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LAGRANGIAN SURFACES

IN A FIXED HOMOLOGY CLASS:

EXISTENCE OF KNOTTED LAGRANGIAN TORI

Stefano Vidussi

Abstract

In this paper we show that there exist simply connected sym-
plectic manifolds which contain infinitely many knotted lagrangian
tori, i.e., nonisotopic lagrangian tori that are image of homotopic
embeddings. Moreover, the homology class they represent can be
assumed to be nontrivial and primitive. This answers a question
of Eliashberg and Polterovich.

1. Introduction and statement of the results

Let M be a smooth, closed 4-manifold endowed with a symplectic
form ω and let Σ be a smooth, closed, oriented surface. Consider two
symplectic (resp. lagrangian) embeddings φ1 and φ2 of Σ in M . Assume
furthermore that the φi’s are smoothly homotopic. Among these maps
we can define two notions of equivalence, the second implying the first:

(E1) The φi are smoothly isotopic, i.e., there exists a smooth homotopy
composed of embeddings;

(E2) The φi are symplectically isotopic, i.e., there exists a smooth isotopy
composed of symplectic (resp. lagrangian) embeddings.

(In what follows, the terms homotopy and isotopy will always refer to
smooth ones.)

A necessary condition for two embeddings to be equivalent under the
equivalence relations above is that their images, the embedded surfaces
Σi := φi(Σ), satisfy the corresponding equivalence relation (that will
be referred to with the same notation): in the case of (E1), the sur-
faces Σi must be isotopic submanifolds of M , while in the case of (E2),
the surfaces Σi must be isotopic through symplectic (resp. lagrangian)
submanifolds. (Note that if the genus of Σ is greater than 0, these con-
ditions could be not sufficient, as the embeddings φ and φ · γ, where γ

a selfdiffeomorphism of Σ that is not isotopic to the identity, have the
same image but could be nonisotopic.)
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In what follows we will concentrate on the isotopy problem for the
surfaces Σi; observe that, by a standard argument, two embeddings of a
surface in a simply connected 4-manifold M are homotopic if and only
if their images represent the same homology class.

A priori, the first equivalence relation belongs to differential topol-
ogy, while the second one belongs to symplectic topology. However, as
we assume that the embeddings are symplectic or lagrangian, in under-
standing (E1) we have to take into account the constraint related to
the rigidity induced by this extra condition. In particular, this could
prevent us from the possibility of realizing an equivalence class of em-
beddings with a symplectic or lagrangian representative. As we will see
in the following, this rigidity can affect the existence of different classes
of embeddings modulo the equivalence (E1).

The classification of embedded surfaces, modulo one of the equiva-
lence relations above, can be defined as the symplectic (resp. lagrangian)
knot problem. In particular, homologous but nonisotopic surfaces deter-
mine different knotted (in the sense of differential topology) symplectic
or lagrangian surfaces, while isotopic surfaces that are not isotopic in
the symplectic sense determine different symplectically knotted symplec-
tic or lagrangian surfaces. (Note that, at least in general, there is no
“unknot” i.e., a preferred representative of an homology class.)

In the recent past, a series of papers has addressed the question of de-
termining whether two embedded symplectic surfaces representing the
same homology class in a simply connected symplectic 4-manifold M

must be isotopic. One motivation for the isotopy problem for symplec-
tic manifolds comes from the analogous question for the case of complex
curves on Kähler surfaces, where it is known, by classical results, that
complex representatives of the same homology class are in fact isotopic.
Working in this direction, Siebert and Tian have proven that a symplec-
tic surface Σd, representing the class d[H] in H2(P2, Z) (with standard
notation) is symplectically isotopic to an algebraic curve of degree d, at
least for d ≤ 17. (Note that this result is stronger that the one holding
in the Kähler case, as now we are requiring only that Σd is symplec-
tic.) A similar result holds for surfaces in S2 × S2. These results are
presented in [Ti].

