
j. differential geometry

76 (2007) 317-349

THE CALABI-YAU EQUATION ON ALMOST-KÄHLER

FOUR-MANIFOLDS

Ben Weinkove

Abstract

Let (M,ω) be a compact symplectic 4-manifold with a com-
patible almost complex structure J . The problem of finding a
J-compatible symplectic form with prescribed volume form is an
almost-Kähler analogue of Yau’s theorem and is connected to a
programme in symplectic topology proposed by Donaldson. We
call the corresponding equation for the symplectic form the Calabi-

Yau equation. Solutions are unique in their cohomology class. It
is shown in this paper that a solution to this equation exists if the
Nijenhuis tensor is small in a certain sense. Without this assump-
tion, it is shown that the problem of existence can be reduced to
obtaining a C0 bound on a scalar potential function.

1. Introduction

In 1954 Calabi [Ca] conjectured that any representative of the first
Chern class of a compact Kähler manifold (M, ω) can be written as the
Ricci curvature of a Kähler metric ω′ cohomologous to ω. He showed
that any such metrics are unique. Yau [Ya] famously solved Calabi’s
conjecture around twenty years later. This result, and the immediate
corollary that any Kähler manifold with c1(M) = 0 admits a Ricci-flat
metric, have had many applications in both mathematics and theoretical
physics.

Yau’s theorem is equivalent to finding a Kähler metric in a given
Kähler class with prescribed volume form. By the ∂∂-Lemma this
amounts to solving the complex Monge-Ampère equation

(1.1) (ω +
√
−1∂∂φ)n = eF ωn,

for smooth real φ with ω +
√
−1∂∂φ > 0, where n = dimCM and F is

any smooth function with
∫

M eF ωn =
∫

M ωn. Yau solved this equation
by considering the family of equations obtained by replacing F by tF +ct

for some constant ct, for t ∈ [0, 1] and using the continuity method. This
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requires an openness argument using the implicit function theorem, and,
more importantly, a closedness argument which requires his celebrated
a priori estimates. Yau also generalized Calabi’s conjecture: first in the
case when the right hand side of (1.1) may have poles or zeros [Ya];
and second, with Tian, in the context of complete non-compact Kähler
Ricci-flat metrics [TiYa1, TiYa2]. For other results along these lines,
see [Ko], [BaKo1], [BaKo2], [Jo], for example.

The aim of this paper is to attempt to generalize Yau’s theorem in a
very different direction. We consider the case when the almost complex
structure is not integrable. This problem was suggested to the author
by Donaldson and is motivated by a wider programme of his on the
symplectic topology of 4-manifolds [Do]. Let (M, ω) be a symplectic
four-manifold. Then there exists an almost complex structure J which
is compatible with ω. This defines a metric g by

g(·, ·) = ω(·, J ·) > 0.

If J is integrable then it is Kähler. In general, the data (M, ω, J) is called
an almost-Kähler manifold and we will call ω an almost-Kähler form.
The volume form version of Yau’s theorem still makes sense. Given
an almost-Kähler 4-manifold (M, ω, J) we ask whether there exists an
almost-Kähler form ω′ solving the equation

(1.2) ω′2 = eF ω2,

for any function F satisfying

(1.3)

∫

M
eF ω2 =

∫

M
ω2,

and we also ask whether ω′ can be taken to be cohomologous to ω. We
call (1.2) the Calabi-Yau equation. Any solution to (1.2) is unique in its
cohomology class - this fact was pointed out to the author by Donaldson.
A proof is given in section 2.

Following Yau, we use the continuity method to try to obtain the exis-
tence of a solution. First, we consider the question of a priori estimates
for solutions to (1.2). For simplicity, assume that ω′ is cohomologous to
ω. We show that all the estimates can be reduced to a uniform bound
of a scalar potential function φ1 defined, up to a constant, by

(1.4)
ω ∧ ω′

ω′2
= 1 − 1

4
∆′φ1,

where ∆′ is the Laplacian associated to ω′. The function φ1 belongs to
a a 1-parameter family of ‘almost-Kähler potentials’ {φs}s∈[0,1], defined
in section 2, which all coincide in the Kähler case with the usual Kähler
potential.

Theorem 1. Let (M, ω, J) be a compact almost-Kähler 4-manifold.

Suppose that ω′ is another almost-Kähler form, cohomologous to ω, and
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satisfying (1.2). Then there exist positive constants Ki depending only

on (M, ω, J), F and oscMφ1 such that ω′ ≥ K−1
0 ω and

‖ω′‖Ci(g) ≤ Ki for i = 0, 1, 2, . . . ,

where oscMφ1 = supM φ1 − infM φ1.

An analogous result holds even if ω′ and ω are not necessarily coho-
mologous (see Section 7). We turn now to the question of openness in
the continuity method. Denote by H+

ω the space of self-dual harmonic
2-forms with respect to ω and by H+

ω the corresponding subspace in
H2(M ; R). H+

ω is a maximal positive subspace for the intersection form
on H2(M ; R) and its dimension is b+(M). Notice that ω is harmonic
and self-dual and so b+(M) ≥ 1. If b+(M) = 1 then we can show the
openness part of the continuity method, remaining in the same coho-
mology class. In the case where b+(M) > 1 the openness argument still
works if we allow the class to vary within H+

ω .
Under the assumption that the Nijenhuis tensor N(J) is small in the

L1 norm, the required uniform bound on φ1 can be obtained. So in this
case, we can solve equation (1.2).

Theorem 2. Let (M, ω, J) be a compact almost Kähler 4-manifold.

(i) Suppose b+(M) = 1. Then for F ∈ C∞(M) satisfying (1.3) there

exists an almost-Kähler form ω′ cohomologous to ω solving (1.2)
if

(1.5) ‖N(J)‖L1(g) < ǫ,

for ǫ > 0 depending only on g and ‖F‖C2(g).

(ii) If b+(M) > 1 then the same holds except that the solution ω′ may

lie in a different cohomology class in H+
ω .

With a little work, an explicit ǫ could be written down. However, it is
hoped that the condition (1.5) could be removed entirely (cf. [Do]). In
addition, it would be interesting to improve on Theorem 2 even further
in light of a possible application in symplectic topology described to the
author by Donaldson. Given an almost complex structure J1 on a sym-
plectic 4-manifold, a natural question is: does there exist a symplectic
form compatible with J1? In general the answer is negative, as can be
seen from the well-known Kodaira-Thurston example [Th], [FeGoGr].
However, it is sensible to ask this question under the (obviously neces-
sary) assumption that there exists some symplectic form Ω taming J1.
In this case, there exists an almost complex structure J0 compatible
with Ω and, by a well-known result of Gromov [Gr], a smooth path
of almost complex structures {Jt}t∈[0,1] all taming Ω. Set ω0 = Ω and
consider the equation

ω2
t = Ω2,
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for ωt compatible with Jt. Finding a solution for t = 1 would solve the
problem. To prove this using a continuity method one would require
estimates for ωt depending only on Ω and Jt.

These methods appear to make sense only in four dimensions, since
the system of equations is overdetermined in higher dimensions. Nev-
ertheless, it should be noted that many of the estimates here carry over
easily to any dimension.

The outline of the paper is as follows: in Section 2, some preliminaries
are given, almost-Kähler potentials are defined and uniqueness for the
Calabi-Yau equation is proved; in Section 3 an estimate on the metric
g′ in terms of the potential is given; a Hölder estimate on the metric is
proved in Section 4; the higher order estimates and the proof of Theorem
1 are given in Section 5; finally, in Sections 6 and 7, Theorem 2 is proved
in the cases b+(M) = 1 and b+(M) > 1 respectively.

Remark 1.1. Delanoë [De] considered, following a suggestion of
Gromov, a different problem concerning the equation (1.2). He looked
for solutions of ω′n = eF ωn, on an almost-Kähler manifold (M, ω) of
dimension 2n, of the form ω′ = ω + d(Jdφ) for a smooth real function
φ so that ω′ tames J but is not necessarily compatible with J (here, J
acts on 1-forms in the usual way). He showed that when n = 2, if there
exists such a solution for every F , then J is in fact integrable. We do
not expect the solutions we obtain in Theorem 2 to be, in general, of
the form ω′ = ω + d(Jdφ) for any φ.

Acknowledgements. The author is very grateful to: Simon Donald-
son for suggesting this problem and for many subsequent helpful, in-
sightful and encouraging discussions; S.-T. Yau whose original paper
[Ya] made this work possible and whose lectures and discussions at
Harvard University have been an invaluable source of inspiration; the
author’s former advisor D.H. Phong for his continued support and en-
couragement; Richard Thomas for some very useful conversations and
for his help in arranging the author’s year-long visit to Imperial College;
Xiuxiong Chen, Joel Fine, Mark Haskins, Tom Mrowka, Jian Song and
Valentino Tosatti for some helpful discussions.

2. Almost-Kähler geometry and the Calabi-Yau equation

Notation and preliminaries.

We will often work in local coordinates, making use of the Einstein

summation convention. The almost complex structure J = J j
i dxi⊗ ∂

∂xj

satisfies, by definition, the condition

J k
i J j

k = −δj
i .

We will lower indices in the usual way using the metric g so that

Jij = J k
i gkj = ωij .
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The condition dω = 0 can be written as

(2.1) ∂iJjk + ∂jJki + ∂kJij = 0.

It follows that the equation

(2.2) ∇iJ
i

j = 0

holds on an almost-Kähler manifold, where ∇ is the Levi-Civita connec-
tion associated to the metric g. This implies that ω is harmonic with
respect to the metric g.

