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MINIMAL DISKS BOUNDED BY THREE STRAIGHT

LINES IN EUCLIDEAN SPACE AND TRINOIDS IN

HYPERBOLIC SPACE

Benôıt Daniel

Abstract

Following Riemann’s idea, we prove the existence of a minimal
disk in Euclidean space bounded by three lines in generic position
and with three helicoidal ends of angles less than π. In the case of
general angles, we prove that there exist at most four such minimal
disks, give a sufficient condition of existence in terms of a system
of three equations of degree 2, and give explicit formulas for the
Weierstrass data in terms of hypergeometric functions. Finally,
we construct constant mean curvature one trinoids in hyperbolic
space by the method of the conjugate cousin immersion.

1. Introduction

In this paper we investigate immersed minimal disks in Euclidean
space R3 bounded by three straight lines in generic position (i.e., the
lines do not intersect one another and do not lie in parallel planes; in
particular they are not pairwise parallel). This problem was investigated
by Riemann in his posthumous memoir [Rie68]. He actually introduced
the spinor representation, the Gauss map and the Hopf differential of
minimal surfaces in Euclidean space. He investigated the case of mini-
mal surfaces bounded by a contour composed of pieces of straight lines
(possibly going to infinity). He studied more precisely the cases where
the contour is composed of 2, 3 or 4 lines.

However, his study was not complete and sometimes not precise; in
particular, he did not deal with questions of orientations. The first
aim of this paper is to complete Riemann’s study of minimal surfaces
bounded by three straight lines. More precisely we will investigate min-
imal immersions x from Σ = {z ∈ C| Im z > 0} \ {0, 1} into R3 mapping
(−∞, 0), (0, 1) and (1,∞) onto three lines (in generic position) and hav-
ing helicoidal ends (in the sense explained in section 2.2) at 0, 1 and ∞.
The method is to study the Weierstrass data of x and to use the spinor
representation.
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We first prove that there exist at most four minimal immersions
bounded by three given lines (in generic position) with helicoidal ends
of given parameters (Theorem 21). To do this, we use a result by Rie-
mann: he proved that the spinor data satisfy a differential equation
involving the Schwarzian derivative of the Gauss map. This is a second
order equation with five regular singularities. Studying the behaviour
of the Schwarzian derivative at these singular points, we prove that the
Schwarzian derivative only depends on two parameters that are related
by two polynomial equations of degree 2, and thus that there are at
most four possiblities for the Schwarzian derivative of the Gauss map.

We next study the explicit immersion given by Riemann in his mem-
oir [Rie68]: he introduced spinors in terms of hypergeometric func-
tions, but he did not check that they actually gave a minimal immersion
bounded by given lines. We establish this fact in Proposition 31. More
precisely, given three lines in generic position, denoting by A, B, C the
distances between the lines, and πα, πβ, πγ the angles of the ends (with
signs as explained in section 2.2), we prove that to each real solution
(p, q, r) (up to a sign) of the system





p2 − α2(p + q + r)2 = εAα
2π

q2 − β2(p + q + r)2 = εBβ
2π

r2 − γ2(p + q + r)2 = εCγ
2π

where ε ∈ {1,−1} (depending on the geometric configuration of the lines
and on the angles) corresponds a minimal immersion (with possibly a
singular point when the Hopf differential has a double zero, which is a
non-generic situation) bounded by these lines and with helicoidal ends
of parameters (A, α), (B, β), (C, γ) (Theorem 33). In particular we
prove the existence of at least one minimal immersion in the case where
the angles are less than π (Corollary 34).

However, we do not know if we obtain all the solutions in this way.
Figure 1 is a picture of a minimal surface bounded by three lines with

helicoidal ends, drawn with the software “Evolver”.
In the last part of this paper, we construct constant mean curvature

one (CMC 1) trinoids in hyperbolic space H3 applying the conjugate
cousin method to minimal disks bounded by three straight lines in R3.
CMC 1 surfaces in H3 are called Bryant surfaces. Bryant proved in
[Bry87] that they are closely related to minimal surfaces in R3 (see
also [UY93] and [Ros02]); in particular there exists a representation
in terms of holomorphic data analogous to Weierstrass representation.

Irreducible trinoids in H3 were first classified by Umehara and Ya-
mada in [UY00], and then by Bobenko, Pavlyukevich and Springborn
in [BPS03], using different techniques: their method has some similar-
ities with that used in this paper to find minimal surfaces bounded by
three lines in R3 (they use a spinor representation for Bryant surfaces
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Figure 1. A minimal surface with three helicoidal ends.

and they obtain explicit formulas in terms of hypergeometric functions).
The technique of the conjugate cousin immersion was used by Karcher
in [Kar05] to construct trinoids with dihedral symmetry. Here we use
this technique to construct general irreducible trinoids with a symmetry
plane (actually every irreducible trinoid has a symmetry plane by the
classification of [UY00]). We also prove that the asymptotic bound-
ary points of the ends of these trinoids are distinct (except in excep-
tional cases) (Theorem 49). Finally we give examples of minimal disks
bounded by three lines whose conjugate cousins are invariant by some
parabolic isometries.

Acknowledgements. This work is part of my Ph.D. thesis defended at
the University Paris 7. I am very grateful to my advisor, Harold Rosen-
berg, for helpful discussions about this paper. I am also very grateful
to Pascal Collin for his explanations on Riemann’s memoir [Rie68].
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2. Preliminaries

In all this paper, we will set C̄ = C ∪ {∞}, R̄ = R ∪ {∞},
Σ = {z ∈ C| Im z > 0} \ {0, 1}, Σ0 = {z ∈ Σ||z| < 1},

Σ1 = {z ∈ Σ||z − 1| < 1}, Σ∞ = {z ∈ Σ||z| > 1}.
The canonical scalar product of R3 is denoted by 〈·, ·〉. If D is a straight
line in R3, then D⊥ denotes the set of unit vectors that are orthogonal
to D. The canonical basis of R3 will be denoted by (~e1, ~e2, ~e3):

~e1 = (1, 0, 0), ~e2 = (0, 1, 0), ~e3 = (0, 0, 1).

We define the logarithm and non-integer powers on Σ in the following
way. Let κ ∈ R. If z = ρeiθ ∈ Σ with ρ > 0 and θ ∈ [0, π], then
ln z = ln ρ+iθ and zκ = ρκeiκθ. If z ∈ Σ and z−1 = ρeiθ with ρ > 0 and
θ ∈ [0, π], then (z−1)κ = ρκeiκθ and (1−z)κ = ρκeiκ(θ−π) = e−iπκ(z−1)κ

(this convention is chosen in order that (1 − z)κ is real when z is real
and less than 1).

Finally, D denotes the set of the triples of straight lines in R3 that
are neither pairwise concurrent, neither pairwise parallel, nor lying in
parallel planes, modulo direct isometries of R3.

2.1. Weierstrass representation. In this section we recall basic facts
about Weierstrass representation and we introduce some notations.

Let S be a Riemann surface with boundary, and x = (x1, x2, x3) :
S → R3 a conformal minimal immersion. Then we have

x(z) = x(z0) + Re

∫ z

z0

(
(1 − g2), i(1 + g2), 2g

)
ω

where z0 is a fixed point in S and (g, ω) the Weierstrass data of x: g is
a meromorphic function on S and ω a holomorphic 1-form on S. The
poles of g are the zeros of ω, and z is a pole of g of order k if and only if
z is a zero of ω of order 2k. Conversely, if g and ω satisfy this condition,
then they define a minimal immersion.

We define X = (X1, X2, X3) : S → C3 by

X(z) = x(z0) +

∫ z

z0

(
(1 − g2), i(1 + g2), 2g

)
ω.

We have
dx1 + idx2 = ω̄ − g2ω, dx3 = Re(2gω).

The Gauss map of x is

N =

(
2g

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)
.

The orientations induced on x(S) by the Gauss map N and the immer-
sion x are compatible. The function g is the composition of the Gauss
map and the stereographic projection with respect to the north pole of
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the sphere. If D is a line parallel to the vector (cos(πα), sin(πα), 0) for
α ∈ R, then the circle D⊥ corresponds to g ∈ ieiπαR̄.

If f is a meromorphic function on an open set U ⊂ S, we define its
Schwarzian derivative with respect to a local conformal coordinate z by

Szf =

((
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
)

dz2.

If ζ is another local conformal coordinate, then Szf = Sζf +Szζ. If f is
regular at a point z1, then Szf is holomorphic at z1; if f has a branch
point of order j − 1 at z1 with j > 2, then Szf has a pole of order 2 at

z1, and its coefficient of order −2 is equal to 1−j2

2 .
The Hopf differential is the holomorphic 2-form on S defined by

Q = ωdg =
1

2
dX3

dg

g
.

The forms Q and Szg are invariant by a direct isometry of R3. The first
and second fondamental forms of the surface are given by

I = (1 + |g|2)2|ω|2, II = −2 Re Q.

Proposition 1. Let z ∈ S and k ∈ N∗. Then z is a zero of Q of
order k if and only if z is a branch point of g of order k. This happens
if and only if one of the following conditions holds:

• z is a zero of g of order k + 1,
• z is a pole of g of order k + 1,
• z is a zero of dg

g
of order k.

Proof. If z is a zero of g of order d ∈ N∗, then it is not a zero of ω
and it is a simple pole of dg

g
. Consequently it is a zero of Q of order k

if and only if k = d − 1.
If z is a pole of g of order d ∈ N∗, then it is a zero of ω of order 2d

and it is a simple pole of dg
g

. Consequently it is a zero of Q of order k

if and only if k = d − 1.
If z is neither a zero nor a pole of g, then it is not a zero of ω, and

consequently it is a zero of Q of order k if and only if it is a zero of dg
g

of order k. q.e.d.

We recall the spinor representation of a minimal surface:

x(z) = x(z0) + Re

∫ z

z0

(
ξ2
1 − ξ2

2 , i(ξ
2
1 + ξ2

2), 2ξ1ξ2

)

where ξ2 and ξ2 are holomorphic sections of a spin structure (see [KS96]
for more information). These spinors satisfy

g =
ξ2

ξ1
, ω = ξ2

1 .
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Two such holomorphic spinors define a minimal immersion if and only
if they do not have common zeros (if they have a common zero, then
the map x is not an immersion at this point). We will call (ξ1, ξ2) the
spinor data of x.
2.2. Helicoidal ends. Most of the results of this section are contained
in Riemann’s memoir [Rie68]. Here we prove these results using modern
formalism, and we give precise definitions for helicoidal ends and the
signs of distances and angles.

Definition 2. Let D1 and D2 be two nonparallel and nonconcurrent
oriented straight lines, and let ~u1 and ~u2 be unit vectors inducing the
orientations of D1 and D2. Then the unit vector

~v =
~u1 × (−~u2)

||~u1 × ~u2||
is called the vector associated to the couple (D1, D2) of oriented straight
lines.

Definition 3. The signed distance of D1 and D2 is the number
D(D1, D2) = 〈−−→p1p2, ~v〉 where p1 ∈ D1 and p2 ∈ D2 (this number does
not depend on the choices of p1 and p2, and |D(D1, D2)| is the distance
between D1 and D2).

Definition 4. Let U be a neighbourhood of 0 in C that is symmetric
with respect to the real axis (i.e., z ∈ U ⇐⇒ z̄ ∈ U), Ω = Σ ∩ U ,
Ω1 = Ω ∩ (−∞, 0), Ω2 = Ω ∩ (0, +∞) and x : Ω → R3 be a conformal
minimal immersion that is complete at 0. Let D1 and D2 be two non-
parallel and nonconcurrent oriented straight lines, let ~u1 and ~u2 be unit
vectors inducing the orientations of D1 and D2, and let ~v be the vector
associated to (D1, D2).

We say that the immersion x has an end (at z = 0) bounded by the
couple of oriented lines (D1, D2) if

1. the immersion x maps Ω1 to a part of D1 and 〈x(z), ~u1〉 → +∞
when z → 0 with z real and negative,

2. the immersion x maps Ω2 to a part of D2 and 〈x(z), ~u2〉 → −∞
when z → 0 with z real and positive.

We say that the immersion x has a helicoidal end (at z = 0) bounded
by the couple of oriented lines (D1, D2) if moreover the two following
conditions are satisfied:

3. the Gauss map of x has a limit when z → 0,
4. the quantity 〈x(z), ~v〉 is bounded when z → 0.

It will follow from the proof of Lemma 7 that a helicoidal end is
actually asymptotic to a helicoid.

Lemma 5. Assume that x has a helicoidal end bounded by (D1, D2).
Let N be the Gauss map of x. Then the limit point of N at 0 is N(0) = ~v
or N(0) = −~v.
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Proof. We have N(z) ∈ D⊥
1 if z ∈ Ω1 and N(z) ∈ D⊥

2 if z ∈ Ω2, so
N(0) ∈ D⊥

1 ∩ D⊥
2 . q.e.d.

Lemma 6. Assume that x has an end bounded by (D1, D2). Let
(g, ω) be the Weierstrass data of x, and Q its Hopf differential. Then
Q extends to a holomorphic 2-form on U \ {0} and Szg extends to a
meromorphic 2-form on U \ {0}.

