvk

(−∞) ∈ ΛC′ .
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Let us prove this claim. According to Proposition 4.6 and to 4.26,
the restriction hγkE to γkE of the quadratic form

h(u) =

∫
dB(γk(o),θ)(u)2dµγk(o)(θ)

verifies

(8.21) hγkE(u) =
||u||2

n − 1
.

Therefore, if for all u ∈ γk(E) such that αu(+∞) = θ ∈ ΛC′ we had
| < u, wk > | < 1

(n−1)1/2
, then one would get h(wk) < 1

n−1 , which

contradicts 8.21 and proves the claim.
In particular, the angle between uk and vk is not too far from π/2 for

k large enough, i.e.,

(8.22) | < uk, vk > | ≤
(n − 2

n − 1

)1/2
,

and thanks to 8.19, we have for k large enough

(8.23) | < α̇γk(o),o(0), vk > | ≤
(n − 3

2

n − 1

)1/2
.

Let us now define θk = αvk
(+∞) ∈ ΛC′ . Let us show that

(8.24) lim
k→∞

d(θ0, θk) = 0.

We proceed by contradiction and assume that 8.24 is not true. Then,
one can assume after extracting a subsequence that θk converges to
θ 6= θ0. Therefore, the geodesic rays αγk(o),o and αvk

would converge to
the geodesics αθ0,o and αθ0,θ and thus the angle ∠(αγk(0),o, αvk

) would
converge to 0. But this would contradict 8.23.

Let us now denote ǫk =: d(θk, θ0). According to 8.24, we have
limk→∞ ǫk = 0. We now consider the following sequence of pointed
metric space (∂X̃, ǫ−1

k d, θ0), a subsequence of which converges to some
metric space (S, d̄), cf. [4]. For convenience we still denote by the same
index k the subsequence. By Corollary 8.11, the sequence (ΛC′ , ǫ−1

k d, θ0)
also converges to (S, d̄). According to Lemma 7.2, the space S is homeo-
morphic to R

n−1. In particular, there exist a sequence of points θ′k ∈ ΛC′

and a constant c such that

(8.25) c−1ǫk ≤ d(θk, θ
′
k) ≤ cǫk,

(8.26) c−1ǫk ≤ d(θ′k, θ0)) ≤ cǫk.

The points θk
1 = θk and θk

2 = θ′k satisfy the two first properties of
Lemma 8.12.

In order to complete the proof of Lemma 8.12, we will show that the
elements ηk =: γ−1

k uniformly separate θ0, θk
1 and θk

2 .
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The inequality 8.22 shows that the angle at γk(o) between θk
1 and θ0 is

uniformly bounded away from 0 and π, and so is the angle at o between
γ−1

k (θk
1) and γ−1

k (θ0). Therefore, as the angle is Hölder-equivalent to
the distance d, cf. [11], there is a constant c such that

(8.27) d(γ−1
k (θk

1), γ−1
k (θ0)) ≥ c.

Now, the cocompact group Γ acts uniformly quasi-conformally on
(∂X̃, d) ([4] and [21] Theorem 5.2), and so does C ′ ⊂ Γ; therefore

(8.28) d(γ−1
k (θk

1), γ−1
k (θk

2)) ≥ c,

and

(8.29) d(γ−1
k (θk

2), γ−1
k (θ0)) ≥ c,

which ends the proof of Lemma 8.12. q.e.d.

Proof of Proposition 8.8. Let us assume that for every sequence θi of
points in ∂X̃ converging to θ0,

lim inf
i→∞

inf
θ∈ΛC′

dist(zi, αθ) < +∞.

Then by Corollary 8.11 and Lemma 8.12 there exists a positive constant
c, a sequence ǫk tending to 0 when k tends to ∞, a sequence γk ∈ C ′, a
sequence of points θk

1 , θk
2 ∈ ΛC′ such that

c−1ǫk ≤ d(θk
1 , θk

2) ≤ cǫk , c−1ǫk ≤ d(θk
i , θ0) ≤ cǫk,

and

d(γkθ
k
1 , γkθ

k
2) ≥ ν, d(γkθ

k
i , γkθ0) ≥ ν.

Applying Lemma 7.3 for L = ΛC′ and λk = ǫ−1
k we conclude that ΛC′

is homeomorphic to ∂X̃, which is impossible because ΛC′ is contained
in a topological equator E(∞). q.e.d.

This completes the proof of Proposition 8.1 as a consequence of Corol-
lary 8.7 and Corollary 8.9.

9. C ′ and C are convex cocompact

We first define convex cocompactness. For a discrete group C of
isometries acting on a Cartan Hadamard manifold of negative sectional
curvature with limit set ΛC , one defines the geodesic hull G(ΛC) of ΛC

as the set of all geodesics both ends of which belong to ΛC .
The geodesic hull of ΛC is a C invariant set. One says that C is

convex cocompact if G(ΛC)/C is compact.
The goal of this section is to prove the following:

Lemma 9.1. Let us assume that δ(C) = n − 2; then C ′ is convex

cocompact.
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Proof. Let π : X̃ → X̃/C ′ denote the isometric covering map. As-
sume that C ′ is not convex cocompact. Then, there exists a sequence
xn ∈ πG(C ′) such that xn tends to infinity. In particular, dist(xn, Z ′) →
+∞, where Z ′ = Z̃ ′/C ′ is the compact hypersurface which separates

X̃/C ′ in two unbounded connected components. There exist lifts x̃n of
xn such that

(9.1) x̃n → θ0 ∈ ΛC′

(9.2) dist(x̃n, Z̃ ′) = dist(x̃n, z̃n)

where z̃n ∈ Z̃ ′ is bounded. Therefore, by taking the limit of a subse-
quence of balls centered at x̃n and of radius equal to dist(x̃n, z̃n) we see

that there exists z̃ ∈ Z̃ ′ such that HB(z̃, θ0) ⊂ Ũ , where Ũ is one of the

two connected components of X̃ \ Z̃ ′, the other being Ṽ .

We recall that M, N are the two connected components of ∂X̃ \ΛC′ .

By Proposition 8.1 we also have ∂Z̃ ′ = ΛC′ = E(∞), and after possibly
replacing C ′ by an index two subgroup, we can assume that C ′ preserves
Ũ and Ṽ .

Claim 9.2. There are the two following cases. Either one of the two
boundaries ∂Ũ or ∂Ṽ is equal to ΛC′ (in this case the other boundary

is equal to ∂X̃), or ∂Ũ = M̄ and ∂Ṽ = N̄ , where M̄ and N̄ are the
closure of M and N respectively.

Proof of the claim. We first remark that if there exist θ ∈ ∂Ũ∩M, then
M ⊂ ∂Ũ . Indeed, let ξ be any other point in M and α a continuous
path in M joining θ and ξ. Since the set Z̃ ′ ∪ ΛC′ is a closed subset
in X̃ ∪ ∂X̃, there exists an open connected neighborhood W of α in
X̃ ∪ ∂X̃ contained in the complementary of Z̃ ′ ∪ ΛC′ . Therefore, as
W ∩ Ũ 6= ∅, we have W ∩ X̃ ⊂ Ũ and ξ ∈ ∂Ũ . Let us assume that
neither ∂Ũ nor ∂Ṽ is equal to ΛC′ . Then, each boundary ∂Ũ and ∂Ṽ
contains M or N . But on the other hand, since the set Z̃ ′ ∪ ΛC′ is
closed, (∂Ũ \ ΛC′) ∩ (∂Ṽ \ ΛC′) = ∅, and thus we have ∂Ũ = M̄ and

∂Ṽ = N̄ or the other way around, and the claim is proved. q.e.d.