Define two tensors P and Q by

P ij
kl =

1

2
(δi

kδ
j
l − J i

k J j
l )

Qij
kl =

1

2
(δi

kδ
j
l + J i

k J j
l ).

Then the compatibility of g and ω with J implies that P ij
klgij = 0 and

P ij
klJij = 0. Considering P and Q as operators on two-tensors, we have

P + Q = Id.

Moreover, at each point, P and Q are self-adjoint with respect to g and
define projections onto the spaces kerQ and kerP respectively.

The obstruction to the almost complex structure J being integrable
is the Nijenhuis tensor N : TM × TM → TM , which is given by

N(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ].

In local coordinates, this can be written as

N i
jk = J l

k ∂lJ
i

j + J i
l ∂jJ

l
k − J l

j ∂lJ
i

k − J i
l ∂kJ

l
j .

On an almost-Kähler manifold, the Nijenhuis tensor can be written in
the simpler form

N i
jk = 2(∇iJ l

j )Jkl.

By the Newlander-Nirenberg theorem, the almost complex structure J
is integrable if and only if N vanishes identically and if and only if ∇J
vanishes identically.

For later use, we also make the following simple observation. Let Rm
denote the Riemmanian curvature tensor of an almost-Kähler metric g.
Then

sup
M

|∇J |2 ≤ C‖Rm‖C0(g),

for C a constant depending only on dimension. Indeed, using the usual
commutation formulae for covariant derivatives along with (2.1) and
(2.2),

0 = ∆|J |2 = 2|∇J |2 + Rm ∗ J ∗ J,

where ∗ denotes some bilinear operation involving tensor products and
the metric g. Similarly, by calculating ∆|∇J |2 we see that

|∇∇J |2 = ∇∇Rm∗J ∗J +Rm∗∇∇J ∗J +∇Rm∗J ∗∇J +Rm∗∇J ∗∇J,
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and it follows that supM |∇∇J |2 can be bounded by a constant depend-
ing only on dimension and ‖Rm‖C2(g).

Almost-Kähler potentials.

Now restrict to four dimensions. Let ω and ω′ be two almost-Kähler
forms with [ω] = [ω′]. For s ∈ [0, 1], let Ωs = (1 − s)ω + sω′ and define
the almost-Kähler potentials φs by

(1 − 2s)ω ∧ ω′ + sω′2 − (1 − s)ω2 = −1

2
Ωs ∧ d(Jdφs).

Since −Ω∧ d(Jdφ) = 1
2∆ΩφΩ2 for any almost-Kähler form Ω and func-

tion φ, the existence of the φs follows from elementary Hodge theory.
The φs are uniquely determined up to the addition of a constant. In the
Kähler case, they all coincide with the usual Kähler potential φ given by
ω′ = ω +

√
−1∂∂φ. We are interested in three particular almost-Kähler

potentials, corresponding to s = 0, 1
2 , 1. They satisfy:

1

4
∆φ0 =

ω ∧ ω′

ω2
− 1(2.3)

1

4
∆′φ1 = 1 − ω ∧ ω′

ω′2
(2.4)

1

2
(∆ 1

2
φ 1

2
) =

ω′2 − ω2

Ω2
1
2

,(2.5)

where ∆′ and ∆ 1
2

are the Laplacians associated to ω′ and Ω 1
2
.

In addition, for each s, define a one form as by the equations

ω′ = ω − 1

2
d(Jdφs) + das,

and d∗sas = 0, where d∗s is the formal adjoint of d associated to the metric
Ωs. Note that as is defined only up to the addition of a harmonic 1-form.
A short calculation shows that as satisfies the elliptic system

(2.6)







das ∧ Ωs = 0
Pdas = 1

4(∂iJ
k

j − ∂jJ
k

i )(∂kφs) dxi ∧ dxj

d∗sas = 0.

It will be convenient to give a different formulation of (2.6). Let ∗s be the
Hodge-star operator associated to Ωs. Then the projection 1

2(1 + ∗s) :

Λ2 → Λ+
s onto the self-dual two forms can be written

1

2
(1 + ∗s)(χ) =

(

Ωs ∧ χ

Ω2
s

)

Ωs + Pχ, for χ ∈ Λ2.

Hence, the system (2.6) can be rewritten as

(2.7)

{

d+
s as = 1

4(∂iJ
k

j − ∂jJ
k

i )(∂kφs) dxi ∧ dxj

d∗sas = 0,
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for d+
s = 1

2(1 + ∗s)d : Λ1 → Λ+
s . Observe that, since d+

s b = 0 implies
db = 0 for any 1-form b (see for example [DoKr], Prop. 1.1.19), the
kernel of the operator (d+

s , d∗s) consists of the harmonic 1-forms.

The Calabi-Yau equation.

For a manifold of dimension n = 2m, linearizing the Calabi-Yau
equation gives a 7→ ωm−1 ∧ da for a one-form a. Combining with the
linear operator a 7→ Pda and imposing d∗a = 0 gives a system which is
elliptic if n = 4 and overdetermined if n > 4.

Restricting to four-manifolds, solutions to (1.2) are unique in their
cohomology class. To see this, let ω1 and ω2 = ω1 +db be cohomologous
almost-Kähler forms with ω2

1 = ω2
2. Let Ω = ω1 + ω2. Then Ω ∧ db = 0

and Pdb = 0 from which it follows that d+
Ωb = 0. Then db = 0 and so

ω1 = ω2.
Finally we mention that the Calabi-Yau equation (1.2) can also be

written as

(2.8) trgg
′ = eF trg′g,

where we are writing g′ for the metric associated to ω′ and where

trgg
′ = gijg′ij = J ijJ ′

ij , and trg′g = g′ijgij = J ′ijJij .

We are using here the obvious notation for lowering and raising indices

using the metric g′, so that J ′
ij = J k

i g′kj and J ′ij = J j
k g′ki.

3. Uniform estimate on the metric

In this section we will prove an estimate on the metric in terms of
φ1, similar to the one proved by Yau [Ya] (see also [Au]) in the Kähler
case. The computations here are somewhat more involved because of
extra terms arising from the non-integrability of the almost complex
structure.

Theorem 3.1. There exist constants C and A depending only on

‖Rm(g)‖C2(g), supM |F | and the lower bound of ∆F such that

trgg
′ ≤ CeA(φ1−infM φ1).

Proof. We will calculate ∆′(log(trgg
′) − Aφ1), where A is a constant

to be determined, and then apply the maximum principle. For this
calculation we will work at a point using normal coordinates for g.

First, the equation (1.2) can be written

(3.1) log det g′ = 2F + log det g.

Applying the Laplace operator ∆ of the metric g, we obtain

(3.2) 2∆F = gijg′kl∂i∂jg
′
kl − gijg′kqg′pl(∂ig

′
pq)(∂jg

′
kl) − gijgkl∂i∂jgkl.
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Now calculate

∆′(trgg
′) = g′klgij∂k∂lg

′
ij + g′klg′ij∂k∂lg

ij − g′klΓ′p
klg

ij∂pg
′
ij ,

where we use Γ′p
kl to denote the Christoffel symbols corresponding to

∇′. We can rewrite this last term using the equation (valid at a point)

g′klΓ′p
kl = −J p

q g′kl∇kJ
q

l ,

which follows from the equation g′kl∇′
kJ

q
l = 0. Thus we have

(3.3) ∆′(trgg
′) = g′klgij∂k∂lg

′
ij+g′klg′ij∂k∂lg

ij+J p
q g′kl(∇kJ

q
l )gij∂pg

′
ij .

The first terms on the right hand side of (3.2) and (3.3) are related as
follows:

g′klgij∂i∂jg
′
kl = g′klgij∂k∂lg

′
ij − J k

r gij∂i∂jJ
r

k − 2J ′
jrg

′klgij∂i∂lJ
r

k

(3.4)

+ J ′
rjg

′klgij∂k∂lJ
r

i − 2J k
r gij∂k∂jJ

r
i

− 2g′klgij(∂iJ
r

k + ∂kJ
r

i )J q
j ∂rg

′
ql

− 2gij(∂iJ
r

q + ∂qJ
r

i )∂rJ
q

j

− 2g′klgij(∂lJ
r

k )J s
j ∂ig

′
rs.

To see this, calculate

g′klgij∂i∂jg
′
kl = −g′klgij∂i∂j(J

r
k J ′

rl)(3.5)

= −J r
k g′klgij∂i∂jJ

′
rl − J ′

rlg
′klgij∂i∂jJ

r
k

− 2g′klgij(∂iJ
r

k )(∂jJ
′
rl).

We will now apply (2.1) to the first term on the right hand side of the
above equation to obtain

−J r
k g′klgij∂i∂jJ

′
rl = −J r

k g′klgij∂i(∂rJ
′
jl + ∂lJ

′
rj)

= J ′lrgij(∂i∂lJ
′
jr + ∂i∂lJ

′
jr)

= 2J r
k g′klgij∂i∂lJ

′
jr

= 2g′klgij∂i∂l(J
r

k J ′
jr) − 2g′klgij(∂iJ

r
k )(∂lJ

′
jr)

− 2g′klgij(∂lJ
r

k )(∂iJ
′
jr) − 2J ′

jrg
′klgij∂i∂lJ

r
k .