Proof. Since a direct isometry of R3 does not change Q and Szg, we
can assume that D2 is the x1-axis. Then x3 is constant on Ω2, so x′

3 = 0
on Ω2, and thus X ′

1(z) ∈ iR for z ∈ Ω2. And the Gauss map N is

normal to the x1-axis on Ω2, so g(Ω2) ⊂ iR̄, and thus g′

g
(z) ∈ R̄ for

z ∈ Ω2. Thus Q
dz2 = 1

2X ′
3

g′

g
is purely imaginary on Ω2 (since it cannot

be infinite). The same holds on Ω1. Thus we can apply the Schwarz

reflection to Q
dz2 (which is up to now defined on Ω), and we obtain a

holomorphic 2-form Q defined on U \ {0}.
In the same way, assuming that D2 is the x1-axis, we have g′′

g′
(z) ∈ R̄

for z ∈ Ω2, and so (g′′

g′
)′ − 1

2(g′′

g′
)2 is real or infinite on Ω2. The same

holds on Ω1, and we obtain a meromorphic 2-form Szg defined on U \{0}
by Schwarz reflection. q.e.d.

Lemma 7. Assume that x has an end bounded by (D1, D2). Let
(g, ω) be the Weierstrass data of x, and Q its Hopf differential. If x
has a helicoidal end bounded by (D1, D2), then there exist A ∈ R∗ and
α ∈ R \ Z such that

(1) Q ∼ i
Aα

2π
z−2dz2, Szg ∼ 1 − α2

2
z−2dz2

when z → 0.
The couple (A, α) is then defined uniquely up to a sign. Moreover,

if πα0 denotes the angle of ~u1 and −~u2 with α0 ∈ (0, 1), then we have
either α ∈ α0 + 2Z and A = −D(D1, D2), or −α ∈ α0 + 2Z and A =
D(D1, D2).

We say that x has a helicoidal end of parameters (A, α), and that πα
is the angle of the helicoidal end.

Proof. Since a direct isometry of R3 does not change Q and Szg, we
can assume that ~u1 = (cos(πα0), sin(πα0), 0), ~u2 = −~e1, D1 is the line
(0, 0,−A) + R~u1 and D2 the x1-axis. Then we have ~v = −~e3, and so
g(0) = 0 or g(0) = ∞ by Lemma 5. Moreover, we have D(D1, D2) = −A.

Set h(z) = z−α0g(z) for z ∈ Ω. Then h(z) ∈ iR̄ if z ∈ Ω1 (since
N(z) ∈ D⊥

1 ) or z ∈ Ω2 (since N(z) ∈ D⊥
2 ). Thus h extends to a

meromorphic map on U \ {0} by Schwarz reflection principle. Since g
has a limit at 0, h has no essential singularity at 0.

Thus there exist an integer j and a nonzero real number ρ such that

g(z) ∼ iρzα0+j . We set α = α0+j. We compute that Szg ∼ 1−α2

2 z−2dz2.



474 B. DANIEL

Let h1(z) = X3(z) − iA
π

ln z for z ∈ Ω, with X3 as in section 2.1.
Then, since x3 = Re X3, we have h1(z) ∈ iR if z ∈ Ω1 or z ∈ Ω2. Thus
h1 extends to a meromorphic map on U \{0} by Schwarz reflection prin-
ciple. Moreover, x3(z) = −〈x(z), ~v〉 is bounded in the neighbourhood
of 0 by condition 4 in Definition 4, so h1 is holomorphic at 0.

Hence we have dX3 ∼ iA
π
z−1dz, and so Q = 1

2dX3
dg
g
∼ iAα

2π
z−2dz2.

We now prove that the integer j = α − α0 is even. We have

d(x1 + ix2) = ω̄ − g2ω =
dX3

2ḡ
− gdX3

2
∼ A

2π
(ρ−1z̄−1−αdz + ρz−1+αdz).

We set z = t + iτ with t and τ real. We have 〈x, ~u1〉 = Re((x1 +
ix2)e

−iπα0), so for t < 0 we have

∂

∂t
〈x, ~u1〉 ∼ − A

2π
cos(π(α − α0))(ρ

−1|t|−1−α + ρ|t|−1+α).

Thus condition 1 in Definition 4 implies that −Aρ cos(π(α − α0)) > 0.
And we have 〈x,−~u2〉 = x1 = Re(x1 + ix2), so for t > 0 we have

∂

∂t
〈x,−~u2〉 ∼

A

2π
(ρ−1t−1−α + ρt−1+α).

Thus condition 2 in Definition 4 implies that Aρ < 0. We conclude that
cos(π(α − α0)) > 0, that is α − α0 ∈ 2Z.

Finally, it is clear that (1) defines (A, α) uniquely up to a sign. q.e.d.

Let x be an immersion having a helicoidal end of parameters (A, α)
bounded by two lines D1 and D2 that are as in the proof of this lemma.
Without loss of generality we can assume that α ∈ α0 + 2Z, and thus
A = −D(D1, D2). Then α > 0 means that the Gauss map at 0 points
down and that we turn in the clockwise direction when we go from D1

to D2 on the minimal surface, and α < 0 means that the Gauss map at
0 points up and that we turn in the counter-clockwise direction when
we go from D1 to D2 on the minimal surface. On the other hand, A > 0
means that D1 lies below D2, and A < 0 means that D1 lies above D2.
Thus, Aα > 0 means that we go down when we turn in the counter-
clockwise direction on the minimal surface, and Aα < 0 means that we
go up when we turn in the counter-clockwise direction on the minimal
surface. This last fact remains true if −α ∈ α0 +2Z. Hence we say that
x has a left-helicoidal end (respectively a right-helicoidal end) if Aα > 0
(respectively Aα < 0) (see figures 2, 3, 4 and 5).

Remark 8. This definition and these lemmas extend for ends at a
point z1 ∈ R.

They also extend for end at ∞ using the change of parameters ζ =
−z−1, which maps {Im z > 0} onto itself. We get

Q ∼ i
Aα

2π
z−2dz2, Szg ∼ 1 − α2

2
z−2dz2
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πα
D1

D2

Figure 2. A > 0 and α > 0 (left-helicoidal end).

D2

παD1

Figure 3. A < 0 and α > 0 (right-helicoidal end).

πα

D2

D1

Figure 4. A > 0 and α < 0 (right-helicoidal end).

when z → ∞ (because Szg = Sζg + Szζ and Szζ = 0).

3. Minimal disks bounded by three lines with helicoidal ends

In this section we will study minimal disks bounded by three lines
with three helicoidal ends when the triple of lines belong to D, which is
a generic property.
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πα

D1

D2

Figure 5. A < 0 and α < 0 (left-helicoidal end).

3.1. Geometric configuration. An element of D has a representant
that is described as follows.

Let D1 be the horizontal line oriented by ~u1 = (cos(πα0), sin(πα0), 0)
for some α0 ∈ (0, 1), D2 the x1-axis oriented by ~u2 = −~e1, and D3

the line oriented by ~u3 = (cos(πγ′) sin κ,− sin(πγ′) sin κ, cos κ) for some
γ′ ∈ R and κ ∈ R (the number πγ′ is the angle of the projections of D2

and D3 on the horizontal plane, except if D3 is vertical, in which case
it can take any value).

The number πα0 is the geometric angle of ~u1 and −~u2. Let us denote
by πβ0 with β0 ∈ (0, 1) the geometric angle of ~u3 and −~u1, and by πγ0

with γ0 ∈ (0, 1) the geometric angle of ~u2 and −~u3 (see figure 6).

πα0

πβ0

D1

D2

D3

πγ0

Figure 6. Three lines in generic position.

We denote by ~v0, ~v1 and ~v∞ the vectors associated to (D1, D2),
(D2, D3) and (D3, D1) (see Definition 2):

~v0 = − ~u1 × ~u2

||~u1 × ~u2||
= −~e3, ~v1 = − ~u2 × ~u3

||~u2 × ~u3||
, ~v∞ = − ~u3 × ~u1

||~u3 × ~u1||
.
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We set A = −D(D1, D2), B = −D(D3, D1) and C = −D(D2, D3).
Finally we denote by ε0 the sign of det(~u1, ~u2, ~u3).

Proposition 9. The map

L : (D1, D2, D3) 7→ (α0, γ0, β0,−A,−C,−B, ε0)

is a bijection from D onto K × R∗ × R∗ × R∗ × {1,−1} where K is the
set of the triples (α0, γ0, β0) ∈ R3 satisfying

(2)
α0 + β0 + γ0 > 1, −α0 + β0 + γ0 < 1,
α0 − β0 + γ0 < 1, α0 + β0 − γ0 < 1.

Proof. The fact that (α0, γ0, β0) ∈ K is a consequence of Gauss-
Bonnet formula applied to the spherical triangles on S2 bounded by
the circles D⊥

1 , D⊥
2 and D⊥

3 .
Conversely, let (α0, γ0, β0) ∈ K, A, B, C ∈ R∗ and ε0 ∈ {1,−1}. Then

there exists a spherical triangle of angles πα0, πβ0 and πγ0. The three
corresponding oriented circles define unit vectors ~u1, ~u2 and ~u3 uniquely
up to a direct isometry of R3. If the sign of det(~u1, ~u2, ~u3) is not equal to
ε0, then we replace these vectors by their images by an indirect isometry
of R3 (which does not change the angles of the spherical triangle). Up
to now, ~u1, ~u2 and ~u3 are uniquely determined.

Now we consider three lines D1, D2 and D3 in R3 oriented by ~u1,
~u2 and ~u3. We translate D2 in the direction of ~u1 × ~u2 in order that
D(D1, D2) = −A. Then we translate D3 in the direction of ~u1 × ~u3 in
order that D(D3, D1) = −B. Finally we translate D3 in the direction
of ~u1 in order that D(D2, D3) = −C (this operation does not change
D(D3, D1)). The lines D1, D2 and D3 are determined uniquely up to a
direct isometry of R3. This completes the proof. q.e.d.

Definition 10. Two triples in D are called dual configurations if
their parameters only differ by the sign of ε0.

The dual configuration of that of figure 6 is shown on figure 7; in
both configurations the lines D1 and D2 are horizontal, but D3 “goes
down” on figure 6 and “goes up” on figure 7.

Remark 11. An indirect isometry of R3 changes A, B, C and ε0

into their opposites. The dual configuration of a triple is not the image
of this triple by a symmetry, but the directions of the straight lines are
symmetric.

We set β′ = 1−α−γ′ (the number πβ′ is the angle of the projections
of D1 and D3 on the horizontal plane, except if D3 is vertical, in which
case it can take any value).

Since ~v1 and −~e3 are normal to the x1-axis, there exists a rotation R
about the oriented x1-axis that maps ~v1 onto −~e3; we denote by θ its
angle. We have R(~u2) = ~u2 and R(~u3) = (cos(πγ0),− sin(πγ0), 0). In
the same way, ~v∞ and −~e3 are normal to D1, so there exists a rotation
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πα0

πβ0

πγ0

D2

D1 D3

Figure 7. The dual configuration of that of figure 6.

R̂ about the oriented line D1 that maps ~v∞ onto −~e3; we denote by θ̂ its
angle. We denote by T the rotation of angle −πα0 with respect to the
x3-axis. We have T ◦ R̂(~u1) = ~e1, T ◦ R̂(~u3) = (cos(πβ0),− sin(πβ0), 0)

and T ◦ R̂(~v∞) = −~e3.

Finally we set t = tan θ
2 and t̂ = tan θ̂

2 .

Lemma 12. We have

cos θ =
cos(πβ0) + cos(πα0) cos(πγ0)

sin(πα0) sin(πγ0)
,

cos θ̂ =
cos(πγ0) + cos(πα0) cos(πβ0)

sin(πα0) sin(πβ0)
.

Proof. We notice that the numbers sin(πα0), sin(πβ0) and sin(πγ0)
are positive.

We have
cos(πγ0) = 〈~u2,−~u3〉 = cos(πγ′) sin κ,

sin(πγ0) =
√

1 − cos2(πγ0) =

√
sin2(πγ′) sin2 κ + cos2 κ,

cos(πβ0) = 〈~u3,−~u1〉
= − cos(πα0) cos(πγ′) sin κ + sin(πα0) sin(πγ′) sinκ.

We compute that

~u1 × ~u2 = sin(πα0)~e3, ~u2 × ~u3 = (0, cos κ, sin(πγ′) sinκ).

Thus we have

cos θ =
〈~u1 × ~u2, ~u2 × ~u3〉

||~u1 × ~u2|| · ||~u2 × ~u3||
=

sin(πγ′) sinκ√
sin2(πγ′) sin2 κ + cos2 κ

.

Finally we get

cos(πβ0) = − cos(πα0) cos(πγ0) + sin(πα0) sin(πγ0) cos θ.
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This proves the first formula.
And we have

cos(πβ0) = cos(πβ′) sin κ,

sin(πβ0) =
√

1 − cos2(πβ0) =

√
sin2(πβ′) sin2 κ + cos2 κ.

We compute that

~u3 × ~u1 = (− sin(πα0) cos κ, cos(πα0) cos κ, sin(πβ′) sinκ).