Case 1: ∂Ũ = ΛC′ and ∂Ṽ = ∂X̃ or the other way around.
In this case, we are in the situation of the Section 8, which leads to

a contradiction, cf. Remark 8.3.

Case 2: ∂Ũ = M̄ and ∂Ṽ = N̄ .
In that case, assuming C ′ is not convex-cocompact, there exists an

open horoball HB(θ0, z̃) ⊂ Ũ where θ0 ∈ ΛC′ , z̃ ∈ Z̃ ′. This intuitively

means that Z̃ ′ touches ∂X̃ tangentially. We will find a contradiction in
a similar way as in case 1, i.e., Section 8. By Proposition 8.1 there exists
a point o ∈ X̃ and a hyperplane E ⊂ ToX̃ such that |JacEF̃ (o)| = 1
and ΛC′ = E(∞).
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Let θi ∈ N be a sequence which converges to θ0. By continuity, for i
large enough, the geodesic ray αo,θi spends some time in HB(θ0, z̃) ⊂ Ũ

and ends up in Ṽ because θi converges to θ0 and θi belongs to N =
∂Ṽ \ ΛC′ . Therefore, αo,θi eventually crosses Z̃ ′. Let zi be some point

in Z̃ ′ ∩ αo,θi .
We will prove the following proposition, similar to Proposition 8.8:

Proposition 9.3. There exists a sequence θi ∈ N such that θi con-

verges to θ0 and

lim
i→∞

inf
θ∈ΛC′

dist(zi, αθ) = +∞

where zi ∈ Z̃ ′ ∩ αθi.

Remark 9.4. The difference between Propositions 9.3 and 8.8 is that
we are looking for a sequence θi ∈ N instead of θi ∈ ∂X̃ \ ΛC′ .

Assuming Proposition 9.3, we find a contradiction in the same way
as in Section 8. Namely, as Z̃ ′/C ′ is compact, the points zi ∈ Z̃ ′ ∩ αθi

stay at bounded distance from the C ′-orbit of a fixed point, say, o; thus
there exist a constant A > 0 and elements γi ∈ C ′ such that for any i,

(9.3) dist(zi, γio) ≤ A.

From 9.3 and the shadow Lemma 8.6, we obtain O(o, zi, R+A)∩ΛC′ 6= ∅,
and on the other hand, from Proposition 9.3, we have O(o, zi, R + A)∩
ΛC′ = ∅, which gives the contradiction. This ends the proof of Lemma
9.1 assuming Proposition 9.3. q.e.d.

It remains to prove Proposition 9.3.

Proof of Proposition 9.3. We argue by contradiction, as in the proof
of Proposition 8.8. Let us assume that there exists a constant
C > 0 such that for any sequence of points θi ∈ N converging to θ0,
limi→∞ infθ∈ΛC′

dist(zi, αθ) ≤ C, then by Lemma 8.10, we have for any
such sequence θi ∈ N

(9.4) lim
i→∞

d(θi, ΛC′)

d(θi, θ0)
= 0.

The proof of the following lemma is the same as the proof of Lemma
7.4.

Lemma 9.5. Let us assume that for any sequence θi ∈ N , θi 6= θ0,

converging to θ0, limi→∞
d(θi,ΛC′ )
d(θi,θ0) = 0. Let {λk} be a sequence of positive

numbers tending to +∞ such that the sequence of spaces (∂X̃, λkd, θ0)
converges to a space (S, d̄, 0) in the pointed Gromov-Hausdorff topology;

then (M, λkd, θ0) also converges to (S, d̄, 0).
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Proof. Since ΛC′ ⊂ M̄, the assumption implies that limǫ→0 r(ǫ) = 0
where

r(ǫ) = sup
{d(θ,M)

d(θ, θ0)
, θ 6= θ0, θ ∈ N , d(θ, θ0) ≤ ǫ

}

and the proof goes the same way as in Lemma 7.4 replacing ΛC′ by M.
q.e.d.

Similarly to Lemma 8.12, we have

Lemma 9.6. Let us assume that every weak tangent of (∂X̃, d) at θ0

belongs to WT (M, d). There exist positive constants c, ν, a sequence

ǫk tending to 0 when k tends to +∞, a sequence of γk ∈ C ′, a sequence

of points θk
0 = θ0, θ

k
1 , θk

2 ∈ M such that for i 6= j ∈ {0, 1, 2}, c−1ǫk ≤
d(θk

i , θk
j ) ≤ cǫk and d(γkθ

k
i , γkθ

k
i ) ≥ ν.

We can now end the proof of Proposition 9.3. Let us assume that
there exists a constant C > 0 such that for every sequence θi 6= θ0 of
points in N converging to θ0, limi→∞ infθ∈ΛC′

dist(θi, αθ) ≤ C, then by
9.4, Lemma 9.5 and Lemma 9.6, there exist a sequence ǫk tending to
0 when k tends to ∞, a sequence γk ∈ C ′, a sequence of points θk

0 =
θ0, θ

k
1 , θk

2 ∈ M such that for i 6= j ∈ {0, 1, 2}, c−1ǫk ≤ d(θk
i , θk

j ) ≤ cǫk

and d(γkθ
k
i , γkθ

k
i ) ≥ ν.

Applying Lemma 7.3 for L = M and λk = ǫ−1
k , we conclude that M

is homeomorphic to ∂X̃, which is impossible because ∂X̃ is a sphere,
and M is homeomorphic to an hemisphere. This ends the proof of
Proposition 9.3. q.e.d.

Corollary 9.7. C is convex cocompact.

Proof. The subgroup C ′ of C is convex cocompact and the limit sets
of C ′ and C coincide by Section 8; therefore C is convex cocompact.
q.e.d.

10. C preserves a copy of the (n − 1)-dimensional hyperbolic

space H
n−1 totally geodesically embedded in X̃

From Sections 6-9, we know that the groups C and C ′ are convex
cocompact, and that their limit set ΛC and ΛC′ are equal to a topological
equator E(∞). Our goal is now to prove the existence of a C-invariant

hypersurface Z̃∞ in X̃, such that Z̃∞ is isometric to the hyperbolic space
H

n−1
R

and totally geodesic in X̃.

Proposition 10.1. Let us assume that δ(C) = n − 2; then there

exists a C-invariant hypersurface Z̃∞ in X̃ such that Z̃∞ is isometric

to the hyperbolic space H
n−1
R

and totally geodesic in X̃.

Proof. Let us first sketch the idea of proof. We consider the essential
hypersurface Z ′ ⊂ X̃/C ′. We will show that there exists a minimizing
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current representing the class of Z ′ in Hn−1(X̃/C ′, R) and that this
minimizing current lifts to a C ′-invariant totally geodesic hypersurface
Z̃∞ embedded in X̃. We will then eventually show that this totally
geodesic C ′-invariant hypersurface Z̃∞ is hyperbolic. Then, we will
show that Z̃∞ is C-invariant since C and C ′ have the same limit set
ΛC = ΛC′ = E(∞).

We work in X̃/C ′ and consider the essential hypersurface Z ′ ⊂ X̃/C ′.
We will now prove that there exists a minimizing current representing
the class of Z ′ in Hn−1(X̃/C ′, R). Let {Zk} be a minimizing sequence of
currents homologous to Z ′. The orthogonal projection onto the convex
core of X̃/C ′ is distance nonincreasing and thus volume nonincreasing.
Therefore, we can assume that the Zk’s are in the the convex core of
X̃/C ′, which is compact. By [14] (5.5), the sequence {Zk} subconverges

to a minimal current Z∞ in X̃/C ′. By [14] (8.2), Z∞ is a manifold with
singularities of codimension greater than or equal to 7. By Corollary 4.5
and minimality, we get that |Jacn−1F̃ (x)| = 1 at every regular point x ∈
Z∞. We will use the fact that |Jacn−1F̃ (x)| = 1 at every regular point
x ∈ Z∞ in order to prove that Z∞ is a totally geodesic hypersurface.