Then in (3.5) we have

g′klgij∂i∂jg
′
kl = 2g′klgij∂i∂lg

′
kj − 2g′klgij(∂iJ

r
k )(∂lJ

′
jr)(3.6)

− 2g′klgij(∂lJ
r

k )(∂iJ
′
jr) − 2J ′

jrg
′klgij∂i∂lJ

r
k

− J ′
rlg

′klgij∂i∂jJ
r

k − 2g′klgij(∂iJ
r

k )(∂jJ
′
rl).
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Similarly,

g′klgij∂k∂lg
′
ij = 2gijg′kl∂k∂jg

′
il − 2gijg′kl(∂kJ

r
i )(∂jJ

′
lr)(3.7)

− 2gijg′kl(∂jJ
r

i )(∂kJ
′
lr) − 2J ′

lrg
ijg′kl∂k∂jJ

r
i

− J ′
rjg

′klgij∂k∂lJ
r

i − 2g′klgij(∂kJ
r

i )(∂lJ
′
rj).

Combining (3.6) and (3.7) and again making use of (2.1) gives (3.4).
From (3.2), (3.3) and (3.4) we obtain

∆′(log trgg
′) =

1

trgg′

(

∆′(trgg
′) − |∇′trgg

′|2
trgg′

)

(3.8)

=
1

trgg′

(

2∆F + g′klg′ijgpq(∇pg
′
ik)(∇qg

′
jl)

+ 2g′klgij(∇iJ
r

k + ∇kJ
r

i )J q
j (∇rg

′
ql)

+ 2gij(∇iJ
r

q + ∇qJ
r

i )(∇rJ
q

j )

+ g′kl(∇kJ
r

l )gij(2J s
j ∇ig

′
rs + J s

r ∇sg
′
ij)

+ J k
r gij∇i∇jJ

r
k − 2gijg′klg′qjJ

q
r ∇i∇lJ

r
k

− J q
r g′qjg

′klgij∇k∇lJ
r

i − 2R

+ 2g′klg′ijg
pjRi

lpk − |∇′trgg
′|2

trgg′

)

,

where, by definition,

|∇′trgg
′|2 = g′kl(∂ktrgg

′)(∂ltrgg
′),

and where we are making use of the equations

gijgkl∂i∂jgkl + 2J k
r gij∂k∂jJ

r
i = −2R

and

2J ′
jrg

′klgij∂i∂lJ
r

k + g′klg′ij∂k∂lg
ij

= −2gijg′klg′qjJ
q

r ∇i∇lJ
r

k + 2g′klg′ijg
pjRi

lpk,

which both hold only at a point.
Notice now that (3.8) is an equation of tensors. Since we are going to

apply the maximum principle we need to obtain a good lower bound for
the right hand side of (3.8). We have to deal with the bad terms that
involve derivatives of g′ and are not nonnegative: namely, the third,
fifth and last terms. First, we need a lemma.
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Lemma 3.1. Define tensors αijp and βijp by

αijp = J ′
pl(∇iJ

l
j −∇jJ

l
i ) + (∇pJ

k
l )(g′kjJ

l
i − g′kiJ

l
j )

+ g′kp((∇lJ
k

j )J l
i − (∇lJ

k
i )J l

j ),

βijp = g′kl((∇jJ
l

i )J k
p − (∇jJ

l
p )J k

i ) − g′kj((∇pJ
k

l )J l
i − (∇iJ

k
l )J l

p )

− (∇lJ
k

j )(g′kpJ
l

i − g′kiJ
l

p ).

Then

(i) 2Prs
ij ∇rg

′
sp − 2Prs

ji ∇rg
′
sp = αijp,

(ii) 2Qrs
ij ∇rg

′
sp − 2Qrs

pj∇rg
′
si = βijp.

Notice that in the Kähler case the tensors α and β vanish identically
and the lemma states that Prs

ij ∇rg
′
sp is symmetric in i and j while

Qrs
ij ∇rg

′
sp is symmetric in i and p. It is important here that α and β do

not contain derivatives of g′.

Proof. We prove (i). The proof of (ii) is similar. From

∇iJ
′
jk + ∇jJ

′
ki + ∇kJ

′
ij = 0,

we have

J q
j ∇ig

′
qk + J q

k ∇jg
′
qi + J q

i ∇kg
′
qj + g′qk∇iJ

q
j + g′qi∇jJ

q
k + g′qj∇kJ

q
i = 0.

Multiplying by J j
p we obtain

∇ig
′
pk = J j

p J q
k ∇jg

′
qi + J j

p J q
i ∇kg

′
jq + g′qkJ

j
p ∇iJ

q
j

+ g′qiJ
j

p ∇jJ
q

k + g′qjJ
j

p ∇kJ
q

i

= −2Prs
pk∇rg

′
si + ∇pg

′
ki + ∇kg

′
pi − g′qjJ

q
i ∇kJ

j
p

+ g′qkJ
j

p ∇iJ
q

j + g′qiJ
j

p ∇jJ
q

k ,

where we have made use of the identity Pjq
pi g

′
jq = 0. Then (i) follows

easily. q.e.d.

We return to equation (3.8). The third term on the right hand side
(ignoring the factor of 1/trgg

′) can be written

2g′klgij(∇iJ
r

k + ∇kJ
r

i )J q
j ∇rg

′
ql(3.9)

= 2g′klgijgrs(∇iJkr + ∇kJir)∇sJ
′
jl

− 2g′klgijgrs(∇iJkr + ∇kJir)g
′
ql∇sJ

q
j .
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Making use of the identity Qab
ir∇kJab = 0 we rewrite the first term on

the right hand side of (3.9) as

2g′klgijgrs(∇iJkr + ∇kJir)∇sJ
′
jl(3.10)

= 4g′klgijgrs(∇kJir)(∇sJ
′
jl) + 2g′klgijgrs(∇rJki)(∇sJ

′
jl)

= 4g′klgijgrsPab
ir (∇kJab)(∇sJ

′
jl)

+ 2g′klgijgrsPab
ki (∇rJab)(∇sJ

′
jl)

= (I) + (II),

where

(I) = 4g′klgijgrs(∇kJir)Pab
js (∇bJ

′
al)

and

(II) = 2g′klgijgrs(∇rJik)Pab
jl (∇sJ

′
ab).

To deal with (I), first note that

Pab
js∇bJ

′
al = Pab

sj ∇aJ
′
bl

= −Pab
sj (∇ag

′
bq)J

q
l − Pab

sj g′bq∇aJ
q

l

= −Pab
js (∇ag

′
bq)J

q
l − 1

2
αsjqJ

q
l − Pab

sj g′bq∇aJ
q

l

= Pab
sj ∇bJ

′
al + Pab

js g′bq∇aJ
q

l − 1

2
αsjqJ

q
l − Pab

sj g′bq∇aJ
q

l .

That is, the term Pab
js∇bJ

′
al is symmetric in j and s modulo terms that

don’t involve derivatives of g′. Then

(I) = −4g′klgijgrs(∇kJri)Pab
sj ∇bJ

′
al

+ 4g′klgijgrs(∇kJir)(Pab
js g′bq∇aJ

q
l − 1

2
αsjqJ

q
l − Pab

sj g′bq∇aJ
q

l ),

and hence, interchanging the indices i and j with r and s in the first
term, we have

(I) = 2g′klgijgrs(∇kJir)(Pab
js g′bq∇aJ

q
l(3.11)

− 1

2
αsjqJ

q
l − Pab

sj g′bq∇aJ
q

l ).

For (II), calculate

Pab
jl ∇sJ

′
ab =

1

2

(

∇sJ
′
jl − J a

j J b
l ∇sJ

′
ab

)

(3.12)

=
1

2

(

∇sJ
′
jl −∇sJ

′
jl + J ′

abJ
b

l ∇sJ
a

j + J ′
abJ

a
j ∇sJ

b
l

)

=
1

2
J ′

ab

(

J b
l ∇sJ

a
j + J a

j ∇sJ
b

l

)

.
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Then from equations (3.9), (3.10), (3.11) and (3.12) we have the follow-
ing expression for the third term of (3.8):

2g′klgij(∇iJ
r

k + ∇kJ
r

i )J q
j ∇rg

′
ql(3.13)

= 2g′klgijgrs(∇kJir)(Pab
js g′bq∇aJ

q
l − 1

2
αsjqJ

q
l − Pab

sj g′bq∇aJ
q

l )

+ g′klgijgrs(∇rJik)J
′
ab(J

b
l ∇sJ

a
j + J a

j ∇sJ
b

l )

− 2g′klgijgrs(∇iJkr + ∇kJir)g
′
ql∇sJ

q
j .

We deal now with the fifth term on the right hand side of (3.8).
Calculate:

g′kl(∇kJ
r

l )gij(2J s
j ∇ig

′
rs + J s

r ∇sg
′
ij)(3.14)

= g′kl(∇kJ
r

l )gij(2∇iJ
′
jr − J s

r ∇s(J
′
pjJ

p
i ))

= g′kl(∇kJ
r

l )gij(2∇iJ
′
jr − J s

r J p
i ∇pJ

′
sj

− J s
r J p

i ∇jJ
′
ps − J s

r J ′
pj∇sJ

p
i )

= g′kl(∇kJ
r

l )gij(2∇iJ
′
jr + J a

i J b
r ∇aJ

′
jb −∇jJ

′
ir

+ J p
i J ′

ps∇jJ
s

r − J s
r J ′

pj∇sJ
p

i )

= g′kl(∇kJ
r

l )gij(2Qab
ir∇aJ

′
jb + J p

i J ′
ps∇jJ

s
r − J s

r J ′
pj∇sJ

p
i )

= g′kl(∇kJ
r

l )gij(2Qab
ir (∇ag

′
bq)J

q
j + 2Qab

ir g′bq∇aJ
q

j − g′is∇jJ
s

r

− J s
r J ′

pj∇sJ
p

i )

= g′kl(∇kJ
r

l )(
1

2
βirqJ

iq + 2gijQab
ir g′bq∇aJ

q
j − gijg′is∇jJ

s
r

− gijJ s
r J ′

pj∇sJ
p

i ),

where, for the last line, we have used the identity

2Qab
ir (∇ag

′
bq)J

iq =
1

2
βirqJ

iq,

which follows immediately from Lemma 3.1.
Finally, we must deal with the last term on the right hand side of

(3.8). We do this by making use of the good second term.