Thus we have

cos θ̂ =
〈~u1 × ~u2, ~u3 × vecu1〉
||~u1 × ~u2|| · ||~u3 × ~u1||

=
sin(πβ′) sin κ√

sin2(πβ′) sin2 κ + cos2 κ
.

Finally we have

cos(πγ0) = − cos(π(α0 + β′)) sin κ

= − cos(πα0) cos(πβ′) sin κ + sin(πα0) sin(πβ′) sinκ

= − cos(πα0) cos(πβ0) + sin(πα0) sin(πβ0) cos θ̂.

This proves the second formula. q.e.d.

Lemma 13. The signs of cos κ, sin θ, sin θ̂, t and t̂ are equal to ε0.

Proof. Since sin θ = 2t
1+t2

, t and sin θ have the same sign. In the same

way t̂ and sin θ̂ have the same sign.
By definition of θ we have ~v1 × (−~e3) = sin θ~e1. We compute that

~v1 × (−~e3) =
cos κ√

sin2(πγ′) sin2 κ + cos2 κ
~e1,

so cos κ and sin θ have the same sign.
In the same way we have ~v∞ × (−~e3) = sin θ̂~u1, so

sin θ̂ = det(~v∞,−~e3, ~u1) =
cos κ√

sin2(πβ′) sin2 κ + cos2 κ
.

Finally we have det(~u1, ~u2, ~u3) = sin(πα0) cos κ. q.e.d.

3.2. The Hopf differential and the spinor data. Proceeding as for
Lemma 6, we get the following result.

Lemma 14. Let x : Σ → R3 be a conformal minimal immersion
bounded by three straight lines. Let (g, ω) be its Weierstrass data. Then
its Hopf differential Q extends to a holomorphic 2-form on C \ {0, 1}
and the Schwarzian derivative Szg of its Gauss map extends to a mero-
morphic 2-form on C \ {0, 1}.

From now on we consider a triple of lines (D1, D2, D3) ∈ D. Let
L(D1, D2, D3) = (α0, γ0, β0,−A,−C,−B, ε0), α ∈ α0 + 2Z, β ∈ β0 +
2Z and γ ∈ γ0 + 2Z. We assume that x : Σ → R3 is a conformal
minimal immersion bounded by (D1, D2, D3) and having helicoidal ends
of parameters (A, α), (B, β) and (C, γ) at 0, ∞ and 1 respectively. We
denote by (g, ω) its Weierstrass data.
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Proposition 15 (Riemann, [Rie68]). Then the Hopf differential of
x is

(3) Q = iz−2(z − 1)−2ϕ(z)dz2

where

(4) ϕ(z) =
Bβ

2π
z(z − 1) − Aα

2π
(z − 1) +

Cγ

2π
z.

Proof. At z = 0 we have Q ∼ iAα
2π

z−2dz2. At z = 1 we have Q ∼
iCγ

2π
(z − 1)−2dz2. At z = ∞ we have Q ∼ iBβ

2π
z−2dz2. Hence the map

ϕ(z) = z2(z−1)2 Q
idz2 has no singularity on C, and we have ϕ(z) = O(z2)

when z → ∞, so ϕ is a polynomial of degree less than or equal to 2.
Finally we compute that ϕ has the announced expression. q.e.d.

Lemma 16. The polynomial ϕ defined by (4) has two nonreal conju-

gate roots if and only if Aα, Bβ and Cγ have the same sign,
√
|Aα| <√

|Bβ| +
√
|Cγ|,

√
|Bβ| <

√
|Aα| +

√
|Cγ| and

√
|Cγ| <

√
|Aα| +√

|Bβ|.
It has a double real root if and only if Aα, Bβ and Cγ have the same

sign, and
√
|Aα| =

√
|Bβ| +

√
|Cγ|,

√
|Bβ| =

√
|Aα| +

√
|Cγ| or√

|Cγ| =
√
|Aα| +

√
|Bβ|.

It has two distinct real roots in all other cases.

Proof. The discriminant of ϕ is δ
4π2 where

δ = A2α2 + B2β2 + C2γ2 − 2ABαβ − 2ACαγ − 2BCβγ.

Thus the three cases in the lemma correspond respectively to δ < 0,
δ = 0 and δ > 0. The expression δ is a polynomial in the variable C,
whose discriminant is equal to 16ABαβγ2. If AαBβ < 0, then δ(C) > 0
for all C ∈ R∗.

We assume that Aα > 0 and Bβ > 0. Then we have δ(C) < 0 if and
only if

(
√

Aα −
√

Bβ)2 < Cγ < (
√

Aα +
√

Bβ)2.

This condition is not satisfied if Cγ < 0, and if Cγ > 0 it is satisfied
if and only if

√
Cγ >

√
Aα −

√
Bβ,

√
Cγ >

√
Bβ −

√
Aα and

√
Cγ <√

Aα +
√

Bβ. And we have δ(C) = 0 if and only if C > 0, and
√

Cγ =√
Aα −

√
Bβ,

√
Cγ =

√
Bβ −

√
Aα or

√
Cγ =

√
Aα +

√
Bβ.

We deal with the case where Aα < 0 and Bβ < 0 in the same way.
q.e.d.

We set

ζ(z) =

∫ z

0
ϕ(τ)dτ.

This is a local diffeomorphism except at the zeros of ϕ. The Schwarzian
derivative of g in the “coordinate” ζ satisfies

Sζg = Szg − Szζ.
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We set

Θ =
Sζg

dz2
= ϕ

(
1

g′

(
g′

ϕ

)′)′
− ϕ2

2

(
1

g′

(
g′

ϕ

)′)2

=

(
g′′

g′

)′
− 1

2

(
g′′

g′

)2

−
(

ϕ′′

ϕ

)′
+

1

2

(
ϕ′

ϕ

)2

.

Let (ξ1, ξ2) be the spinor data of x. We set

ξ1 = z−1(z − 1)−1k1

√
dz, ξ2 = z−1(z − 1)−1k2

√
dz.

Then k1 and k2 are holomorphic functions on Σ, and we have

g =
k2

k1
, ω = z−2(z − 1)−2k2

1dz,(5)

Q = z−2(z − 1)−2(k1k
′
2 − k′

1k2)dz2.

We will abusively call k1 and k2 the spinors associated to (g, ω).

Lemma 17 (Riemann, [Rie68]). The functions k1 and k2 satisfy the
following relation on Σ:

(6) k1k
′
2 − k′

1k2 = iϕ.

They are solutions on Σ of the following differential equation:

(7) k′′ − ϕ′

ϕ
k′ +

Θ

2
k = 0.

Proof. Equality (6) follows from (3).

Since k2
1 = iϕ

g′
, we have

2
k′

1

k1
=

ϕ′

ϕ
− g′′

g′
.

On the other hand we have

1

g′

(
g′

ϕ

)′
=

1

g′

(
g′′

ϕ
− ϕ′g′

ϕ2

)
= −2

k′
1

ϕk1
.

So (
1

g′

(
g′

ϕ

)′)′
= −2

k′′
1

ϕk1
+ 2

k′
1
2

ϕk2
1

+ 2
ϕ′k′

1

ϕ2k1
,

and

Θ = ϕ

(
1

g′

(
g′

ϕ

)′)′
− ϕ2

2

(
1

g′

(
g′

ϕ

)′)2

= −2
k′′

1

k1
+ 2

ϕ′k′
1

ϕk1
.

Thus k1 is solution of equation (7).
We also have

2
k′

2

k2
= 2

g′

g
+

ϕ′

ϕ
− g′′

g′
.
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So

1

g′

(
g′

ϕ

)′
= 2

g′

ϕg
− 2

k′
2

ϕk2
,

(
1

g′

(
g′

ϕ

)′)′
= 2

g′′

ϕg
− 2

g′2

ϕg2
− 2

ϕ′g′

ϕ2g
− 2

k′′
2

ϕk2
+ 2

k′
2
2

ϕk2
2

+ 2
ϕ′k′

2

ϕ2k2
,

Θ = 2
g′′

g
− 4

g′2

g2
− 2

ϕ′g′

ϕg
− 2

k′′
2

k2
+ 2

ϕ′k′
2

ϕk2
+ 4

g′k′
2

gk2
= −2

k′′
2

k2
+ 2

ϕ′k′
2

ϕk2
.

Thus k2 is solution of equation (7). q.e.d.

Lemma 18. We have

Θ(z) =
Φ(z)

z2(z − 1)2
+

Λ(z)

z(z − 1)ϕ(z)
+

2ϕ′′

ϕ(z)

where

(8) Φ(z) =
1 − β2

2
z(z − 1) − 1 − α2

2
(z − 1) +

1 − γ2

2
z

and where Λ is an affine function.

Proof. The form Szζ is meromorphic on C̄, with double poles at ∞
and the roots of ϕ. Since Θdz2 = Szg − Szζ, by section 2.2 and Lemma
14 the function Θ is meromorphic on C̄, its possible poles are 0, 1, ∞
and the zeros of ϕ, and these poles are at most double.

By Lemma 7 we have Szg ∼ 1−α2

2 z−2dz2 when z → 0. On the
other hand, Szζ is holomorphic at 0 since 0 is not a zero of ϕ. Thus

we have Θ(z) ∼ 1−α2

2 z−2 when z → 0. In the same way we have

Θ(z) ∼ 1−γ2

2 (z − 1)−2 when z → 1 and Θ(z) ∼ 9−β2

2 z−2dz2 when

z → ∞ (since Szζ ∼ −4z−2dz2). At a root of ϕ, since g and ϕ have
branch points of the same order, the order −2 terms in Szg and Szζ at
this root are equal, and so the order of Θ is greater than or equal to −1.

We have 2ϕ′′

ϕ(z) ∼ 4z−2 when z → ∞ (and ϕ′′ is a constant). Conse-

quently the function Λ = z(z − 1)ϕ(Θ − z−2(z − 1)−2Φ) − 2z(z − 1)ϕ′′

is holomorphic on C, and we have Λ(z) = O(z) when z → ∞, so it is an
affine function. q.e.d.

Lemma 19. If the roots of ϕ are distinct, then there are at most four
possibilities for the function Λ.

Proof. Equation (7) has regular singularities at 0, 1, ∞ and the roots
a1 and a2 of ϕ (see [WW96]). Moreover, at least one of the roots of ϕ
lies in Σ, for example a1.

Since a1 6= a2, the exponents of equation (7) at a1 are 0 and 2,
and since k1 and k2 are well-defined on Σ, the solutions of (7) have no
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logarithmic term at a1. Thus, in the neighbourhood of a1, equation (7)
has a solution having the following form:

∞∑

n=0

λn(z − a1)
n

with λ0 6= 0. Writing Θ(z) = ψ−1(z − a1)
−1 + ψ0 + O(z − a1), since

ϕ′(z)
ϕ(z) = 1

z−a1
+ 1

a1−a2
+ O(z − a1), reporting in equation (7) we get

−λ1 +
ψ−1

2
λ0 = 0,

(
ψ−1

2
− 1

a1 − a2

)
λ1 +

ψ0

2
λ0 = 0.

Hence we get

(9) ψ−1

(
ψ−1

2
− 1

a1 − a2

)
+ ψ0 = 0.

We also compute using (9) that

Λ(z) =
Bβ

2π
(−4a1(a1−1)+m1ψ−1)+

Bβ

2π
(m2+m3ψ−1+m4ψ

2
−1)(z−a1)

with

m1 = a1(a1 − 1)(a1 − a2), m2 = −(a1 − a2)Φ(a1)

a1(a1 − 1)
− 4(2a1 − 1),

m3 = 2a1(a1 − 1) + (2a1 − 1)(a1 − a2), m4 = −m1

2
.

Assume that a1 and a2 are distinct real roots. Then a2 ∈ Σ and we
can apply the same argument at a2 with a coefficient ψ̃−1 analogous to
ψ−1: we have

Λ(z) =
Bβ

2π
(−4a2(a2−1)+m̃1ψ̃−1)+

Bβ

2π
(m̃2+m̃3ψ̃−1+m̃4ψ̃

2
−1)(z−a2)

where m̃j has the same expression as mj exchanging a1 and a2. Iden-

tifying these two expressions of Λ, we get m̃2 + m̃3ψ̃−1 + m̃4ψ̃
2
−1 =

m2 +m3ψ−1 +m4ψ
2
−1 and m1ψ−1−m̃1ψ̃−1−4a1(a1−1)+4a2(a2−1) =

(a1 − a2)(m2 + m3ψ−1 + m4ψ
2
−1). Setting R = a1(a1 − 1)ψ−1 and

R̃ = a2(a2 − 1)ψ̃−1, we get




0 = −4 − Φ(a1)
a1(a1−1) +

(
1

a1−a2
+ 1

a1
+ 1

a1−1

)
R

− 1
a1−a2

R̃ − 1
2a1(a1−1)R

2

0 = −4 − Φ(a2)
a2(a2−1) +

(
1

a2−a1
+ 1

a2
+ 1

a2−1

)
R̃

− 1
a2−a1

R − 1
2a2(a2−1)R̃

2.

(10)

Assume that a1 and a2 are complex conjugate roots. Since Θ(z) ∈ R

when z ∈ R \ {0, 1}, Λ must have real coefficients, so we have Im(m2 +
m3ψ−1 +m4ψ

2
−1) = 0 and Im(−4a1(a1−1)+m1ψ−1−a1(m2 +m3ψ−1 +



484 B. DANIEL

m4ψ
2
−1)) = 0. Setting R = a1(a1 − 1)ψ−1 and R̃ = R̄, since a2 = a1,

this is equivalent to system (10).