Lemma 10.2. Let x and y two distinct points in X̃ and Ex ⊂
TxX̃, Ey ⊂ TyX̃ be such that Jacn−1F̃ (x) = JacExF̃ (x) = 1 and

Jacn−1F̃ (y) = JacEy F̃ (y) = 1. Then, the geodesic αx,y (resp. αy,x) join-

ing x and y (resp. y and x) satisfies α̇x,y(0) ∈ Ex (resp. α̇y,x(0) ∈ Ey).
In particular, αx,y(+∞) and αy,x(+∞) belong to ΛC′.

Proof. Let Sx and Sy be the unit spheres of Ex and Ey. For any

unit tangent vector u ∈ TzX̃ at some point z, we define θu ∈ ∂X̃ by
α̇z,θu(0) = u. By Section 8, ΛC′ = Ex(∞) = Ey(∞); therefore for every
u ∈ Sx, θu ∈ ΛC′ and there exist v ∈ Ey such that θu = θv. As Ey is a
vector space, θ−v belongs to ΛC′ ; therefore there exist w ∈ Ex such that
θw = θ−v. The map f : Sx → Sx defined by f(u) = w is a continuous
map. The lemma then reduces to proving that there exist u ∈ Sx such
that f(u) = −u because the negative curvature forces x, y and θu are
on the same geodesic αx,θu . The following properties of f are obvious.

(i) For every u ∈ Sx, f(u) 6= u.
(ii) f ◦ f = Id.

So f is an involution of the sphere without fixed point, and for any such
map, we claim that there exist u in the sphere such that f(u) = −u.
In order to prove the claim, we follow a very similar argument as in
[18], Theorem 1. We argue by contradiction. Let us assume that for
every u ∈ Sx, f(u) 6= −u. The map g : Sx → Sx defined by g(u) =

f(u)+u
‖f(u)+u‖ , is then well defined and continuous. Let us remark that as

for every u ∈ Sx, f(u) 6= −u, then f is homotopic to the Identity,
and so is g. Moreover by (ii) we clearly have g ◦ f = g, thus the map
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g factorizes through Sx/Gf where Gf is the group generated by the
involution f . By (i), f has no fixed point; thus Sx/Gf is a manifold
and the projection p : Sx → Sx/Gf is a degree 2 map. Therefore, the
induced endomorphism g∗ on Hn−1(Sx, Z2) is trivial, which contradicts
the fact that g is homotopic to the Identity. q.e.d.

Corollary 10.3. Let Hn−1 ⊂ X̃ be a hypersurface with possibly

nonempty boundary ∂Hn−1, such that for any x ∈ Hn−1, Jacn−1F̃ ′(x) =

JacExF̃ ′(x) = 1, where Ex is the tangent space of Hn−1 at x. Let us

consider x ∈ Hn−1 such that distX̃(x, ∂Hn−1) = r > 0. Then, for any

x′ ∈ Hn−1 with distX̃(x, x′) < r, the geodesic αx,x′ joining x and x′ is

contained in Hn−1. In particular, Hn−1 is locally convex.

Proof. Let us fix θ ∈ ΛC′ and consider the vector field ∇B(y, θ) for

y in X̃. Let x ∈ Hn−1. As JacExF̃ ′(x) = 1, we have ΛC′ = Ex(∞) by
Proposition 4.6. Then, for any x ∈ Hn−1, ∇B(x, θ) is tangent to Hn−1,
and therefore the geodesic αx,θ satisfies αx,θ(t) ∈ Hn−1 for all t ∈ [0, r).
Let x′ ∈ Hn−1. By Lemma 10.2, α̇x,x′(0) ∈ Ex, therefore αx,x′ = αx,θ

for some θ ∈ ΛC′ and αx,x′(t) ∈ Hn−1 for all t ∈ [0, r). q.e.d.

We now prove that Z∞ is a totally geodesic hypersurface in X̃/C ′.
Let us recall that Z∞ is a manifold which is smooth except at a singular
subset of codimension at least 7. Let us consider a lift Z̃∞ ⊂ X̃ of Z∞

and denote Z̃reg
∞ (resp. Z̃sing

∞ ) the set of regular (resp. singular points)

of Z̃∞.

Lemma 10.4. Z̃∞ is a totally geodesic hypersurface in X̃.

Proof. Let us consider a regular point x ∈ Z̃reg
∞ . We shall show that

for every point x′ ∈ Z̃reg
∞ the geodesic segment joining x and x′ is con-

tained in Z̃∞, and as the set of regular points is dense in Z̃∞ (as the
complement of a subset of codimension at least 8), this will show that

Z̃∞ is totally geodesic.
We claim that there exists a sequence yk∈ Z̃reg

∞ such that limk→∞ yk =
x′ and the geodesic segment joining x and yk is contained in Z̃∞. This
claim immediately implies that the geodesic segment joining x and x′ is
contained in Z̃∞. Let us prove the claim.

For y ∈ Z̃reg
∞ we consider αx,y the geodesic joining x and y and define

(10.1) ty = inf{t > 0, αx,y(t) /∈ Z̃∞}.

As x is a regular point, by Corollary 10.3, there exist ǫ > 0 such that
ty > ǫ.

In order to prove the claim, we argue by contradiction. Let us assume
that there exist r > 0 such that for any y ∈ BX̃(x′, r) ∩ Z̃reg

∞ , ty <

dist(x, y). By Corollary 10.3 applied to Z̃reg
∞ , we have αx,y(ty) ∈ Z̃sing

∞ .

As the set of regular points is an open subset of Z̃∞, if r is small enough
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we have BX̃(x′, r) ∩ Z̃reg
∞ = BX̃(x′, r) ∩ Z̃∞. We choose such an r and

we consider the set S of all singular points contained in the union of
all geodesic segments joining x to a point y ∈ BX̃(x′, r) ∩ Z̃∞. Let us
consider the map defined on S by

p(y) = αx,y(ǫ).

As we already saw, for any y ∈ BX̃(x′, r)∩Z̃∞, we have ty > ǫ; therefore
the map p is distance decreasing, and by assumption p is surjective onto
an open subset of the sphere and p(S) is homeomorphic to an open
subset of R

n−1. Therefore, the Hausdorff dimension of S is greater than
or equal to n − 1, which contradicts the fact that the singular set has
codimension at least 7 in Z̃∞. q.e.d.

The totally geodesic hypersurface Z̃∞ ⊂ X̃ is preserved by C ′, and
Z̃∞/C ′ is of minimal volume in its homology class. Let us prove that

Z̃∞ is isometric to the hyperbolic space H
n−1
R

.

Lemma 10.5. Z̃∞ is isometric to the hyperbolic space H
n−1
R

.

Proof. As Z̃∞/C ′ is of minimal volume in its homology class, we have

by Proposition 4.6, for all x ∈ Z̃∞, JacExF̃ (x) = 1 and F̃ (x) = x, where

Ex is the tangent space of Z̃∞ at x. Moreover, we saw in the proof of
Proposition 4.6 that

H =
1

n − 1
IdDF̃ (x)(Ex) =

1

n − 1
IdEx ;

therefore, we get from 4.11 and F̃ (x) = x that for all u, v ∈ TxZ̃∞,
∫

∂X̃
[DdB(x,θ)(u, v) + dB(x,θ)(u)dB(x,θ)(v)]dνx(θ)(10.2)

= g̃(u, v),

where g̃ is the metric on X̃. As Z̃∞ is totally geodesic, the relation 10.2

remains true with the Busemann function BZ̃∞ of Z̃∞ instead of the
Busemann function B of X̃:∫

∂X̃
[DdBZ̃∞

(x,θ)(u, v) + dBZ̃∞

(x,θ)(u)dBZ̃∞

(x,θ)(v)(10.3)

= g̃(u, v).