In contrast with that, Fintushel and Stern have presented a method
to build nonisotopic symplectic tori representing multiples of the class
of a symplectic c-embedded torus in a symplectic 4-manifold (see [FS2]
for precise definitions and results). Their construction, that applies to
a large class of symplectic manifolds, shows in particular the existence
of infinitely many nonisotopic simplectic tori representing the homology
class 2m[F ] (m ≥ 2) for any elliptic surface E(n) of fiber F . The latter
result has been extended by the author in [V2] to cover the case of
all multiples q[F ] (at least for n ≥ 3); in particular, when q = 1, we
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see that there exist infinitely many symplectic surfaces homologous, but
nonisotopic, to a complex connected curve (F itself). Etgü and Park
have presented in [EtP] further constructions of nonisotopic tori (in
classes with divisibility) that complement the previous ones. Examples
of classes with positive self-intersection, or higher genus, are still eluding
us (at least for simply connected manifolds: otherwise, see [Sm]). Some
of the non-isotopy results above have been analyzed by Auroux, Don-
aldson and Katzarkov in [ADK], where they show that these examples
(and new ones they built for the case of singular symplectic surfaces
in P

2) could be interpreted as a kind of braiding of parallel copies of a
complex curve. The openness of the symplectic condition allows us to
keep the submanifolds resulting from this braiding symplectic.

Considered all together, these results imply that, in suitable mani-
folds, infinitely many knot types can be realized by symplectic surfaces.
On the other hand, the author is not aware of any example of isotopic
symplectic surfaces that are symplectically knotted.

The symplectic knot problem, however, has been preceded histori-
cally by its lagrangian counterpart that, for reasons detailed below, is
somewhat more subtle. This question arose, for the case of lagrangian
R

n’s in R
2n linear outside a ball, in the “first paper” on symplectic

topology by Arnol’d (see [A]). In a more general set up, the problem
has been summarized by Eliashberg and Polterovich in [ElP3].

The analogy between symplectic and lagrangian knot problems is ob-
vious. But there are reasons that make the latter question more subtle,
at least in relation to the equivalence (E1). The first (and probably less
relevant) is that we can perturb the symplectic form ω on M to a sym-
plectic form ωǫ in such a way that an essential surface Σ, lagrangian with
respect to ω, is symplectic with respect to ωǫ. This result, whose proof
appears in Gompf ([G]), holds true also for pairs of disjoint surfaces,
so that the existence of essential knotted lagrangian surfaces entails the
existence of knotted symplectic surfaces. But the main reason of inter-
est stems from the fact that the lagrangian condition is a closed one, in
that respect similar to the condition of being complex. In particular the
rigidity of this condition imposes constraints to the possibility of braid-
ing copies of a lagrangian surface in the spirit of [ADK], and makes a
result of existence of lagrangian knots appear more problematic.

In fact, the few results known so far point towards absence of knot-
ted lagrangian surfaces. In [ElP1] Eliashberg and Polterovich show that
when Σ = S2 or T 2 a lagrangian surface in T ∗Σ homologous to the zero
section is in fact isotopic to the zero section (this result is quite exhaus-
tive as, by [LS], every homologically nontrivial lagrangian submanifold
of T ∗Σ must be homologous to the zero section). With similar spirit,
the authors prove that, at a local level (see [ElP2] for precise defini-
tions and statements) lagrangian submanifolds are unknotted (in the
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sense of (E2)). Again, in [L] Luttinger proved that infinitely many knot
types of tori in R

4 can not be realized with lagrangian embeddings. In
light of these results, Question 1.3A of [ElP2] asks whether there exist
homotopic, but not symplectically isotopic, embeddings of a lagrangian
surface. Clearly, examples of this kind are provided by homologous la-
grangian surfaces that fail to satisfy (E1) or (E2). Seidel has answered
in the positive to this question (see [Se1] and [Se2]) constructing an
infinite number of lagrangian spheres, in a suitable 4-manifold, that are
isotopic but symplectically knotted, i.e., equivalent under (E1) but not
under (E2).

The goal of this paper is to complete the answer to Question 1.3A of
[ElP2] constructing an infinite number of knotted lagrangian tori, i.e.,
homologous lagrangian tori that are not equivalent under (E1). We will
prove the following results:

Theorem 1.1. Let E(2)K be the symplectic 4-manifold (homotopy

equivalent to E(2)) obtained by knot surgery on the left-handed trefoil

K; then there exists a nontrivial primitive homology class [R] such that

any multiple q[R], q ≥ 1, can be represented by infinitely many mutually

nonisotopic lagrangian tori.

Theorem 1.1 asserts therefore that infinitely many knot types can be
realized by lagrangian embeddings.

It will be apparent from the proof that we are able in fact to prove
something stronger, namely that if we denote by Ri the lagrangian tori
of Theorem 1.1, there is no diffeomorphism of pairs (E(2)K , Ri) →
(E(2)K , Rj), even not connected to the identity, unless i = j.

