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ASYMPTOTIC DIMENSION AND THE INTEGRAL
K-THEORETIC NOVIKOV CONJECTURE FOR

ARITHMETIC GROUPS

Lizhen Ji

Abstract

We prove that the integralK-theoretic Novikov conjecture holds
for torsion free arithmetic subgroups of linear algebraic groups.

1. Introduction

The original Novikov conjecture concerns the homotopy invariance
of higher signatures and is equivalent to the rational injectivity of the
assembly map in surgery (i.e., L-) theory (see [11], [17, Section 24]),

A : H∗(BΓ,L•(Z)) → L∗(Z[Γ]),

where BΓ is the classifying space of a discrete group Γ, L•(Z) the alge-
braic surgery spectrum, and L∗(Z[Γ]) is the L-group for the group ring
Z[Γ]. There are also assembly maps in algebraic K-theory

A : H∗(BΓ,K(R)) → K∗(R[Γ]),

where R is an associative ring with unit, and in C∗-algebra theory (see
[11]). The integral injectivity of the assembly map is called the in-
tegral Novikov conjecture in that theory and is an important step in
understanding the groups on the right-hand side. The version in the
C∗-algebras is often called the strong (or analytic) Novikov conjecture
since it implies the original Novikov conjecture. But each version is
important for its own reasons.

For discrete subgroups of Lie groups, the analytic Novikov conjecture
was proved by Kasparov (see [11]), and the integral Novikov conjecture
in L-theory was proved by Farrell–Hsiang, Ferry–Weinberger, Farrell–
Jones (see [10, pp. 217, 220]). On the other hand, the integral K-
theoretic Novikov conjecture was known only for the following classes
of discrete subgroups of Lie groups: (1) co-compact lattices in connected
Lie groups due to Carlsson [5] (see also [9, 2]), (2) arithmetic subgroups
of semisimple linear algebraic groups G defined over Q of R-rank equal
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to 1 due to Goldfarb [12], and more generally when G is semisimple
and the Q-rank of G is equal to the R-rank of G in [13], (3) arithmetic
groups of G = SL(3) due to Goldfarb [14].

In this note, we combine several simple observations, probably well-
known to experts, to prove

Theorem 1.1. Let G be a connected linear algebraic group G de-
fined over Q, not necessarily semisimple or reductive. Then the integral
K-theoretic Novikov conjecture holds for any torsion free arithmetic sub-
group Γ ⊂ G(Q).

The method also gives an alternative proof of the integral Novikov
conjecture in L-theory and C∗-algebra theory for torsion free arithmetic
subgroups.

Recently, Bartels [1, Theorems 1.1 and 7.2] (for both K-theory and
L-theory), Carlsson and Goldfarb [6, Main Theorem] (for K-theory)
proved the following result, which is crucial to this paper.

Proposition 1.2. If a finitely generated group Γ has finite asymptotic
dimension and a finite CW-complex as its classifying space, then the
integral Novikov conjecture in K-theory and L-theory holds for Γ.

Note that if Γ has a finite classifying space, then Γ is torsion free. In
fact, the existence of a finite classifying space implies that the cohomo-
logical dimension of Γ is finite, which in turn implies that Γ is torsion
free. Proposition 1.2 was suggested by the result of Yu in [19] that
under the same assumption on Γ, the analytic Novikov conjecture holds
for Γ.

To prove Theorem 1.1, it suffices to prove that torsion free arithmetic
subgroups have both finite asymptotic dimension and a finite classifying
space. A lot of work has been done to prove finite asymptotic dimen-
sionality for various groups: hyperbolic groups [15], Coxeter groups,
cocompact discrete subgroups of connected Lie groups [7], fundamental
groups of graphs of groups and of complexes of groups under certain con-
ditions (see the survey paper [8] and its references). The finiteness of the
asymptotic dimension is inherited by any finitely generated subgroup,
but this is not the case with the property of having a finite classifying
space. Therefore, it is a natural problem to find classes of groups which
have both finite asymptotic dimension and finite classifying spaces. The
point of this note is that the class of torsion free arithmetic subgroups
enjoys both properties. Sharp bounds on the asymptotic dimension are
also given for arithmetic groups (3.5).
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2. Asymptotic dimension

