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STRUCTURE OF THE UNITARY VALUATION

ALGEBRA

Joseph H.G. Fu

Abstract

S. Alesker has shown that if G is a compact subgroup of O(n)
acting transitively on the unit sphere Sn−1, then the vector space
ValG of continuous, translation-invariant, G-invariant convex val-
uations on R

n has the structure of a finite dimensional graded
algebra over R satisfying Poincaré duality. We show that the kine-
matic formulas for G are determined by the product pairing. Using

this result we then show that the algebra ValU(n) is isomorphic to
R[s, t]/(fn+1, fn+2), where s, t have degrees 2 and 1 respectively,
and the polynomial fi is the degree i term of the power series
log(1 + s + t).

1. Introduction

In [6], Hadwiger showed that the vector space ValSO(n) of continuous

convex valuations on R
n invariant under the group SO(n) of orientation-

preserving isometries has dimension n+1, with a basis consisting of the
Minkowski “Quermassintegrale”, or intrinsic volumes in the terminology
of [8]. An immediate consequence is the following form of the Principal
Kinematic Formula of Blaschke: if Φ0, . . .Φn are the intrinsic volumes,
indexed by degree, then there exist constants ck

ij such that
∫

SO(n)
Φk(A ∩ ḡB) dḡ =

∑

i+j=n+k

ck
ijΦi(A)Φj(B)

for all compact convex bodies A, B ⊂ R
n (cf. also [12]). By applying

the formula to appropriate lists of bodies A, B, one may then determine
the constants ck

ij by explicit calculations of the integral. Though not
essentially difficult, this procedure can be a bit troublesome, with many
opportunities for computational errors; however, Nijenhuis [10] showed
that if the basis {Φi}

n
i=0 and the Haar measure dḡ are normalized appro-

priately then all of the ck
ij are equal to unity. He speculated that there

might exist some underlying algebraic structure that would explain this
fact.
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More recently, in a series of fundamental papers [1], [2], [3] S. Alesker
has shown that if G is a compact subgroup of the orthogonal group
O(n) acting transitively on the unit sphere Sn−1, then the vector space
ValG of G-invariant translation-invariant continuous valuations carries
the structure of a finite-dimensional commutative graded algebra over
R. Furthermore, the resulting algebra satisfies Poincare duality: the top
degree piece of ValG is one-dimensional and occurs in degree n, and the
pairing 〈a, b〉 := the degree n component of ab is perfect. One of the re-
sults of the present article is to show that this algebra structure satisfies
Nijenhuis’s speculation, reducing the results of [10], which originally ap-
peared to be a kind of miracle obtained by laborious calculations, to an
obvious triviality based on the simple structure of the algebra ValSO(n).

Thus the case G = SO(n) should be viewed as the ground case of
a more subtle general theory that remains to be worked out in detail.
The first serious case is the case G = U(n). The main result of this

paper is the explicit determination of the structure of ValU(n) (Thm.
3.1 below):

Main Theorem. The graded R-algebra ValU(n) is isomorphic to

R[s, t]/(fn+1, fn+2), where the generators s, t have degrees 2 and 1 re-

spectively, and fj is the component of weighted degree j of the power

series log(1 + s + t).

Because of Thm. 2.6 below, this result determines in principle the
kinematic formulas for all of the U(n)-invariant valuations. Nevertheless
the problem of writing them down explicitly remains open. In fact, this
is only one of several open problems arising from a comparison between
the U(n) and the SO(n) theories, which we discuss in the closing section.

Acknowledgements. It is a pleasure to thank A. Abrams, S. Alesker,
D. Benson, R. Howard, S. Mason, G. Matthews, D. Nakano, T. Shifrin
and R. Varley for illuminating discussions at various stages of this work.
I am grateful also to L. Bröcker, who first brought Alesker’s work to my
attention.

2. General results

Throughout this section we let V be a vector space over R of dimen-
sion n < ∞, endowed with a euclidean structure. Let O(V ) denote the
corresponding orthogonal group, and fix a compact subgroup G ⊂ O(V )
that acts transitively on the unit sphere of V . Put K(V ) to be the space
of all compact convex subsets of V , endowed with the Hausdorff metric.
If r ∈ R, x ∈ V and K, L ∈ K(V ) then we put

x + K := {x + p : p ∈ K},

rK := {rp : p ∈ K},

K + L := {p + q : p ∈ K, q ∈ L}.
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Denote by ValG(V ) (or simply ValG) the vector space of continuous
functions φ : K(V ) → R enjoying the properties

• finite additivity: if K, L, K ∪ L ∈ K(V ) then

φ(K ∪ L) = φ(K) + φ(L) − φ(K ∩ L);

• translation-invariance: if x ∈ V and K ∈ K(V ) then φ(x + K) =
φ(K);

• G-invariance: if g ∈ G and K ∈ K(V ) then

gφ(K) := φ(g−1K) = φ(K).

We put

(1) ωk :=
π

k
2

Γ(k+2
2 )

, αk := (k + 1)ωk+1

for the volume of the unit ball in R
k and of the unit sphere Sk, respec-

tively.
2.1. ValG as an algebra. We begin by listing some basic properties of
ValG. Put G := G⋉V , equipped with a bi-invariant Haar measure. We
leave the choice of normalizing constant undetermined for the moment.

Recall that a valuation φ is said to have degree i if φ(rK) = riφ(K)
for all r ≥ 0. Put ValGi for the subspace of degree i elements in ValG.
The first fact is a consequence of a theorem of P. McMullen [9].

Theorem 2.1.

(2) ValG(V ) =
n⊕

i=0

ValGi (V ).

Furthermore ValGn (V ) is one-dimensional, and is spanned by the vol-

ume.

Using this result it is easy to see that ValG becomes a Banach space
under the norm

‖ φ ‖:= sup
K⊂B

|φ(K)|,

where B ⊂ V is any compact set with nonempty interior.
The results listed next are simple consequences of results of Alesker

([1], [2], [3]). In fact we give them only in a restricted form sufficient
for the purposes of the present paper.

Theorem 2.2.