Lemma 3.2. There exists a constant C ′ depending only on supM |F |
and ‖Rm(g)‖C0(g) such that

|∇′(trgg
′)|2

trgg′
≤ g′klg′ijgpq(∇pg

′
ik)(∇qg

′
jl) + C ′(trgg

′)(trg′g).
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To prove this lemma we will work in a coordinate system (x1, . . . , x4)
centred at a point p such that the first derivatives of the metric g vanish
at p and

J 3
1 = J 4

2 = 1 = −J 1
3 = −J 2

4 ,

and all other entries of the matrix (J j
i ) are zero at p. Define local vector

fields

Zα =
1

2

(

∂α −
√
−1J i

α ∂i

)

,

for α = 1, 2. Set

Gαβ = g(Zα, Zβ)

and

G′
αβ

= g′(Zα, Zβ),

for α, β = 1, 2. Then we make a linear change in the coordinates
(x1, . . . , x4) so that, in addition to the above conditions at p, we also
impose that Gαβ = δαβ and that G′

αβ
be diagonal. Notice that in these

coordinates, the first derivatives of the gij vanish at p, but in general,
the first derivatives of the Gαβ will not.

It will also be useful to consider the local vector fields

Wα =
1

2

(

−J i
A ∂i −

√
−1∂A

)

,

for α = 1, 2, where we are setting A = α + 2. Notice that, at p,
Wα = Zα. In the sequel, we will use the indices A, B, C, D, M, N to
denote α + 2, β + 2, γ + 2, δ + 2, µ + 2, ν + 2. Set

G̃αβ = g(Wα, W β)

and

G̃′
αβ

= g′(Wα, W β).

Observe that

Gαβ =
1

2

(

gαβ −
√
−1Jαβ

)

, G′
αβ

=
1

2

(

g′αβ −
√
−1J ′

αβ

)

,

and

G̃αβ =
1

2

(

gAB −
√
−1JAB

)

, G̃′
αβ

=
1

2

(

g′AB −
√
−1J ′

AB

)

.

At the point p, G = G̃ and G′ = G̃′; this fact will be used later in
the proof of Lemma 3.2. Notice also that gij = 2δij and that g′ij is
diagonal. A final word about notation: when we are using the local
vector fields Zα and Zα as differential operators, we will instead write
Dα and Dα respectively. We require some preliminary results before we
prove Lemma 3.2.
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Lemma 3.3.

DγG′
αβ

= DαG′
γβ

+
1

4

(

aγαβ +
√
−1bγαβ

)

(3.15)

and DγG̃′
αβ

= DαG̃′
γβ

+
1

4

(

aγAB +
√
−1bγAB

)

,(3.16)

where

aγij = (∂iJ
k

γ − ∂γJ k
i )J ′

kj + (∂jJ
k

γ )J ′
ik − (∂jJ

k
i )J ′

γk

and bγij = g′ki∂jJ
k

γ − g′kγ∂jJ
k

i + J ′
jl(J

k
i ∂kJ

l
γ − J k

γ ∂kJ
l

i ).

Proof. We will just prove (3.15), since the proof of (3.16) is similar.
Calculate

DγG′
αβ

=
1

4
(∂γ −

√
−1J i

γ ∂i)(g
′
αβ −

√
−1J ′

αβ)

(3.17)

=
1

4
(∂γg′αβ − J i

γ ∂iJ
′
αβ −

√
−1J i

γ ∂ig
′
αβ −

√
−1∂γJ ′

αβ)

=
1

4
(∂γg′αβ − J i

γ ∂αJ ′
iβ − J i

γ ∂βJ ′
αi −

√
−1J i

γ ∂ig
′
αβ

−
√
−1∂αJ ′

γβ −
√
−1∂βJ ′

αγ)

=
1

4
(∂γg′αβ + ∂αg′γβ + (∂αJ i

γ )J ′
iβ − J i

α ∂βJ ′
γi − (∂βJ i

α )J ′
γi

+ (∂βJ i
γ )J ′

αi −
√
−1J i

γ ∂i(J
′
βpJ

p
α ) −

√
−1∂αJ ′

γβ

−
√
−1∂βJ ′

αγ)

=
1

4
(∂γg′αβ + ∂αg′γβ + (∂αJ i

γ )J ′
iβ − J i

α ∂iJ
′
γβ − J i

α ∂γJ ′
βi

− (∂βJ i
α )J ′

γi + (∂βJ i
γ )J ′

αi −
√
−1J i

γ J p
α ∂iJ

′
βp

−
√
−1J i

γ J ′
βp∂iJ

p
α −

√
−1∂αJ ′

γβ −
√
−1∂βJ ′

αγ),

where to go from the third to the fourth lines we have used the simple
identity

J i
γ ∂βJ ′

αi + (∂βJ i
γ )J ′

αi = (∂βJ i
α )J ′

γi + J i
α ∂βJ ′

γi.

Notice that

J i
γ J p

α ∂iJ
′
βp = J i

γ J p
α ∂βJ ′

ip + J i
γ J p

α ∂pJ
′
βi

= ∂βJ ′
γα − J ′

ipJ
p

α ∂βJ i
γ − J ′

ipJ
i

γ ∂βJ p
α + J i

α J p
γ ∂iJ

′
βp.



THE CALABI-YAU EQUATION ... 331

In (3.17) this gives us

DγG′
αβ

=
1

4
(∂γg′αβ + ∂αg′γβ + (∂αJ i

γ )J ′
iβ − J i

α ∂iJ
′
γβ − J i

α ∂γJ ′
βi

− (∂βJ i
α )J ′

γi + (∂βJ i
γ )J ′

αi +
√
−1J ′

ipJ
p

α ∂βJ i
γ +

√
−1J ′

ipJ
i

γ ∂βJ p
α

−
√
−1J i

α J p
γ ∂iJ

′
βp −

√
−1J i

γ J ′
βp∂iJ

p
α −

√
−1∂αJ ′

γβ)

=
1

4
(∂αg′γβ + (∂αJ i

γ )J ′
iβ − J i

α ∂iJ
′
γβ + (∂γJ i

α )J ′
βi − (∂βJ i

α )J ′
γi

+ (∂βJ i
γ )J ′

αi +
√
−1g′iα∂βJ i

γ −
√
−1g′pγ∂βJ p

α −
√
−1J i

α ∂ig
′
βγ

+
√
−1J i

α J ′
βp(∂iJ

p
γ ) −

√
−1J i

γ J ′
βp(∂iJ

p
α ) −

√
−1∂αJ ′

γβ)

= DαG′
γβ

+
1

4

(

(∂αJ i
γ − ∂γJ i

α )J ′
iβ − (∂βJ i

α )J ′
γi + (∂βJ i

γ )J ′
αi

+
√
−1(g′iα∂βJ i

γ − g′iγ∂βJ i
α ) +

√
−1J ′

βp(J
i

α ∂iJ
p

γ − J i
γ ∂iJ

p
α )

)

,

as required. q.e.d.

We will also need the following result.

Lemma 3.4. At the point p we have

2Dγ(GαβG′
αβ

) = 2GαβDγG′
αβ

= Dγ(gijg′ij) + Eγ and(3.18)

2Dγ(G̃αβG̃′
αβ

) = 2G̃αβDγG̃′
αβ

= Dγ(gijg′ij) − Eγ ,(3.19)

where Eγ =
2

∑

i=1

g′rs(DγJ r
i )J s

i .

We are using here the usual notation for the inverse metrics G−1 and
G̃−1. Note also that repeated greek indices α, β, . . . are used to denote
a sum from 1 to 2, whereas repeated lower case roman letters i, j, . . .
denote the usual sum from 1 to 4, unless otherwise indicated.

Proof. We will prove just (3.18). Calculate

2Dγ(GαβG′
αβ

) = −1

2
GαµGνβ(−J i

γ ∂iJνµ −
√
−1∂γJνµ)G′

αβ
(3.20)

+ 2GαβDγG′
αβ

= 2GαβDγG′
αβ

=
1

2
Gαβ(∂γg′αβ −

√
−1J k

γ ∂kg
′
αβ).
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But

Dγ(gijg′ij) =
1

2
gij(∂γ −

√
−1J k

γ ∂k)g
′
ij(3.21)

=
1

4

4
∑

i=1

(

∂γg′ii −
√
−1J k

γ ∂kg
′
ii

)

=
1

2

2
∑

i=1

(

∂γg′ii − g′rs(∂γJ r
i )J s

i −
√
−1J k

γ ∂kg
′
ii

+
√
−1J k

γ g′rs(∂kJ
r

i )J s
i

)

,

where we have used the fact that, at p,

∂kg
′
AB − ∂kg

′
αβ = −g′rs(∂kJ

r
α )J s

β − g′rs(∂kJ
s

β )J r
α .

Comparing (3.20) and (3.21) gives (3.18). q.e.d.

We need one more lemma before we can prove Lemma 3.2.

Lemma 3.5. At p,

gijaγij = 0 and gijbγij = 0.