On the other hand, as Z̃∞ is totally geodesic, its sectional curvature is
less than or equal to −1, and thus by Rauch comparison theorem, we
have

(10.4) DdBZ̃∞

(x,θ) + dBZ̃∞

(x,θ) ⊗ dBZ̃∞

(x,θ) ≥ g̃Z̃∞

for all θ ∈ ∂Z̃∞ = ΛC′ , where g̃Z̃∞

is the restriction of g̃ to Z̃∞. As

the support of the measure νx is ∂Z̃∞ = ΛC′ (by convex cocompactness
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of C ′) and the Busemann function is continuous, we get from 10.3 and

10.4 that for all x ∈ Z̃∞ and all θ ∈ Z̃∞

(10.5) DdBZ̃∞(x, θ) + dBZ̃∞

(x,θ) ⊗ dBZ̃∞

(x,θ) = g̃Z̃∞

(x).

This last relation is characteristic of the hyperbolic space, cf. [8]. q.e.d.

We now can end the proof of Proposition 10.1. By Lemma 10.4 and
Lemma 10.5, there exists a C ′-invariant totally geodesic hypersurface
Z̃∞ in X̃ which is isometric to the hyperbolic space H

n−1
R

. But since

ΛC′ = ΛC = ∂Z̃∞ we conclude that Z̃∞ is also C-invariant, which
concludes the proof of Proposition 10.1. q.e.d.

11. Conclusion

We are now ready to conclude the proof of the equality case of Theo-
rem 1.2. So by Proposition 10.1, we know that whenever δ(C) = n−2, C

preserves a totally geodesic copy of the real hyperbolic space H
n−1
R

⊂ X̃

such that H
n−1
R

/C is compact.
Our goal now is to show that Y =: H

n−1/C injects diffeomorphically

in X = X̃/Γ and separates X in two connected components R and S
such that A = π1(R) and B = π1(S).

Let us define C̄ = {γ ∈ Γ, γH
n−1 = H

n−1}. We have C ⊂ C̄ and as
H

n−1/C is compact, so is H
n−1/C̄ and thus [C̄ : C] < ∞.

Let p : X̃/C → X = X̃/Γ and p̄ : X̃/C̄ → X = X̃/Γ be the
natural projections. We now show that the restriction of p to H

n−1/C
is an embedding, thus Y := p(Hn−1/C) is a compact totally geodesic
hypersurface of X.

In Section 2, we constructed a C-invariant hypersurface Z̃ ⊂ X̃ such
that Z = Z̃/C ⊂ X̃/C is compact. The hypersurface is defined as

Z̃ = f̃−1(t0) where f̃ : X̃ → T is an equivariant map onto the Bass-
Serre tree associated to the amalgamation A ∗C B and t0 belongs to the
edge of T which is fixed by C. Let us first show two lemmas.

Lemma 11.1. The restriction of p to Z̃/C is an embedding into

X = X̃/Γ.

Proof. Let γ ∈ Γ, z, z′ in Z̃ such that z′ = γz. By equivariance,

t0 = f̃(z′) = f̃(γz) = γf̃(z) = γt0 ,

thus γ ∈ C. q.e.d.

Lemma 11.2. The restriction of p̄ to H
n−1/C̄ is an embedding into

X = X̃/Γ.

Proof. Let us assume that there is a γ ∈ Γ − C̄ such that γH
n−1 ∩

H
n−1 6= ∅ and choose an x ∈ γH

n−1 ∩ H
n−1. As γ /∈ C̄, there exist

u ∈ TxγH
n−1 \ TxH

n−1. We consider cu the geodesic ray such that
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ċu(0) = u. We know that Z̃ is contained in an ǫ-neighbourhood UǫH
n−1

of H
n−1 which separates X̃ in two connected components Vǫ and Wǫ,

and for t > 0 large enough, we have, say, cu(t) ∈ Vǫ and cu(−t) ∈ Wǫ.

Let Z̃ ′ be the connected component of Z̃ that we constructed at
the end of Section 2, whose stabilizer (or an index two subgroup of

it) C ′ is such that Z̃ ′/C ′ separates X̃/C ′ in two unbounded connected
components U ′/C ′ and V ′/C ′ where U ′ and V ′ are the two connected

components of X̃ \ Z̃ ′.
We claim that Vǫ ⊂ U ′ and Wǫ ⊂ V ′ or the other way around.

Indeed, if not, Vǫ and Wǫ would be both contained in, say, U ′. But in
that case, V ′ would be contained in UǫH

n−1 and therefore V ′/C ′ would
be bounded, which is a contradiction.

As γZ̃ lies in the ǫ neighborhood of γH
n−1, there exist sequences

zk, z′k in γZ̃ such that dist(zk, cu(k)) ≤ ǫ and dist(z′k, cu(−k)) ≤ ǫ. By
Proposition 8.1 and Lemma 9.1, C ′ also acts cocompactly on H

n−1; thus
C ′ is of finite index in C, and therefore there are finitely many connected
components of Z̃ and the same holds for γZ̃. We thus can assume that
the zk’s and z′k’s belong to a single connected component of γZ̃. Let us

consider a continuous path α ⊂ γZ̃ joining zk and z′k.
By construction, the distance between cu(k) [resp. cu(−k)] and H

n−1

tends to infinity and thus, for k large enough, zk ∈ Vǫ and z′k ∈ Wǫ or
the other way around. By the claim, we then have zk ∈ U ′ and z′k ∈ V ′;

therefore the path α has to cross Z̃ ′, which contradicts Lemma 11.1 and
ends the proof of Lemma 11.2. q.e.d.

As we already saw, Z̃ has finitely many connected components, and
so does X̃ \ Z̃. Let us write {Wj}j=1,..,m the connected components of

X̃ \ Z̃. As C acts cocompactly on Z̃ and H
n−1 there exist ǫ > 0 such

that H
n−1 ⊂ UǫZ̃ and Z̃ ⊂ UǫH

n−1. Moreover, let us recall that UǫH
n−1

separates X̃ into two connected components Vǫ and Wǫ.

Lemma 11.3. Let us consider ǫ such that Z̃ ⊂ UǫH
n−1 and H

n−1 ⊂
UǫZ̃. Let Vǫ and Wǫ be the two connected components of X̃ \ UǫH

n−1.

Then there are two distinct connected components W1 and W2 of X̃ \ Z̃

such that Vǫ ⊂ W1 and Wǫ ⊂ W2. Moreover, f̃(W1) ⊂ T̃1 and f̃(W2) ⊂
T̃2, where T̃1 and T̃2 are the two connected components of T̃ \ {t0}.

Proof. We argue by contradiction. Let us assume that Vǫ and Wǫ are
contained in the same connected component W1 of X̃ \ Z̃. Then, all

other components Wj , j 6= 1, satisfy Wj ⊂ UǫH
n−1 ⊂ U2ǫZ̃. Therefore,

as C acts cocompactly on U2ǫZ̃, there exist a constant D such that for
any j 6= 1, maxw∈Wj distT̃ (f̃(w), t0) ≤ D. Thus, f̃(W1) is contained

in one connected component of T̃ − {t0} and f̃(∪j 6=1Wj), contained in

the ball BT̃ (t0, D) of T̃ of radius D centered at t0, is bounded. This
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is clearly impossible because T̃ − {t0} has two unbounded connected

components and f̃ is onto. q.e.d.

