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PROOF OF THE RIEMANNIAN PENROSE
INEQUALITY USING THE POSITIVE MASS

THEOREM

HUBERT L. BRAY

Abstract
We prove the Riemannian Penrose Conjecture, an important case of a con-
jecture [41] made by Roger Penrose in 1973, by defining a new flow of
metrics. This flow of metrics stays inside the class of asymptotically flat
Riemannian 3-manifolds with nonnegative scalar curvature which contain
minimal spheres. In particular, if we consider a Riemannian 3-manifold
as a totally geodesic submanifold of a space-time in the context of general
relativity, then outermost minimal spheres with total area A correspond to
apparent horizons of black holes contributing a mass

√
A/16π, scalar cur-

vature corresponds to local energy density at each point, and the rate at
which the metric becomes flat at infinity corresponds to total mass (also
called the ADM mass). The Riemannian Penrose Conjecture then states
that the total mass of an asymptotically flat 3-manifold with nonnegative
scalar curvature is greater than or equal to the mass contributed by the
black holes.

The flow of metrics we define continuously evolves the original 3-metric
to a Schwarzschild 3-metric, which represents a spherically symmetric black
hole in vacuum. We define the flow such that the area of the minimal spheres
(which flow outward) and hence the mass contributed by the black holes in
each of the metrics in the flow is constant, and then use the Positive Mass
Theorem to show that the total mass of the metrics is nonincreasing. Then
since the total mass equals the mass of the black hole in a Schwarzschild
metric, the Riemannian Penrose Conjecture follows.

We also refer the reader to the beautiful work of Huisken and Ilmanen
[30], who used inverse mean curvature flows of surfaces to prove that the
total mass is at least the mass contributed by the largest black hole.

In Sections 1 and 2, we motivate the problem, discuss important
quantities like total mass and horizons of black holes, and state the
Positive Mass Theorem and the Penrose Conjecture for Riemannian 3-
manifolds. In Section 3, we give the proof of the Riemannian Penrose
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Conjecture, with the supporting arguments given in Sections 4 through
13. In Section 14, we apply the techniques used in this paper to define
several new quasi-local mass functions which have good monotonicity
properties. Finally, in Section 15 we end with a brief discussion of some
of the interesting problems which still remain open, and the author
thanks the many people who have made important contributions to the
ideas in this paper.

1. Introduction

General relativity is a theory of gravity which asserts that matter
causes four dimensional space-time to be curved, and that our percep-
tion of gravity is a consequence of this curvature. Let (N4, g) be the
space-time manifold with metric g of signature (−+++). Then the
central formula of general relativity is Einstein’s equation,

G = 8πT,(1)

where T is the stress-energy tensor, G = Ric(g)− 1
2R(g)·g is the Einstein

curvature tensor, Ric(g) is the Ricci curvature tensor, and R(g) is the
scalar curvature of g. One of the beautiful aspects of general relativity
is that this seemingly simple formula explains gravity more accurately
than Newtonian physics and experimentally is the best theory of gravity
currently known.

However, the nature of the behavior of matter in general relativity
is not well understood. It is not even well understood how to define
how much energy and momentum exist in a given region, except in spe-
cial cases. There does exist a well-defined notion of local energy and
momentum density which is given by the stress-energy tensor which, by
Equation (1), can be computed in terms of the curvature of N4. Also,
if we assume that the matter of the space-time manifold N4 is concen-
trated in some central region of the universe, then we may consider the
idealized situation in which N4 becomes flatter as we get farther away
from this central region. If the curvature of N4 decays quickly enough
and the metric on N4 is converging to the metric of flat Minkowski space
(in some appropriate sense), then N4 is said to be asymptotically flat
(see Definition 21 in Section 13). With these restrictive assumptions it
is then possible to define the total ADM mass of the space-time N4.
Interestingly enough, though, the definition of local energy-momentum
density, which involves curvature terms of N4, bears no obvious resem-
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blance to the definition of the total mass of N4, which is a parameter
related to how quickly the metric becomes flat at infinity.