System (10) has at most four solutions (R, R̃). Thus there are at
most four possible functions Λ. q.e.d.

Lemma 20. If the polynomial ϕ has a double real root, then there
are at most three possibilities for the function Λ.

Proof. Equation (7) has regular singularities at 0, 1, ∞ and the root
a1 of ϕ. Moreover, a1 lies in Σ. Since a1 is a double root of ϕ, the
exponents of equation (7) at a1 are 0 and 3, and since k1 and k2 are
well-defined on Σ, the solutions of (7) have no logarithmic term at a1.
Thus, in the neighbourhood of a1, equation (7) has a solution having
the following form:

∞∑

n=0

λn(z − a1)
n

with λ0 6= 0. Writing

Θ(z) = ψ−1(z − a1)
−1 + ψ0 + ψ1(z − a1) + O((z − a1)

2),

since ϕ′(z)
ϕ(z) = 2

z−a1
, reporting in equation (7) we get

−2λ1 +
ψ−1

2
λ0 = 0, −2λ2 +

ψ−1

2
λ1 +

ψ0

2
λ0 = 0,

ψ−1

2
λ2 +

ψ0

2
λ1 +

ψ1

2
λ0 = 0.

Hence we get

(11)
ψ3
−1

16
+

ψ−1ψ0

2
+ ψ1 = 0.

We also compute that

Λ(z) = −4
Bβ

2π
a1(a1 − 1) +

Bβ

2π
n1(z − a1)

+
Bβ

2π
n2(z − a1)

2 +
Bβ

2π
n3(z − a1)

3 + O((z − a1)
4)

with

n1 = a1(a1 − 1)ψ−1 − 4(2a1 − 1),

n2 = a1(a1 − 1)

(
ψ0 −

Φ(a1)

a2
1(a1 − 1)2

)
+ (2a1 − 1)ψ−1 − 4,

n3 = a1(a1 − 1)ψ1 −
Φ′(a1)

a1(a1 − 1)
+ 2

Φ(a1)

a1(a1 − 1)

(
1

a1
+

1

a1 − 1

)

+(2a1 − 1)

(
ψ0 −

Φ(a1)

a2
1(a1 − 1)2

)
+ ψ−1.
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On the other hand, Λ is an affine function, so we have n2 = n3 = 0,
and using (11) we obtain that ψ−1 is solution of a degree 3 polynomial
equation. Thus there are at most three possible functions Λ. q.e.d.

All that has been done up to now does not depend on ε0, i.e., it holds
for (D1, D2, D3) as well as for its dual configuration.

Theorem 21. There exist at most four minimal disks bounded by
(D1, D2, D3) or its dual configuration and with helicoidal ends of pa-
rameters (A, α), (B, β) and (C, γ) at 0, ∞ and 1 respectively.

Proof. By lemmas 19 and 20, it suffices to prove that for each pos-
sibility of the Schwarzian derivative there exists at most one minimal
immersion bounded by (D1, D2, D3) or its dual configuration and with
helicoidal ends of parameters (A, α), (B, β), (C, γ).

Assume that the function Θ is known. Then the set of the solutions
of equation (7) on Σ is a vector space generated by two independent
solutions. Thus, if (g, ω) and (g̃, ω̃) are the Weierstrass data of two
minimal immersions corresponding to Θ, then g and g̃ are quotients of
linear combinations of these two independent solutions, so there exists
a Möbius transform µ : C̄ → C̄ such that g̃ = µ◦g. But the value of the
Gauss map at each end is uniquely determined, so we have g(0) = g̃(0),
g(1) = g̃(1) and g(∞) = g̃(∞). Moreover, g(0), g(1) and g(∞) are
pairwise distinct (since the straight lines do not lie in parallel planes),
so µ is the identity, and so g̃ = g and ω̃ = ω. q.e.d.

3.3. Some facts about the hypergeometric differential equa-

tion. In this section we recall some facts about the hypergeometric dif-
ferential equation and hypergeometric series that will be useful to give
explicit examples of minimal disks bounded by three straight lines.

Let s1, s2 and s3 be three complex numbers such that s3 /∈ −N∗. The
hypergeometric series is defined by

F(s1, s2; s3; z) =
Γ(s3)

Γ(s1)Γ(s2)

∞∑

n=0

Γ(s1 + n)Γ(s2 + n)

Γ(s3 + n)
zn

for |z| < 1.
We use the notations of section 3.2. We define eight numbers

(12) s±±± =
1 ± α ± β ± γ

2
.

These numbers are noninteger. We also set

Π = (1 + α + β + γ)(1 − α + β + γ)(1 + α − β + γ)(13)

· (1 + α + β − γ)(1 − α − β + γ)(1 − α + β − γ)

· (1 + α − β − γ)(1 − α − β − γ).



486 B. DANIEL

We consider the following hypergeometric equation on Σ:

(14) w′′ +

(
1 − α

z
+

1 − γ

z − 1

)
w′ + s−−−s−+−

w

z(z − 1)
= 0.

This equation is usually denoted by P

{
0 s−−− 0
α s−+− γ

z

}
. Since we have

α, β, γ /∈ Z, the fundamental system of linear independent solutions of
hypergeometric equation (14) at the singular points is given (see section
2.2, paragraph 1 in [MOS66], or [BPS03])

• on Σ0 by

w
(0)
1 (z) = F(s−−−, s−+−; 1 − α; z),

w
(0)
2 (z) = zα F(s+−−, s++−; 1 + α; z),

• on Σ1 by

w
(1)
1 (z) = F(s−−−, s−+−; 1 − γ; 1 − z)

= zα F(s+−−, s++−; 1 − γ; 1 − z),

w
(1)
2 (z) = (1 − z)γ F(s−−+, s−++; 1 + γ; 1 − z)

= zα(1 − z)γ F(s+−+, s+++; 1 + γ; 1 − z),

• on Σ∞ by

w
(∞)
1 (z) = z−s−−− F(s−−−, s+−−; 1 − β; z−1),

w
(∞)
2 (z) = z−s−+− F(s−+−, s++−; 1 + β; z−1).

The second expressions for w
(1)
1 and w

(1)
2 are obtained using first formula

of section 2.4.1 in [MOS66].

For z ∈ (−1, 0) we have w
(0)
1 (z) ∈ R and w

(0)
2 (z) ∈ eiπαR; for z ∈

(0, 1) we have w
(0)
1 (z) ∈ R and w

(0)
2 (z) ∈ R. For z ∈ (0, 1) we have

w
(1)
1 (z) ∈ R and w

(1)
2 (z) ∈ R; for z ∈ (1, 2) we have w

(1)
1 (z) ∈ R and

w
(1)
2 (z) ∈ e−iπγR. For z ∈ (1, +∞) we have w

(∞)
1 (z) ∈ R and w

(∞)
2 (z) ∈

R; for z ∈ (−∞,−1) we have w
(∞)
1 (z) ∈ e−iπs−−−R and w

(∞)
2 (z) ∈

e−iπs−+−R.
These solutions are connected in the following way. On Σ0 ∩ Σ1 we

have (
w

(0)
1

w
(0)
2

)
= ν

(
w

(1)
1

w
(1)
2

)
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where

ν =

(
ν11 ν12

ν21 ν22

)
(15)

=




Γ(1−α)Γ(γ)
Γ(s−−+)Γ(s−++)

Γ(1−α)Γ(−γ)
Γ(s−−−)Γ(s−+−)

Γ(1+α)Γ(γ)
Γ(s+−+)Γ(s+++)

Γ(1+α)Γ(−γ)
Γ(s+−−)Γ(s++−)


 .

(We used fourth formula of section 2.4.1 in [MOS66] to compute this
matrix.) In the same way we have

(
w

(0)
1

w
(0)
2

)
= ν̂

(
w

(∞)
1

w
(∞)
2

)

where

ν̂ =

(
ν̂11 ν̂12

ν̂21 ν̂22

)
(16)

=


 eiπs−−−

Γ(1−α)Γ(β)
Γ(s−+−)Γ(s−++) eiπs−+−

Γ(1−α)Γ(−β)
Γ(s−−−)Γ(s−−+)

eiπs+−−
Γ(1+α)Γ(β)

Γ(s++−)Γ(s+++) eiπs++−
Γ(1+α)Γ(−β)

Γ(s+−−)Γ(s+−+)


 .

(We used the fifth formula of section 2.4.1 in [MOS66] to compute this
matrix; we should notice that in this formula (−z)−a is defined with
arg(−z) ∈ (−π, π), and thus with this convention we get (−z)−a =
eiπaz−a.) This last formula is actually valid for the analytic continua-
tions of the solutions on Σ0 and Σ∞, since the intersection of these two
domains is empty.

In the sequel, σ1 and σ2 will denote the solutions on Σ of hypergeo-
metric equation (14) such that

σ1 = w
(0)
1 , σ2 = w

(0)
2

on Σ0.

Lemma 22. We have σ1σ
′
2 − σ′

1σ2 = αzα−1(1 − z)γ−1.

Proof. Since σ1 and σ2 are solutions of (14), we get that σ1σ
′
2 −σ′

1σ2

is a solution on Σ of the following equation:

w′ = −
(

1 − α

z
+

1 − γ

z − 1

)
w.

Thus it is proportional to zα−1(1−z)γ−1. And since σ1σ
′
2−σ′

1σ2 ∼ αzα−1

when z → 0, we get the announced expression. q.e.d.

Lemma 23. We have ν12ν21 = −t2ν11ν22 where t has been defined
in section 3.1.
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Proof. Using that Γ(1 + z) = zΓ(z) and Γ(1 − z)Γ(z) = π
sin(πz) (see

section 1.1 in [MOS66]), we compute that

ν12ν21 =
Γ(1 − α)Γ(−γ)Γ(1 + α)Γ(γ)

Γ(s−−−)Γ(s−+−)Γ(s+−+)Γ(s+++)

= −α

γ

Γ(1 − α)Γ(1 − γ)Γ(α)Γ(γ)

Γ(s−−−)Γ(s−+−)Γ(1 − s−+−)Γ(1 − s−−−)

= −α

γ

sin(πs−−−) sin(πs−+−)

sin(πα) sin(πγ)
,

ν11ν22 =
Γ(1 − α)Γ(γ)Γ(1 + α)Γ(−γ)

Γ(s−−+)Γ(s−++)Γ(s+−−)Γ(s++−)

= −α

γ

Γ(1 − α)Γ(γ)Γ(α)Γ(1 − γ)

Γ(s−−+)Γ(s−++)Γ(1 − s−++)Γ(1 − s−−+)

= −α

γ

sin(πs−−+) sin(πs−++)

sin(πα) sin(πγ)
.

Thus proving that ν12ν21 = −t2ν11ν22 is equivalent to proving that

(17) sin(πs−−−) sin(πs−+−) = −t2 sin(πs−−+) sin(πs−++).

But we have

2 sin(πs−−−) sin(πs−+−)

= cos(πβ) − cos(π(−α − γ + 1))

= cos(πβ) + cos(πα) cos(πγ) − sin(πα) sin(πγ),

2 sin(πs−−+) sin(πs−++)

= cos(πβ) − cos(π(−α + γ + 1))

= cos(πβ) + cos(πα) cos(πγ) + sin(πα) sin(πγ).

Thus, since 1−t2

1+t2
= cos θ, condition (17) is equivalent to

cos θ =
cos(πβ) + cos(πα) cos(πγ)

sin(πα) sin(πγ)
,

which is satified according to Lemma 12 and since πα, πβ and πγ are
congruent to πα0, πβ0 and πγ0 modulo 2π. q.e.d.

Lemma 24. We have ν̂12ν̂21 = −t̂2ν̂11ν̂22 where t̂ has been defined
in section 3.1.

Proof. Since eiπs−−−eiπs++− = eiπ(1−γ) = eiπs−+−eiπs+−− , proceeding
as in Lemma 23 and exchanging the roles of β and γ, we obtain that
the equality of the lemma is equivalent to

cos θ̂ =
cos(πγ) + cos(πα) cos(πβ)

sin(πα) sin(πβ)
.
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This condition is satified according to Lemma 12 and since πα, πβ and
πγ are congruent to πα0, πβ0 and πγ0 modulo 2π. q.e.d.

Lemma 25. We have

t̂ν̂11

ν̂21
= e−iπα tν11

ν21
.

Proof. Proving this equality is equivalent to proving that

t sin(πs−−+) = t̂ sin(πs−+−).

We have computed that

t2 = −sin(πs−−−) sin(πs−+−)

sin(πs−−+) sin(πs−++)
, t̂2 = −sin(πs−−−) sin(πs−−+)

sin(πs−+−) sin(πs−++)
.

We deduce that t2 sin2(πs−−+) = t̂2 sin2(πs−+−). Since sin θ = 2t
1+t2

and sin θ̂ = 2t̂
1+t̂2

, we deduce from Lemma 13 that t and t̂ have the same

sign. So it now suffices to prove that sin(πs−−+) and sin(πs−+−) have
the same sign.