Proof. For the first equation, calculate at p:

gijaγij = gij(∇iJ
k

γ )J ′
kj − gij(∇γJ k

i )J ′
kj

+ gij(∇jJ
k

γ )J ′
ik − gij(∇jJ

k
i )J ′

γk

= −gij(∇γJ k
i )J ′

kj

= −gij(∇γJ k
i )J s

k g′sj

= gijJ k
i (∇γJ s

k )g′sj

= −gikJ j
i (∇γJ s

k )g′sj

= 0,

by symmetry. For the second, calculate:

gijbγij = gijg′ki(∇jJ
k

γ ) − gijg′kγ(∇jJ
k

i )

+ gijJ ′
jlJ

k
i (∇kJ

l
γ ) − gijJ ′

jlJ
k

γ (∇kJ
l

i )

= gijJ ′
klJ

l
i (∇jJ

k
γ ) − gikJ ′

jlJ
j

i (∇kJ
l

γ )

− gijJ ′
jlJ

k
γ (∇iJ

l
k ) − gijJ ′

jlJ
k

γ (∇lJik)

= 2gijJ ′
klJ

l
i (∇jJ

k
γ ) − 2J k

γ J ′
jl(∇jJ l

k ).

Notice that the second term vanishes since

J ′
jl∇jJ l

k =
1

2
g′lpJ

p
j ∇kJ

jl = 0.



THE CALABI-YAU EQUATION ... 333

But also the first term can be written

gijJ ′
klJ

l
i (∇jJ

k
γ ) = gijJ p

k g′plJ
l

i (∇jJ
k

γ ) = −J ′
ipJ

k
γ (∇iJ p

k ) = 0,

finishing the proof of the lemma. q.e.d.

Proof of Lemma 3.2.

Using Lemma 3.4 we have

g′kl∂k(g
ijg′ij)∂l(g

pqg′pq)

= 2G′γδDγ(gijg′ij)Dδ(g
pqg′pq)

= G′γδ(2Dγ(GαβG′
αβ

) − Eγ)(2Dδ(G
µνG′

µν) − Eδ)

+ G′γδ(2Dγ(G̃αβG̃′
αβ

) + Eγ)(2Dδ(G̃
µνG̃′

µν) + Eδ)

= 4G′γδ(GαβDγG′
αβ

)(GµνDδG
′
µν)

+ 4G′γδ(G̃αβDγG̃′
αβ

)(G̃µνDδG̃
′
µν) − 2G′γδEγEδ.

From Lemma 3.3,

g′kl∂k(g
ijg′ij)∂l(g

pqg′pq)

= 4G′γδ(GαβDαG′
γβ

)(GµνDνG
′
µδ

)

+ 4G′γδ(GαβDαG̃′
γβ

)(GµνDνG̃
′
µδ

)

+ 2Re
{

G′γδGαβ(aγαβ +
√
−1bγαβ)GµνDνG

′
µδ

+ G′γδGαβ(aγAB +
√
−1bγAB)GµνDνG̃

′
µδ

}

+
1

4
G′γδGαβ(aγαβ +

√
−1bγαβ)Gµν(aδµν −

√
−1bδµν)

+
1

4
G′γδGαβ(aγAB +

√
−1bγAB)Gµν(aδMN −

√
−1bδMN )

− 2G′γδEγEδ.

But

GµνDνG̃
′
µδ

= GµνDνG
′
µδ

+
1

4
Gµν

(

aδµν + aνMD −
√
−1bδµν −

√
−1bνMD

)

− Eδ,
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and so, making use of Lemma 3.5,

g′kl∂k(g
ijg′ij)∂l(g

pqg′pq)(3.22)

= 4G′γδ(GαβDαG′
γβ

)(GµνDνG
′
µδ

)

+ 4G′γδ(GαβDαG̃′
γβ

)(GµνDνG̃
′
µδ

)

+
1

2
Re

{

G′γδGαβ(aγAB +
√
−1bγAB)(Gµν(aδµν + aνMD

−
√
−1bδµν −

√
−1bνMD) − 4Eδ)

}

+
1

4
G′γδGαβ(aγαβ +

√
−1bγαβ)Gµν(aδµν −

√
−1bδµν)

+
1

4
G′γδGαβ(aγAB +

√
−1bγAB)Gµν(aδMN −

√
−1bδMN )

− 2G′γδEγEδ.

We can now apply the Cauchy-Schwartz inequality twice to obtain:

G′γδ(GαβDαG′
γβ

)(GµνDνG
′
µδ

)(3.23)

=
∑

γ,α,µ

G′γγ(DαG′
γα)(DµG′

µγ)

≤
∑

α,µ

(

∑

γ

G′γγ |DαG′
γα|2

)1/2 (

∑

γ

G′γγ |DµG′
γµ|2

)1/2

=





∑

α

(

∑

γ

G′γγ |DαG′
γα|2

)1/2




2

=





∑

α

√

G′
αα

(

∑

γ

G′γγG′αα|DαG′
γα|2

)1/2




2

≤
(

∑

α

G′
αα

)

∑

γ,α

G′γγG′αα|DαG′
γα|2

≤ 4(trgg
′)

∑

γ,α,µ

g′γγg′ααgµµ|DµG′
γα|2.

Similarly,

G′γδ(GαβDαG̃′
γβ

)(GµνDνG̃
′
µδ

)(3.24)

≤ 4(trgg
′)

∑

γ,α,µ

g′γγg′ααgµµ|DµG̃′
γα|2.
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But

4
∑

γ,α,µ

g′γγg′ααgµµ|DµG′
γα|2

=
1

4

∑

γ,α,µ

g′γγg′ααgµµ
{

(∂µg′γα − J i
µ g′jα(∇iJ

j
γ ) − J i

µ J j
γ (∇ig

′
jα))2

+(J i
µ ∇ig

′
γα + g′jα∇µJ j

γ + J j
γ ∇µg′jα)2

}

=
1

4

∑

γ,α,µ

(

g′γγg′ααgµµ(∇µg′γα)2 + g′γγg′ααgMM (∇MJ α
γ )2

+ g′CCg′ααgMM (∇Mg′Cα)2 + g′γγg′ααgMM (∇Mg′γα)2

+ g′γγg′ααgµµ(∇µJ α
γ )2 + g′CCg′ααgµµ(∇µg′Cα)2

− 2g′γγgµµ(∇µg′γα)J i
µ (∇iJ

α
γ ) − 2g′γγg′ααgµµJ i

µ J j
γ (∇µg′γα)(∇ig

′
jα)

+ 2g′γγJ j
γ gMM (∇MJ α

γ )(∇Mg′jα) + 2g′γγgµµJ i
µ (∇ig

′
γα)(∇µJ α

γ )

+2g′γγg′ααgµµJ i
µ J j

γ (∇ig
′
γα)(∇µg′jα) + 2g′γγgµµJ j

γ (∇µJ α
γ )(∇µg′jα)

)

.

A short calculation shows that
∑

γ,α,µ

g′γγgµµ(∇µg′γα)J i
µ (∇iJ

α
γ )+g′γγg′ααgµµJ i

µ J j
γ (∇µg′γα)(∇ig

′
jα) = 0,

and similarly that
∑

γ,α,µ

g′γγgµµJ i
µ (∇ig

′
γα)(∇µJ α

γ )+g′γγg′ααgµµJ i
µ J j

γ (∇ig
′
γα)(∇µg′jα) = 0.

Hence

4
∑

γ,α,µ

g′γγg′ααgµµ|DµG′
γα|2(3.25)

=
1

4

2
∑

γ,α=1

4
∑

k=1

(

g′γγg′ααgkk(∇kg
′
γα)2 + g′CCg′ααgkk(∇kg

′
Cα)2

+2g′γγJ j
γ gkk(∇kJ

α
γ )(∇kg

′
jα) + g′γγg′ααgkk(∇kJ

α
γ )2

)

.

Similarly, we have

4
∑

γ,α,µ

g′γγg′ααgµµ|DµG̃′
γα|2(3.26)

=
1

4

2
∑

γ,α=1

4
∑

k=1

(

g′CCg′AAgkk(∇kg
′
CA)2 + g′γγg′AAgkk(∇kg

′
γA)2

−2g′CCgkk(∇kJ
A

C )(∇kg
′
γA) + g′CCg′AAgkk(∇kJ

A
C )2

)

.

Now observe that, at p,

∇kJ
A

C = −∇kJ
α

γ ,
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and that
∇kg

′
γA + ∇kg

′
Cα = J ′

αi(∇kJ
i

C ) + J ′
Ci(∇kJ

i
α ).

Using these two simple equalities we obtain at the point p, by combining
(3.25) and (3.26),

4
∑

γ,α,µ

g′γγg′ααgµµ|DµG′
γα|2 + 4

∑

γ,α,µ

g′γγg′ααgµµ|DµG̃′
γα|2

=
1

4
g′klg′ijgpq(∇pg

′
ik)(∇qg

′
jl) +

1

4

∑

g′γγg′ααgkk(∇kJ
α

γ )2

+
1

4

∑

g′CCg′AAgkk(∇kJ
A

C )2

− 1

2

∑

g′CCgkk(∇kJ
A

C )(J ′
αi∇kJ

i
C + J ′

Ci∇kJ
i

α ).

Using this, together with (3.22), (3.23) and (3.24), we obtain the esti-
mate of Lemma 3.2. q.e.d.