This result can be extended without any effort to cover other classes
of symplectic knot surgery manifolds, using for example the figure-eight
knot, or any non-prime fibered knot containing K as a summand, and
many others. In fact, we expect the result to hold for all symplectic
manifolds obtained by knot surgery on a fibered nontrivial knot, al-
though the proof of this would require some modification in the proof
of Theorem 1.1. We will address this problem in the future.

Using the aforementioned result of Gompf, we obtain the following
Corollary:

Corollary 1.2. The manifold E(2)K has a primitive homology class

which can be represented by mutually nonisotopic symplectic tori.

We point out that phenomena of this kind for E(2)K are discussed in
[FS2] and [EtP], but for homology classes with divisibility. Corollary
1.2 gives therefore the simplest (in the sense of geography) known sym-
plectic manifold having symplectic nonisotopic tori in the same primitive
homology class. Obviously, the same result obtained in Corollary 1.2
holds for all multiples of [R].
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We will briefly overview the ideas underlying the proof of Theorem
1.1. We will present the manifold E(2)K as result of link surgery over the
link L = K∪M given by the knot K and its meridian M . The link exte-
rior S3\νL fibers over S1 with fiber ΣL given by the fiber ΣK of K with
a disk removed. We can obtain symplectic tori by looking at curves in
S3 \νL transverse to ΣL. This is the approach of all available construc-
tions of symplectic knots. Here, we will proceed instead in the opposite
way: Let γ be a curve in ΣL. Denote by NK the fibered 3-manifold
obtained by surgery on K ∪ M with coefficients 0 and ∞ respectively.
Then the torus S1 × γ is a lagrangian, framed torus in the manifold
S1 × NK (endowed of a standard symplectic structure). By symplec-
tic fiber summing two copies of E(1) to S1 × NK , this torus defines a
framed lagrangian torus in E(2)K . The problem at this point is reduced
to find infinitely many curves γ ∈ ΣL homologous (but nonisotopic) in
S3 \ νL, and then try to distinguish the isotopy class of the resulting
lagrangian tori. The latter result will be obtained with the technique we
introduced in [V2], namely by studying the Seiberg-Witten polynomial
of the (symplectic) 4-manifolds given by fiber summing E(1) along the
lagrangian tori. As the sum with E(1) does not depend on the choice
of the gluing map, or the framing, the smooth structure of the resulting
manifolds is determined by the smooth isotopy class of the tori, and SW
theory allows us to distinguish the manifolds to the degree required in
Theorem 1.1.

We finish by observing that the results above can be generalized with-
out effort to the symplectic manifold E(n)K for any n ≥ 2. The case
of n = 1, where the situation is somewhat different, will be discussed in
future research.

Added in proof: R. Fintushel and R. Stern have in fact extended
Theorem 1.1 to all E(n)K , where K is any nontrivial fibered knot. Also,
they show that for n = 1 the nullhomologous lagrangian tori resulting
from our (and their) construction are not isotopic. See R. Fintushel,
R. Stern, “Invariants for Lagrangian tori”, Geom. Topol., 8 (2004),
947–968.

Acknowledgements. It’s about time to pay my debt of gratitude to
Ron Fintushel and Ron Stern for their invaluable support in this and
other papers of mine. I would like to thank also Slaven Jabuka for a
conversation that led me to investigate this problem, and Paul Seidel
for several discussions.

2. Preliminaries

In this section we will recall some standard definitions and results
that can be found, for example, in [GS]; we will moreover specify the
different notions of knot.
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Let M be a smooth, closed, simply connected 4-manifold and Σ be
a smooth, closed, oriented surface. Given a homotopy class of maps
h ∈ [Σ, M ], we will say that two embeddings φ1, φ2 ∈ h are isotopic
(equivalence relation (E1) ) if there is a homotopy φt : Σ → M through
embeddings. The images Σi := φi(Σ) of isotopic embeddings are isotopic
submanifolds of M , i.e., there is an isotopy of the inclusion map of the
first one that has as image of the terminal map the second. By the
Isotopy Extension Theorem, isotopic submanifolds are ambient isotopic,
i.e., there exists a self-diffeomorphism f of M connected to the identity
such that f(Σ1) = Σ2. Because of that, when we glue a manifold to
M along a submanifold N , the result of the surgery depends, up to
diffeomorphism, only on the isotopy class of N , together with the choice
of a gluing map on N and of a lifting of this map to ∂νN .