In this section, we recall some basic facts about asymptotic dimen-
sion. The asymptotic dimension of a metric space (M,d) is defined as
the smallest integer n, which could be ∞, such that for every r > 0,
there exists a cover C = {Ui}i∈I of M by uniformly bounded sets Ui

with the r-multiplicity less than or equal to n+ 1, i.e., every ball in M
of radius r intersects at most n+ 1 sets in C.

Clearly, if (N, d) is a subspace of (M,d) endowed with the induced
subspace metric, then asdim N≤asdim M . Two metric spaces (M1, d1),
(M2, d2) are quasi-isometric if there exists a map f : M1 → M2 and a
constant C > 1 such that (1) for every pair of points x, y ∈M1,

1
C
d1(x, y) − C ≤ d2(f(x), f(y)) ≤ Cd1(x, y) + C,

and (2) every point of M2 is in a C-neighborhood of the image f(M1).
It is known (and easy to see) that quasi-isometric spaces have the same
asymptotic dimension.

For any finitely generated group Γ, a choice of a symmetric generating
set S, i.e., S−1 = S, defines a word metric dS on Γ, which is left Γ-
invariant. Define asdim Γ = asdim (Γ, dS). It is known that different
choices of symmetric generating sets S lead to quasi-isometric metrics on
Γ (see [16, Example 21 in Chap. IV]), and hence asdim Γ is well-defined.

Recall [16, p. 84] that a metric space (M,d) is called proper if for any
x0 ∈ M and r > 0, the closed ball B(x0, r) = {x ∈ M | d(x, x0) ≤ r} is
compact. It is known that a proper metric space is complete and locally
compact, and that a complete Riemannian manifold with the induced
distance function is a proper metric space. A metric space is called
geodesic if any two points can be joined by at least one (minimizing)
geodesic segment.

The following result is well-known (see [16, Chap. IV, Theorem 23]).

Proposition 2.1. If (M,d) is a geodesic proper metric space and
if Γ acts properly and isometrically on M with a compact quotient Γ\M ,
then Γ is finitely generated and asdim Γ = asdim M .

It follows from [19, Proposition 6.2] that asdim Γ1 ≤ asdim Γ for any
finitely generated subgroup Γ1 of Γ. A corollary of the above proposition
is the following result.

Lemma 2.2. If Γ1 is a subgroup of finite index in Γ, then asdim Γ1 =
asdim Γ. In particular, two commensurable subgroups have the same
asymptotic dimension.

Proof. Let S1 be a symmetric generating set of Γ1, and S a gener-
ating set of Γ. By [16, Corollary 24 in Chap. IV], the metric spaces
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(Γ1, dS1) and (Γ, dS) are quasi-isometric. In fact, let Cay(Γ, S) be the
Cayley graph of Γ associated with the set of generators S. It has a nat-
ural distance function such that the embedding (Γ, dS) ↪→ Cay(Γ, S)
is isometric and gives a quasi-isometry between Cay(Γ, S) and (Γ, dS).
The left multiplication of Γ on Γ extends to an isometric action on
Cay(Γ, S). Since Γ1 is of finite index in Γ, the quotient Γ1\Cay(Γ, S) is
a finite graph. Since Cay(Γ, S) is a geodesic, proper metric space, it fol-
lows from Proposition 2.1 that (Γ1, dS1) is quasi-isometric to the Cayley
graph Cay(Γ, S) and hence to (Γ, dS). Therefore, asdim Γ1 = asdim Γ,
and the first statement is proved. By definition, two subgroups are
called commensurable if their intersection is of finite index in each of
them. Then, the second statement follows from the first one. q.e.d.