The Penrose Conjecture ([41], [37], [30]) and the Positive Mass The-
orem ([44], [45], [46], [47], [52]) can both be thought of as basic attempts
at understanding the relationship between the local energy density of a
space-time N4 and the total mass of N4. In physical terms, the Positive
Mass Theorem states that an isolated gravitational system with nonneg-
ative local energy density must have nonnegative total energy. The idea
is that nonnegative energy densities must “add up” to something non-
negative. The Penrose Conjecture, on the other hand, states that if
an isolated gravitational system with nonnegative local energy density
contains black holes contributing a mass m, then the total energy of the
system must be at least m.

One curious phenomenon in general relativity which makes the Pos-
itive Mass Theorem and the Penrose Conjecture particularly subtle and
interesting is the fact that it is possible to construct vacuum space-times
which nevertheless have positive total mass. Physicists refer to this ex-
tra energy as “gravitational energy” which apparently results from the
gravitational waves of the space-time. One interpretation of the Positive
Mass Theorem then is that in vacuum space-times gravitational energy
is always nonnegative.

Hence, we see that the total ADM mass does not always equal the
integral of the energy density of the space-time (over a space-like slice)
because we expect gravitational waves to make a positive contribution
to the total mass. This might lead one to conjecture that the total
ADM mass is always greater than the integral of the energy density of
the space-time (over a space-like slice), but this is also false. In fact,
potential energy contributions between matter (to the extent that this is
well-defined by certain examples) tends to make a negative contribution
to the total mass. Hence, the relationship between the total mass of a
space-time and the distribution of energy and black holes inside the
space-time is nontrivial.

Important cases of the Positive Mass Theorem and the Penrose Con-
jecture can be translated into statements about complete, asymptoti-
cally flat Riemannian 3-manifolds (M3, g) with nonnegative scalar cur-
vature. If we consider (M3, g, h) as a space-like hypersurface of (N4, g)
with metric gij and second fundamental form hij in N4, then Equation
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(1) implies that

µ =
1
8π
G00 =

1
16π

R−
∑
i,j

hijhij +

(∑
i

hii

)2
 ,(2)

J i =
1
8π
G0i =

1
8π

∑
j

∇j

[
hij −

(∑
k

hkk

)
gij

]
,(3)

where R is the scalar curvature of the metric g, µ is the local energy
density, and J i is the local current density. The assumption of non-
negative energy density everywhere in N4, called the dominant energy
condition, implies that we must have

µ ≥
(∑

i

J iJi

) 1
2

(4)

at all points on M3. Equations (2), (3), and (4) are called the constraint
equations for (M3, g, h) in (N4, g). Thus we see that if we restrict our
attention to 3-manifolds which have zero second fundamental form h in
N3, the constraint equations are equivalent to the condition that the
Riemannian manifold (M3, g) has nonnegative scalar curvature every-
where.

An asymptotically flat 3-manifold is a Riemannian manifold (M3, g)
which, outside a compact set, is the disjoint union of one or more regions
(called ends) diffeomorphic to (R3\B1(0), δ), where the metric g in each
of these R3 coordinate charts approaches the standard metric δ on R3

at infinity (with certain asymptotic decay conditions — see Definition
21, [1], [2]). The Positive Mass Theorem and the Penrose Conjecture
are both statements which refer to a particular chosen end of (M3, g).
The total mass of (M3, g), also called the ADM mass [1], is then a
parameter related to how fast this chosen end of (M3, g) becomes flat
at infinity. The usual definition of the total mass is given in Equation
(225) in Section 13. In addition, we give an alternate definition of total
mass in the next section.

The Positive Mass Theorem was first proved by Schoen and Yau
[44] in 1979 using minimal surfaces and then by Witten [52] in 1981
using spinors. The Riemannian Positive Mass Theorem is a special
case of the Positive Mass Theorem which comes from considering the
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space-like hypersurfaces which have zero second fundamental form in
the spacetime.