We will say that M contains a knotted surface Σ if there exists a ho-
motopy class of maps in [Σ, M ] whose images represent (infinitely many)
isotopy classes of embedded surfaces. By standard arguments, this cor-
responds to have nonisotopic representatives of the same homology class
of M . Each isotopy class is called a knot, or a knot type.

When M admits a symplectic structure ω, an embedding φ : Σ → M

is lagrangian if φ∗ω in trivial on Σ or, which is the same, it restricts
trivially to the image φ(Σ). Coherently with the previous definition, we
say that M contains a knotted lagrangian surface if, for a homotopy
class in [Σ, M ], (infinitely many) knot types are realized by embedded
lagrangian surfaces.

We remark that we could define the equivalence of embedded surfaces
in terms of the coarser definition of pair diffeomorphism rather than
isotopy (for classical knots in S3 the definitions coincide). As previously
mentioned, our results hold also under this more restrictive condition.

As observed before, we could further ask whether the isotopy be-
tween lagrangian surfaces can be realized through lagrangian surfaces
(equivalence relation E(2)). We say that M contains a symplectically
knotted surface Σ if there are (infinitely many) lagrangian embeddings
of Σ whose images are isotopic, but not symplectically isotopic. See
[Se1] and [Se2] for the results on this.

3. Construction of the links

In this section we will discuss the construction of a family of links,
which will be useful in the proof of Theorem 1.1.

Let K be a nontrivial fibered knot, and denote by L the 2-component
link given by K itself and a meridian M . Consider the link exterior
S3 \ νL. We have the following simple Proposition, that follows easily
by observing that, up to isotopy, we can assume that M is transverse
to the fiber ΣK of S3 \ νK.
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Proposition 3.1. The 3-manifold S3 \ νL admits a fibration over

S1, having class (1, 0) ∈ H1(S3 \ νL, Z) = Z
2, with fiber ΣL given by

the spanning surface ΣK of K with a disk removed.

In the proposition above we have implicitly assumed as cohomology
basis the basis of H1(S3 \ νL, Z) dual to [µ(K)], [µ(M)]. We want to
remark that ΣL is not the spanning surface of L.

Figure 1. The fiber ΣK with the left-handed trefoil
K as boundary (left) and with the knot γp ⊂ ΣK (right,
with p = 5).

We point out that the left-handed trefoil knot K is a genus 1 knot,
whose minimal genus Seifert surface (the fiber ΣK , canonically defined
up to isotopy) is a surface having boundary K itself, illustrated in Figure
1 (left hand side). The fiber ΣL of L is obtained from ΣK by removing
any disk.

We will now identify a family of simple closed curves, lying in ΣL,
that are homologous as elements of H1(S

3\νL, Z), but not isotopic. We
have several choices of simple closed curves lying in ΣK . For the sake
of definiteness, we will consider the infinite family of knots defined as
in the right hand side of Figure 1: the p-th element of the family has p

strands on the first twisted annulus and 1 on the second, as represented
in Figure 1 for the case of p = 5 (in what follows we will always consider
p ≥ 2). Note that each γp has a natural framing induced by the surface
ΣK .

It is not difficult to recognize that the knot denoted by γp is in fact
the torus knot T (p, p + 1). In fact, the two half-twists on the annulus
act on the p strands as illustrated in Figure 2 (for p = 5).

Every strand under-crosses all the strands at its right, and we can
represent this with both the braids of Figure 2 (the equivalence of the
two braids can be checked with repeated application of the braid rela-
tions). We can now represent γp as the composition of the two braids of
Figure 2, plus the additional crossing of the p-th strand over the others
(due to the passage on the second annulus of ΣK). We obtain in this
way the presentation of Figure 3 (left). Proceeding now as in Figure 3,



514 S. VIDUSSI

Figure 2. The effect of the half-twist of the band on
the strands, in two equivalent forms.

we obtain a presentation of γp as closure of a braid with (p+1) strands
that shows clearly that it is a torus knot, homologous to p times the
meridian and (p + 1) times the longitude of a standard torus in S3. In
particular, the example on the right hand side of Figure 1 is the torus
knot T (5, 6).

�
�
�
� �

�
�
� �

�
�
�

Figure 3. A standard presentation of the torus knot
through the isotopy indicated by the dashed line.