Returning to the proof of the theorem, we can now combine equations
(3.8) with (3.13) and (3.14) together with Lemma 3.2 to obtain

∆′(log trgg
′)

≥ 1

trgg′
{2∆F + 2g′klgijgrs(∇kJir)(Pab

js g′bq∇aJ
q

l − 1

2
αsjqJ

q
l

− Pab
sj g′bq∇aJ

q
l ) + g′klgijgrs(∇rJik)J

′
ab(J

b
l ∇sJ

a
j + J a

j ∇sJ
b

l )

− 2g′klgijgrs(∇iJkr + ∇kJir)g
′
ql∇sJ

q
j

+ 2gij(∇iJ
r

q + ∇qJ
r

i )(∇rJ
q

j )

+ g′kl(∇kJ
r

l )(
1

2
βirqJ

iq + 2gijQab
ir g′bq∇aJ

q
j

− gijg′is∇jJ
s

r − gijJ s
r J ′

pj∇sJ
p

i )

+ J k
r gij∇i∇jJ

r
k − 2gijg′klg′qjJ

q
r ∇i∇lJ

r
k

− J q
r g′qjg

′klgij∇k∇lJ
r

i − 2R + 2g′klg′ijg
pjRi

lpk

− C ′(trgg
′)(trg′g)}.

From the Calabi-Yau equation and the arithmetic-geometric means in-
equality we have

trgg
′ ≥ 4 exp

(

infM F

2

)

> 0.

Hence, recalling from section 2 that ‖J‖C2 can be bounded in terms of
‖Rm(g)‖C2 , we have:

(3.27) ∆′(log trgg
′) ≥ −A

2
trg′g − A,

for a constant A depending only on ‖Rm(g)‖C2 , sup |F | and the lower
bound of ∆F . We now apply the maximum principle to the quantity
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(log trgg
′ −Aφ1). Suppose that the maximum is achieved at a point x0

on M . Then at x0 we have

∆′(log trgg
′ − Aφ1) ≤ 0.

Recall that ∆′φ1 = 4 − trg′g. At x0 we see that from (3.27)

0 ≥ ∆′(log trgg
′ − Aφ1)

≥ A

2
trg′g − 5A,

so that (trg′g)(x0) ≤ 10. On the other hand, from (2.8), we have that

(trgg
′)(x0) ≤ 10eF (x0),

and thus at any point x we have

log((trgg
′)(x)) − Aφ1(x) ≤ log 10eF (x0) − Aφ1(x0).

The theorem follows after exponentiating. q.e.d.

4. Hölder estimate on the metric

In this section we will prove a Hölder estimate on g′ given a uniform
estimate of g′, using a modification of the method of Evans [Ev] and
Krylov [Kr] (see also the estimate of Trudinger [Tr2] and the exposition
of Siu [Si]).

Theorem 4.1. Suppose that g′ satisfies the equation (1.2) and there

exists a constant C0 with

C−1
0 g ≤ g′ ≤ C0g.

Then there exist positive constants C and α depending only on g, C0

and ‖F‖C2(g) such that

‖trgg
′‖Cα(g) ≤ C.

Proof. We will work locally and fix a coordinate system (x1, · · · , x4)
with the same properties as the one in the proof of Lemma 3.2, with the
point p corresponding to x = 0. We will show that, with the notation
of section 3,

(4.1) |GαβG′
αβ

(y) − GαβG′
αβ

(x)| ≤ C ′Rα,

for all x, y ∈ BR(0) and 0 < R < R0/2 for some positive constants α,
R0 and C ′, where BR(0) is the ball of radius R centred at 0. This will
prove the theorem, since a short calculation shows

GαβG′
αβ

=
1

2
gijg′ij + O(R).

To prove (4.1), first note that, by a straightforward calculation,

(detG′)2 =
1

16
det g′ + η,
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where η = η(x) is a function of the form

η =
4

∑

a,b,c,d=1

habcdG
′
aG

′
bG

′
cG

′
d,

where G′
1 = G′

11
, G′

2 = G′
22

, G′
3 = G′

12
+G′

21
and G′

4 =
√
−1(G′

12
−G′

21
),

and where the habcd are smooth functions depending only on J which
vanish at 0. Note that here, and in the sequel, we are shrinking R0

whenever necessary. Writing

K =
1

16
e2F det g,

and using the equation (3.1), we see that

(4.2) 2 log detG′ = log(K + η).

Define a function Φ on the space of positive definite Hermitian matrices
by Φ(Aαβ) = 2 log det(Aαβ). Since Φ is concave, the tangent plane to

the graph of Φ at a point G′
αβ

(y) lies above the graph of Φ and so

2G′αβ(y)(G′
αβ

(y) − G′
αβ

(x)) ≤ Φ(G′
αβ

(y)) − Φ(G′
αβ

(x)),

for x, y in B2R(0). From (4.2),

2G′αβ(y)(G′
αβ

(y) − G′
αβ

(x)) ≤ log

(

1 +
K(y) − K(x) + η(y) − η(x)

K(x) + η(x)

)

(4.3)

≤ log(1 + C1R)

≤ C1R.

We now need the following elementary linear algebra lemma.

Lemma 4.1. Let S(λ, Λ) be the set of 2×2 positive definite Hermitian

matrices with eigenvalues between λ and Λ, with 0 < λ ≤ Λ. Then

there exist a finite number of bases of unit vectors {(V (1)
ν , V

(2)
ν )}N

ν=1 and

constants 0 < λ∗ < Λ∗ depending only on λ and Λ such that any A in

S(λ, Λ) can be written

A =
N

∑

ν=1

βν(V
(1)
ν ⊗ V

(1)
ν + V (2)

ν ⊗ V
(2)
ν )

with λ∗ ≤ βν ≤ Λ∗.

Proof. This lemma can be proved by a straightforward modification
of the argument in [MoWa]. q.e.d.

Using this lemma we see that

G′αβ(y) =
N

∑

ν=1

βν(y)(V (1)
ν ⊗ V

(1)
ν + V (2)

ν ⊗ V
(2)
ν ),
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for λ∗ < βν < Λ∗ where the V
(i)
ν and λ∗ and Λ∗ depend only on the

constant C0. Define

wν =

(

(V (1)
ν )α(V

(1)
ν )β + (V (2)

ν )α(V
(2)
ν )β

)

G′
αβ

,

where (V
(i)
ν )α is the α-component of the vector V

(i)
ν . We can then

rewrite (4.3) as

(4.4)
N

∑

ν=1

βν(y)(wν(y) − wν(x)) ≤ C1R, for x, y ∈ B2R(0).

We will now use the concavity of Φ again, this time to derive a differen-

tial inequality for wν . For each ν, apply the operator
∑2

i=1 D
(i)
ν D

(i)
ν =

∑2
i=1(V

(i)
ν )γ(V

(i)
ν )δDγDδ to (4.2) to obtain:

2
∑

i=1

(

2G′αβD(i)
ν D

(i)
ν G′

αβ
− 2G′αγG′σβ(D(i)

ν G′
σγ)(D

(i)
ν G′

αβ
)
)

(4.5)

=
2

∑

i=1

(

D
(i)
ν D

(i)
ν (K + η)

K + η
− |D(i)

ν (K + η)|2
(K + η)2

)

.

Apply Lemma 3.3 twice to the first term on the left hand side and the
first term on the right hand side of (4.5). Making use of the good second
term on the left hand side of (4.5) we see that there is a second order
elliptic operator Lν = aij∂i∂j with C−1

2 |ξ|2 ≤ aijξiξj ≤ C2|ξ|2 such that

(4.6) Lνwν ≥ −C3.

From the inequalities (4.4) and (4.6) we make the following claim.

Claim. There exist positive constants Ĉ and δ such that

oscBR(0)wν ≤ ĈRδ, for 0 < R < R0/2.

Of course, given this claim, we are finished, since we can then write

GαβG′
αβ

=
N

∑

ν=1

β̂νwν ,

with β̂ν smooth bounded functions depending only on g and J and
satisfying C−1

4 < β̂ν < C4. This gives (4.1) and Theorem 4.1 follows.

Proof of Claim. Although this proof can easily be extracted from [Tr2]
(see also [Si]), we will include a sketch of the argument here for the con-
venience of the reader. The key tool is the following Harnack inequality
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[Tr1]: if u ≥ 0 satisfies Lu = aij∂i∂ju ≤ C3 with C−1
2 |ξ|2 ≤ aijξiξj ≤

C2|ξ|2 on B2R(0) then there exists p > 0 such that
(

1

R4

∫

BR(0)
up

)1/p

≤ CH

(

inf
BR(0)

u + R

)

,

where the constant CH depends only on C2 and C3.
Set Msν = supBsR(0) wν and msν = infBsR(0) wν for s = 1, 2 and apply

the Harnack inequality to (M2ν − wν) to obtain, for fixed l,





1

R4

∫

BR(0)





∑

ν 6=l

(M2ν − wν)





p



1/p

(4.7)

≤ N1/p
∑

ν 6=l

(

1

R4

∫

BR(0)
(M2ν − wν)

p

)1/p

≤ C5





∑

ν 6=l

(M2ν − M1ν) + R





≤ C5(ω(2R) − ω(R) + R),

where ω(sR) =
∑N

ν=1 oscBsR(0)wν =
∑N

ν=1(Msν − msν). From (4.4) we
have

βl(wl(y) − wl(x)) ≤ C1R +
∑

ν 6=l

βν(wν(x) − wν(y)),

for x, y ∈ B2R(0). Choosing x → m2l and integrating over y ∈ BR(0)
gives

(

1

R4

∫

BR(0)
(wl − m2l)

p

)1/p

(4.8)

≤ C6R + C6





1

R4

∫

BR(0)





∑

ν 6=l

(M2ν − wν)
p









1/p

≤ C7(ω(2R) − ω(R) + R).

Now apply the Harnack inequality to (M2l − wl) to obtain
(

1

R4

∫

BR(0)
(M2l − wl)

p

)1/p

≤ C8(M2l − M1l + R)(4.9)

≤ C8(ω(2R) − ω(R) + R).