We have 2 sin(πs−−+) sin(πs−+−) = cos(π(γ − β))− cos(π(1− α)) =
cos(π(γ0 − β0)) − cos(π(1 − α0)). We also have 1 − α0 ∈ (0, 1) and
γ0 − β0 ∈ (−1, 1), and by (2) we have 1 − α0 > |γ0 − β0|, so we get
cos(π(1 − α0)) < cos(π(γ0 − β0)) and 2 sin(πs−−+) sin(πs−+−) > 0.
This proves the lemma. q.e.d.

3.4. Existence of a minimal disk bounded by three lines. In this
section we give explicit examples of minimal disks bounded by three lines
in generic position. We use the notations of section 3.2.

Let a, b and c be three real numbers. For j = 1, 2 and z ∈ Σ, we set

(18) Kj = z
1−α

2 (1 − z)
1−γ

2 ((a + bz)σj + cz(1 − z)σ′
j).

These functions were introduced by Riemann in his memoir [Rie68]
(where they are denoted by k1 and k2).

Lemma 26 (Riemann, [Rie68]). The functions K1 and K2 satisfy

K1K
′
2 − K ′

1K2 = z1−α(1 − z)1−γ(σ1σ
′
2 − σ′

1σ2)F (z)

with

F (z) = a(a + cα)(1 − z) + (a + b)(a + b − cγ)z(19)

− (b + s−−−c)(b + s−+−c)z(1 − z).

Proof. Using the fact that σj is a solution of (14), we compute that

K ′
j = z−

1+α
2 (1 − z)−

1+γ

2

·
(
(n1z

2 + n2z(1 − z) + n3(1 − z)2)σj

+ (n4z
2(1 − z) + n5z(1 − z)2)σ′

j

)
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with

n1 = −1 − γ

2
(a + b), n2 =

γ − α

2
a +

3 − α

2
b + cs−−−s−+−,

n3 =
1 − α

2
a, n4 = a + b − 1 + γ

2
c, n5 = a +

1 + α

2
c.

Thus we get

K1K
′
2 − K ′

1K2 = z1−α(1 − z)1−γ(σ1σ
′
2 − σ′

1σ2)

·
(
((a + b)n4 − cn1)z

2

+ (an4 + (a + b)n5 − cn2)z(1 − z)

+ (an5 − cn3)(1 − z)2
)
.

The last factor in this expression is a polynomial of degree 2. We com-
pute that its values at 0 and 1 and its degree 2 coefficient are the same
as those of the polynomial F in the lemma. q.e.d.

Corollary 27. The functions K1 and K2 satisfy

(20) K1K
′
2 − K ′

1K2 = αF, K1K
′′
2 − K ′′

1 K2 = αF ′,

with F as in (19).

Proof. The first formula comes from lemmas 22 and 26. We obtain
the second one by differentiation. q.e.d.

Lemma 28. Let λ1, λ2, µ1, µ2 be complex numbers such that λ−1
1 µ2−

λ−1
2 µ1 6= 0. Then the spinors k1 = λ−1

1 K1 + λ−1
2 K2 and k2 = µ1K1 +

µ2K2 define a conformal minimal immersion x : Σ → R3, with possibly a
singular point at the root of F when F has a double root. The immersion
x has, up to a translation in R3, a helicoidal end bounded by D1 and D2

and of parameters (A, α) if and only if λ2 = µ1 = 0, λ1 ∈ iR∗, µ2 ∈ R∗

and αλ−1
1 µ2a(a + αc) = iAα

2π
.

Proof. The singularities of x correspond to the common zeros of k1

and k2, and thus to the common zeros of K1 and K2. Using (20) we
conclude that a singular point of x is necessarily a double root of F .

Let (g, ω) be the Weierstrass data of x. We will use the expressions

of σ1 and σ2 valid in Σ0, that is σ1 = w
(0)
1 and σ2 = w

(0)
2 . We have

g =
µ1K1 + µ2K2

λ−1
1 K1 + λ−1

2 K2

and

k1k
′
2 − k′

1k2 = (λ−1
1 µ2 − λ−1

2 µ1)(K1K
′
2 − K ′

1K2)

= α(λ−1
1 µ2 − λ−1

2 µ1)F

with F as in (19).
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Assume that x has, up to a translation in R3, a helicoidal end bounded
by D1 and D2 and of parameters (A, α). Then when z → 0 we have
Q ∼ iAα

2π
z−2dz2, so we get iAα

2π
= α(λ−1

1 µ2 − λ−1
2 µ1)F (0) = α(λ−1

1 µ2 −
λ−1

2 µ1)a(a + αc). This implies in particular that λ−1
1 µ2 − λ−1

2 µ1 ∈ iR,
a 6= 0 and a + αc 6= 0.

Then we have K1(z) ∼ az
1−α

2 and K2(z) ∼ (a+αc)z
1+α

2 when z → 0.
We must have g(z) ∼ iρzα for some ρ ∈ R∗ (see the proof of Lemma 7),
since α ∈ (0, 1) + 2Z. This implies that µ1 = 0 if α > 0 and λ2 = 0 if
α < 0.

We deal with the case where α > 0. In this case we have g =
µ2K2

λ−1

1
K1+λ−1

2
K2

∼ λ1µ2
a+αc

a
zα, so λ1µ2 ∈ iR. And since we also have

λ−1
1 µ2 ∈ iR (because λ−1

2 µ1 = 0), we get µ2
2 ∈ R and λ2

1 ∈ R. Moreover,
we have g(z) ∈ iR̄ if z ∈ (0, 1) (since D2 is the x1-axis), and the func-
tions K1 and K2 take real values on (0, 1), so we also have λ2µ2 ∈ iR,
and so λ2

2 ∈ R. Since x maps (−1, 0) onto a straight line, and since

d(x1 + ix2) = ω̄ − g2ω = z−2(z − 1)−2k2
1dz − z−2(z − 1)−2k2

2dz, the

argument of k2
1 − k2

2 must be constant on (−1, 0). We have k2
1 − k2

2 =

λ−2
1 K2

1 + 2λ−1
1 λ−1

2 K1K2 + λ−2
2 K2

2 − µ2
2K

2
2 ; on the other hand we have

arg K1(z) ≡ π 1−α
2 mod π and arg K2(z) ≡ π 1+α

2 mod π if z ∈ (−1, 0),

so we conclude that λ2 = 0. Thus we have ω ∼ λ−2
1 a2z−1−αdz and

g2ω ∼ µ2
2(a + αc)2z−1+αdz. Since x1 → +∞ when z → 0 with z real

and positive (by condition 2 in Definition 4), we get λ2
1 < 0 and µ2

2 > 0,
which implies λ1 ∈ iR∗ and µ2 ∈ R∗.

We proceed in the same way in the case where α < 0.
Conversely, assume that λ2 = µ1 = 0, λ1 ∈ iR∗, µ2 ∈ R∗ and

αλ−1
1 µ2a(a + αc) = iAα

2π
. Then we have arg k2

1 = arg(−k2
2) = πα on

(−1, 0) and arg k2
1 = arg(−k2

2) = π on (0, 1), and we have d(x1 + ix2) =

ω̄ − g2ω ∼ λ−2
1 a2z−1−αdz − µ2

2(a + αc)2z−1+αdz. This proves that
x has an end bounded by two lines D′

1 and D′
2 that are parallel to

D1 and D2 respectively. Moreover, we have g(z) ∼ λ1µ2
a+αc

a
zα and

Q ∼ αλ−1
1 µ2a(a + αc)z−2dz2 = iAα

2π
z−2dz2, so x has a helicoidal end of

parameters (A, α) by Lemma 4. This finally implies that D(D′
1, D

′
2) =

−A = D(D1, D2), and so D′
1 and D′

2 are the images of D1 and D2 by a
translation in R3. q.e.d.

In the sequel we will study the minimal immersion x : Σ → R3

(with possibly a singularity at a double root of F ) given by the spinors
k1 = λ−1K1 and k2 = µK2 for some λ ∈ C∗ and some µ ∈ C∗. We first
notice the following fact.

Remark 29. For ρ ∈ R∗, the transformation

(a, b, c, λ, µ) → (ρa, ρb, ρc, ρλ, ρ−1µ)
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does not change the Weierstrass data (g, ω) (and consequently does
not change the immersion x), and changes λ−1µ into ρ−2λ−1µ. Thus,
without loss of generality, we can assume that |λµ−1| = |α|.

Remark 30. Replacing (λ, µ) by (−iλ, iµ) would change g into −g
and ω into −ω. Thus the immersion x would be replaced by its image
by the reflection about the x3-axis.

Proposition 31. Let λ and µ be two nonzero complex numbers such
that |λµ−1| = |α|. Let x : Σ → R3 be the conformal minimal immersion
(with possibly a singularity at a double root of F ) whose Weierstrass
data are given by

g =
k2

k1
, ω = z−2(z − 1)−2k2

1,

where

k1 = λ−1K1, k2 = µK2

with K1 and K2 as in formula (18).
Then, up to a translation, the immersion x maps (−∞, 0), (0, 1)

and (1, +∞) to D1, D2 and D3 respectively, and has helicoidal ends
of parameters (A, α), (B, β) and (C, γ) at 0, ∞ and 1 respectively if
and only if the following conditions hold:

1. λ = −εiαµ where ε is the sign of ε0
ν11

αν21
with ν as defined in

Section 3.3,
2. εαµ2 = tν11

ν21
(this implies in particular that µ is real),

3. F = εϕ with ϕ as in (4) and F as in (19), i.e., the real numbers
a, b and c satisfy





εAα
2π

= a(a + αc)

εBβ
2π

= (b + s−−−c)(b + s−+−c)

εCγ
2π

= (a + b)(a + b − γc).

(21)

Proof. We denote by ∆1, ∆2, ∆3, ∆∞
1 , ∆0

1, ∆0
3 and ∆∞

3 the images
by x of (−∞, 0), (0, 1), (1,∞), (−∞,−1), (−1, 0), (1, 2) and (2, +∞).

If x has, up to a translation in R3, a helicoidal end at 0 bounded
by D1 and D2 and of parameters (A, α), then by Lemma 28 we have
λ ∈ iR∗, µ ∈ R∗ and αλ−1µa(a + αc) = iAα

2π
. Since |λµ−1| = |α|, we

have λ = −εiαµ with ε = ±1, and so the first equality in (21) holds.
From now on we assume that

(22) λ = −εiαµ

with ε = ±1 and µ ∈ R∗, and that Aα
2π

= a(a+αc). Then by Lemma 28
we can assume that the immersion x has a helicoidal end at 0 bounded
by D1 and D2 and of parameters (A, α) (it suffices to consider the good
translation in R3). Moreover we have ∆0

1 ⊂ D1, ∆2 ⊂ D2, ∆0
1 contains
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a half of D1 in the direction of ~u1, and ∆2 contains a half of D2 in the
direction of −~u2.

We now prove the necessity of (21). By (20) we have k′
1k2 − k′

1k2 =
λ−1µαF = εiF with F as in (19). On the other hand, if x has helicoidal
ends of parameters (A, α), (B, β) and (C, γ) at 0, ∞ and 1 respectively,
then equation (6) holds with ϕ as in (4), so we get ϕ = εF , which
implies that (21) holds.

From now on we assume that a, b, c and ε satisfy (21). We study the
behaviour of x at z = 1.

The rotation R defined in section 3.1 moves D3 onto a horizontal line
oriented by (cos(πγ),− sin(πγ), 0), the vector ~v1 to the vector −~e3, and
it does not change D2. Let x̃ = R◦x. Let (g̃, ω̃) be its Weierstrass data,

and Ñ its Gauss map. There exists a matrix

h =

(
h11 h12

h21 h22

)
∈ SU2(C)

such that

g̃ =
h22g + h21

h12g + h11
, ω̃ = (h12g + h11)

2ω.

Then the associated spinors can be chosen as

k̃1 = (h12g + h11)k1 = (h12k2 + h11k1), k̃2 = g̃k̃1 = (h22k2 + h21k1).

We compute that

h =
1√

1 + t2

(
1 it
it 1

)
.

Consequently we have

k̃1 = z
1−α

2 (1 − z)
1−γ

2 ((a + bz)σ̃1 + cz(1 − z)σ̃′
1),

k̃2 = z
1−α

2 (1 − z)
1−γ

2 ((a + bz)σ̃2 + cz(1 − z)σ̃′
2),

where (
σ̃1

σ̃2

)
= m

(
w

(1)
1

w
(1)
2

)

with

m =

(
m11 m12

m21 m22

)
=

1√
1 + t2

(
λ−1 µit

λ−1it µ

) (
ν11 ν12

ν21 ν22

)
.

These expressions are valid for z ∈ Σ1. We notice that m11 ∈ iR and
m22 ∈ R since λ ∈ iR and µ ∈ R.

We claim that x̃ has a helicoidal end at z = 1 of parameters (C, γ)
bounded by D2 = R(D2) and R(D3) if and only if m12 = m21 = 0.
The proof of this claim is similar to that of Lemma 28, so we will only
outline the proof. We already know that x̃ maps (0, 1) to a part of D2.