The Riemannian Positive Mass Theorem. Let (M3, g) be a com-
plete, smooth, asymptotically flat 3-manifold with nonnegative scalar
curvature and total mass m. Then

m ≥ 0,(5)

with equality if and only if (M3, g) is isometric to R3 with the standard
flat metric.

Apparent horizons of black holes in N4 correspond to outermost
minimal surfaces of M3 if we assume M3 has zero second fundamen-
tal form in N4. A minimal surface is a surface which has zero mean
curvature (and hence is a critical point for the area functional). An
outermost minimal surface is a minimal surface which is not contained
entirely inside another minimal surface. Again, there is a chosen end of
M3, and “contained entirely inside” is defined with respect to this end.
Interestingly, it follows from a stability argument [43] that outermost
minimal surfaces are always spheres. There could be more than one out-
ermost sphere, with each minimal sphere corresponding to a different
black hole, and we note that outermost minimal spheres never intersect.

As an example, consider the Schwarzschild manifolds (R3\{0}, s)
where sij = (1 + m/2r)4 δij and m is a positive constant and equals
the total mass of the manifold. This manifold has zero scalar curvature
everywhere, is spherically symmetric, and it can be checked that it has
an outermost minimal sphere at r = m/2.

We define the horizon of (M3, g) to be the union of all of the out-
ermost minimal spheres in M3, so that the horizon of a manifold can
have multiple connected components. We note that it is usually more
common to call each outermost minimal sphere a horizon, so that their
union is referred to as “horizons”, but it turns out to be more convenient
for our purposes to refer to the union of all of the outermost minimal
spheres as one object, which we will call the horizon of (M3, g).

There is a very interesting (but not rigorous) physical motivation to

define the mass that a collection of black holes contributes to be
√

A
16π ,

where A is the total surface area of the horizon of (M3, g) [41]. Then
the physical statement that a system with nonnegative energy density
containing black holes contributing a mass m must have total mass at
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least m can be translated into the following geometric statement ([41],
[37]), the proof of which is the object of this paper.

The Riemannian Penrose Conjecture. Let (M3, g) be a complete,
smooth, asymptotically flat 3-manifold with nonnegative scalar curvature
and total mass m whose outermost minimal spheres have total surface
area A. Then

m ≥
√

A

16π
,(6)

with equality if and only if (M3, g) is isometric to the Schwarzschild
metric (R3\{0}, s) of mass m outside their respective horizons.

The overview of the proof of this result is given in Section 3. The
basic idea of the approach to the problem is to flow the original met-
ric continuously to a Schwarzschild metric (outside the horizon). The
particular flow we define has the important property that the area of
the horizon stays constant while the total mass of the manifold is non-
increasing. Then since the Schwarzschild metric gives equality in the
Penrose inequality, the inequality follows for the original metric.

The first breakthrough on the Riemannian Penrose Conjecture was
made by Huisken and Ilmanen who proved the above theorem in the
case that the horizon of (M3, g) has only one connected component

[30]. More generally, they proved that m ≥
√

Amax
16π , where Amax is

the area of the largest connected component of the horizon of (M3, g).
Their proof is as interesting as the result itself. In the seventies, Geroch
[18] observed that in a manifold with nonnegative scalar curvature, the
Hawking mass of a sphere (but not surfaces with multiple components)
was monotone increasing under a 1/H flow, where H is the mean curva-
ture of the sphere. Jang and Wald [37] proposed using this to attack the
Riemannian Penrose Conjecture by flowing the horizon of the manifold
out to infinity. However, it is not hard to concoct situations in which
the 1/H flow of a sphere develops singularities, preventing the idea from
working much of the time. Huisken and Ilmanen’s approach then was
to define a generalized 1/H flow which sometimes “jumps” in order to
prevent singularities from developing.