Combining (4.8) and (4.9) we see that

M2l − m2l ≤ C9(ω(2R) − ω(R) + R),
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and summing in l gives

ω(2R) ≤ C10(ω(2R) − ω(R) + R),

from which it follows that

ω(R) ≤
(

C10 − 1

C10

)

ω(2R) + R,

and the claim follows by a well-known argument (see [GiTr], Chapter
8). q.e.d.

5. Higher order estimates

In this section we will prove estimates on g′ and all of its derivatives
given a Hölder estimate

(5.1) ‖trgg
′‖Cα(g) ≤ C,

with 0 < α < 1 and an estimate g′ ≥ C−1g. In light of Theorem 3.1
and Theorem 4.1 this will complete the proof of Theorem 1.

Consider the normalized almost-Kähler potential φ0 defined by (see
Section 2)

∆φ0 = trgg
′ − 4,

∫

M
φ0

ω2

2
= 0.

From (5.1), by the elliptic Schauder estimates for the Laplacian we have

(5.2) ‖φ0‖C2+α(g) ≤ C0.

Recall that the 1-form a0 satisfies

ω′ = ω − 1

2
d(Jdφ0) + da0.

Without loss of generality, we can assume that a0 is L2 orthogonal to the
harmonic 1-forms. Then since a0 satisfies the uniformly elliptic system
(2.7) for s = 0 and is orthogonal to its kernel we can use (5.2) and the
Schauder elliptic estimates to obtain

‖a0‖C2+α(g) ≤ C1.

It follows that ‖g′‖Cα(g) ≤ C2. Differentiating the Calabi-Yau equation
(3.1), we see that

(5.3) g′ij∂i∂j(∂kφ0) + {lower order terms} = gij∂kgij + 2∂kF,

where the lower order terms may contain up to two derivatives of φ0

or a0. Since the coefficients of this elliptic equation are in Cα we can
apply the standard Schauder estimates again to obtain

‖φ0‖C3+α(g) ≤ C3.

From (2.7) we then obtain

‖a0‖C3+α(g) ≤ C4.
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The rest of the higher order estimates follow from (5.3), (2.7) and a
bootstrapping argument. This completes the proof of Theorem 1.

6. Proof of Theorem 2: the case b+(M) = 1

For this section we assume b+(M) = 1. Consider the equation

(6.1) ω′
t
2

= etF+ctω2,

where ct is the constant given by ct = log(
∫

M ω2/
∫

M etF ω2), and where
ω′

t is required to be cohomologous to ω and compatible with J . Let

T = {t′ ∈ [0, 1] | ∃ smooth ω′
t solving (6.1) for t ∈ [0, t′]}.

Clearly 0 ∈ T . We will show that T is both open and closed in [0, 1].
This will prove Theorem 2. Note that if ω′

t is in Cα then by the estimates
of section 5 it is smooth.

We show now that T is open. Fix t0 in T . We will show that (6.1) can
be solved for t in an open neighbourhood containing t0. Fix ω̃ = ω′

t0 .
Then solving (6.1) near t0 is equivalent to solving

log
ω′

t
2

ω̃2
− (t − t0)F − (ct − ct0) = 0,

for t close to t0.
Let Λk,s+α be the space of k-forms in Cs+α, and let Wα ⊂ Λ+

ω̃ be

the space of self-dual two forms γ in Cα satisfying
∫

M exp
(

2γ∧ω̃
ω̃2

)

ω̃2 =
∫

M ω̃2. Then define a map

Φ : Λ1,1+α × R → Wα,

by

Φ(b, t) =

(

log
(ω̃ + db)2

ω̃2
− (t − t0)F − ĉ

)

ω̃

2
+ Pdb,

where

ĉ(b, t) = log

(∫

M
e−(t−t0)F (ω̃ + db)2

)

− log

∫

M
ω2.

Note that if we can find b = b(t) solving Φ(b, t) = 0 for t close to t0,
then this would imply ĉ = ct−ct0 and complete the openness argument.

Since b+(M) = 1, the space H+
ω̃ of harmonic self-dual 2-forms with

respect to ω̃ is spanned by ω̃. Notice that the tangent space to Wα at
Φ(0, t0) is equal to (H+

ω̃ )⊥∩Λ2,α, where (H+
ω̃ )⊥ ⊂ Λ+

ω̃ is the space of self-

dual 2-forms which are L2(ω̃) orthogonal to H+
ω̃ . Then the derivative of

Φ in the b-variable at (0, t0) is a map

(D1Φ)(0,t0) : Λ1,1+α → (H+
ω̃ )⊥ ∩ Λ2,α

given by

(D1Φ)(0,t0)(β) = d+
ω̃ β.
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It is well known (see [DoKr], for example) that this map is surjective
and hence openness follows by the implicit function theorem.

We now need to prove closedness under the assumption that the Ni-
jenhuis tensor is small in the L1 sense. Note that from the discussion in
section 2, since |∇N(J)| is uniformly bounded in terms of the curvature
of g, if the Nijenhuis tensor is small in the L1 norm, it is small in the C0

norm, and hence also in the Lp norm for any p > 1. It will be convenient
(and sufficient) for us to prove Theorem 2 under the assumption that
N(J) is small in some Lp norm, where p will be a fixed constant strictly
larger than 2.

We will use the following lemma.

Lemma 6.1. Let ω′ = ω− 1
2d(Jdφ1)+da1 be a solution of the Calabi-

Yau equation (1.2). Suppose that for some constants p > 2 and B,

(6.2)

(∫

M

∣

∣

∣

∣

da1 ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)1/p

≤ B.

Then there exists a constant C ′ depending only on g, p, B and supM |F |
such that

sup
M

φ1 − inf
M

φ1 ≤ C ′.

Proof. This is a modification of Yau’s well-known Moser iteration
argument. For ease of notation, write φ = φ1. Assume that

∫

M φω2 = 0.
For l ≥ 0,

C0

∫

M
|φ|l+1ω2 ≥

∫

M
φ|φ|l(ω2 − ω′2)

=
1

2

∫

M
φ|φ|ld(Jdφ) ∧ (ω + ω′) −

∫

M
φ|φ|lda1 ∧ ω

= −(l + 1)

2

∫

M
|φ|ldφ ∧ Jdφ ∧ (ω + ω′)

−
∫

M
φ|φ|lda1 ∧ ω

= − (l + 1)

2(l/2 + 1)2

∫

M
d(φ|φ|l/2) ∧ Jd(φ|φ|l/2) ∧ (ω + ω′)

−
∫

M
φ|φ|lda1 ∧ ω

≥ (l + 1)

4(l/2 + 1)2

∫

M
|∇(φ|φ|l/2)|2ω2

−
(∫

M
|φ|q(l+1)ω2

)1/q (∫

M

∣

∣

∣

∣

da1 ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)1/p

,
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for q satisfying 1/p + 1/q = 1. Setting l = 0 we see that since q < 2,

∫

M
|∇φ|2 ≤ C1

(

(∫

M
|φ|q

)1/q

+

∫

M
|φ|

)

≤ C2

(

(∫

M
|φ|2

)1/2

+ 1

)

,

where we have omitted the volume form ω2. Since
∫

M φ = 0 we obtain
‖φ‖L2 ≤ C3 from the Poincaré inequality.

We have for general l,
∫

M
|∇(φ|φ|l/2)|2(6.3)

≤ C4(l + 2)max

{

1,

∫

M
|φ|l+2,

(∫

M
|φ|q(l+1)

)1/q
}

.

The Sobolev inequality gives
(∫

M
|u|4

)1/2

≤ C5

(∫

M
|∇u|2 +

∫

M
u2

)

,

for functions u on M . Set r = l+2 ≥ 2. Applying the Sobolev inequality
to u = φ|φ|l/2, making use of (6.3) and raising to the power 1/r gives

‖φ‖L2r ≤ C
1/r
6 r1/r max{1, ‖φ‖Lr , ‖φ‖(r−1)/r

Lq(r−1) }.
Setting r = 2 we obtain ‖φ‖L4 ≤ C7. For general r we use that fact
that ‖φ‖La ≤ C8‖φ‖Lb whenever a ≤ b to see that

‖φ‖L2r ≤ C
1/r
9 r1/r max{1, ‖φ‖Lqr}.

By successively replacing r by σr for σ = 2/q > 1 we see that for all
k = 0, 1, 2, . . .,

‖φ‖
L2rσk ≤ C

( 1
r

Pk
i=0 σ−i)

9 r( 1
r

Pk
i=0 σ−i)σ( 1

r

Pk
i=1 iσ−i) max{1, ‖φ‖Lqr}.

Set r = 2 and let k → ∞. This gives a bound

‖φ‖C0 ≤ C10 max{1, ‖φ‖L2q},
which is uniformly bounded since q < 2. This completes the proof of
the lemma. q.e.d.

Remark 6.1. In a private discussion, Donaldson made the following
surprising observation: the almost-Kähler potential φ1/2 is uniformly
bounded, without any assumption on N(J). This can be proved using
a Moser iteration argument and equation (2.5).

It is now not difficult to complete the proof of Theorem 2. We suppose
that we have a solution of (6.1) for t ∈ [0, t0) for some t0 ∈ [0, 1). We
require uniform estimates on ω′

t and all its derivatives and by Theorem 1,
it is sufficient to obtain a uniform estimate of φ1. We have the following
claim.
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Claim. Let p > 2. There exists ǫ > 0 depending only on p, g and
‖F‖C2(g) such that if ‖N(J)‖Lp < ǫ then for t ∈ [0, t0), a1 = a1(t)
satisfies

(6.4)

(∫

M

∣

∣

∣

∣

da1 ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)1/p

< 1.