We claim that the linking number of γp with K is zero. In fact, by
looking at the crossings of γp and K in Figure 1, we can see that the
computation can be reduced to verifying that the sum of the signs of
the crossings of each of the two strands of Figure 4 (left hand side) and
K equals zero, something that can be checked by direct computation as
indicated in the figure.

Now let’s consider the link L and its fiber ΣL ⊂ ΣK . Without loss of
generality, we can assume that the curves γp are embedded in ΣL, but
in order to do so we need to specify how M links γp. We will fix an
integer q ≥ 1, and consider the family of curves γp for p ≥ q. We can
isotope γp (in ΣK) in such a way that γp pierces with the first q of its
strands the spanning surface of M , as illustrated in the right hand side
of Figure 4 (where p = 5, q = 3). We will denote by γp,q the curve of
ΣL thus obtained. In particular, for q = 1, M is isotopic (in S3 \ νγp,1)
to a meridian of γp,1. As knots in S3, we have lk(γp,q, M) = q.

We want to make clear that, with the definition above, the surface
ΣL contains, for all values of q, the entire family of curves {γp,q}q,p≥q.
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Figure 4. The crossing numbers of γp (left) and the
curve γ5,3 ⊂ ΣL, together with the pair K ∪ M (right).

We can define now a 3-component link Lp,q = L ∪ γp,q, which has
linking matrix

(1) lp,q =





− 1 0
1 − q

0 q −



 .

Observe that the linking matrix does not depend on p. As a consequence
of this we have, in the homology of S3 \ νL, the following relation:

[γp,q] = lk(γp,q, K)[µ(K)] + lk(γp,q, M)[µ(M)](2)

= q[µ(M)] ∈ H1(S
3 \ νL, Z).

Although all the γp,q’s (for a fixed value of q) are homologous, they are
quite clearly non isotopic, for different values of p, as knots in S3 and, a
fortiori, in S3 \ νL. We will exploit this fact in order to prove Theorem
1.1.

4. Construction of the symplectic link surgery manifold

The link surgery construction is a convenient method to translate
some properties of knots and links to 4-dimensional manifolds. In our
case we will construct a symplectic manifold, homotopy equivalent to
the elliptic surface E(2), starting from the link L. Although not strictly
necessary for the proof of Theorem 1.1, we will present the manifold
in two different ways, first, as knot surgery for the knot K, and next
as link surgery manifold for the link L. This pretty straightforward
observation, true for any knot K, has some interest per se.

We will start with the standard definitions contained in [FS1] of a
homotopy E(n) associated with the knot K:

(3) E(n)K = (E(n)\νF )∪T 3 S1×(S3\νK) = E(n)#F=S1×CK
S1×NK

where the gluing map on the boundary 3-torus identifies the elliptic fiber
F with S1 × µ(K) and, reversing orientation, λ(K) with the meridian
circle to the elliptic fiber. In Equation 3 the 3-manifold NK is the result
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of 0-surgery of S3 along K and CK is the core of the Dehn filling (a
curve isotopic to µ(K)). The torus S1 × CK has a canonical framing
induced by the Dehn filling in NK , while F in E(n) has a canonical
framing induced from the fibration of E(n). The fiber sum identifies
the two tori and acts as complex conjugation on the normal bundles.
We are interested in the case of n = 2: we claim that E(2)K can be
described as link surgery manifold over the link L, with the generalized
definition introduced in [V1]. Precisely, we can construct a homotopy
E(2) starting from L and the fibration of S3 \ νL of fiber ΣL in the
following way:

E(2)K =
2

∐

i=1

(E(1)i \ νFi) ∪T 3

i
S1 × (S3 \ νL)(4)

= E(1)1#F1=S1×CK
S1 × NK#F2=S1×CM

E(1)2.

The gluing maps identify, on the first 3-torus, F1 with S1 × µ(K) and
the meridian of F1 with −λ(K) and, on the second 3-torus, F2 with
S1 × λ(M) and the meridian of F2 with µ(M). CK is again the core
of the Dehn filling along K and CM is the core of the trivial Dehn
filling of the ∞-surgery along M (a curve isotopic to λ(M) itself). Note
that, with this gluing prescription above, ΣL is naturally capped off
with one disk section in each (E(1) \ νFi). As λ(M) is isotopic to µ(K)
we have, up to isotopy, CK = CM and F1 = F2 = S1 × C(·). The
connection between the two definitions above comes by observing that,
as E(2) = E(1)#F E(1), we can think of E(2)K as obtained by fiber
summing E(1) to E(1)K along a copy of F = S1 ×CK , which is exactly
the definition of Equation 4. Note that the definitions of Equations 3
and 4 are equivalent also in the symplectic category.