Other contributions have also been made by Herzlich [26] using the
Dirac operator which Witten [52] used to prove the Positive Mass Theo-
rem, by Gibbons [19] in the special case of collapsing shells, by Tod [50],
by Bartnik [4] for quasi-spherical metrics, and by the author [7] using
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isoperimetric surfaces. There is also some interesting work of Ludvigsen
and Vickers [38] using spinors and Bergqvist [6], both concerning the
Penrose inequality for null slices of a space-time.

For more on physical discussions related to the Penrose inequality,
gravitational collapse, and cosmic censorship, see also [25], [24], [23],
[22], [18], and [13]. Papers less well known to the author but recom-
mended to him by Richard Rennie are [16], [20], [27] on the Positive
Mass Theorem and [28], [29], [53] on the Penrose inequality.

2. Definitions and setup

Without loss of generality, we will be able to assume that an asymp-
totically flat metric (see Definition 21) has an even nicer behavior at
infinity in each end because of the following lemma and definition.

Lemma 1 (Schoen, Yau [46]). Let (M3, g) be any asymptotically
flat metric with nonnegative scalar curvature. Then given any ε > 0,
there exists a metric g0 with nonnegative scalar curvature which is har-
monically flat at infinity (defined in the next definition) such that

1 − ε ≤ g0(�v,�v)
g(�v,�v)

≤ 1 + ε(7)

for all nonzero vectors �v in the tangent space at every point in M and

|mk −mk| ≤ ε(8)

where mk and mk are respectively the total masses of (M3, g0) and
(M3, g) in the kth end.

Notice that because of Equation (7), the percentage difference in
areas as well as lengths between the two metrics is arbitrarily small.
Hence, since the mass changes arbitrarily little also and since inequality
(6) is a closed condition, it follows that the Riemannian Penrose inequal-
ity for asymptotically flat manifolds follows from proving the inequality
for manifolds which are harmonically flat at infinity.

Definition 1. A Riemannian manifold is defined to be harmonically
flat at infinity if, outside a compact set, it is the disjoint union of regions
(which we will again call ends) with zero scalar curvature which are
conformal to (R3\B1(0), δ) with the conformal factor approaching a
positive constant at infinity in each region.



184 hubert l. bray

Now it is fairly easy to define the total mass of an end of a manifold
(M3, g0) which is harmonically flat at infinity. Define gflat to be a smooth
metric on M3 conformal to g0 such that in each end of M3 in the above
definition (M3, gflat) is isometric to (R3\B1(0), δ). Define U0(x) such
that

g0 = U0(x)4gflat.(9)

Then since (M3, g0) has zero scalar curvature in each end, (R3\B1(0),
U0(x)4δ) must have zero scalar curvature. This implies that U0(x) is
harmonic in (R3\B1(0), δ) (see Equation (240) in Appendix A). Since
U0(x) is a harmonic function going to a constant at infinity, we may
expand it in terms of spherical harmonics to get

U0(x) = a+
b

|x| + O
(

1
|x|2

)
,(10)

where a and b are constants.

Definition 2. The total mass (of an end) of a Riemannian 3-
manifold which is harmonically flat at infinity is defined to be 2ab in
the above equation.

While the constants a and b scale depending on how we represent
(M3, g0) as the disjoint union of a compact set and ends in Definition 1,
it can be checked that 2ab does not. Furthermore, this definition agrees
with the standard definition of the total mass of an asymptotically flat
manifold (defined in Equation (225)) in the case that the manifold is
harmonically flat at infinity. We choose to work with this definition
because it is more convenient for the calculations we will be doing in
this paper.

Now we turn our attention to the definition and properties of hori-
zons. For convenience, we modify the topology of M3 by compactifying
all of the ends of M3 except for the chosen end by adding the points
{∞k}. (However, the metrics will still not be defined on these new
points.)

Definition 3. Define S to be the collection of surfaces which are
smooth compact boundaries of open sets in M3 containing the points
{∞k}.