Assume that x̃ has a helicoidal end of parameters (C, γ) bounded by
D2 and R(D3). Then we must have g(z) ∼ iρ(1 − z)γ for some ρ ∈ R∗.
This implies m21 = 0 if γ > 0 and m12 = 0 if γ < 0 (this follows from
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the fact that w
(1)
1 (1) = 1 and w

(1)
2 (z) ∼ (1−z)γ when z → 1). Moreover,

x̃ maps (1, 2) onto a straight line, so the argument of k̃2
1 − k̃2

2 is constant
on (1, 2). This implies that m12 = 0 if m21 = 0 and m21 = 0 if m12 = 0

(because w
(1)
1 , w

(1)
2 and their derivatives take real values on (1, 2)).

Conversely, we assume that m12 = m21 = 0. Since m11 ∈ iR and

m22 ∈ R we have arg k̃2
1 = arg(−k̃2

2) = π on (1, 0) and arg k̃2
1 =

arg(−k̃2
2) = −πγ on (1, 2), and we have d(x̃1 + ix̃2) = ω̃ − g̃2ω̃ ∼

m2
11(a+ b)2(1 − z)−1−γdz−m2

22(a+ b− γc)2(1− z)−1+γdz. This proves
that x̃ has an end bounded by two lines that are parallel to D2 and
R(D3), and the signed distance of these lines is equal to −C because of
the third equation in (21). Thus, since we know that x̃ maps (0, 1) to
a part of D2, we have proved that x̃ has a helicoidal end of parameters
(C, γ) bounded by D2 and R(D3). This completes proving the claim.

The condition m12 = m21 = 0 is satisfied if and only if λ−1ν12 +
µitν22 = λ−1itν11 + µν21 = 0, that is, because of (22), if and only if

(23) εαµ2 = − ν12

tν22
=

tν11

ν21
.

We recall that µ must be real. Thus there exist µ ∈ R∗ and ε ∈ {1,−1}
satisfying (23) if and only if ν12ν21 = −t2ν11ν22, which is true by Lemma
23.

Henceforth we assume that µ and ε are given by (23). The real
number µ is defined uniquely up to its sign, and ε is the sign of tν11

αν21
,

i.e., of ε0
ν11

αν21
by Lemma 13. Thus the number λ is also defined uniquely

up to its sign by (22). Thus we have proved the necessity of conditions
1 and 2.

We have ∆0
1 ⊂ D1, ∆2 = D2, ∆1

3 ⊂ D3, ∆0
1 contains a half of D1 in

the direction of ~u1 and ∆1
3 contains a half of D3 in the direction of −~u3.

It now suffices to check that x has a helicoidal end at ∞ bounded by
D3 and D1 and of parameters (B, β).

The isometry T ◦ R̂ defined in section 3.1 moves D1 onto the x1-
axis oriented by ~e1, D3 onto a horizontal line oriented by the vector
(cos(πβ),− sin(πβ), 0) and the vector ~v∞ onto the vector −~e3. Let x̂ =

T ◦ R̂ ◦ x. Let (ĝ, ω̂) be its Weierstrass data, and N̂ its Gauss map.
There exists a matrix

ĥ =

(
ĥ11 ĥ12

ĥ21 ĥ22

)
∈ SU2(C)

such that

ĝ =
ĥ22g + ĥ21

ĥ12g + ĥ11

, ω̂ = (ĥ12g + ĥ11)
2ω.

Then the associated spinors can be choosen as

k̂1 = (ĥ12g + ĥ11)k1 = (ĥ12k2 + ĥ11k1), k̂2 = ĝk̂1 = (ĥ22k2 + ĥ21k1).
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We compute that

ĥ =
1√

1 + t̂2

(
eiπ α

2 ie−iπ α
2 t̂

ieiπ α
2 t̂ e−iπ α

2

)
.

Consequently we have

k̂1 = z
1−α

2 (1 − z)
1−γ

2 ((a + bz)σ̂1 + cz(1 − z)σ̂′
1),

k̂2 = z
1−α

2 (1 − z)
1−γ

2 ((a + bz)σ̂2 + cz(1 − z)σ̂′
2),

where (
σ̂1

σ̂2

)
=

(
m̂11 m̂12

m̂21 m̂22

) (
w

(∞)
1

w
(∞)
2

)

with(
m̂11 m̂12

m̂21 m̂22

)
=

1√
1 + t̂2

(
λ−1eiπ α

2 µie−iπ α
2 t̂

λ−1ieiπ α
2 t̂ µe−iπ α

2

) (
ν̂11 ν̂12

ν̂21 ν̂22

)
.

These expressions are valid for z ∈ Σ∞.
We first prove that m̂12 = m̂21 = 0. Indeed, this condition is equiva-

lent to λ−1eiπ α
2 ν̂12 + µie−iπ α

2 t̂ν̂22 = λ−1ieiπ α
2 t̂ν̂11 + µe−iπ α

2 ν̂21 = 0, that
is, because of (22), to

(24) εe−iπααµ2 = − ν̂12

t̂ν̂22

=
t̂ν̂11

ν̂21
.

Since µ is defined by (23), this condition is equivalent to

ν̂12ν̂21 = −t̂2ν̂11ν̂22,
t̂ν̂11

ν̂21
= e−iπα tν11

ν21
,

which holds by lemmas 24 and 25. This completes proving that m̂12 =
m̂21 = 0.

We claim that x̂ has a helicoidal end at z = ∞ of parameters (B, β)

bounded by T ◦ R̂(D3) and T ◦ R̂(D1). Since λ ∈ iR and µ ∈ R, we
have arg(m̂2

11) = −π(β + γ) and arg(m̂2
22) = π(1 + β − γ), and so

arg k̂2
1 = arg(−k̂2

2) = π(1+β) on (1, +∞) and arg k̂2
1 = arg(−k̂2

2) = 0 on

(−∞,−1). We also have d(x̂1+ix̂2) = ω̂−ĝ2ω̂ ∼ κ1z−1+βdz+κ2z
−1−βdz

for some κ1, κ2 ∈ C∗. This proves that x̂ has an end bounded by two
lines that are parallel to T ◦ R̂(D3) and T ◦ R̂(D3), and the signed
distance of these lines is equal to −B because of the second equation in
(21). Thus, since we know that x̂ maps (1, 2) to a part of T ◦ R̂(D3), we
have proved that x̂ has a helicoidal end of parameters (B, β) bounded

by T ◦ R̂(D3) and T ◦ R̂(D3). This completes proving the claim, and
this also proves that ∆1 = D1 and ∆3 = D3.

Thus the immersion x is bounded by D1, D2 and D3, and it has
helicoidal ends of parameters (A, α), (B, β) and (C, γ) at 0, ∞ and 1
respectively. q.e.d.
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In his memoir [Rie68], Riemann proved the necessity of (21), and
only with ε = 1: this comes from the fact that he did not take orien-
tations precisely in consideration. Riemann also noticed the following
fact (p. 335).

Lemma 32 (Riemann, [Rie68]). System (21) is equivalent to




p2 − α2(p + q + r)2 = εAα
2π

q2 − β2(p + q + r)2 = εBβ
2π

r2 − γ2(p + q + r)2 = εCγ
2π

(25)

with p = a + α
2 c, q = b + 1−α−γ

2 c and r = −a − b + γ
2 c.

Theorem 33. A real solution (p, q, r) of system (25), where ε is
the sign of ε0

ν11

αν21
, gives a minimal immersion x : Σ → R3 (possibly

with a singular point at a double root of ϕ defined by (4)) bounded by
(D1, D2, D3) and having helicoidal ends of parameters (A, α), (B, β) and
(C, γ) at 0, ∞ and 1 respectively. We will denote it I(α, γ, β, ε0, p, r, q).

Moreover, two different real solutions of system (25) give the same
immersion if and only if they are opposite one to the other.

Proof. The first assertion is a consequence of Proposition 28 and
Lemma 32.

Assume that (p, q, r) and (p̂, q̂, r̂) are two real solutions of (25). Then

they correspond to two solutions (a, b, c) and (â, b̂, ĉ) of (21), which

define functions K1, K2, K̂1, K̂2 by (18). If they define the same im-

mersion, then their Weierstrass data are equal, and so K̂1 = ±K1 and
K̂2 = ±K2 (because λ and µ are determined), which implies (â, b̂, ĉ) =
±(a, b, c), and finally (p̂, q̂, r̂) = ±(p, q, r). The converse is clear. q.e.d.

Corollary 34. If α, β, γ ∈ (0, 1) (that is if α = α0, β = β0 and
γ = γ0), then there exists a minimal immersion x : Σ → R3 (possibly
with a singular point at a double root of ϕ) bounded by (D1, D2, D3) and
having helicoidal ends of parameters (A, α), (B, β) and (C, γ) at 0, ∞
and 1 respectively.

Proof. It suffices to prove that system (25) has at least one real so-
lution. We set

p(y) =

√
ε
Aα

2π
+ α2y2,

q(y) =

√
ε
Bβ

2π
+ β2y2,

r(y) =

√
ε
Cγ

2π
+ γ2y2,

and we define eight functions

F±±±(y) = ±p(y) ± q(y) ± r(y) − y
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for real numbers y such that these expressions are defined. Then system
(25) has a real solution if and only if at least one of the eight equations
F±±±(y) = 0 has a solution y ∈ R. When y → +∞, we have F±±±(y) ∼
(±α±β±γ−1)y. When y → −∞, we have F±±±(y) ∼ (∓α∓β∓γ−1)y.

We first deal with the case where εAα, εBβ and εCγ are all positive.
Then the functions F±±± are defined on the whole R. Moreover we have
α + β − γ − 1 < 0 and −α − β + γ − 1 < 0 because (α, β, γ) ∈ K. Thus
by the intermediate value theorem equation F++−(y) = 0 has a solution
y ∈ R.

We now deal with the case where at least one of the numbers εAα,
εBβ and εCγ is negative (for example εBβ). We can assume that εB

2πβ
6

εA
2πα

and εB
2πβ

6
εC
2πγ

. Then the functions F±,±,± are defined for |y| > y0

where y0 =
√

|B|
2πβ

. We have F+++(y0) = F+−+(y0), α + β + γ − 1 > 0

and α−β +γ−1 < 0 (because (α, β, γ) ∈ K). Thus by the intermediate
value theorem there exists y ∈ R such that F+++(y) = 0 or F+−+(y) = 0
(depending on the sign of F+++(y0)). q.e.d.

Remark 35. If α, β, γ ∈ (0, 1), then we have ε = ε0.

3.5. The differential equation satisfied by K1 and K2. This sec-
tion contains technical results that will be used to construct trinoids in
hyperbolic space (section 4). We assume here that the numbers p, q and
r defined in Lemma 32 satisfy system (25), and that they are real.

Lemma 36. Set Θ̂dz2 = Szh − Szζ where h = K2

K1
and ζ(z) =∫ z

0 ϕ(τ)dτ . Then K1 and K2 are solutions on Σ of the following dif-
ferential equation:

(26) K ′′ − ϕ′

ϕ
K ′ +

Θ̂

2
K = 0.

Proof. We know that K1 and K2 satisfy (20) with F = εϕ (because
(p, q, r) is a solution of (25)). Then the proof is the same as that of
equation (7) in Lemma 17. q.e.d.

Lemma 37. The function Θ̂ extends to a meromorphic function on
C̄. Moreover we have

Θ̂ =
Φ

z2(z − 1)2
+

Λ̂

z(z − 1)ϕ
+

2ϕ′′

ϕ

with Φ as in (8) and where Λ̂ is an affine function.

Proof. By Proposition 31 there exist λ, µ ∈ C∗ such that the functions
k1 = λ−1K1 and k2 = µK2 define a minimal immersion bounded by
some (D1, D2, D3) ∈ D, with possibly a singular point if ϕ has a double
root. Then the Gauss map of this immersion is g = λµh, so Szh = Szg.
Thus Θ̂ extends to a meromorphic function on C̄ by Schwarz reflection,
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and the expression of Θ̂ follows from Lemma 18 (this remains true in
the case where ϕ has a double root, since the order of the pole of Szh
at the root of ϕ is at most 2). q.e.d.

Lemma 38. We have

Λ̂(0) = ε(p + q + r)((γ2 − β2)(2p + q + r) + (1 − α2)(q − r)),

Λ̂(1) = ε(p + q + r)((α2 − β2)(p + q + 2r) + (1 − γ2)(q − p)),

Λ̂(1) − Λ̂(0) = ε(p + q + r)((α2 − γ2)(p + 2q + r) + (1 − β2)(r − p)).

Proof. We recall that in the neighbourhood of 0 we have

Kj = z
1−α

2 (1 − z)
1−γ

2

(
(a + bz)w

(0)
j + cz(1 − z)(w

(0)
j )′

)

for j = 1, 2, with w
(0)
j as in section 3.3. We have

h(z) = zα
a + αc +

(
b − αc + s+−−s++−

1+α
(a + (1 + α)c)

)
z + O(z2)

a +
(
b + s−−−s−+−

1−α
(a + c)

)
z + O(z2)

.