The definition of E(2)K in Equation 4 shows the existence of two
noteworthy homology classes of E(2)K , images under the injective map

(5) i∗ : H1(S
3 \ νL, Z) −→ H2(S

1 × (S3 \ νL), Z) −→ H2(E(2)K , Z)

of the two generators [µ(K)] and [µ(M)]. The first one is identified with
the homology class of F , while the second is the homology class of a
kind of rim torus, identified with S1 × µ(M), that we will denote by R.
This class is primitive: in order to verify this, observe that the torus R

intersects once (with positive sign) the sphere obtained by capping the
annulus spanning M and pierced once by K (representing the dual to
the class (0, 1) ∈ H1(S3 \ νL, Z)) with one vanishing disk in each copy
of E(1) \ νF . The class of R has self-intersection 0.

5. Infinitely many lagrangian tori

We are ready now, using the constructions of Sections 3 and 4, to
exhibit a family of lagrangian tori that represents any multiple of the
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class of the rim torus R. Fix, as in Section 3, an integer q ≥ 1 and pick
the collection of curves γp,q with p ≥ q. The following holds true.

Lemma 5.1. The images Rp,q ⊂ E(2)K of the tori S1 × γp,q ∈ S1 ×
(S3\νL) define a family of lagrangian, framed tori representing the class

q[R].

Proof. The homology class of these tori is given, by Equation 2, by
the formula

[Rp,q] = i∗[γp,q] = lk(γp,q, K)i∗[µ(K)] + lk(γp,q, M)i∗[µ(M)](6)

= q[R] ∈ H2(E(2)K , Z).

The elements of the infinite collection of tori Rp,q, with p ≥ q, is there-
fore homologous to q copies of R. As the knot K is fibered, the closed
3-manifold NK is fibered too, with fiber the surface ΣL capped off with
two disks. The fiber sum presentation of Equation 4, scaling suitably
the symplectic forms to obtain matching volumes on the gluing tori,
shows that E(2)K admits a symplectic structure that, on the interior of
S1 × NK \ ν(S1 × CK ∪ S1 × CM ) = S1 × (S3 \ νL), coincides with the
restriction of a standard symplectic form on S1×NK , namely α∧dt+ǫβ,
where α is a closed 1-form on NK determined up to isotopy by the fi-
bration of NK and β is a closed 2-form on NK restricting to a volume
form on each fiber. The tori S1 × γp,q embed in S1 × NK and are la-
grangian with respect to its symplectic structure, as the tangent space
in each point is spanned by ∂

∂t
and by a vector tangent to the fiber,

and therefore lying in the kernel of α. Consequently, the tori Rp,q are
lagrangian and have a canonical framing induced from ΣL; this framing
coincides with the lagrangian framing, as the tori obtained by pushing
off γp,q along ΣL are lagrangian. This completes the proof of the lemma.

q.e.d.

Lemma 5.1 asserts that the tori Rp,q, for a fixed value of q, are images
of homotopic lagrangian embeddings of T 2 in E(2)K . Our goal is now
to show that these tori are not isotopic. In order to do so, we can define
the family of (symplectic) manifolds

(7) Xp,q = E(1)#F=Rp,q
E(2)K .

The definition of the fiber sum depends a priori on the choice of the
framing for Rp,q, determining (with a marking of the tori) the gluing
map for the boundary 3-tori. Anyhow, any orientation preserving self-
diffeomorphism of ∂(E(1)\νF ) extends to (E(1)\νF ) (see [GS]): differ-
ent choices of the framing or marking lead therefore to the same smooth
manifold, namely Xp,q depends only on the isotopy class of Rp,q. More
is actually true, namely the smooth structure of Xp,q depends only the
diffeomorphism type of the pair (E(2)K , Rp,q). Our goal is to distinguish
different smooth structures, for different values of p, by computing the
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Seiberg-Witten polynomial of Xp,q. In order to do so, we start with the
following:

Proposition 5.2. Consider the manifold Xp,q = E(1)#F=Rp,q
E(2)K

and the 3-component link Lp,q = K ∪ M ∪ γp,q. The manifold Xp,q is

diffeomorphic to the link surgery manifold E(3)Lp,q
.