Let us denote A = AH
n−1 the A-orbit of the C-invariant totally

geodesic copy of the real hyperbolic space H
n−1, and Ā the stabilizer of

A, i.e., Ā = {γ ∈ Γ; γA = A}. We define in a similar way B = BH
n−1

and B̄ = {γ ∈ Γ; γB = B}. Note that due to Lemma 11.2, A is a
collection of disjoint translates γH

n and so is B. Let us recall that C̄ is
the stabilizer of H

n−1 in Γ. We now prove the following lemma:

Lemma 11.4. We have Ā ⊂ {γ ∈ Γ; γH
n−1 ∈ A} ⊂ AC̄ and B̄ ⊂

{γ ∈ Γ; γH
n−1 ∈ B} ⊂ BC̄.

Proof. The first inclusion Ā ⊂ {γ ∈ Γ; γH
n−1 ∈ A} is obvious. Let

us prove the second inclusion, {γ ∈ Γ; γH
n−1 ∈ A} ⊂ AC̄. Let γ′ ∈ Γ

be such that γ′
H

n−1 ∈ A. Then there exists γ ∈ A such that γ′
H

n−1 =
γH

n−1, thus γ−1γ′ ∈ C̄ and therefore γ′ ∈ γC̄ ⊂ AC̄. This proves the
second inclusion. The inclusions B̄ ⊂ {γ ∈ Γ; γH

n−1 ∈ B} ⊂ BC̄ are
proved similarly. q.e.d.

For each γ ∈ Γ, γH
n−1 separates X̃ in two connected components Uγ

and Vγ . Let us now prove the following lemma.

Lemma 11.5.

(i) Let γ ∈ A, [resp. γ ∈ B]. Then, we have A \ {γH
n−1} ⊂ Uγ or

A\{γH
n−1} ⊂ Vγ, [resp. B\{γH

n−1} ⊂ Uγ or B\{γH
n−1} ⊂ Vγ ].

Moreover, if A\H
n−1 ⊂ Uγ, then B \H

n−1 ⊂ Vγ or the other way

around.

(ii) Let γ be an element of Γ \ Ā, [resp. Γ \ B̄]. Then A ⊂ Uγ or

A ⊂ Vγ, [resp. B ⊂ Uγ or B ⊂ Vγ ].

Proof. (i) For the first part we argue by contradiction. Let us con-
sider γH

n−1, γ′
H

n−1 and γ′′
H

n−1 three distinct elements in A such
that γ′

H
n−1 ⊂ Uγ and γ′′

H
n−1 ⊂ Vγ . By equivariance we can assume

that γ is the identity. Let us recall that Vǫ and Wǫ are the two con-
nected components of X̃ \ UǫH

n−1. We then have γ′
H

n−1 ∩ Vǫ 6= ∅ and

γ′′
H

n−1 ∩Wǫ 6= ∅, which implies γ′Z̃ ∩ Vǫ 6= ∅ and γ′′Z̃ ∩Wǫ 6= ∅. By
Lemma 11.3, Vǫ ⊂ W1 and Wǫ ⊂ W2 where W1 and W2 are two con-
nected components of X̃\Z̃ and f̃(Vǫ) ⊂ T̃1 and f̃(Wǫ) ⊂ T̃2. Therefore,

f̃(Vǫ) contains γ′t0 ∈ T̃1 and f̃(Wǫ) contains γ′′t0 ∈ T̃2. This is impossi-
ble because for all elements γ′ and γ′′ in A, γ′t0 and γ′′t0 belong to the
same connected component of T̃ \ {t0}. This proves the first part of (i).

Let us now prove the second part of (i). We can assume that A \
H

n−1 ⊂ Uγ and we have to prove that B \ H
n−1 ⊂ Vγ . From our

assumption, for each γH
n−1 ∈ A distinct from H

n−1, we get γH
n−1 ∩

Vǫ 6= ∅ and thus γZ̃ ∩ Vǫ 6= ∅. Therefore, as above we deduce γt0 ∈ T̃1

for each γ ∈ A such that γH
n−1 ∈ A distinct from H

n−1. This implies
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that γt0 ∈ T̃1 for each γ ∈ A such that γt0 6= t0. This argument would
similarly prove that γ′t0 ∈ T̃1 for each γ′ ∈ B such that γ′t0 6= t0, if we
had assumed that B \ H

n−1 ⊂ Uγ . But this is clearly impossible since

if γt0 ∈ T̃1 for each γ ∈ A such that γt0 6= t0, then γ′t0 ∈ T̃2 for each
γ′ ∈ B such that γ′t0 6= t0 by definition of the Bass-Serre tree.

(ii) Let us consider γ ∈ Γ \ Ā. For any γ′ ∈ A, then γ′
H

n−1 ⊂ Uγ or
γ′

H
n−1 ⊂ Vγ . We again argue by contradiction. Let us assume there

exist γ′, γ′′ in A such that

γ′
H

n−1 ⊂ Uγ(11.1)

γ′′
H

n−1 ⊂ Vγ .

By Lemma 11.3, we have f̃(γVǫ) ⊂ γT̃1 and f̃(γWǫ) ⊂ γT̃2, where γT̃1

and γT̃2 are the two connected components of T̃ \ {γt0}. By Lemma
11.1, we have γ′

H
n−1 ∩ γVǫ 6= ∅ and γ′′

H
n−1 ∩ γWǫ 6= ∅, which implies

γ′Z̃∩γVǫ 6= ∅ and γ′′Z̃∩γWǫ 6= ∅. Therefore γ′t0 ∈ γT̃1 and γ′′t0 ∈ γT̃2,
which is impossible because in the tree T̃ , the points γ′t0 and γ′′t0 belong
to two adjacent edges since γ′ and γ′′ are contained in A. q.e.d.

By Lemma 11.5 (i), for every γ in Ā, either Uγ or Vγ is the connected

component of X̃ − γH
n−1 which contains all γ′

H
n−1 with γ′ in Ā such

that γ′
H

n−1 6= γH
n−1. For all γ ∈ Ā we can therefore denote by UA

γ

this component. For all γ ∈ B̄ we similarly denote UB
γ as the connected

component of X̃ − γH
n−1 which contains all γ′

H
n−1 with γ′ in B̄ such

that γ′
H

n−1 6= γH
n−1. Let us define

(11.2) UA := ∩γ∈AUA
γ and UB := ∩γ∈BUB

γ .

Note that by definition of Ā and B̄, we can write UA := ∩γ∈ĀUA
γ and

UB := ∩γ∈B̄UB
γ .

Lemma 11.6. The sets UA and UB are nonempty, open and convex.

The boundary of UA [resp. UB] is A [resp. B].

Proof. We argue for UA. By definition, UA is a convex set in X̃ whose
boundary is the collection A, of disjoint translates of γH

n−1, γ in Ā.
Moreover, we claim that for each γ ∈ A,

dist(γH
n−1,A \ γH

n−1) > 0.

By equivariance the proof reduces to the case of γH
n−1 = H

n−1, and
the fact that dist(Hn−1,A − H

n−1) > 0 follows from the fact that C̄
acts cocompactly on H

n−1 and the discretness of Γ. From the claim we
deduce that UA contains a nonempty open neighbourhood of H

n−1 in
UA

Id, which proves that UA is nonempty. The fact that UA is an open
set follows from the discreteness of Γ. q.e.d.

Let us now show that UA and UB are disjoint.
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Lemma 11.7. The sets UA and UB are disjoint.