• dimR ValG < ∞.
• Given K ∈ K(V ), define µG

K ∈ ValG by

µG
K(L) :=

∫

G
volume (L − gK) dg(3)

=

∫

G
χ(L ∩ ḡK) dḡ.(4)
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Then there are K1, . . . , KN ∈ K(V ) such that ValG is spanned by

µG
K1

, . . . , µG
KN

.

• There is a natural continuous multiplication on ValG, given as

follows: if φ ∈ ValG and K, L ∈ K(V ), then

(5) (φ · µG
K)(L) :=

∫

G
φ(L ∩ ḡK) dḡ.

Extending by linearity, the resulting product endows ValG with

the structure of a commutative graded algebra over R, with unit

element given by the Euler characteristic χ.

• Let W ⊂ V be a linear subspace, and let H ⊂ G be the stabi-

lizer of W . Suppose that H acts transitively on the unit sphere of

W . Then the natural restriction map ValG(V ) → ValH(W ) is a

homomorphism of R-algebras.

• The pairing ValG ⊗ ValG → ValGn ≃ R given by

(6) PD : (a, b) 7→ (ab)n

(degree n piece of ab) is perfect.

Thus the pairing (6) may be thought of as a self-adjoint map PD :
ValG → (ValG)∗. For the moment we leave unspecified the choice of
linear isomorphism ValGn ∼ R, and PD inherits this imprecision. It is
trivial to see that PD is a homomorphism of ValG-modules, where the
ValG-module structure on the dual space (ValG)∗ is

(7) (aα)(b) := α(ab),

a, b ∈ ValG, α ∈ (ValG)∗. Since the pairing is perfect, in fact PD

is an isomorphism, and it is clearly graded in the sense that PD :
ValGi → (ValGn−i)

∗. In other words ValG carries the structure of a
graded Frobenius algebra ([5]).

It is well known and trivial to prove:

Lemma 2.3. If A is a finite-dimensional graded algebra over a field

k, then any two graded A-module isomorphisms A → A∗ differ by mul-

tiplication by a unit of A of pure degree 0.

2.2. Kinematic formulas. Let µ1, . . . , µN be a basis for ValG. It is
straightforward to deduce from Thm. 2.2 that given φ ∈ ValG there

are constants cφ
ij ∈ R such that for all K, L ∈ K(V )

(8)

∫

G
φ(K ∩ ḡL) dḡ =

N∑

i,j=1

cφ
ijµi(K)µi(L).

This situation may be abbreviated by defining the map

kG : ValG → ValG ⊗ ValG ≃ HomR((ValG)∗,ValG)
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by

(9) kG(φ) :=
∑

i,j

cφ
ijµi ⊗ µj .

Note that the precise definition of kG depends on the choice of normal-
ization for the Haar measure dḡ. For the time being we prefer to leave
this unspecified. It is straightforward to check that kG is a coassociative,
cocommutative coproduct. Noticing the similarity with the definition
of the product, coassociativity is equivalent to the following.

Lemma 2.4. If φ, ψ ∈ ValG then

kG(ψ · φ) = (ψ ⊗ 1) · kG(φ) = (1 ⊗ ψ) · kG(φ).

In other words, if the constants cφ
ij satisfy (8) and (9) then

kG(ψ · φ) =
∑

i,j

cφ
ij(ψ · µi) ⊗ µj =

∑

i,j

cφ
ijµi ⊗ (ψ · µj).

Proof. It is enough to prove this for ψ = µG
K since these valuations

span ValG. Using the expression (5) for the product, this follows at
once from Fubini’s theorem. q.e.d.

Proposition 2.5. For every ϕ ∈ ValG, kG(ϕ) is a homomorphism of

ValG-modules when thought of as a map (ValG)∗ → ValG. Furthermore

kG(1) is an isomorphism.

Proof. That kG(ϕ) is a homomorphism of ValG-modules follows im-
mediately from Lemma 2.4.

To see that kG(1) is an isomorphism it is enough to prove surjectivity.
By Thm. 2.2 above, any given valuation φ ∈ ValG may be written as

φ =
N∑

i=1

aiµ
G
Ki

=
N∑

i=1

ai

∫

G
χ( · ∩ ḡKi) dḡ

=
N∑

i=1

ai kG(1)( · , Ki)

for some a1, . . . , aN ∈ R. But this last expression is precisely the image
under kG(1) of the element ψ 7→

∑
aiψ(Ki) of (ValG)∗. q.e.d.

In view of Lemma 2.3 this gives

Theorem 2.6. With appropriate choices of scaling factors,

kG(1) = PD−1.
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2.3. The classical case: G = SO(n). The case of G = SO(n) or
O(n) was substantially settled by Hadwiger in the 1950s. Nonetheless
the perspective introduced by Alesker remains illuminating.

Hadwiger proved that there is exactly one SO(n)-invariant valuation
on R

n in each degree between 0 and n, given by the coefficients of the
polynomial expressing the volume of a tubular neighborhood of variable
radius r (Steiner’s formula). Thus the bodies Ki above may be taken
to be balls of n + 1 distinct radii r0 < r1 < · · · < rn.

An alternative approach is to take Ki to be a disk of dimension i.
Letting the radius of such a disk tend to ∞ and normalizing appropri-
ately, one arrives at the classical expression for the Hadwiger valuations
in terms of intersections with affine subspaces: if G(n, k) denotes the
affine Grassmannian of k-planes in R

n then the valuation µi of degree i
may be expressed

µi(K) =

∫

G(n,n−i)
χ(K ∩ P̄ ) dP̄ .

Let t := µ1. Then

(10) t(K) = lim
r→∞

r1−nµ
SO(n)

Dn−1
r

= lim
r→∞

r1−n

∫

SO(n)
χ(K ∩ ḡDn−1

r ) dḡ,

where Dn−1
r is the disk of dimension n − 1 and radius r. Therefore the

definition of the product gives

t2(K) = lim
r→∞

r1−n

∫

SO(n)
t(K ∩ ḡDn−1

r ) dḡ(11)

= lim
r→∞

r1−n

∫

SO(n)

∫

G(n,n−i)
χ(K ∩ P̄ ∩ ḡDn−1

r ) dP̄ dḡ(12)

=

∫

G(n,n−2)
χ(K ∩ Q̄) dQ̄(13)

= µ2(K).(14)

Continuing in this way we arrive at the following result of Alesker:

Theorem 2.7. ValSO(n) ≃ R[t]/(tn+1).