Proof. The manifolds Xp,q and E(3)Lp,q
can both be written, as

smooth manifolds, as

(8)
3

∐

i=1

(E(1) \ νF ) ∪T 3

i
S1 × (S3 \ Lp,q),

where the gluing maps on the boundary 3-tori are defined in different
ways for the two manifolds. However, because of the aforementioned ex-
tension property of the self-diffeomorphisms of ∂(E(1) \ νF ), the choice
of the gluing maps does not affect the smooth structure of the resulting
manifold. q.e.d.

Proposition 5.2 allows us to apply the following Lemma of Fintushel-
Stern ([FS1]).

Lemma 5.3. Let ∆s
p,q(x, y, t) be the symmetrized Alexander polyno-

mial of the link Lp,q = K∪M∪γp,q. Then the Seiberg-Witten polynomial

of Xp,q is given by

(9) SWXp,q
= ∆s

p,q(x
2, y2, t2)

where we identify x, y, t with (the Poincaré dual of ) the images of S1 ×
µ(K), S1 × µ(M), S1 × µ(γp,q) respectively.

Note that, as the relative Seiberg-Witten polynomial of (E(1), F ) is
just equal to 1, the polynomial of Equation 9 is in fact the relative
Seiberg-Witten polynomial of (E(2)K , Rp,q) - see [MT] for a discussion
of the invariants from this point of view. We will use this result in the
next section to prove our main Theorem.

6. Proof of the main theorem

In order to prove Theorem 1.1 we could attempt to compute, using
Lemma 5.3, the SW polynomial of Xp,q for each value of p and use
the result to distinguish the smooth structure for different values of
p and, with that, the isotopy class of the torus Rp,q. Conceptually,
the computation of the Alexander polynomial of Lp,q does not present
any difficulty, but obtaining a general formula is practically not viable.
Moreover, even when this is done, while comparing the SW polynomial
of two manifolds, we would need to show that there is no change of
basis in the second cohomology group transforming one polynomial in
the other; compare with the discussion in [V2].
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For this reason, we will be content with a weaker result, that is any-
how sufficient to prove Theorem 1.1 (even in its stronger form for dif-
feomorphisms of pairs):

Theorem 6.1. For any choice of q ≥ 1 the family of manifolds

{Xp,q}p≥q contains infinitely many pairwise non-diffeomorphic mani-

folds.

Proof. In order to prove the statement it is enough to show that the
number of basic classes of Xp,q, which we will denote by βp,q, satisfies
the condition limp βp,q = ∞. As all the manifolds Xp,q have a finite
number of basic classes, this implies that infinitely many components
of the family {Xp,q}p≥q are distinguished by the SW polynomial. To
start we can observe that βp,q is the same as the number of nonzero
terms of ∆p,q(x, y, t) (symmetrization is irrelevant here). The latter
number, moreover, is bounded below by the number of nonzero terms
of any specialization of the polynomial, so we will make our life simpler
by considering specializations of ∆p,q(x, y, t). We have the following
lemma.

Lemma 6.2. The number of nonzero terms of the Alexander poly-

nomial ∆p,q(x, y, t) of Lp,q is bounded below by the number of nonzero

terms of the polynomial (written here in quotient form)

(10) Pp,q(t) =
(1 − tq)(1 − (tp+1)p)

(1 − tp)(1 − tp+1)
.

Proof. The number of nonzero terms of ∆p,q(x, y, t) is bounded below
by the number of nonzero terms of ∆p,q(1, y, t). This specialization of
the Alexander polynomial can be computed using the Torres formula
(see e.g., [Tu]) to get

∆p,q(1, y, t) = (ylk(M,K)tlk(γp,q,K) − 1)∆γp,q∪M (y, t)(11)

= (y − 1)∆γp,q∪M (y, t).

Let’s consider first the case of q = 1. In this case, γp,1 ∪ M is a pair
given by the torus knot and its meridian or, which is the same, its (0, 1)-
cable. As such we can represent it as a result of splicing γp with the
generalized Hopf link (the “necklace”) H (with 3 components), along
a component H2. The Alexander polynomial of H is given, as easily
checked, by ∆H(u, v, w) = (u − 1). Applying the splicing formula of
Theorem 5.3 of [EN] we find that ∆γp,1∪M (y, t) = ∆γp

(t), where the
latter is the Alexander polynomial of the torus knot T (p, p+1), namely

(12) ∆γp
(t) =

(1 − t)(1 − (tp+1)p)

(1 − tp)(1 − tp+1)
.