Given two metric spaces (M1, d1), (M2, d2), a proper map ϕ : (M1, d1)
→ (M2, d2) is called coarsely uniform if there exists a positive increasing
function f(r) such that

d2(ϕ(x1), ϕ(x2)) ≤ f(d1(x1, x2)).

Two maps ϕ1, ϕ2 : (M1, d1) → (M2, d2) are called coarsely equivalent
if there exists a constant C such that d1(ϕ1(x), ϕ2(x)) ≤ C, for all
x ∈M1. Two metric spaces (M1, d1), (M2, d2) are called coarsely equiv-
alent if there exist coarsely uniform maps ϕ : (M1, d1) → (M2, d2),
ψ : (M2, d2) → (M1, d1) such that ψϕ : M1 → M1, ϕψ : M2 → M2 are
coarsely equivalent to the identity map on M1,M2 respectively. It is
also known (and easy to see) that two coarsely equivalent metric spaces
have the same asymptotic dimension.

Proposition 2.3. Let (M,d) be any proper metric space. If a fi-
nitely generated group Γ acts isometrically and properly on M , then for
any point x0 ∈ M , the map (Γ, dS) → (Γx0, d), γ �→ γx0, is a coarse
equivalence, and hence asdim Γ ≤ asdim M .

Proof. First, we note that there exists a constant C > 0 such that for
any γ, δ ∈ Γ,

d(γx0, δx0) ≤ CdS(γ, δ).
In fact, let S = S−1 be a generating set of Γ. Write γ−1δ = g1 · · · gn,
where g1, · · · , gn ∈ S, and n = dS(γ, δ). Then,

d(γx0, δx0) =d(x0, γ
−1δx0) = d(x0, g1 · · · gnx0)

≤ d(x0, g1x0) + d(g1x0, g1g2x0) + · · ·
+ d(g1 · · · gn−1x0, g1 · · · gnx0)

=d(x0, g1x0) + d(x0, g2x0) + · · · + d(x0, gnx0)

≤ Cn = CdS(γ, δ),
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where C = max{d(x0, gx0) | g ∈ S}.
On the other hand, since (M,d) is a proper metric space, for any

r ≥ 0, the ball B(x0, r) = {x ∈ M | d(x, x0) ≤ r} is compact. By
assumption, Γ acts properly on M , and hence the set

Ir = {γ ∈ Γ | d(γx0, x0) ≤ r} = {γ ∈ Γ | γ{x0} ∩B(x0, r) 	= ∅}
is finite. Define

f(r) = 1 + max{dS(γ, e) | γ ∈ Ir}.
Clearly f(r) is a finite positive increasing function. We claim that for
any γ, δ ∈ Γ,

dS(γ, δ) ≤ f(d(γx0, δx0)).

In fact, let r = d(γx0, δx0). Then, d(δ−1γx0, x0) = r, and hence δ−1γ ∈
Ir. By definition, dS(δ−1γ, e) ≤ f(r), which is equivalent to

dS(γ, δ) ≤ f(d(γx0, δx0)).

Since the map Γ → Γx0 is proper, this proves that the map (Γ, dS) →
(Γx0, d) is a coarse equivalence. Hence, asdim Γ = asdim (Γx0, d) ≤
asdim M . q.e.d.

3. Arithmetic groups

Let G ⊂ GL(n,C) be a linear algebraic group defined over Q. A
subgroup Γ of G(Q) is called arithmetic if Γ is commensurable with
G ∩ GL(n,Z). Let G = G(R), K ⊂ G a maximal compact subgroup,
and X = G/K the associated homogeneous space with a G-invariant
metric. Then X is diffeomorphic to an Euclidean space. If Γ is torsion
free, then Γ acts properly and freely on X, and the quotient Γ\X is a
manifold and a K(Γ, 1)-space.

Lemma 3.1. Let G be a connected linear algebraic group G defined
over Q, not necessarily semisimple or reductive. Any torsion free arith-
metic subgroup Γ ⊂ G(Q) has a finite classifying space given by a com-
pact manifold with corners.