The Poincare duality pairing is obviously 〈ti, tj〉 = δn
i+j . As a map

ValSO(n) → (ValSO(n))∗ it takes tn−i to (ti)∗, where 1∗, t∗, . . . , (tn)∗ is
the dual basis to the ti. The principal kinematic formula kSO(n)(1) =

PD−1 thus takes (ti)∗ to tn−i, or in different terms

kSO(n)(1) =
n∑

i=0

ti ⊗ tn−i.
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More generally, Lemma 2.4 yields

kSO(n)(t
k) =

∑

i+j=n+k

ti ⊗ tj .

Thus we recover a classical result of Nijenhuis [10]:

Theorem 2.8. There exists a graded basis µ0, . . . , µn for ValSO(n)

such that for an appropriate normalization of the Haar measure
∫

SO(n)
µk(K ∩ ḡL) dḡ =

∑

i+j=n+k

µi(K)µj(L),

i.e., the coefficients in the kinematic formulas for the µi in terms of the

µi are all equal to unity.

2.4. The orthogonal complement of ValSO(n) in ValG. Returning
to the case of a general group G (transitive on the sphere of course), we

take V = R
n. Then ValSO(n) ⊂ ValG. Put

AG
i := {µ ∈ ValGi : tn−i · µ = 0}

and

AG :=
n−1⊕

i=1

AG
i .

Thus AG
i is a subspace of codimension 1 of ValGi . Clearly AG

i = 0 unless
1 ≤ i ≤ n − 1, and

(15) t · AG
i ⊂ AG

i+1.

(Actually, Alesker has shown that ValGi is one-dimensional for i =
1, n − 1, hence AG

1 = AG
n−1 = 0 as well.)

Proposition 2.9. With appropriate scalings,

(16) kG(tk) ≡
∑

i+j=n+k

ti ⊗ tj mod AG ⊗AG, k = 0, . . . , n.

Proof. The subspace AG
i is the orthogonal complement of tn−i under

the product pairing. Theorem 2.6 may be interpreted as saying that
kG(1) is the associated pairing on the dual space, which implies (16) for
k = 0. Now the general case follows from Lemma 2.4 and the definition
of AG. q.e.d.

Corollary 2.10.

AG = {µ ∈ ValG : µ(Dn
r ) = 0 for all r > 0}.
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Proof. Let {αl}l be a basis for AG. Then by Prop. 2.9, given K ∈
K(V )

∑

i+j=n

ti(K)tj(Dn
r ) +

∑

k,l

dklαk(K)αl(D
n
r ) =

∫

G
χ(K ∩ ḡDn

r ) dḡ

=

∫

SO(n)
χ(K ∩ ḡDn

r ) dḡ

=
∑

i+j=n

ti(K)tj(Dn
r ).

Since the pairing kG(1) is symmetric and nonsingular, so is its restriction

to (ValSO(n))⊥ = AG, from which it follows that all αl(D
n
r ) = 0. q.e.d.

Remark. In fact the group G plays no role here, as Alesker ([4]) has
proved the following:

Let Valk(R
n) denote the space of all degree k translation-invariant

degree k valuations on R
n. Put

Ak := {φ ∈ Valk(R
n) : tn−k · φ = 0}

and

Bk := {φ ∈ Valk(R
n) : φ(Dn(r)) = 0 for all r > 0}.

Then Ak = Bk.

3. The unitary case

3.1. Statement of the main theorem. It is natural to consider next
the case V = C

n, G = U(n). Let ḠC(n, k) denote the affine Grassman-
nian of complex k-planes in C

n. We will assume that

C
1 ⊂ C

2 ⊂ C
3 ⊂ . . .

in the natural way, and will take the corresponding unitary groups and
Grassmannians to be included in each other accordingly. Denote the
unit ball in C

k by Dk
C
.

In order to state a precise result in this case we need to take more
care in the choices of constants. We normalize the measures dḡ on U(n)

and dh̄ on SO(2n) so that, given any measurable set E ⊂ C
n,

(17)

dḡ
(
{ḡ ∈ U(n) : ḡ(0) ∈ E}

)
= dh̄

(
{h̄ ∈ SO(2n) : h̄(0) ∈ E}

)
= |E|,

where |E| is the Lebesgue measure of E. We take the measures on the
real affine Grassmannians Ḡ(2n, k) and the complex affine Grassmanni-
ans ḠC(n, l) so that

dP̄
(
{P̄ ∈ Ḡ(2n, k) : P̄ ∩ Dn

C 6= ∅}
)

= ω2n−k,(18)

dQ̄
(
{Q̄ ∈ ḠC(n, l) : Q̄ ∩ Dn

C 6= ∅}
)

= ω2n−2l =
πn−l

(n − l)!
.(19)
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These measures are compatible with the measures on SO(2n) and

U(n) in the following sense. We define V 2n
0 , . . . , V 2n

2n ∈ ValSO(2n) by

(20) V 2n
i (K) :=

∫

Ḡ(2n,2n−i)
χ(K ∩ P̄ ) dP̄ = dP̄

(
{P̄ : P̄ ∩ K 6= ∅}

)

and Wn
0 , . . . , Wn

n ∈ ValU(n) by

(21) Wn
j (K) :=

∫

ḠC(n,n−j)
χ(K ∩ Q̄) dQ̄ = dQ̄

(
{Q̄ : Q̄ ∩ K 6= ∅}

)
,

K ∈ K(Cn). Then

Wn
j (K)(22)

= lim
R→∞

(ω2n−2jR
2n−2j)−1dḡ({ḡ ∈ U(n) : ḡDn−j

C
(R) ∩ K 6= ∅}),

V 2n
i (K)(23)

= lim
R→∞

(ω2n−iR
2n−i)−1dh̄({h̄ ∈ SO(2n) : h̄D2n−i

R
(R) ∩ K 6= ∅}).

Clearly

deg V 2n
i = i, deg Wn

j = 2j.

Our main result is

Theorem 3.1.