All of the surfaces that we will be dealing with in this paper will
be in S. Also, we see that all of the surfaces in S divide M3 into two
regions, an inside (the open set) and an outside (the complement of
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the open set). Thus, the notion of one surface in S (entirely) enclosing
another surface in S is well-defined.

Definition 4. A horizon of (M3, g) is any zero mean curvature
surface in S.

A horizon may have multiple connected components. Furthermore,
by minimizing area over surfaces in S, a horizon is guaranteed to exist
when M3 has more than one end.

Definition 5. A horizon is defined to be outermost if it is not
enclosed by another horizon.

We note that when at least one horizon exists, there is always a
unique outermost horizon, with respect to the chosen end.

Definition 6. A surface Σ ∈ S is defined to be (strictly) outer
minimizing if every other surface Σ̃ ∈ S which encloses it has (strictly)
greater area.

An outer minimizing surface must have nonnegative mean curvature
since otherwise the first variation formula would imply that an outward
variation would yield a surface with less area. Also, in the case that Σ
is a horizon, it is an outer minimizing horizon if and only if it is not
enclosed by a horizon with less area. Interestingly, every component
of an outer minimizing horizon must be a 2-sphere. When the horizon
is strictly outer minimizing (or outermost), this fact follows from the
Gauss-Bonnet formula and a second variation argument ([43], or see Sec-
tion 8). (Without the strictness assumption, tori become possibilities,
but are then ruled out by [12].) We will not use outermost horizons very
much in this paper, but point out that outermost horizons are always
strictly outer minimizing. Hence, the following theorem, which is the
main result of this paper, is a slight generalization of the Riemannian
Penrose Conjecture.

Theorem 1. Let (M3, g) be a complete, smooth, asymptotically flat
3-manifold with nonnegative scalar curvature, total mass m, and an
outer minimizing horizon (with one or more components) of total area
A. Then

m ≥
√

A

16π
(11)

with equality if and only if (M3, g) is isometric to a Schwarzschild man-
ifold outside their respective outermost horizons.
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Besides the flat metric on R3, the Schwarzschild manifolds are the
only other complete spherically symmetric 3-manifolds with zero scalar
curvature, and as previously mentioned can be described explicitly as
(R3\{0}, s) where

sij =
(
1 +

m

2r

)4
δij ,(12)

r is the distance from the origin in R3, and m is a positive constant and
equals the total mass of the manifold. Then since the Schwarzschild
manifolds have a single minimal sphere which is the coordinate sphere
of radius m/2, we can verify they give equality in the above theorem.

3. Overview of the proof

In this section we give the overview of the proof of Theorem 1,
which is a slight generalization of the Riemannian Penrose Conjecture.
The remainder of the paper is then devoted to proving and finding
applications for the claims made in this section.

As discussed in the previous section, without loss of generality for
proving the Riemannian Penrose inequality for asymptotically flat man-
ifolds we may restrict our attention to harmonically flat manifolds.

Assumption. From this point on, we will assume that (M3, g0)
is a complete, smooth, harmonically flat 3-manifold with nonnegative
scalar curvature and an outer minimizing horizon Σ0 (with one or more
components) of total area A0, unless otherwise stated.

We will generalize our results to the asymptotically flat case and handle
the case of equality of Theorem 1 in Section 13.

We define a continuous family of conformal metrics {gt} on M3,
where

gt = ut(x)4g0(13)

and u0(x) ≡ 1. Given the metric gt, define

Σ(t) = the outermost minimal area enclosure of Σ0 in (M3, gt)(14)

where Σ0 is the original outer minimizing horizon in (M3, g0) and we
stay inside the collection of surfaces S defined in the previous section.
In the cases in which we are interested, Σ(t) will not touch Σ0, from
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which it follows that Σ(t) is actually a strictly outer minimizing horizon
of (M3, gt). Then given the horizon Σ(t), define vt(x) such that

∆g0vt(x) ≡ 0 outside Σ(t)
vt(x) = 0 on Σ(t)

limx→∞ vt(x) = −e−t
(15)

and vt(x) ≡ 0 inside Σ(t). Finally, given vt(x), define

ut(x) = 1 +
∫ t

0
vs(x)ds(16)

so that ut(x) is continuous in t and has u0(x) ≡ 1.