Proof. First note that we can assume Γ is a lattice in G = G(R); oth-
erwise, replace G by the algebraic subgroup 0G (see [4, Section 1.1])
over Q defined by 0G = ∩a∈X(G)Q

kera2, where X(G)Q is the group of
Q-morphisms of G into GL1 and note that Γ ⊂ 0G(Q) and has cofinite
volume in 0G(R). If Γ is co-compact, then Γ\X is compact and hence
a finite classifying space of Γ. Otherwise, Γ\X is non-compact. If G is
semisimple, then X is a symmetric space of non-compact type, and it
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is well-known that the locally symmetric space Γ\X admits the Borel–
Serre compactification Γ\XBS

in [4], a compact manifold with corners
Γ\XBS

, which is homotopic to Γ\X and hence gives a desired finite
classifying space of Γ. When G is not semisimple, the compactification
in [4] also applies. In fact, the compactification in [4] was developed
for spaces of type S. Since the isotropy groups of points in G/K are
conjugates of K and hence reductive, [4, Remark 2.4.(2)] implies that
X = G/K is a space of type S. Since Γ is a lattice in G, G does not con-
tain any non-trivial trivial split torus, and hence the Q-split radical of
G is equal to its unipotent radical. Hence, maximal compact subgroups
of G are exactly the stabilizers used in [4] from Section 4 on (see [4, Sec-
tion 2.3, p. 446]). By [4, Theorem 9.3], the quotient Γ\XBS is a compact
manifold with corners, which is a finite classifying space for Γ. q.e.d.

Remark 3.2. Though it was not mentioned there, [10, Corollary
0.3] applies to the Borel–Serre compactification Γ\XBS in Lemma 3.1
for non-semisimple algebraic groups G and shows that it is topologically
rigid if dimΓ\X 	= 3, 4.

To show that arithmetic groups have finite asymptotic dimension, we
use the following result of Carlsson–Goldfarb [7, Theorem 3.5], which
was anticipated in [15, p. 32].

Proposition 3.3. For a connected Lie group G and a maximal com-
pact subgroup K, let X = G/K be the associated homogeneous space
endowed with a G-invariant Riemannian metric. Then, asdim X =
dimX.

Corollary 3.4. Let G be a connected Lie group and Γ ⊂ G any
finitely generated discrete subgroup. Then asdim Γ < +∞.

Proof. Let X = G/K be the Riemannian homogeneous space in the
above proposition. Since X is a complete Riemannian manifold and
hence a proper metric space and Γ acts isometrically and properly on
X, Propositions 2.3 and 3.3 imply that asdim Γ ≤ asdim X = dimX.

q.e.d.

For arithmetic subgroups Γ, we can get a sharp lower bound on
asdim Γ, which is not needed in the proof of Theorem 1.1 but is inter-
esting in itself. Recall that for a linear algebraic group G defined over
Q, its Q-rank is equal to the maximal dimension of Q-split tori in G.
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Proposition 3.5. Let G be a connected linear algebraic group defined
over Q with Q-rank equal to ρ. Let Γ be an arithmetic subgroup of G
which is assumed to be a lattice in G. Then,

dimX − ρ ≤ asdim Γ ≤ dimX.

Proof. We only need to prove the lower bound. Assume first that the
Q-rank ρ > 0, i.e., Γ is not a co-compact lattice in G. In this case, there
are non-trivial proper rational parabolic subgroups. Take a minimal
rational parabolic subgroup P of G. Let NP be the unipotent radical of
P , and P = NPAPMP be the rational Langlands decomposition with
respect to the basepoint K ∈ X = G/K. Let XP = MP /(K ∩MP )
be the associated boundary space, and let X = NP × AP ×XP be the
associated horospherical decomposition of X. Since P is minimal and
Γ is a lattice in G, dimAP = ρ, and hence dimNP ×XP = dimX − ρ.
The subgroup Γ ∩ P of Γ acts properly and cocompactly on the homo-
geneous space NPMP /(K ∩ MP ) = NP × XP . For the compactness
of the quotient, we have used the assumption that P is minimal. By
Propositions 2.1 and 3.3,

asdim Γ∩NP = asdim NPMP /(K ∩MP ) = dimNP ×XP = dimX−ρ.
Hence, asdim Γ ≥ asdim Γ∩NP = dimX−ρ. If ρ = 0, then Γ\X is com-
pact, and Propositions 2.1 and 3.3 imply that asdim Γ = dimX. q.e.d.