• ValU(n) is generated as an R-algebra by V 2n
1 and Wn

1 .

• Consider the graded polynomial algebra R[s, t], where deg t = 1 and

deg s = 2. Put fi for the component of total degree i in the power

series expansion of log(1 + s + t). Then the map ϕn : R[s, t] →

ValU(n) of graded R-algebras determined by

ϕn(t) ≥ 0,(24)

ϕn(t2) =
2(2n − 1)

π
V 2n

2 ,(25)

ϕn(s) =
n

π
Wn

1(26)

covers an isomorphism

(27) C[s, t]/(fn+1, fn+2) ≃ ValU(n).

• The polynomials fi satisfy the relation

(28) nsfn + (n + 1)tfn+1 + (n + 2)fn+2 = 0, n ≥ 1
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and the diagram

(29)

. . . . . .
y r

y

C[s, t]/(fn+1, fn+2)
ϕn

−−−−→ ValU(n)

y r

y

C[s, t]/(fn, fn+1)
ϕn−1
−−−−→ ValU(n−1)

. . . . . .
y r

y

C[s, t]/(f2, f3)
ϕ1

−−−−→ ValU(1)

commutes, where the vertical maps on the right are given by re-

striction.

Remark. Since

log(1 + s + t) = (s + t) −
1

2
(s + t)2 +

1

3
(s + t)3 + . . .

it is easy to write down in closed form as many fi as desired. For
example,

f1 = t,

f2 = s −
1

2
t2,

f3 = −st +
1

3
t3,

f4 = −
1

2
s2 + st2 −

1

4
t4,

etc. It is easy to prove by induction that

fk = (−1)k+1

[ k
2 ]∑

i=0

(−1)i

k − i

(
k − i

i

)
sitk−2i(30)

= (−1)k+1

[ k
2 ]∑

i=0

(−1)i

k − 2i

(
k − i − 1

i

)
sitk−2i.

In particular

(31) fn+1 = (−1)n

[n+1
2 ]∑

i=0

(−1)i (n − i)!

i!(n − 2i + 1)!
sitn−2i+1.

The rest of this paper is devoted to the proof of Theorem 3.1. The
reason for the coefficients in (25) and (26) is the following.
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Lemma 3.2. For 1 ≤ k ≤ n, put rn
k : ValU(n) → ValU(k) to be the

restriction map. Then

rn
k

(
(2n − 1)V 2n

2

)
= (2k − 1)V 2k

2 ,(32)

rn
k (nWn

1 ) = kW k
1 .(33)

Proof. It is clear that in each relation above the left and right sides
are constant multiples of each other, so it will be enough to show that

rn
1

(
(2n − 1)V 2n

2

)
= V 2

2 ,(34)

rn
1 (nWn

1 ) = W 1
1 ,(35)

i.e., that

V 2n
2 (D1

C) =
π

2n − 1
,(36)

Wn
1 (D1

C) =
π

n
.(37)

To prove (36) we note that the Hadwiger valuation V 2n
2 of a smooth

body K ⊂ C
n ≃ R

2n may be expressed as the integral of the (2n− 3)rd
symmetric function of the principal curvatures of the boundary of K,
multiplied by a certain constant c. Therefore

π = V 2n
2 (Dn

C) = c

(
2n − 1

2n − 3

)
α2n−1(38)

= c

(
2n − 1

2n − 3

)
(2n)

πn

n!
,(39)

so

(40) c =
(n − 2)!

(4n − 2)πn−1
.

On the other hand, the disk D1
C

is the Hausdorff limit of its tubular
neighborhoods of radius r as r ↓ 0, which may be thought of as the union
of D1

C
× Dn−1

C
(r) together with a bundle of half-balls of real dimension

2n over the boundary circle. Computing the curvature integrals and
passing to r = 0, the boundary term tends to 0 and we obtain

V 2n
2 (D1

C) = cα2n−3π =
(n − 2)!

(4n − 2)πn−1
(2n − 2)

πn−1

(n − 1)!
π =

π

2n − 1
,

(41)

as claimed.
To prove (37) we apply Howard’s transfer principle for Poincaré-

Crofton formulas [7] to compare the integral geometry of C
n under the

holomorphic isometry group U(n) with that of P
n under its full isometry

group U(n + 1)/U(1). To remain consistent with the measure on U(n)
given in (17), we select the Haar measure on U(n + 1)/U(1) so that its
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total mass is equal to the volume πn

n! of P
n. The transfer principle then

implies that

1

n
=

∫
U(n+1)/U(1) #(P1 ∩ hP

n−1) dh

area(P1) vol(Pn−1)
=

∫
U(n)

#(D1
C
∩ ḡDn−1

C
(R)) dḡ

area(D1
C
) vol(Dn−1

C
(R))

.

(42)

On the other hand (22) may be written

Wn
1 (K) ∼

∫
U(n)

χ(K ∩ ḡDn−1
C

(R)) dḡ

vol(Dn−1
C

(R))
(43)

as R → ∞. Applying this formula to K = D1
C
, (42) implies (37). q.e.d.

It is convenient to restate the relations (32) and (33) as follows.

Corollary 3.3. Putting

sn :=
n

π
Wn

1 ,

and tn for the SO(n)-invariant, degree one, positive square root of
4n−2

π V 2n
2 ,

t2n =
4n − 2

π
V 2n

2 ,

we have

rn
k (sn) = sk,(44)

rn
k (tn) = tk.(45)

Thus we will typically drop the subscripts and abuse notation by sim-
ply using the symbols s, t for these valuations. The ambient dimension
should be clear from the context.

Corollary 3.4. In ValU(n),

t2n =
2 · (2n − 1)!

πn(n − 1)!
volume 2n.

Proof. We again use Howard’s transfer principle, this time for the
associated pairs

(Rn, SO(n)), (Sn, SO(n + 1)).

Put

(46) Ψi = Ψn
i := α−1

i α−1
n−i−1Φ

n
i .

Thus the restriction of Ψi to subsets of R
n of dimension i is a multiple

of the i-dimensional Hausdorff measure that transfers to Sn to give

Ψi(S
i) = 1.