The coefficient of the order −1 term in Θ̂ at 0 is ŝ−1 = 1−α2

α
h1

h0
where

h(z) = zα(h0 + h1z + O(z2)). We compute that

ŝ−1 =
1

2(p2 − α2(p + q + r)2)
×

(α2(α2 − β2 + γ2 − 1)(p + q + r)2 + (−α2 + 5β2 − 5γ2 + 1)p2

+(2α2 + 2β2 − 2γ2 − 2)q2 + (−2α2 + 2β2 − 2γ2 + 2)r2

+2(α2 + 3β2 − 3γ2 − 1)pq + 2(−α2 + 3β2 − 3γ2 + 1)pr

+4(β2 − γ2)qr).

Using that p2 − α2(p + q + r)2 = εAα
2π

we get that

ŝ−1 = ε
π

Aα
×

(−(α2 − β2 + γ2 − 1)ε
Aα

2π
+ 4(β2 − γ2)p2

+(2α2 + 2β2 − 2γ2 − 2)q2 + (−2α2 + 2β2 − 2γ2 + 2)r2

+2(α2 + 3β2 − 3γ2 − 1)pq + 2(−α2 + 3β2 − 3γ2 + 1)pr

+4(β2 − γ2)qr).

On the other hand we have ŝ−1 = − Λ̂(0)
ϕ(0) + Φ′(0) + 2Φ(0), so using the

fact that Φ′(0) + 2Φ(0) = 1−α2+β2−γ2

2 and ϕ(0) = Aα
2π

we conclude that

Λ̂(0) = ε(p + q + r)((γ2 − β2)(2p + q + r) + (1 − α2)(q − r)).

In the neighbourhood of 1 we have

Kj = z
1−α

2 (1 − z)
1−γ

2

(
(a + bz)w

(1)
j + cz(1 − z)(w

(1)
j )′

)
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for j = 1, 2, with w
(1)
j as in section 3.3. In the same way we compute

that

Λ̂(1) = ε(p + q + r)((α2 − β2)(p + q + 2r) + (1 − γ2)(q − p)),

and we deduce the expression of Λ̂(1) − Λ̂(0). q.e.d.

4. Application to trinoids in hyperbolic space

4.1. The cousin relation. We recall a few facts about the cousin rela-
tion between minimal surfaces in R3 and Bryant surfaces, i.e., constant
mean curvature one (CMC 1) surfaces in hyperbolic space H3. The
asymptotic boundary of H3 will be denoted by ∂∞H3.

Let S be a simply connected Riemann surface. If x : S → R3 is a
conformal minimal immersion, I and II its first and second fundamental
forms, then there exists a conformal CMC 1 immersion x̃ : S → H3

whose first and second fundamental forms are

Ĩ = I, ĨI = II + I,

and conversely. The immersions x and x̃ are said to be cousin immer-
sions. They are unique up to isometries of R3 and H3 respectively.

Bryant proved in [Bry87] that if x̃ is such an immersion (with S not
necessarily simply connected), then there exists a holomorphic immer-

sion F : S̃ → SL2(C) where S̃ is the universal cover of S such that
x̃ = FF ∗ and det(F−1dF ) = 0, where the model of hyperbolic space is

H3 = {M ∈ M2(C)|M∗ = M, trM > 0, detM = 1}.

Moreover we have

F−1dF =

(
g −g2

1 −g

)
ω

where (g, ω) are the Weierstrass data of the cousin immersion x (see
also [UY93]). The map F is called the Bryant representation of x.

The geodesic lines of curvature of x correspond to the geodesic lines of
curvature of x̃, and they lie in planes that are orthogonal to the surface.
The Schwarz reflexion principle for geodesic lines of curvature also holds
for Bryant surfaces. Thus a planar symmetry of x corresponds to a
planar symmetry of x̃. These facts are explained in details in [Kar05]
and [SET01].

The cousin immersion of the conjugate immersion of x will be called
the conjugate cousin immersion of x and it will be denoted by x◦. Thus
the Weierstrass data of x◦ are (g◦, ω◦) = (g, iω). Moreover, straight
lines of x correspond to geodesic lines of curvature of x◦ (hence lying in
hyperbolic planes), and symmetries of x with respect to a straight line
correspond to symmetries of x◦ with respect to a hyperbolic plane.
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4.2. Trinoids. Sá Earp and Toubiana proved in [SET01] that an em-
bedded end of finite total curvature is either asymptotic to the end of a
rotational catenoid cousin (in which case it is called a catenoidal end)
or to a horosphere (in which case it is called a horospherical end). The
catenoidal ends are the embedded type I ends in the sense of [UY93];
they are asymptotically rotational surfaces (see [Dan03]).

Definition 39. A Bryant surface is called a trinoid if it has genus
zero and three catenoidal ends.

Consequently, a trinoid is given by a conformal CMC-1 immersion
defined on C \ {0, 1}. The three ends correspond to 0, 1 and ∞.

The definitions of a catenoidal end and of a trinoid in [BPS03] are
slightly different from ours. However, it turns out that the definitions
of trinoids are equivalent.

In [CHR01], Collin, Hauswirth and Rosenberg proved many results
about properly embedded Bryant surfaces: a properly embedded Bryant
surface of genus 0 with 1 end (respectively 2 ends, 3 ends) is a horosphere
(respectively an embedded catenoid cousin, an embedded trinoid).

The aim of this section is to construct trinoids by the method of the
conjugate cousin immersion. We first prove the following proposition,
which is a reformulation of Lemma 2.4 in [SET01] and which will be
useful in the sequel.

Proposition 40. Let O be a neighbourhood of 0 in C, O∗ = O \ {0}
and Õ∗ be the universal cover of O∗. Let µ ∈ R∗ and let x : Õ∗ → H3

be a conformal CMC 1 immersion whose Weierstrass data (g, ω) satisfy

g(z) ∼ g0z
µ, ω ∼ ω0z

−1−µdz

when z → 0 with g0, ω0 ∈ C∗. Let Q be its Hopf differential.
Then x is an embedding of a punctured neighbourhood of 0 in O∗ if

and only if the 2-form Szg − 2Q is holomorphic at 0.

Proof. We set

g(z) = zµ(g0 + g1z + O(z2)), ω = z−1−µ(ω0 + ω1z + O(z2))dz.

Then we have

Q = z−2(q−2 + q−1z + O(1))dz2, Szg = z−2(s−2 + s−1z + O(1))dz2

with q−2 = µω0g0, q−1 = µω1g0+(1+µ)ω0g1, s−2 = 1−µ2

2 , s−1 = 1−µ2

µ
g1

g0
.

We first assume that µ > 0. Then, according to lemma 2.4 in
[SET01], x is an embedding of a punctured neighbourhood of 0 in
O∗ if and only if

(27) g0ω0 =
1 − µ2

4µ
, (1 + µ)

ω1

ω0
= 2µω1g0 + 2(1 + µ)ω0g1.

The first condition in (27) is equivalent to s−2 = 2q−2 (this means that
Szg−2Q has at most a pole of order 1 at 0). If this condition is satisfied,



MINIMAL DISKS 501

then since q−1

q−2
= ω1

ω0
+ 1+µ

µ
g1

g0
, the second condition in (27) is equivalent

to (1+µ)
(

q−1

q−2
− s−1

1−µ

)
= 2q−1, and thus to s−1 = 2q−1, which completes

the proof in the case where µ > 0.
We now deal with the case where µ < 0. The data (g−1,−g2ω) define

the same CMC 1 immersion as (g, ω) (see for example [UY93]), and
we have g−1(z) ∼ g−1

0 z−µ, −g2ω ∼ −g2
0ω0z

−1+µdz, and Szg − 2Q is
unchanged, so it suffices to apply the previous case with −µ instead of
µ. q.e.d.

Remark 41. Umehara and Yamada proved in [UY93] that SzG =
Szg − 2Q where G is the hyperbolic Gauss map of the immersion x.

Let (D1, D2, D3) ∈ D, (α0, γ0, β0,−A,−C,−B, ε0) = L(D1, D2, D3)
(see section 3.1), α ∈ α0 + 2Z, β ∈ β0 + 2Z, γ ∈ γ0 + 2Z. Let x :
Σ → R3 be a minimal immersion bounded by (D1, D2, D3) or its dual
configuration, and having helicoidal ends of parameters (A, α), (B, β)
and (C, γ) at 0, 1 and ∞ respectively, corresponding to a solution (p, q, r)
of (25) where ε = ±1. Let (g, ω) be its Weierstrass data and Q = ωdg
its Hopf differential.

Then the conjugate cousin immersion x◦ : Σ → H3 maps (−∞, 0),
(0, 1) and (1,∞) onto three geodesic lines of curvature L1, L2 and L3

belonging to three hyperbolic planes P1, P2 and P3.

Proposition 42. If α2

4 > Aα
2π

, β2

4 > Bβ
2π

and γ2

4 > Cγ
2π

, then the
asymptotic boundary of each end of x◦ consists of one point.

Proof. It suffices to prove that the asymptotic boundary of the end
at 0 consists of one point. The Hopf differential Q◦ = ω◦dg◦ satisfies
Q◦ ∼ q−2z

−2dz at 0 with q−2 = −Aα
2π

. We proceed as in the proof of

lemma 2.4 in [SET01]: since the indicial equations τ2 + ατ − q−2 and
υ2 − αυ − q−2 have a positive discriminant ∆ = α2 + 4q−2 (because of
the hypothesis), we prove that, up to an isometry of H3, the Bryant

representation of x is F =

(
zτA1(z) zυB1(z)
zτC1(z) zυD1(z)

)
where τ = −

√
∆−α
2 ,

υ = −
√

∆+α
2 and where A1, B1, C1 and D1 are holomorphic functions

in a neighbourhood of 0 in {Im z > 0} that do not vanish at 0. Using
the identification of H3 with the upper half-space model {(y1, y2, y3) ∈
R3|y3 > 0} described in [SET01], we get

y1 + iy2 =
|z|2τA1C1 + |z|2υB1D1

|z|2τ |A1|2 + |z|2υ|B1|2
, y3 =

1

|z|2τ |A1|2 + |z|2υ|B1|2

(this is formula (1.2) of [SET01]). Thus we have y3 → 0 when z → 0

(since τ or υ is negative), and y1 + iy2 → C1(0)
A1(0) or y1 + iy2 → D1(0)

B1(0)

(depending on the sign of α). This proves the assertion. q.e.d.
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From now on we assume that α2

4 > Aα
2π

, β2

4 > Bβ
2π

and γ2

4 > Cγ
2π

.

Thus the lines L1, L2 and L3 are pairwise concurrent in ∂∞H3 at
the asymptotic boundary points. Applying Schwarz reflections with
respect to these planes and repeating the process with respect to the
new planes infinitely many times, we get a conformal CMC-1 immersion

x◦ : ˜C \ {0, 1} → H3 where ˜C \ {0, 1} is the universal cover of C\{0, 1}.
This immersion x◦ is well-defined on C \ {0, 1} if and only if the planes
P1, P2 and P3 are equal.

Proposition 43. If immersion x◦ gives a trinoid by Schwarz reflec-
tion, then we have

(28)
Aα

2π
=

α2 − 1

4
,

Bβ

2π
=

β2 − 1

4
,

Cγ

2π
=

γ2 − 1

4
.

Proof. Assume that x◦ gives a trinoid by Schwarz reflection. Then
x◦ is well-defined on C \ {0, 1}, and its ends are embedded. Let Q◦ be
its Hopf differential. We have Q◦ = iQ.

Its Weierstrass data satisfy g◦(z) = g(z) ∼ g0z
α and ω◦ = iω ∼

ω0z
−1−αdz when z → 0, with g0, ω0 ∈ C∗. Then by Proposition 40 the

form Szg
◦ − 2Q◦ is holomorphic at 0. In particular the order −2 term

vanishes, that is 1−α2

2 + 2Aα
2π

= 0.
The other two identities are obtained in the same way for the ends

at ∞ and 1. q.e.d.

A computation gives the following result.

Lemma 44. The complex solutions of system



p2 − α2(p + q + r)2 = α2−1
4

q2 − β2(p + q + r)2 = β2−1
4

r2 − γ2(p + q + r)2 = γ2−1
4

(29)

are (− i
2 , i

2 , i
2), ( i

2 ,− i
2 , i

2), ( i
2 , i

2 ,− i
2), (Uδ, V δ, Wδ) and their opposites,

where

U = −3α4 + 2(1 + β2 + γ2)α2 + β4 + γ4 − 2(β2 + γ2 + β2γ2) + 1,

V = −3β4 + 2(1 + α2 + γ2)β2 + α4 + γ4 − 2(α2 + γ2 + α2γ2) + 1,

W = −3γ4 + 2(1 + α2 + β2)γ2 + α4 + β4 − 2(α2 + β2 + α2β2) + 1,

and where δ is a complex square root of − 1
4Π with Π defined by (13).

The complex solutions of system



p2 − α2(p + q + r)2 = 1−α2

4

q2 − β2(p + q + r)2 = 1−β2

4

r2 − γ2(p + q + r)2 = 1−γ2

4

(30)

are (1
2 , 1

2 ,−1
2), (1

2 ,−1
2 , 1

2), (−1
2 , 1

2 , 1
2), (iUδ, iV δ, iWδ) and their oppo-

sites.
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Remark 45. These solutions are distinct if and only if 1−α2 −β2 +
γ2 6= 0, 1 − α2 + β2 − γ2 6= 0 and 1 + α2 − β2 − γ2 6= 0.