Remark 3.6. Kleiner has pointed out that the lower bound on
asdim Γ also follows from (a) the fact that asdim Γ ≥ cod(Γ), which is
essentially contained in [15, p. 33], and (b) a result of Borel–Serre [4,
Corollary 11.4] that the cohomological dimension of Γ, cod(Γ), is equal
to dimX − ρ.

The bounds in Proposition 3.5 are sharp. The upper bound is equal
to the lower bound when Γ is cocompact. The lower bound can also be
achieved for non-cocompact Γ.

Proposition 3.7. For any arithmetic subgroup Γ of G = SL(2),
asdim Γ = dimX − ρ.

Proof. By Lemma 2.2, it suffices to consider Γ = SL(2,Z). By [18,
Section 2.3], X can be SL(2,Z)-equivariantly deformation retracted to
a tree T , and SL(2,Z) acts properly and co-compactly on the tree. Note
the induced subspace metric d on T is not a geodesic metric. Endow
the tree with the induced length metric d�. Then, (T, d�) is a geodesic
proper metric space. By [15, p. 29, Example (b)], the tree (T, d�)
has asymptotic dimension equal to 1, and hence by Proposition 2.1,
asdim SL(2,Z) = 1 = dimX − ρ. q.e.d.
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Remark 3.8. It is natural to conjecture that the equality asdim Γ =
dimX − ρ always holds. In fact, as mentioned in Remark 3.6, the
cohomological dimension of Γ is equal to dimX − ρ.

Proof of Theorem 1.1. It follows from Lemma 3.1 and Corollary 3.4
that Γ has a finite classifying space and finite asymptotic dimension.
Hence, Proposition 1.2 implies that the integral Novikov conjecture in
K-theory holds for Γ and hence proves Theorem 1.1.

Remark 3.9.
1) By Proposition 1.2 and [19], the integral Novikov conjecture in

L-theory and C∗-algebras holds as well for groups Γ of finite
asymptotic dimension and having a finite classifying space, and
hence the above proof also shows that the integral Novikov conjec-
ture in L-theory and C∗-algebra theory holds for torsion free arith-
metic subgroups Γ. (Recently, the author learnt that Dranish-
nikov, Ferry and Weinberger gave an independent proof of Propo-
sition 1.2 for the L-theoretic version of the integral Novikov con-
jecture.)

2) Some non-discrete subgroups of Lie groups can be realized as arith-
metic groups of linear algebraic groups. For example, let F be a
number field and OF be its ring of integers. Let G ⊂ GL(n,C)
a connected linear algebraic group defined over F . If F has some
real embedding, then G(OF ) can be realized as a subgroup of
the Lie group G(R) ⊂ GL(n,R). But the image is often a non-
discrete subgroup, for example when F = Q(

√
d), where d is a

square free positive integer. On the other hand, by the functor of
restriction of scalars, G(OF ) or any subgroup Γ of G(F ) commen-
surable with G(OF ) can be realized as an arithmetic subgroup of
the linear algebraic group ResF/QG defined over Q. Therefore, the
integral Novikov conjecture in K-theory, L-theory and C∗-algebra
theory holds for any such subgroup Γ ⊂ G(F ) commensurable
with G(OF ), provided it is torsion free.

Carlsson and Goldfarb [7, Cor 1.9] introduced a notion of weakly
coherent discrete groups, which is important in computing algebraic
K-groups, and proved that discrete groups of finite asymptotic dimen-
sion are weakly coherent. Then, Corollary 3.4 implies that any finitely
generated subgroup of a connected Lie group is weakly coherent.
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