Theorem 2. Taken together, Equations (13), (14), (15) and (16)
define a first order o.d.e. in t for ut(x) which has a solution which is
Lipschitz in the t variable, C1 in the x variable everywhere, and smooth
in the x variable outside Σ(t). Furthermore, Σ(t) is a smooth, strictly
outer minimizing horizon in (M3, gt) for all t ≥ 0, and Σ(t2) encloses
but does not touch Σ(t1) for all t2 > t1 ≥ 0.

Since vt(x) is a superharmonic function in (M3, g0), it follows
that ut(x) is superharmonic as well, and from Equation (16) we see that
limx→∞ ut(x) = e−t and consequently that ut(x) > 0 for all x and t.
Then since

R(gt) = ut(x)−5(−8∆g +R(g))ut(x)(17)

it follows that (M3, gt) is an asymptotically flat manifold with nonneg-
ative scalar curvature.

Even so, it still may not seem like gt is particularly naturally defined
since the rate of change of gt appears to depend on t and the original
metric g0 in Equation (15). We would prefer a flow where the rate of
change of gt is only a function of gt (and M3 and Σ0 perhaps), and
interestingly enough this actually does turn out to be the case. In Ap-
pendix A we prove this very important fact and provide a very natural
motivation for defining this conformal flow of metrics.

Definition 7. The function A(t) is defined to be the total area of
the horizon Σ(t) in (M3, gt).

Definition 8. The function m(t) is defined to be the total mass of
(M3, gt) in the chosen end.
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The next theorem is the key property of the conformal flow of met-
rics.

Theorem 3. The function A(t) is constant in t and m(t) is non-
increasing in t, for all t ≥ 0.

The fact that A′(t) = 0 follows from the fact that to first order the
metric is not changing on Σ(t) (since vt(x) = 0 there) and from the fact
that to first order the area of Σ(t) does not change as it moves outward
since Σ(t) has zero mean curvature in (M3, gt). We make this rigorous
in Section 5. Hence, the interesting part of Theorem 3 is proving that
m′(t) ≤ 0. We will see that this last statement follows from a nice trick
using the Riemannian Positive Mass Theorem.

Another important aspect of this conformal flow of the metric is
that outside the horizon Σ(t), the manifold (M3, gt) becomes more and
more spherically symmetric and “approaches” a Schwarzschild manifold
(R3\{0}, s) in the limit as t goes to ∞. More precisely,

Theorem 4. For sufficiently large t, there exists a diffeomorphism
φt between (M3, gt) outside the horizon Σ(t) and a fixed Schwarzschild
manifold (R3\{0}, s) outside its horizon. Furthermore, for all ε > 0,
there exists a T such that for all t > T , the metrics gt and φ∗t (s) (when
determining the lengths of unit vectors of (M3, gt)) are within ε of each
other and the total masses of the two manifolds are within ε of each
other. Hence,

lim
t→∞

m(t)√
A(t)

=

√
1

16π
.(18)

Inequality (11) of Theorem 1 then follows from Theorems 2, 3 and
4, for harmonically flat manifolds. In addition, in Section 13 we will
see that the case of equality in Theorem 1 follows from the fact that
m′(0) = 0 if and only if (M3, g0) is isometric to a Schwarzschild manifold
outside their respective outermost horizons. We will also generalize our
results to the asymptotically flat case in that section.