Proof of Claim. At t = 0 we have da1 = 0. Suppose that the claim is
false. Then there is a first time t′ ∈ [0, t0) with

(∫

M

∣

∣

∣

∣

da1 ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)1/p

= 1.

Then it follows from Lemma 6.1 that we have a Hölder estimate on ω′

at t = t′. Now the Lp a priori estimates for the elliptic system (2.7)
with s = 1 give

(∫

M

∣

∣

∣

∣

da1 ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)1/p

≤ K‖N(J)‖Lp ,

for some uniform constant K. Picking ǫ = 1/2K gives a contradiction
and proves the claim. q.e.d.

Then the first part of Theorem 2 follows from this claim and the
previous lemma.

7. Proof of Theorem 2: the case b+(M) > 1

Suppose that b+(M) = r +1. We begin with the openness argument.
For convenience, assume that ω has been scaled so that

∫

M ω2 = 1. We
wish to solve the equation

(7.1) ω′
t
2

= etF+ctω2,

with ct = − log(
∫

M etF ω2), for ω′
t satisfying

∫

M ω′
t∧ω > 0 and [ω′

t] ∈ H+
ω .

As in section 6, we suppose that there is a solution ω̃ = ω′
t0 at t = t0

and show that (7.1) can be solved for t close to t0.
Let χ1, . . . , χr and χ̃1, . . . , χ̃r be self-dual harmonic 2-forms with re-

spect to ω and ω̃ respectively such that {ω, χ1, . . . , χr} and {ω̃, χ̃1, . . . ,
χ̃r} are L2 orthonormal bases for H+

ω and H+
ω̃ . Let Λ1,1+α and Wα be

as in section 6. Consider the operator Φ : Λ1,1+α ×R
r ×R → Wα given

by

Φ(b, s, t) =

(

log
(ω̃ +

∑r
i=1 siχi + db)2

ω̃2
− (t − t0)F − ĉ

)

ω̃

2

+ P (
r

∑

i=1

siχi + db),
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where

ĉ(b, s, t) = log

(

∫

M
e−(t−t0)F (ω̃ +

r
∑

i=1

siχi + db)2

)

.

We have a solution Φ(0, 0, t0) = 0 and if we can find b and s depending
on t solving Φ(b, s, t) = 0 for t near t0, then after rescaling we would
have our desired solution. Write Π〈χ̃1,...,χ̃r〉 for the L2(ω̃) projection

onto the space spanned by χ̃1, . . . , χ̃r. Define Ψ1 : Λ1,1+α × R
r × R →

Wα ∩ (〈χ̃1, . . . , χ̃r〉)⊥ by

Ψ1(b, s, t) = (1 − Π〈χ̃1,...,χ̃r〉)Φ(b, s, t).

The derivative (D1Ψ1)(0,0,t0) : Λ1,1+α → (H+
ω̃ )⊥ ∩ Λ2,α is given by

(D1Ψ1)(0,0,t0)(β) = d+
ω̃ β.

This map is surjective and so by the implicit function theorem, given
(s, t) near (0, t0) ∈ R

r × R there exists b = b(s, t) solving Ψ1 = 0. Now
define a map Ψ2 : R

r × R → R
r in a neighbourhood of (0, t0) by

Ψ2(s, t) = Π〈χ̃1,...,χ̃r〉Φ(b(s, t), s, t),

where we are identifying R
r and the space spanned by the χ̃i. Calculate

((D1Ψ2)(0,t0))ij =

∫

M

〈

1

2
(1 + ∗ω̃)

(

χj + d

(

∂b

∂sj
(0, t0)

))

, χ̃i

〉

ω̃

ω̃2

2

=

∫

M
χj ∧ χ̃i,

which is invertible. Applying the implicit function theorem again we
find s = s(t) solving Ψ2(s(t), t) = 0 and hence

Φ(b(s(t), t), s(t), t) = 0,

for t close to t0. This completes the proof of openness.
We now turn to the question of closedness. As discussed in section

6, we may assume that that N(J) is small in the Lp sense for any
fixed p. Assume that we have a solution of (7.1) with

∫

M ω′
t ∧ ω > 0

and [ω′
t] ∈ H+

ω on some maximal interval [0, t0). Write ω′ = ω′
t and

define si by [ω′] = [ω] +
∑r

i=0 si[χi] for χ0 = ω and χ1, . . . , χr as above.
Notice that by squaring both sides of this equation we see that the si

are bounded. Define φ0 and φ1 by

1

4
∆φ0 =

ω ∧ ω′

ω2
−

∫

M
ω′ ∧ ω(7.2)

1

4
∆′φ1 =

∫

M
ω′ ∧ ω − ω ∧ ω′

ω′2
,(7.3)

where we recall that
∫

M ω2 =
∫

M ω′2 = 1. Let us first assume that φ1

is uniformly bounded. Then since
∫

M ω′ ∧ ω = 1 + s0 > 0 is uniformly
bounded from above, Theorem 3.1 still holds with essentially the same
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proof. Notice that the bound on trgg
′ implies a uniform positive lower

bound for
∫

M ω′ ∧ ω. No changes are necessary for section 4. For the
higher order estimates, we argue as follows. Define a0 by d∗a0 = 0 and

ω′ = ω +
r

∑

i=0

siχi −
1

2
d(Jdφ0) + da0.

Then a0 satisfies the equations

da0 ∧ ω = −
r

∑

i=1

siχi ∧ ω

Pda0 = −
r

∑

i=1

siPχi +
1

4
(∂iJ

k
j − ∂jJ

k
i )(∂kφ0) dxi ∧ dxj ,

and the arguments of section 5 follow in just the same way as before.
We will now show that φ1 can be bounded if N(J) is small in the Lp

norm for p > 2. Define a1 by

ω′ = ω +
r

∑

i=0

siχi −
1

2
d(Jdφ1) + da1,

and d∗1a1 = 0 where we are using the subscript 1 to denote the metric
ω′. For ease of notation, set

ζ =
1

4
(∂iJ

k
j − ∂jJ

k
i )(∂kφ1) dxi ∧ dxj .

The 1-form a1 satisfies

da1 ∧ ω′ = −s0ω
′2 −

∑

siχi ∧ ω′

Pda1 = ζ − P (
∑

siχi),

where, here and from now on, we are always summing i from 0 to r.
This equation can be rewritten as

d+
1 a1 = ζ − s0ω

′ − 1

2
(1 + ∗1)

∑

siχi.

Write Π for the L2(ω′) projection onto the space H+
ω′ of self-dual har-

monic forms with respect to ω′. Then we see that

(1 − Π)ζ = d+
1 a1 + (1 − Π)

1

2
(1 + ∗1)

∑

siχi(7.4)

Πζ = s0ω
′ + Π

∑

siχi = Π
∑

s̃iχi,(7.5)

for s̃0 = s0(2 + s0) and s̃i = si(1 + s0) for i ≥ 1. Now Lemma 6.1 holds
as before if we replace (6.2) by the inequality

(∫

M

∣

∣

∣

∣

da1 ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)
1
p

+

(∫

M

∣

∣

∣

∣

∑

siχi ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)
1
p

≤ B,
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where we are making use of the fact that (da1 +
∑

siχi) ∧ ω′ = −s0ω
′2

is bounded. We can now replace the inequality (6.4) in the Claim by

(7.6)

(∫

M

∣

∣

∣

∣

da1 ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)
1
p

+

(∫

M

∣

∣

∣

∣

∑

siχi ∧ ω

ω2

∣

∣

∣

∣

p

ω2

)
1
p

< 1.

Indeed, arguing for a contradiction as in the proof of the claim, we
suppose that we have equality in (7.6). Then ω′ and ω are uniformly
equivalent and we can essentially ignore the fact that they define dif-
ferent norms. Writing C for a uniform constant which may change
from inequality to inequality we have ‖ζ‖Lp ≤ C‖N(J)‖Lp from which
it follows that ‖Πζ‖L2 ≤ C‖N(J)‖Lp . Then we see from (7.5) that
|s̃i| ≤ C‖N(J)‖Lp . Hence |si| ≤ C‖N(J)‖Lp and

(7.7)
∥

∥

∥

∑

siχi

∥

∥

∥

Lp
≤ C‖N(J)‖Lp .

But we also have ‖Πζ‖Lp ≤ C‖N(J)‖Lp and hence ‖(1 − Π)ζ‖Lp ≤
C‖N(J)‖Lp . Then from (7.4) and the elliptic Lp estimates we have

(7.8) ‖da1‖Lp ≤ C‖N(J)‖Lp .

Choosing ǫ sufficiently small, we obtain the contradiction from (7.7) and
(7.8). q.e.d.
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compactes, Bull. Sci. Math. (2) 102(1) (1978) 63–95, MR 0494932,
Zbl 0374.53022.

[BaKo1] S. Bando & R. Kobayashi, Ricci-flat Kähler metrics on affine alge-

braic manifolds, in ‘Geometry and Analysis on Manifolds’, Lecture
Notes in Mathematics, 1339, 20–31, Springer-Verlag, 1988, MR 0961470,
Zbl 0659.53048.

[BaKo2] , Ricci-flat Kähler metrics on affine algebraic manifolds, II, Math-
ematische Annalen 287 (1990) 175–180, MR 1048287, Zbl 0701.53083.

[Ca] E. Calabi, The space of Kähler metrics, in ‘Proceedings of the International
Congress of Mathematicians’, Amsterdam, 1954, Vol. 2, 206–207, North-
Holland, Amsterdam, 1956, MR 0070535.
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