This is exactly the polynomial Pp,1(t) of Equation 10 and it should be
clear at this point, by looking at Equation 11, that the statement of the
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lemma holds true for q = 1. To prove the general case, let’s write

(13) ∆γp,q∪M (y, t) =
∑

k

ak,p,q(y)tk,

where the Laurent polynomials ak,p,q(y) are defined by this identity. We
can write Equation 11 in the form

(14) ∆p,q(1, y, t) =
∑

k

(y − 1)ak,p,q(y)tk.

Consider the set of coefficients (y−1)ak,p,q(y) of this Laurent polynomial
of the variable t. The number of coefficients that are nonzero is bounded
below by the number of terms ak,p,q(1) that are nonzero. By the defi-
nition contained in Equation 13, the value of ak,p,q(1) is determined by
the Equation
(15)
∑

k

ak,p,q(1)tk = ∆γp,q∪M (1, t) =
tlk(γp,q,M) − 1

t − 1
∆γp

(t) =
tq − 1

t − 1
∆γp

(t),

where to get the last expression we again used the Torres formula. By
looking at Equation 12 we see that this last polynomial is exactly the
polynomial Pp,q(t) of Equation 10. q.e.d.

The formula of Equation 10 tells us that βp,q is bounded below by
the number of nonzero terms in the polynomial Pp,q(t). Concerning this
polynomial, we have the following result:

Lemma 6.3. The number of nonzero terms of the polynomial Pp,q(t),
with p ≥ q, is bounded below by p − q + 1.

Proof. The proof of this statement follows by a fairly simple argu-
ment. First, we can rewrite, in Z[[t]],

Pp,q(t) =
(1 + tp+1 + · · · + t(p−1)(p+1))(1 − tq)

1 − tp

(16)

=
1 − tq + tp+1 − tp+1+q + · · · + t(p−1)(p+1) − t(p−1)(p+1)+q

1 − tp

= (1 − tq + tp+1 − tp+1+q + · · · + t(p−1)(p+1) − t(p−1)(p+1)+q)

· (1 + tp + t2p + · · · ).

The product of the polynomial and the formal power series above is in
fact a polynomial, and we claim that it contains all the p− q + 1 terms
of the form
(17)

t(q−1)(p+1), t(q−1)(p+1)+p, . . . , t(q−1)(p+1)+(p−q−1)p, t(q−1)(p+1)+(p−q)p.

In order to prove so, observe first that, as 0 ≤ (q−1) ≤ (p−1), the poly-

nomial in the second line of Equation 16 contains the term t(q−1)(p+1)
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with coefficient equal to 1. Therefore we obtain, with coefficient equal
to 1, all the terms of Equation 17 by multiplying the term t(q−1)(p+1)

by the first (p− q + 1) terms of the formal power series (plus an infinite
series of other terms that, in fact, will get canceled). Next, considering
the fact that the power series has all terms with positive coefficients,
the only possibility for the terms t(q−1)(p+1)+np, 0 ≤ n ≤ (p − q) to be
canceled is that there exists a pair k, l ∈ N, with 0 ≤ l ≤ (p − 1), such
that

(18) (q − 1)(p + 1) + np = kp + l(p + 1) + q

(roughly speaking, the power of tl(p+1)+q · tkp, appearing with a negative

sign, must equal the power of t(q−1)(p+1)+np). Remember that, in this
equation, p and q are fixed. Equation 18 means that, mod p, we must
have l + 1 = 0. As 0 ≤ l ≤ (p − 1), the only solution to this condition
is l = (p − 1). With this value of l, Equation 18 becomes

(19) (q − 1)p + np = kp + p2.

The smallest value of n for which this equation holds true is when k = 0,
for which n = p − q + 1; namely none of the terms in Equation 17
gets canceled, as claimed (while the higher terms get canceled, as they
should). With similar considerations it is possible to show that the
coefficient of these terms is exactly equal to 1, but we will omit the
proof (as it has no implications to our result). q.e.d.

(Note that the estimate contained in Proposition 6.3 is quite rough,
and probably without much effort a precise value could be obtained,
but this result would be irrelevant in our discussion).

Proposition 6.3 implies that limp→∞ βp ≥ limp→∞(p − q + 1) = ∞,
and thus completes the proof of Theorem 6.1 and, with that, Theorem
1.1. q.e.d.
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