STRUCTURE OF THE UNITARY VALUATION ALGEBRA 521

Now the kinematic formula for R
n may be expressed

cn(Ψk) =
∑

i+j=n+k

aiΨi ⊗ Ψj .

By the transfer principle the same formula applies to subsets of Sn—
this is true because the kinematic formula specializes to the Poincaré-
Crofton formulas
∫

volume k(M i ∩ ḡN j) dḡ =

∫
Ψk(M

i ∩ ḡN j) dḡ = cΨi(M
i)Ψj(N

j)

for submanifolds M i, N j with i + j = n + k. Taking the total measure
of SO(n+1) to be αn, and applying the formula to Si, Sj ⊂ Sn, we find
that all of the constants are equal to αn:

cn(Ψk) = αn

∑

i+j=n+k

Ψi ⊗ Ψj .

By Lemma 2.4, since Ψ0 = 1
2χ = 1

2 ,

(47) cn(Ψk) = 2cn(Ψk · Ψ0) = 2αn

∑

i+j=n

(Ψk · Ψi) ⊗ Ψj .

Therefore Ψi · Ψk = 1
2Ψi+k, so (4Ψ1)

2 = 8Ψ2, and since

8Ψ2(S
2) = 8,

t2(S2) =
2

π
area(S2) = 8,

it follows that

(48) t = 4Ψ1

and

(49) tn = 2n+1Ψn =
2n+1

αn
volume n.

In particular

(50) t2n = 22n+1

(
(2n − 1)(2n − 3) . . . 3 · 1

πn2n+1

)
volume 2n,

as claimed. q.e.d.

3.2. First deductions. Our starting point is the following result of
Alesker [2]:

Theorem 3.5. The valuations

Un
k,p(K) :=

∫

ḠC(n,n−p)
tk−2p(K ∩ P̄ ) dP̄ ,
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0 ≤ p ≤ 1
2 min{k, 2n − k}, constitute a basis for ValU(n). In particular,

the Poincaré series of ValU(n) is

(51) P
Val

U(n)(x) =
(1 − xn+1)(1 − xn+2)

(1 − x)(1 − x2)
.

Proof. The first assertion is due to Alesker in [2]. The assertion about
the Poincaré series then follows from a simple comparison between the
coefficients of the given polynomial and Alesker’s computation of the

dimensions of the Val
U(n)
k . q.e.d.

As in the discussion preceding the statement of Theorem 2.7, these
valuations are monomials in s and t:

Proposition 3.6.

Un
k,p = sptk−2p.

This establishes the first assertion of Theorem 3.1.

Remark. Thus the basis described in Theorem 3.5 may be under-
stood as follows. Up through degree i = n, there are no relations be-
tween s and t. From degree i = n+1 through the highest degree i = 2n,
the basis elements are in one-to-one correspondence with those in degree
2n − i: in fact they are simply the products of the latter with t2i−2n.

From general considerations we also find that the ideal of polynomial
relations has exactly two generators. This kind of fact is well known to
algebraists. R. Varley graciously showed us the following argument.

Lemma 3.7. There are polynomials pn+1, pn+2, of degrees n+1, n+2
respectively, such that

(52) kerϕn = (pn+1, pn+2).

Proof. By Alesker’s basis Theorem 3.5 there are relations pn+1, pn+2 ∈
C[s, t] in the given degrees such that pn+2 6= t ·pn+1. We first show that
these polynomials are relatively prime. Otherwise, let w ∈ C[s, t] be
an element of degree 0 < k < n + 1 dividing both, with pj = wdj , j =
n + 1, n + 2, where the dj are relatively prime. It is clear that all of
these elements are homogeneous. Therefore W := C[s, t]/(dn+1, dn+2)
is a graded algebra with Poincaré series

(53) PW (x) =
(1 − xn+1−k)(1 − xn+2−k)

(1 − x)(1 − x2)
,

which has degree 2n − 2k. Thus the image of the linear map h : W →

ValU(n) covered by multiplication by w in C[s, t] meets the socle Val
U(n)
2n

only at 0. However, this contradicts the fact that multiplication induces
a perfect pairing on ValU(n): since the image of w in ValU(n) is nonzero,
there exists g ∈ C[s, t], deg g = 2n − k, such that w · g 6= 0 in ValU(n).
Thus the image of g in W under h is not zero.
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It follows that the Poincaré series of C[s, t]/(pn+1, pn+2) is given by

(51). Since ValU(n) is isomorphic to a quotient of this algebra we obtain
the desired conclusion. q.e.d.

From this and Lemma 3.2 we find that the last conclusion of Theorem
3.1 is valid with the fi replaced by the polynomials pi, to be determined.
Thus only the second assertion remains. The combinatorial part (28)
follows at once by writing

log(1 + tx + sx2) =
∞∑

i=1

fi(s, t)x
i,(54)

∞∑

i=0

[(i − 1)sfi−1 + itfi + (i + 1)fi+1]x
i

= (1 + tx + sx2)
∞∑

i=1

ifix
i−1(55)

= (1 + tx + sx2)
d

dx
log(1 + tx + sx2)(56)

= t + 2sx,(57)

where f−1 = f0 = 0.

3.3. Identifying An. For the rest of the paper we will abbreviate
An := AU(n). Using Corollary 2.10 we can give an explicit basis for
this subspace.

Lemma 3.8. For 2 ≤ j ≤ 2n − 2, the elements

(58) (n−i)sitj−2i−(4n−4i−2)si+1tj−2i−2, 0 ≤ i ≤
min{j, 2n − j}

2
−1

constitute a basis for An
j .

Proof. By Theorem 3.5, together with tj the elements (58) constitute

a basis for Val
U(n)
j . Hence it is enough to show that they belong to An.

Put rk := kt2−(4k−2)s. By Lemma 3.2, rk ∈ Ak. By Corollary 2.10
and the definition of the generating valuation s, it follows that sn−krk ∈
An for k ≤ n. Now the relation (15) implies that tisn−krk ∈ An for all
i ≥ 0. These include the elements (58). q.e.d.