The diagrams in Figures 1 and 2 are meant to help illustrate some of
the properties of the conformal flow of the metric. Figure 1 depicts the
original metric which has a strictly outer minimizing horizon Σ0. As t
increases, Σ(t) moves outwards, but never inwards. In Figure 2, we can
observe one of the consequences of the fact that A(t) = A0 is constant in
t. Since the metric is not changing inside Σ(t), all of the horizons Σ(s),
0 ≤ s ≤ t have area A0 in (M3, gt). Hence, inside Σ(t), the manifold
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�ν
(M3, g0)

Σ(0) = Σ0

Σ(t)

Figure 1.

(M3, gt)
�ν

Σ(0) = Σ0

Σ(t)

Figure 2.

(M3, gt) becomes cylinder-like in the sense that it is laminated by all of
the previous horizons which all have the same area A0 with respect to
the metric gt.

Now let us suppose that the original horizon Σ0 of (M3, g) had
two components, for example. Then each of the components of the
horizon will move outwards as t increases, and at some point before
they touch they will suddenly jump outwards to form a horizon with a
single component enclosing the previous horizons with two components.
Even horizons with only one component will sometimes jump outwards,
and it is interesting that this phenomenon of surfaces jumping is also
found in the Huisken-Ilmanen approach to the Penrose Conjecture using
their generalized 1/H flow.
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4. Existence and regularity of the flow of metrics {gt}
In this section we will prove Theorem 2 which claims that there

exists a solution ut(x) to the o.d.e. in t defined by Equations (13), (14),
(15), and (16) with certain regularity properties. To do this, for each
ε ∈ (0, 1

2) we will define another family of conformal factors uεt(x) which
will be easy to prove exists, and then define

ut(x) = lim
ε→0

uεt(x)(19)

which we will then show satisfies the original o.d.e.
Define �z� to be the greatest integer less than or equal to z. Define

�z�ε = ε
⌊z
ε

⌋
(20)

which we see is the greatest integer multiple of ε less than or equal to
z.

Define

gεt = uεt(x)
4g0(21)

and uε0(x) ≡ 1. Given the metric gεt , define (for t ≥ 0)

Σε(t) =



Σ0 if t = 0

the outermost minimal area enclosure
of Σε(t− ε) in (M3, gεt) if t = kε, k ∈ Z+

Σε(�t�ε) otherwise,

(22)

where Σ0 is the original outer minimizing horizon in (M3, g0) and we
stay inside the collection of surfaces S defined in Section 2. Given Σε(t),
define vεt(x) such that

∆g0v
ε
t(x) ≡ 0 outside Σε(t)
vεt(x) = 0 on Σε(t)

limx→∞ vεt(x) = −(1 − ε)� t
ε�

(23)

and vεt(x) ≡ 0 inside Σε(t). Finally, given vεt(x), define

uεt(x) = 1 +
∫ t

0
vεs(x)ds(24)
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so that uεt(x) is continuous in t and has uε0(x) ≡ 1.
Notice that Σε(t) and hence vεt(x) are fixed for t ∈ [kε, (k + 1)ε).

Furthermore, for t = kε, k ∈ Z+, Σε(t) does not touch Σε(t−ε), because
it can be shown that Σε(t− ε) has negative mean curvature in (M3, gεt)
and thus acts as a barrier. Hence, Σε(t) is actually a strictly outer
minimizing horizon of (M3, gεt) and is smooth since gεt is smooth outside
Σε(t− ε).

From these considerations it follows that a solution uεt(x) to Equa-
tions (21), (22), (23), and (24) always exists. We can think of uεt(x) as
what results when we approximate the original o.d.e. with a stepping
procedure where the step size equals ε.

Initially it might seem a little strange that we are requiring

lim
x→∞ vεt(x) = −(1 − ε)� t

ε�.(25)

However, this is done so that

lim
x→∞ vεt(x) = − lim

x→∞uεt(x)(26)

for t values which are an integral multiple of ε. This is necessary to
prove that the rate of change of gεt is just a function of gεt and not of g0
(when t is an integral multiple of ε), and the argument is the same as
the one given for the original o.d.e. in Appendix A.