Proof. It is sufficient to prove that UA
Id and UB

Id are disjoint. We

already know that UA
Id = UId or UA

Id = VId and the same is true for

UB
Id. We can assume that UA

Id = UId and we then have to show that

UB
Id = VId. But this follows from Lemma 11.5, second part of (i). q.e.d.

Corollary 11.8. The sets UA and UB are two disjoint connected

components of X̃ \ ΓH
n−1.

Proof. The sets UA and UB are non-empty disjoint open convex sets
in X̃ by Lemma 11.6 and Lemma 11.7. Moreover, they are contained
in X̃ \ ΓH

n−1 as shown in Lemma 11.5 (ii) and their boundaries are
contained in ΓH

n−1. q.e.d.

Lemma 11.9. The closures of UA and UB intersect along H
n−1,

Ā ∩ B̄ = C̄, Ā = AC̄ and B̄ = BC̄ . Moreover, for any γ ∈ Γ, then

γUA ∩ UB = ∅.

Proof. The convex set UA is the intersection of open half spaces Uγ ,
γ ∈ Ā, and is delimited by the disjoint union of hyperplanes γH

n−1,
for some γ ∈ Ā. The same is true for UB, and as UA ∩ UB = ∅, the
closures of UA and UB can intersect only along one of the connected
components of their boundaries, thus along H

n−1, which is obviously
in both closures. This proves the first part of the lemma; let us prove
the second part. By Lemma 11.5, (ii), C̄ ⊂ Ā ∩ B̄. Conversely, let us
take γ ∈ Ā ∩ B̄. Then γ preserves the closures of UA and UB, thus it
preserves their intersection H

n−1, and therefore γ ∈ C̄. The fact that
Ā = AC̄ follows then from Lemma 11.4.

Let us prove the last part of the lemma. The group Γ acts on the
set of connected components of X̃ \ ΓH

n−1, thus for any γ ∈ Γ either
γUA = UB or γUA∩UB = ∅ . Let us argue by contradiction and suppose
that γ ∈ Γ is such that γUA = UB. As H

n−1 is one component of the
boundary B of UB, there exists one component γ′

H
n−1 ∈ A, γ′ being in

Ā, such that γ(γ′
H

n−1) = H
n−1. Therefore, γγ′ ∈ C̄, thus γ ∈ Ā. The

same argument yields γ−1 ∈ B̄, so γ ∈ Ā ∩ B̄ = C̄ and γ preserves UA

and UB, which contradicts our choice of γ. q.e.d.

Lemma 11.10. The Γ-orbit of the closure of UA ∪ UB covers X̃.

Proof. Let x be a point in X̃. If x ∈ γH
n−1, γ ∈ Γ, then x is in the

closure of γUA. If x is in X̃ \ ΓH
n−1, then x belongs to a connected

component U of X̃\ΓH
n−1. Let γH

n−1 be a component of the boundary

of U , then γ−1U is a connected component of X̃ \ΓH
n−1 which contains

H
n−1 in its closure; that is γ−1U = UA or γ−1U = UB by Lemma 11.9.

Therefore, x ∈ γUA or x ∈ γUB. q.e.d.

Lemma 11.11. The stabilizer of UA [resp. UB] in Γ is Ā [resp. B̄].
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Proof. Let γ be an element of Γ such that γUA = UA. Then γ globally
preserves the boundary A of UA, thus in particular γH

n−1 ∈ A and
therefore γ ∈ A. Conversely, let us consider γ ∈ Ā. Then, γUA is a
connected component of X̃\ΓH

n−1 whose boundary is A and so contains
H

n−1. The set γUA is thus a component containing H
n−1 that is either

UA or UB. Therefore, by Lemma 11.9, γUA = UA. Hence Ā coincides
with the stabilizer of UA. The same argument shows that B̄ coincides
with the stabilizer of UB. q.e.d.

Let us construct a tree T̄ embedded in X̃ in the following way: the
set of vertices is the set of connected components of X̃ \ΓH

n−1, and two
vertices are joined by an edge if the boundaries of their corresponding
connected components intersect nontrivially in X̃. By equivariance and
Lemma 11.9 the boundaries of two connected components of X̃ \ΓH

n−1

intersect along some γH
n−1 or are disjoint. Since any two γH

n sepa-
rate H

n in two connected components, one can go from one of these
components to the other only across γH

n. Consequently, there are no
cycles. By construction Γ acts on T̄ , the stabilizers of the vertices a
and b corresponding to UA and UB are Ā and B̄ by Lemma 11.11, the
stabilizer of the edge between a and b is C̄, and a fundamental domain
for this action is the segment joining a and b. By [16], I, 4, Theorem 6,
the group Γ is the amalgamated product of Ā and B̄ over C̄.

We now claim that Ā = A, B̄ = B and C̄ = C.
As A, B and C are subgroups of Ā, B̄, and C̄, the corresponding

Mayer-Vietoris sequences of A ∗C B and Ā ∗C̄ B̄ are related by the
following commutative diagram

Hn(A, R) ⊕ Hn(B, R) −→ Hn(Γ, R) −→ Hn−1(C, R)
↓ ↓ ↓

Hn(Ā, R) ⊕ Hn(B̄, R) −→ Hn(Γ, R) −→ Hn−1(C̄, R).

We know that the index [C̄ : C] is finite. On the other hand the indices
[Γ : A] and [Γ : B] are infinite by assumption, thus the previous diagram
becomes

0 −→ Hn(Γ, R) −→ Hn−1(C, R)
↓ ↓

0 −→ Hn(Γ, R) −→ Hn−1(C̄, R).

Moreover, the map Hn(Γ, R) → Hn−1(C̄, R) is bijective. Namely, the
injectivity comes from the above diagram, and the surjectivity from the
fact that the hypersurface H

n−1/C̄ bounds in H
n/Ā and H

n/B̄ so that
the map Hn−1(C̄, R) → Hn−1(Ā, R) ⊕ Hn−1(B̄, R) is trivial. Therefore
the index [C̄ : C] = 1, so C̄ = C, and since Ā = AC̄, B̄ = BC̄ by
Lemma 11.9, we obtain Ā = A and B̄ = B. q.e.d.
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12. Proof of the theorems 1.5 and 1.6

The proof of Theorem 1.5 is exactly the same as the proof of Theorem
1.2. The actions of Γ on X̃ and T give rise to a continuous Γ-equivariant
map f̃ : X̃ → T . Like in Section 2, we build a hypersurface f̃−1(t0)

where t0 is a regular value of f̃ belonging to the interior of an edge.
As the edge separates the tree in two unbounded components, Section
2 applies and we get a subgroup C ′ of C, and a hypersurface Z̃ ′ ⊂
X̃/C ′ which is essential. Now, if the action of Γ is minimal, every edge
separates T into two unbounded components. �

13. Appendix

The goal of this section is to give a proof of Lemma 7.3. This lemma
is contained in Lemmas 2.1, 5.1 and 5.2 of [4], but our situation being
not exactly the same, we reproduce it here for the sake of completeness.

Let us restate Lemma 7.3.

Lemma 13.1. Let L ⊂ ∂X̃ be a closed C ′-invariant subset and θ0 ∈
L. We assume that there exists a sequence of positive real numbers

λk → ∞ such that the sequence of pointed metric spaces (L, λkd, θ0)
converges in the pointed Gromov-Hausdorff topology to (S, d̄, 0) where

(S, d̄, 0) is a weak tangent of (∂X̃, d). We also assume that there exist

positive constants C and ν0, a sequence of points θk
0 = θ0, θ

k
1 , θk

2 ∈ L
and a sequence of elements γk ∈ C ′ such that C−1λ−1

k ≤ d(θk
i , θk

j ) ≤

Cλ−1
k and d(γkθ

k
i , γkθ

k
j ) ≥ ν0 for all 0 ≤ i 6= j ≤ 2. Then, L is

homeomorphic to the one point compactification Ŝ of S. In particular,

L is homeomorphic to ∂X̃.