Denote the ordered monomial basis (tj , stj−2, . . . ) for Val
U(n)
j given

in Theorem 3.5 and Prop. 3.6 by bj , and the ordered basis consisting of
tj together with the degree j elements of (58) by cj . Thus if we define
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the (k + 1) × (k + 1) matrix
(59)

An
k :=




1 0 0 0 . . . 0 0
n −2(2n−1) 0 0 . . . 0 0
0 (n − 1) −2(2n−3) 0 . . . 0 0

. . .
0 0 0 0 . . . n−k+1 −2(2n−2k+1)




then for 0 ≤ j ≤ 2n we have

(60) cj = An
min([ j

2
],[ 2n−j

2
])
bj .

3.4. Framework for induction. Recalling the remark following Prop.
3.6, if 2k + 1 ≤ n then the R vector spaces

Val
U(n)
2k ,Val

U(n)
2k+1,Val

U(n)
2n−2k−1,Val

U(n)
2n−2k

all have dimension k + 1. In fact the maps

(61) a 7→ tj · a,

j = 1, 2n − 4k − 1, 2n − 4k, are isomorphisms Val
U(n)
2k → Val

U(n)
2k+1,

Val
U(n)
2n−2k−1, Val

U(n)
2n−2k respectively. Since the Poincaré duality pairing

is given by multiplication it is trivial to see:

Proposition 3.9. The pairings on Val
U(n)
2k given by

(62) 〈a, b〉 := PD(a, t2n−4kb)

and

(63) 〈〈a, b〉〉 := PD(ta, t2n−4k−1b)

are identical to one another, and are symmetric and nondegenerate.

We denote by Pn
k the (k + 1) × (k + 1) matrix giving this pairing

with respect to the ordered monomial basis t2k, st2k−2, . . . , sk, and put
Qn

k := (Pn
k )−1. Thus Qn

k is the matrix giving the associated pairing on
the dual spaces. By Corollary 2.6, Qn

k is also the matrix of coefficients
for the kinematic formula kn(1).

Convention. From this point on we normalize the kn so that equa-
tion (16) in Prop. 2.9 is literally true.

With this convention, Corollary 3.4 gives∫

U(n)
χ(K ∩ ḡL) dḡ = χ(K)volume (L) + · · ·

=
πn(n − 1)!

2 · (2n − 1)!
(1 ⊗ t2n + . . . )(K, L)(64)

=
πn(n − 1)!

2 · (2n − 1)!
kn(1)(K, L)(65)
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where

kn(1) =
2n∑

i=0

(ti, sti−2, . . . , skti−2k) ⊗ Qn
min{[ i

2 ],[
2n−i

2 ]}




t2n−i

st2n−i−2

. . .
skt2n−i−2k


 .

(66)

Here Qn
0 = 1. Note that in this last sum there are four terms involving

each of the matrices Qn
k , k ≤ n

2 − 1; on the other hand there are three

such terms when n is odd and k = n−1
2 , and one when n is even and

k = n
2 .

Now by Prop. 2.9, for k ≥ 1 there exists a nonsingular symmetric

k × k matrix Q̃n
k such that

(67) Qn
k = (An

k)t

[
1 ~0
~0 Q̃n

k

]
An

k

We will determine the relations in ValU(n) between the generators s
and t using an induction on n and k.

Definition 3.10. For each P̄ ∈ ḠC(n + 1, n), choose a holomorphic

isometry γP̄ : P̄ → C
n, and define the map ι : ValU(n) → ValU(n+1) by

ι(µ)(K) :=

∫

GC(n+1,n)
µ(γP̄ (K ∩ P̄ )) dP̄ .

Clearly this is independent of the choices of the γP̄ .

Proposition 3.11. Under the maps

(68) ValU(n+1) ⊗ ValU(n+1) id⊗r
−→ ValU(n+1) ⊗ ValU(n)

id⊗r
←− ValU(n) ⊗ ValU(n),

the elements kn+1(1) and kn(1) satisfy

(69)
π

2(2n + 1)
(id ⊗ r)(kn+1(1)) = (ι ⊗ id)(kn(1)).

In terms of the notational abuse described after Corollary 3.3, this rela-

tion may be written

(70) (n + 1)kn+1(1) = 2(2n + 1)(s ⊗ 1) · kn(1)

as elements of ValU(n+1) ⊗ ValU(n).

Proof. In view of our normalizing convention (26),

(71) ι(si
ntjn) =

π

n + 1
si+1
n+1t

j
n+1.
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In terms of our usual abuse of notation we write more succinctly

r(s) = s, r(t) = t,(72)

ι(sitj) =
π

n + 1
si+1tj .(73)

To prove the relation (69), for P̄ ∈ ḠC(n+1, n) we put U(n)P̄ for the

left coset of U(n) in U(n + 1) consisting of the elements that map C
n

to P̄ . Now if K ∈ K(Cn+1) and L ∈ K(Cn) ⊂ K(Cn+1) then (denoting
by i : C

n → C
n+1 the inclusion)

πn+1n!

2 · (2n + 1)!
(id ⊗ r)(kn+1(1))(K, L)

=
πn+1n!

2 · (2n + 1)!
kn+1(1)(K, i(L))

=

∫

U(n+1)
χ(K ∩ ḡL) dḡ

=

∫

GC(n+1,n)

∫

U(n)P̄

χ(K ∩ ḡL) dḡ dP̄

=

∫

GC(n+1,n)

∫

U(n)P̄

χ((K ∩ P̄ ) ∩ ḡL) dḡ dP̄

=

∫

GC(n+1,n)

∫

U(n)
χ(γP (K ∩ P̄ ) ∩ h̄L) dh̄ dP̄

=
πn(n − 1)!

2 · (2n − 1)!

∫

GC(n+1,n)
kn(1)(γP̄ (K ∩ P̄ ), L) dP̄

=
πn(n − 1)!

2 · (2n − 1)!
(ι ⊗ id)(kn(1))(K, L),

which simplifies to (69). The relation (70) follows from this and (73).
q.e.d.

3.5. Proof of theorem.

Lemma 3.12. If 2k ≤ n − 1 then

(74)
n

2(2n − 1)
Qn

kPn−1
k =




0 0 0 0 . . . −an,k
0

1 0 0 0 . . . −an,k
1

0 1 0 . . . . −an,k
2

0 0 1 . . . . −an,k
3

. . . . . . .
. . . . . . . .