Remark 46. We compute that U + V + W is −4 times the discrim-
inant of Φ.

Proposition 47. The immersion x◦ gives a trinoid by Schwarz re-
flection if and only if (28) holds, ϕ has no double root, and (p, q, r) =
±(Uδ, V δ, Wδ) in the case where δ ∈ R or (p, q, r) = ±(iUδ, iV δ, iWδ)
in the case where δ ∈ iR, where U , V , W and δ are as in Lemma 44.

Proof. We have

Szg
◦ − 2Q◦ =

(
Φ + 2ϕ

z2(z − 1)2
+

Λ

ϕz(z − 1)
+

2ϕ′′

ϕ

)
dz2 + Szζ

with ζ(z) =
∫ z

0 ϕ(τ)dτ , Φ as in (8) and Λ as Λ̂ in Lemma 38. By
Proposition 40, x◦ gives a trinoid if and only if Szg

◦−Q◦ is holomorphic
at 0, 1 and ∞. This holds if and only if Φ = −2ϕ (i.e., if (28) holds,
i.e., if (p, q, r) is a real solution of (29) or (30)) and Λ = 0 (we recall

that 2ϕ′′

ϕ
dz2 + Szζ is holomorphic at ∞).

By Lemma 38 we have Λ = 0 if and only if p + q + r = 0 or
{

(γ2 − β2)(2p + q + r) + (1 − α2)(q − r) = 0
(α2 − β2)(p + q + 2r) + (1 − γ2)(q − p) = 0.

(31)

We notice that (U, V, W ) 6= (0, 0, 0) (since (Uδ, V δ, Wδ) is solution
of (29)). Thus the set of the solutions of (31) is the complex line
C(U, V, W ). Hence the only solutions of (31) that are also solutions
of (29) or (30) are (Uδ, V δ, Wδ), (iUδ, iV δ, iWδ) and their opposites.

There is a solution (p, q, r) of (29) or (30) satisfying p + q + r = 0 if
and only if U + V + W = 0, i.e., if and only if ϕ has a double real root
a1 (by Remark 46 and since Φ = −2ϕ). In this case these solutions are
again (Uδ, V δ, Wδ), (iUδ, iV δ, iWδ) and their opposites.

Hence, in the case where ϕ has a double root a1, the solutions (p, q, r)
satisfy p + q + r = 0, which implies Λ = 0 by Lemma 38. Thus the
exponents of equation (7) at a1 are 1 and 2. This implies that the
spinors k1 and k2 associated to x both vanish at a1, and so x and x◦ do
have a singular point at a1.

Moreover, the numbers p, q and r are required to be real, so the proof
is complete. q.e.d.

Remark 48. In the case where ϕ has a double root, the result still
holds except that the immersion giving the trinoid has a singularity at
the root of ϕ.

Theorem 49. Let µ0, µ1 and µ∞ be three positive non-integer real
numbers. Assume that

(32) (|[µ0]|, |[µ1]|, |[µ∞]|) ∈ K,
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where [r] denotes the unique number in (−1, 1] such that r − [r] ∈ 2Z

(the set K is defined in Proposition 9), and that

(33) µ4
0+µ4

1+µ4
∞−2µ2

0µ
2
1−2µ2

0µ
2
∞−2µ2

1µ
2
∞+2µ2

0+2µ2
1+2µ2

∞−3 6= 0.

Then there exists a trinoid Tµ0,µ1,µ∞
whose ends are of growths 1 − µ0,

1 − µ1 and 1 − µ∞ and having a symmetry plane.
The ends of Tµ0,µ1,µ∞

have distinct asymptotic boundary points if and
only if 1−µ2

0−µ2
1+µ2

∞ 6= 0, 1−µ2
0+µ2

1−µ2
∞ 6= 0 and 1+µ2

0−µ2
1−µ2

∞ 6= 0.
More precisely, the ends of growths 1−µ0 and 1−µ1 (respectively 1−µ0

and 1−µ∞, 1−µ1 and 1−µ∞) have distinct asymptotic boundary points
if and only if 1− µ2

0 − µ2
1 + µ2

∞ 6= 0 (respectively 1− µ2
0 + µ2

1 − µ2
∞ 6= 0,

1 + µ2
0 − µ2

1 − µ2
∞ 6= 0). In particular the three ends cannot have the

same asymptotic boundary point.

Proof. We set α = µ0 if µ0 ∈ |[µ0]| + 2Z and α = −µ0 if −µ0 ∈
|[µ0]| + 2Z (in order to be compatible with the conventions of section
3.2). In the same way we set β = ±µ∞ and γ = ±µ1. Let ε0 ∈
{1,−1}. By Proposition 9 there exists a triple (D1, D2, D3) such that

L(D1, D2, D3) = (|[µ0]|, |[µ1]|, |[µ∞]|,−A,−C,−B, ε0) with Aα
2π

= α2−1
4 ,

Bβ
2π

= β2−1
4 , Cγ

2π
= γ2−1

4 . Then by (33) the corresponding ϕ has no
double root, and so by Proposition 47 there exists a minimal immersion
x : Σ → R3 bounded by (D1, D2, D3) or its dual configuration whose
conjugate cousin x◦ gives a trinoid by Schwarz reflection; moreover the
growths of the ends of this trinoid are 1 − µ0, 1 − µ1 and 1 − µ∞
respectively (it suffices to consider the coefficient of the order −2 term
of Q◦ at each end). This proves the existence of the trinoid Tµ0,µ1,µ∞

(it has a symmetry plane by construction).
By Remark 41 and the proof of Proposition 47 we have SzG

◦ =

Szζ + 2ϕ′′

ϕ
dz2. Hence, up to an isometry of H3, the hyperbolic Gauss

map of x◦ is G◦(z) = z + (a1−a2)2

2(2z−a1−a2)
where a1 and a2 are the roots

of ϕ. Moreover, the limit of the hyperbolic Gauss map at a catenoidal
end is the asymptotic boundary point of the end (see [SET01]). Thus,
to compare the asymptotic boundary points of the ends, it suffices to
compare G◦(0), G◦(1) and G◦(∞).

We have G◦(0) = − (a1−a2)2

2(a1+a2) , G◦(1) = 1 + (a1−a2)2

2(2−a1−a2)
and G◦(∞) =

∞. Thus we have G◦(0) = G◦(1) if and only if a1 + a2 = 2a1a2, i.e.,
1−µ2

0−µ2
1 +µ2

∞ = 0; we have G◦(0) = G◦(∞) if and only if a1 +a2 = 0,
i.e., 1 − µ2

0 + µ2
1 − µ2

∞ = 0; we have G◦(1) = G◦(∞) if and only if
a1 + a2 = 2, i.e., 1 + µ2

0 − µ2
1 − µ2

∞ = 0. This also implies that we never
have G◦(0) = G◦(1) = G◦(∞). q.e.d.

Remark 50. If (32) holds but (33) does not hold, then there exists
a “trinoid” Tµ0,µ1,µ∞

with one singular point.
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Corollary 51. If (µ0, µ1, µ∞) ∈ K and µ0, µ1, µ∞ ∈ (0, 1) (i.e., if
the growths are positive), then the trinoid Tµ0,µ1,µ∞

exists and its ends
have distinct asymptotic boundary points.

Proof. In this case we have µj = |[µj ]| for j = 0, 1,∞, and so
(µ0, µ1, µ∞) ∈ K. This implies that µ∞ > 1 − µ0 − µ1 and µ∞ >
−1 + µ0 + µ1, and so 1−µ2

0 −µ2
1 + µ2

∞ > 1−µ2
0 −µ2

1 + (1−µ0 −µ1)
2 =

2(1 − µ0)(1 − µ1) > 0. In the same way we have 1 − µ2
0 + µ2

1 − µ2
∞ 6= 0

and 1+µ2
0 −µ2

1 −µ2
∞ 6= 0. Thus the asymptotic boundary points of the

ends are distinct.
Set d(µ0, µ1, µ∞) = µ4

0 + µ4
1 + µ4

∞ − 2µ2
0µ

2
1 − 2µ2

0µ
2
∞ − 2µ2

1µ
2
∞ + 2µ2

0 +
2µ2

1 + 2µ2
∞ − 3. The derivative of d with respect to µ2

∞ is equal to
2(µ2

∞ − µ2
0 − µ2

1 + 1), which was proven to be positive. Without loss of
generality we can assume that µ0 > µ1. We have µ∞ < 1−µ0 +µ1, and
so d(µ0, µ1, µ∞) < d(µ0, µ1, 1−µ0+µ1) = 8(µ1+1)(µ0−1)(µ0−µ1) 6 0.
Thus (33) is satisfied, and the trinoid has no singularity. q.e.d.

Irreducible trinoids are classified by Theorem 2.6 of [UY00]. They
correspond to trinoids with non-integer growth ends. Theorem 2.6 of
[UY00] states that there exists a trinoid Tµ0,µ1,µ∞

(without assuming
that it has a symmetry plane) if and only if (33) holds and
(34)
cos2(πµ0)+ cos2(πµ1)+ cos2(πµ∞)+2 cos(πµ0) cos(πµ1) cos(πµ∞) < 1,

and in this case this trinoid is unique (in this theorem, the βj (j = 1, 2, 3)

correspond to our µj − 1 (j = 0, 1,∞), the cj to our
1−µ2

j

2 ). Irreducible
trinoids are also classified in [BPS03]; it is also proved that (34) is
equivalent to (32) (in [BPS03] the ∆j (j = 1, 2, 3) correspond to our
|[µj ]|

2 (j = 0, 1,∞)). Pictures of trinoids can be found in [BPS03] and
[RUY04].

Proposition 52. If the asymptotic boundary points of the ends of x◦

are distinct and (28) holds then x◦ gives a trinoid by Schwarz reflection.

Proof. For j = 1, 2, 3, the oriented curve Lj and the mean curvature
vector of x◦ on Lj induce an orientation of the plane Pj . Denote by
p0, p1 and p∞ the asymptotic boundaries of the ends of x◦ at 0, 1 and
∞ respectively. Then L1 goes from p∞ to p0, L2 goes from p0 to p1,
and L3 goes from p1 to p∞. Denote by Q1, Q2 and Q3 the asymptotic
boundaries of P1, P2 and P3. These are great circles in C̄. They are
given the orientation induced by P1, P2 and P3 respectively. We have
p0 ∈ Q1∩Q2, p1 ∈ Q2∩Q3 and p∞ ∈ Q3∩Q1. Moreover, the circles are
pairwise tangent at these points, and their orientations at these points
are compatible (since the boundary lines have turned of an angle π at
each end, because of (28)). Since p0, p1 and p∞ are distinct, this is not
possible unless the three circles are equal (see figure 8). Consequently,
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the planes P1, P2 and P3 are equal, and doing the Schwarz reflection of
x◦ with respect to this plane gives a trinoid. q.e.d.

p∞

p0

Q1
Q2

Q3

p1

Figure 8. The asymptotic boundaries of the boundary
planes; there is no orientation of Q1 compatible with
those of Q2 and Q3.

We now describe what the immersion x◦ looks like in the case where
(p, q, r) = (1

2 , 1
2 ,−1

2), (p, q, r) = (1
2 ,−1

2 , 1
2) or (p, q, r) = (−1

2 , 1
2 , 1

2).

We first notice that (iUδ, iV δ, iWδ) = (1
2 , 1

2 ,−1
2), (iUδ, iV δ, iWδ) =

(1
2 ,−1

2 , 1
2) and (iUδ, iV δ, iWδ) = (−1

2 , 1
2 , 1

2) if and only if 1− α2 − β2 +

γ2 = 0, 1 − α2 + β2 − γ2 = 0 and 1 + α2 − β2 − γ2 = 0 respectively.
Henceforth we assume that none of these conditions are satisfied.

If (p, q, r) = (1
2 , 1

2 ,−1
2), then by Lemma 38 we have Λ(0) 6= 0, Λ(1) =

0 and Λ(1) − Λ(0) 6= 0, so Szg
◦ − 2Q◦ has poles of order 1 at 0 and ∞

and is holomorphic at 1. This means that the end at 1 is embedded, but
the ends at 0 and ∞ are not: the planes P2 and P3 are identical, and the
plane P1 is tangent at infinity to P2 but different. Applying Schwarz
reflection infinitely many times, we get a surface that is invariant by
the parabolic isometry generated by the reflections with respect to P1

and P2. The ends at 0 and ∞ are not annular ends since x◦ is not
single-valued at 0 and ∞.

If (p, q, r) = (1
2 ,−1

2 , 1
2), then we have Λ(0) 6= 0, Λ(1) 6= 0 and Λ(1) −

Λ(0) = 0, so similarly the end at ∞ is embedded and the ends at 0 and
1 are not (and they are not annular ends).
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If (p, q, r) = (−1
2 , 1

2 , 1
2), then we have Λ(0) = 0, Λ(1) 6= 0 and Λ(1) −

Λ(0) 6= 0, so the end at 0 is embedded and the ends at 1 and ∞ are not
(and they are not annular ends).

Then by Propostion 52 the asymptotic boundary points of these im-
mersions are not pairwise distinct (otherwise these immersions would
give trinoids by Schwarz reflection).
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