We first give a definition of pointed Gromov-Haussdorff convergence
which is equivalent to the Definition 7.1. We follow [4], paragraph 4.

A sequence of metric spaces (Zk, dk, zk) converges to the metric space
(S, d̄, 0) if for every R > 0, and every ǫ > 0, there exist an integer
N , a subset D ⊂ BS(0, R), subsets Dk ⊂ BZk

(zk, R) and bijections
fk : Dk → D such that for k ≥ N ,

(i) fk(zk) = 0,
(ii) the set D is ǫ-dense in BS(0, R), and the sets Dk are ǫ-dense in

BZk
(zk, R),

(iii) |dZk
(x, y) − d̄(fk(x), fk(y))| < ǫ, where x, y belong to Dk.

Let us describe now Lemmas 2.1 and 5.1 of [4] following [4]. For a
metric space (Z, d) the cross ratio of four points {zi}, i = 1, . . . , 4, is
the quantity

(13.1) [z1, z2, z3, z4] :=
d(z1, z3)d(z2, z4)

d(z1, z4)d(z2, z3)
.
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Given two metric spaces X and Y , a homeomorphism φ : [0,∞) →
[0,∞), and an injective map f : X → Y , we say that f is a φ-quasi-
Möbius map if for any four points {xi}, i = 1, .., 4, in X, we have

(13.2) [f(x1), f(x2), f(x3), f(x4)] ≤ φ([x1, x2, x3, x4]).

For example, any discrete cocompact group of isometries of X̃, where
X̃ is a Cartan-Hadamard manifold with sectional curvature K ≤ −1,
acts on the ideal boundary (∂X̃, d) endowed with the Gromov distance
by φ-quasi-Möbius transformations for some φ.

Lemma 13.2 ([4, Lemma 2.1]). Let (X, dX) and (Y, dY ) be two com-

pact metric spaces, and for any integer k, gk : D̃k → Y a φ-quasi-Möbius

map defined on a subset D̃k of X. We assume that the Hausdorff dis-

tance between D̃k and X satisfies

lim
k→∞

distH(D̃k, X) = 0,

and that for any integer k, there exist points (xk
1, x

k
2, x

k
3) in D̃k and

(yk
1 , yk

2 , yk
3 ) in Y , such that gk(x

k
i ) = yk

i for i ∈ {1, 2, 3}, dX(xk
i , x

k
j ) ≥ ν

and dY (yk
i , yk

j ) ≥ ν for i, j ∈ {1, 2, 3}, i 6= j, where ν is independant

of k. Then a subsequence of gk converges uniformly to a quasi-Möbius

map f : X → Y , i.e., limkj→∞ distH(gkj , f |D̃kj
) = 0. If, in addition, we

suppose that

lim
k→∞

distH(gk(D̃k), Y ) = 0,

then the sequence {gkj} converges uniformly to a quasi-Möbius homeo-

morphism f : X → Y .

Before stating the second lemma, let us define a metric space Z to
be uniformly perfect if there exists a constant λ ≥ 1 such that for every
z ∈ Z and 0 < R < diamZ, we have B(z, R)−B(z, R

λ ) 6= ∅. For example,

all weak tangents of (∂X̃, d) and their one point compactifications are
uniformly perfect.

Lemma 13.3 ([4, Lemma 5.1]). Let Z be a compact uniformly perfect

metric space and G a φ-quasi-Möbius action on Z. Suppose that for

each integer k we are given a set Dk in a ball Bk = B(z, Rk) ⊂ Z
that is (ǫkRk)-dense in Bk, where ǫk > 0, distinct points xk

1, x
k
2, x

k
3 ∈

B(z, λkRk), where λk > 0, with

dZ(xk
i , x

k
j ) ≥ νkRk

for i, j ∈ {1, 2, 3}, i 6= j, where νk > 0, and elements γk ∈ G such that

for yk
i := γk(x

k
i ) we have,

dZ(yk
i , yk

j ) ≥ ν ′
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for i, j ∈ {1, 2, 3}, i 6= j, where ν ′ is independent of k. Let D′
k = γk(Dk),

and suppose that λk → ∞ when k → ∞, and the sequence ǫk

ν2

k
is bounded.

Then limk→∞ distH(D′
k, Z) = 0.

Let us go back to the proof of Lemma 13.1. By definition of conver-
gence, there exist a subsequence of {λk}, which we still denote by {λk},
subsets D̃1

k ⊂ BS(0, k), D1
k ⊂ BλkL(θ0, k), where D̃1

k and D1
k are 1/2k-

dense subsets of BS(0, k) and BλkL(θ0, k), and bijections fk : D̃1
k → D1

k

such that for all x, y ∈ D̃1
k,

(13.3) |λkd(fk(x), fk(y)) − d̄(x, y)| ≤
1

2k
.

We choose now D̃k a maximal 1
k -separated subset of D̃1

k so that D̃k is

2/k-dense in BS(0, k) and Dk = fk(D̃k) is 1/2k-separated and 2/k-dense

in BλkL(θ0, k); therefore for all x, y in D̃k we have

(13.4)
1

2
d̄(x, y) ≤ λkd(fk(x), fk(y)) ≤ 2d̄(x, y),

cf. [4], (5.4).
We can suppose that the points θk

0 := θ0, θk
1 , and θk

2 in Lemma 13.1
belong to the set Dk. By assumption there exist elements γk ∈ C ′ and
a constant ν0 such that

(13.5) d(γkθ
k
i , γkθ

k
j ) ≥ ν0

for all i, j ∈ {0, 1, 2}.
Lemma 13.1 is a direct consequence of Lemma 13.2 applied to (X, dX)

= (Ŝ, d̂) and (Y, dY ) = (L, d) and to the sequence of maps gk := γk ◦ fk,

where Ŝ = S ∪ {∞} is the one point compactification of S and d̂ the

distance on Ŝ associated to d̄ in the following way. Let h0 : Ŝ → [0, +∞[
be the function defined by h0(∞) = 0 and for all x ∈ S, h0(x) = 1

1+d̄(0,x)
,

where 0 is a fixed point on S. Now for any x, y ∈ S let d0(x, y) =
h0(x)h0(y)d̄(x, y), d0(x,∞) = d0(∞, x) = h0(x) and d0(∞,∞) = 0.

In [4], the authors define for all x, y ∈ Ŝ, d̂(x, y) = inf Σk−1
i=0 d0(xi, xi+1)

where the infimum is taken over all finite sequences of points x0, . . . , xk ∈
Ŝ with x0 = x and xk = y and show that d̂ is a distance on Ŝ inducing
the topology of Ŝ and that the identity map Id : (S, d̄) → (S, d̂) is a
φ-quasi Möbius map, with φ(t) = 16t, cf. [4], Lemma 2.2.

Let us denote xk
0, x

k
1, x

k
2 the points in S such that fk(x

k
i ) = θk

i , for
i ∈ {0, 1, 2}. We now check that the assumptions of Lemma 13.2 are
verified.

The fact that limk→∞ distH(D̃k, Ŝ) = 0 is a direct consequence of

limk→∞ distH(D̃k, S) = 0 and the definition of d̂. By 13.4, we have
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d̄(xk
i , x

k
j ) ≥

λk
2 d(θk

i , θk
j ), and by assumption we then get

(13.6) d̄(xk
i , x

k
j ) ≥

1

2C
.