0 0 0 . . . 1 −an,k
k




,
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where, putting

an,k
k+1 := 1,

ϕn,k :=
k+1∑

i=0

an,k
i sit2n−2k−2i−1,(75)

we have

(76) ϕn,k = 0 in ValU(n), 0 ≤ k ≤
n

2
− 1;

and if n is odd then

(77) tϕn, n−1
2 = 0 in ValU(n).

Observe that in the latter case tϕn, n−1
2 is a polynomial even though

ϕn, n−1
2 is only rational.

Proof. By (65), the terms of bidegree (2n − 2k, 2k) in kn(1) may be
written

(78)
(
t2n−2k, . . . , skt2n−4k

)
⊗ Qn

k




t2k

. . .
sk


 ∈ ValU(n) ⊗ ValU(n),

and similarly the terms of bidegree (2n−2k−2, 2k) in kn−1(1) are given
by
(79)

(
t2n−2k−2, . . . , skt2n−4k−2

)
⊗ Qn−1

k




t2k

. . .
sk


 ∈ ValU(n−1) ⊗ ValU(n−1).

Therefore the relation (69) gives

n

2(2n − 1)

(
t2n−2k, . . . , skt2n−4k

)
⊗ Qn

k




t2k

. . .
sk


(80)

=
(
st2n−2k−2, . . . , sk+1t2n−4k−2

)
⊗ Qn−1

k




t2k

. . .
sk


(81)

in ValU(n)⊗ValU(n−1). Since t2k, . . . , sk constitute a basis for Val
U(n−1)
2k

it follows that
n

2(2n − 1)

(
t2n−2k, . . . , skt2n−4k

)
Qn

k(82)

=
(
st2n−2k−2, . . . , sk+1t2n−4k−2

)
Qn−1

k ,

which shows that the left hand side of (74) has the given form for some

constants an,k
i , where the resulting polynomial ϕn,k satisfies tϕn,k = 0

in ValU(n).
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If k ≤ n
2 − 1 then the relations corresponding to (78) and (79) hold

for the terms of bidegree (2n− 2k− 1, 2k + 1) and (2n− 2k− 3, 2k + 1).
Arguing as above we then arrive at the relation (76). q.e.d.

To prove the theorem we will show that if n is odd (resp. even)

then tϕn, n−1
2 (resp. ϕn, n

2
−1 ) is a nonzero constant multiple of fn+1.

Since the natural map ValU(n+1) → ValU(n) is well-defined and fn+2 =

f(n+1)+1 = 0 in ValU(n+1), it follows that fn+2 = 0 in ValU(n) as well.
In fact we prove more generally:

Proposition 3.13. For 2k ≤ n − 1 and 0 ≤ i ≤ k,

an,k
i = (−2)i−k−1

(
k + 1

i

)
(83)

·
(n − i)(n − i − 1) . . . (n − k)

(2n − 2k − 2i − 1)(2n − 2k − 2i − 3) . . . (2n − 4k − 1)
.

Corollary 3.14. If n is even then

(84) ϕn, n
2
−1 = (−1)

n
2 fn+1.

If n is odd then

tϕn, n−1
2 = (−1)

n−1
2

(
n + 1

2

)
fn+1.(85)

The rest of this section is devoted to the proof of Prop. 3.13 using
induction on k, the starting point being the relation

(86) an,0
0 =

−n

2(2n − 1)
, n ≥ 2,

which is clearly valid from the defining relation (74) since Qn
0 = 1 for

all n.

Lemma 3.15. Let

Rn
k :=

n

2(2n − 1)

·




2(2n−1)
n 1

2(2n−5
n−2 )

(2n−2
n−1 )

2(2n−7
n−3 )

(2n−2
n−1 )

. . .
2(2n−2k+1

n−k+1 )
(2n−2

n−1 )
2(2n−2k−1

n−k )
(2n−2

n−1 )

1 0 0 0 . . . 0 −an−1,k−1
0

0 1 0 0 . . . 0 −an−1,k−1
1

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1 −an−1,k−1
k−1




.

Then

(87) Rn
kQn

k =

[
1 0
0 Qn−1

k−1

]
.
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Remark. Note that the first row of Rn
k may also be written as

(88)

(
2n − 1

n

)−1 ((
2n − 1

n

)
,

(
2n − 3

n − 1

)
, . . . ,

(
2n − 2k − 1

n − k

))
.

Proof. Equating the terms of bidegree (2n−2k, 2k) in Prop. 3.11, we
obtain for 0 ≤ 2k ≤ n:

n

2(2n − 1)
(t2n−2k, st2n−2k−2, . . . , skt2n−4k) ⊗ Qn

k




t2k

st2k−2

.

.

.
sk




= (t2n−2k, st2n−2k−2, . . . , sk−1t2n−4k+2) ⊗ Qn−1
k−1




st2k−2

.

.

.
sk




in ValU(n−1) ⊗ ValU(n). Applying Lemma 3.12, it follows that

(t2n−2k, st2n−2k−2, . . . , skt2n−4k)(89)

= (t2n−2k, st2n−2k−2, . . . , sk−1t2n−4k+2)
[
Ik| − ~an−1,k−1

]

in ValU(n−1), where Ik is the k × k identity matrix. Since t2n−2k,

st2n−2k−2, . . . , sk−1t2n−4k+2 constitute a basis for Val
U(n−1)
2n−2k , and t2k,

. . . , sk are a basis for Val
U(n)
2k , recalling (67) we find that

n

2(2n − 1)

[
Ik| − ~an−1,k−1

]
(An

k)t

[
1 ~0
~0 Q̃n

k

]
An

k(90)

=
n

2(2n − 1)

[
Ik| − ~an−1,k−1

]
Qn

k

=
[
~0 | Qn−1

k−1

]
.