By 13.5 we then get the separation assumption on triples of points in
Lemma 13.2 by choosing ν := inf{ν0,

1
2C }.

It remains to check the assumption on gk(D̃k) = γk◦fk(D̃k) = γk(Dk),
namely,

(13.7) lim
k→∞

distH(γk(Dk),L) = 0.

In order to prove Property 13.7, we want to apply Lemma 13.3, but as
the set (L, d) may be not uniformly perfect, we shall replace the uniform
perfectness by the fact that (L, λkd, θ0) converges to a space (S, d̄, 0),
which is uniformly perfect, cf.[4]. We now show

Lemma 13.4. We consider the subsets D̃k ⊂ BS(0, k) and Dk ⊂
BλkL(θ0, k), where D̃k and Dk are 1/k-dense subsets of BS(0, k) and

B(L,λkd)(θ0, k), and the bijections fk : D̃k → Dk coming from the con-

vergence of the sequence of pointed metric spaces (L, λkd, θ0) to (S, d̄, 0)

where (S, d̄, 0) is a weak tangent of (∂X̃, d). We also assume that there

exist positive constants C and ν, a sequence of points θk
1 , θk

2 ∈ L and a

sequence of elements γk ∈ C ′ such that C−1λ−1
k ≤ d(θk

i , θk
j ) ≤ Cλ−1

k and

d(γkθ
k
i , γkθ

k
j ) ≥ ν for all 0 ≤ i 6= j ≤ 2. Then, the Hausdorf distance

distH(γkDk,L) tends to 0 as k tends to infinity.

Proof. The proof is word-by-word the same as the proof of Lemma
13.3, i.e., Lemma 5.1 (i) of [4] with a difference in case 2).

We have BλkL(θ0, k) = BL(θ0,
k
λk

) and Dk ⊂ BλkL(θ0, k) a 1
k -dense

subset, for the metric λkd. In term of the distance d, the set Dk is
(ǫkRk)-dense in BL(θ0, Rk), where Rk := k

λk
and ǫk := 1

k2 . By assump-

tion, the points θk
0 = θ0, θ

k
1 , θk

2 belong to BL(θ0, µkRk), and satisfy

(13.8) d(θk
i , θk

j ) ≥ νkRk

where νk := 1
Ck , and µk := C

k . The points γkθ
k
i satisfy

(13.9) d(γkθ
k
i , γkθ

k
j ) ≥ ν,

and ǫk

ν2

k
= C2 is bounded.

Let us consider a point θ ∈ L. We want to approximate it by a point
of γkDk. We can write θ = γkθk, for some θk ∈ L. There are two cases.

Case 1: For infinitely many indices k, θk ∈ BL(θ0, Rk). We work
in that case with these indices k; thus there are points θ′k ∈ Dk ∩
BL(θ0, Rk), with d(θk, θ

′
k) ≤ ǫkRk.
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Since the distance between the θk
i ’s is bounded below by νkRk, we

can find at least two of them which we call ak and bk, such that

d(θk, bk) ≥
νkRk

2

and

(13.10) d(θ′k, ak) ≥
νkRk

2
.

As C ′ is contained in the cocompact group Γ, it acts in a quasi-Möbius
way on (∂X̃, d). Thus,

(13.11)
d(γkθ

′
k, γkθk)d(γkak, γkbk)

d(γkθ
′
k, γkbk)d(γkak, γkθk)

≤ φ

(
d(θ′k, θk)d(ak, bk)

d(θ′k, bk)d(θk, ak)

)

for some homeomorphism φ : [0,∞) → [0,∞). This implies

(13.12) d(γkθ
′
k, γkθk) ≤

(diamL)2φ(8ǫkµk/ν2
k)

ν
;

therefore d(γkθ
′
k, γkθk) tends to zero as k tends to infinity.

Case 2: For all but finitely many indices k, θk /∈ BL(θ0, Rk). We work
with the indices k such that θk /∈ BL(θ0, Rk). We know that ǫk/ν2

k is
bounded above independently of k, and by assumption, νk ≤ 2µk.

We claim that there exist ξk ∈ Dk and a positive constant c0 such
that for all k,

(13.13)
d(ξk, θ0)

Rk
≥ c0.

Let us prove the claim.

On the one hand, as (∂X̃, d) is uniformly perfect, so is its weak tan-

gent (S, d̄) because the one point compactification (Ŝ, d̂) of (S, d̄) is

quasi-Möbius homeomorphic to (∂X̃, d). Therefore, there exists a con-
stant C0 ∈ [0, 1) such that for every x ∈ S and R > 0, we have

(13.14) B̄(S,d̄)(0, R) − B(S,d̄)(0, C0R) 6= ∅.

On the other hand, (L, λkd, θ0) converges to (S, d̄, 0). After reindexing
the sequence {λk}, we have for each ǫ > 0 a map gk : BλkL(θ0, k) → S
such that

(i) gk(θ0) = 0, for any two points θ and θ′ in BλkL(θ0, k),
(ii) |d̄(gk(θ), gk(θ

′)) − λkd(θ, θ′)| ≤ ǫ,
(iii) the ǫ-neighborhood of gk(BλkL(θ0, k)) contains B(S,d̄)(0, k − ǫ).

By (iii), we have

(13.15) B̄(S,d̄)(0, k − ǫ) ⊂ U (S,d̄)
ǫ gk(B̄λkL(θ0, k)).
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By 13.14 there exists yk ∈ B̄(S,d̄)(0, k − ǫ)−B(S,d̄)(0, C0(k − ǫ)), and by

13.15 there exist ξ′k ∈ B̄λkL(θ0, k) such that

(13.16) d̄(yk, gk(ξ
′
k)) ≤ ǫ.

We now evaluate d(ξ′k, θ0). By the above properties (i), (ii), 13.16 and
the triangle inequality we have

λkd(ξ′k, θ0) ≥ d̄(gk(ξ
′
k), 0) − ǫ(13.17)

≥ d̄(yk, 0) − d̄(yk, gk(ξ
′
k)) − ǫ

≥ C0(k − ǫ) − 2ǫ.

As Dk is ǫkRk-dense in B(L,d)(θ0, k/λk), there exist ξk ∈ Dk such that

d(ξk, ξ
′
k) ≤ ǫkRk = kǫk

λk
.

Let us denote c0 = C0/2. For k large enough we have

C0(k − ǫ) − 2ǫ − kǫk

λk
≥

c0k

λk
,

and therefore by 13.17 we get

(13.18) d(ξk, θ0) ≥ d(ξ′k, θ0) − d(ξ′k, ξk) ≥ c0Rk,

which proves the claim.
We can assume that for k large enough, µk < c0/2 < 1/2. We choose

ak = θk
1 and bk = θk

2 , and we get

d(γkξk, γkθk)d(γkak, γkbk)

d(γkξk, γkbk)d(γkak, γkθk)
≤ φ

(
d(ξk, θk)d(ak, bk)

d(ξk, bk)d(θk, ak)

)(13.19)

≤ φ

(
(d(ξk, θ0) + d(θ0, θk))µkRk

Rk(c0 − µk)(d(θk, θ0) − µkRk))

)

≤ φ

(
2µkd(θk, θ0)

(c0 − µk)(d(θk, θ0) − µkRk))

)

≤ φ(8µk/c0),

where the third inequality follows from d(θ0, ξk)≤d(θ0, θk) since d(θ0, θk)
≥ Rk by assumption, and the last inequality from the fact that for k

large enough, µkRk ≤ d(θk,θ0)
2 .

We get

d(γkθk, γkξk) ≤ (diamL)2φ(8µk/c0)/ν.

q.e.d.
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