In view of the definition (59) of An
k , the first row of

[
1 ~0
~0 Q̃n

k

]
An

k is

e1 := (1, 0, . . . , 0). Now if we denote by M the (k + 1) × (k + 1) ma-
trix whose first row is e1 and whose bottom k rows are identical to

n
2(2n−1)

[
Ik| − ~an−1,k−1

]
(An

k)t then (90) becomes

(91) M

[
1 ~0
~0 Q̃n

k

]
An

k =

[
1 ~0
~0 Qn−1

k−1

]
.
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Using the identity

(n − i)

(
2n − 2i − 1

n − i

)
− 2(2n − 2i − 1)

(
2n − 2i − 3

n − i − 1

)
= 0,

a straightforward calculation shows that

M = Rn
k (An

k)t

so the desired relation follows from (67) and (91). q.e.d.

To complete the proof of theorem we use Lemma 3.15 to write

Qn
kPn−1

k = (Rn
k )−1

[
1 ~0
~0 Qn−1

k−1

] [
1 ~0
~0 Pn−2

k−1

]
Rn−1

k

= (Rn
k )−1

[
1 ~0
~0 Qn−1

k−1Pn−2
k−1

]
Rn−1

k ,

yielding

n − 1

2(2n − 3)
Rn

k

(
n

2(2n − 1)
Qn

kPn−1
k

)
(92)

=
n

2(2n − 1)

[
n−1

2(2n−3)
~0

~0 n−1
2(2n−3)Q

n−1
k−1P

n−2
k−1

]
Rn−1

k .

Recalling Lemma 3.12 and the definition of Rn
k , if we equate the last

columns on the right and the left we obtain the following relations among

the constants an,k
i , an−1,k−1

i , an−2,k−1
i :

−
k∑

i=0

(
2n − 2i − 1

n − i

)
an,k

i =

(
2n − 2k − 3

n − k − 1

)
,

− an,k
i + an−1,k−1

i an,k
k

= −an−2,k−1
i−1 + an−1,k−1

i an−2,k−1
k−1 , i = 0, . . . , k − 1,

where we set an−2,k−1
−1 := 0. Equivalently,

k+1∑

i=0

(
2n − 2i − 1

n − i

)
an,k

i = 0(93)

an−2,k−1
i−1 + an−1,k−1

i

(
an,k

k − an−2,k−1
k−1

)
= an,k

i , i = 0, . . . , k − 1.(94)

Since all of the matrices above are invertible these relations determine
the an,k

i uniquely in terms of the an−1,k−1
i , an−2,k−1

i , i.e., the system

above is nonsingular in an,k
0 , . . . , an,k

k . Therefore, to complete the proof
of Prop. 3.13 by induction on k it is enough to show that (93) and (94)
are valid for the stated values (83).
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Starting with the observation that, with these values,

an,k
k − an−2,k−1

k−1 =
−n

2(2n − 4k − 1)
,

the verification of (94) is a straightforward calculation. Meanwhile,
fixing n and k, the relation (93) reduces to

(95)
k+1∑

i=0

(−1)i

(
k + 1

i

)
(2n − 2i − 1) . . . (2n − 2k − 1)

(2n − 2k − 2i − 1) . . . (2n − 4k − 1)
= 0,

where the (k + 1)st term is understood to be (−1)k+1— in fact, after
substituting the values (83) into (93) we find that the ratio of the ith
terms of respective left-hand sides of (93) and (95) is

(96)
(2n − 2k − 3)(2n − 2k − 5) · · · · 3 · 1(−1)k+12n−k−2

(n − k − 1)!
,

independent of i. Substituting z := 2n−1
2 and multiplying the sum by

the function (z−k−1)(z−k−2) . . . (z−2k), the relation (95) becomes

(97)
k+1∑

i=0

(−1)i

(
k + 1

i

)
(z − i)(z − i − 1) . . . (z − i − k + 1) = 0.

If ∆ is the difference operator ∆(f(z)) := f(z) − f(z − 1) then the
left-hand side is

∆k+1 (z(z − 1) . . . (z − k + 1)) ,

which vanishes identically since the subject polynomial has degree k.
q.e.d.

4. Open questions

1. Obviously ValU(n) is much more complicated than ValSO(n), and
many questions that are trivial in the latter case are not in the former.
As we have seen, the Poincaré duality pairing for ValSO(n) is essentially
as simple as possible, so the deduction of the kinematic formulas via
Thm. 2.6 is very easy. For ValU(n) the question of determining the
pairing matrices Pn

k and their inverses Qn
k , which determine the kine-

matic formulas, is open. Using the MAGMA computer algebra package,
Graham Matthews has calculated the Qn

k for k ≤ 11. The entries are
rational functions of n, with numerators and denominators having irre-
ducible factors of even degree apparently growing without bound as k
increases. We have not been able to discern the patterns in the coeffi-
cients.

A seemingly simpler question is: are the Qn
k positive definite? They

are for small values of n.
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2. Hadwiger’s basis theorem for ValSO(n) implies that various meth-
ods for constructing SO(n)-invariant valuations lead to the same results.
For example, if K is a compact convex body then ti(K) is equal to the
average value of ti(πP (K)) as P ranges over the Grassmannian G(n, j),
j ≥ i; or, if the body has smooth boundary, as the integral over the
boundary of K of the (n − i − 1)st elementary symmetric function of
the principal curvatures. In the unitary case, we have seen that the
monomials sitj correspond to Alesker’s Uk,p basis, given by integrating
the Hadwiger valuations of the intersections of K with affine complex
planes. On the other hand Alesker also defined an alternative basis,
denoted Ck,p, given by averaging the Hadwiger valuations of the pro-

jections of K to the elements of the various complex Grassmannians.
Finally, it may be shown using Alesker’s Irreducibility Theorem that
every G-invariant valuation (other than the volume) on a vector space
V is obtained by pairing the normal cycle N(K) of K ∈ K(V ) with a
given G-invariant differential form on the sphere bundle of V . H. Park
[11] has classified these forms in the case V = C

n, G = U(n), giving a

third explicit basis for ValU(n).
Determining the linear relations among these three bases is a funda-

mental open problem.

3. Say that a valuation ϕ is positive if ϕ(K) ≥ 0 for all convex bodies
K, and monotone if ϕ(K) ≥ ϕ(L) whenever K ⊃ L. It is easy to see

that the cones of positive and monotone valuations in ValSO(n) coin-
cide, and consist of all nonnegative linear combinations of the Hadwiger
valuations. What are the positive and monotone cones in ValU(n)?
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