In Corollary 15 of Appendix E, we show that we have upper bounds
on the Ck,α “norms” of the horizons {Σε(t)}, as defined in Definition 33.
Furthermore, these upper bounds do not depend on ε, and depend only
on T , Σ0, g0, and the choice of coordinate charts for M3. Hence, not
only are these surfaces smooth, but any limits of these surfaces, which
we will be dealing with later, will also be smooth.

Lemma 2. The horizon Σε(t2) encloses Σε(t1) for all t2 ≥ t1 ≥ 0.

Proof. Follows from the definition of Σε(t) in Equation (22). q.e.d.

Lemma 3. The horizon Σε(t) is the outermost minimal area enclo-
sure of Σ0 in (M3, gεt) when t = kε, k ∈ Z+.

Proof. The proof is by induction on k. The case when k = 1 follows
by definition from Equation (22). Now assume that the lemma is true
for t = (k−1)ε. Then since the metric is not changing inside Σε((k−1)ε)
for (k − 1)ε ≤ t ≤ kε, the outermost minimal area enclosure of Σ0 in
(M3, gkε) must be outside Σε((k − 1)ε). Then the lemma follows for
t = kε from Equation (22) again. q.e.d.
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Lemma 4. The functions uεt(x) are positive, bounded, locally Lips-
chitz functions (in x and t), with uniform Lipschitz constants indepen-
dent of ε.

Proof. Since uεt(x) is superharmonic and goes to a positive constant
at infinity (which is seen by integrating vεt(x) in Equation (24)), uεt(x) >
0. And since vεt(x) ≤ 0, then from Equation (24) it follows that uεt(x) ≤
1. The fact that uεt(x) is Lipschitz in t follows from Equation (24) and
the fact that vεt(x) is bounded, and the fact that uεt(x) is Lipschitz in
x follows from the fact that vεt(x) is Lipschitz (with Lipschitz constant
depending on t) by Corollary 15 of Appendix E. q.e.d.

Corollary 1. There exists a subsequence {εi} converging to zero
such that

ut(x) = lim
εi→0

uεit (x)(27)

exists, is locally Lipschitz (in x and t), and the convergence is locally
uniform. Hence, we may define the metric

gt = lim
εi→0

gεit = ut(x)4g0(28)

for t ≥ 0 as well.

Proof. Follows from Lemma 4. We will stay inside this subsequence
for the remainder of this section. q.e.d.

Definition 9. Define {Σ̃γ(t)} to be the collections of limit surfaces
of Σεi(t) in the limit as εi approaches 0.

Initially we define the limits in the measure theoretic sense, which
must exist since it is possible to bound the areas of the surfaces Σεi(t)
from above and below and to show that they are all contained in a
compact region. However, we also have bounds on the Ck,α “norms”
(see Definition 33) of the horizons Σε(t) by Corollary 15 in Appendix
E. Hence, since the bounds given in Corollary 15 are independent of ε,
the above limits are also true in the Hausdorff distance sense, and the
limit surfaces are all smooth.

Theorem 5. The limit surface Σ̃γ2(t2) encloses Σ̃γ1(t1) for all t2 >
t1 ≥ 0 and for any γ1 and γ2.

Proof. This theorem would be trivial and would follow directly from
Lemma 2 if not for the fact that there can be multiple limit surfaces for
Σεi(t) as εi goes to zero. Instead, we have some work to do.
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Given any δ > 0, choose ε such that

|uεit (x) − ut(x)| < δ for all εi < ε,(29)

which we can do since the convergence in Equation (27) is locally Lips-
chitz and since the uεt(x) are all harmonic outside a compact set. Next,
choose ε1, ε2 < ε such that

dis(Σε1(t1), Σ̃γ1(t1)) < δ(30)

dis(Σε2(t2), Σ̃γ2(t2)) < δ(31)

which is possible since we have convergence in the Hausdorff distance
sense. Note that we define

dis(S, T ) = max
(

sup
x∈S

inf
y∈T

d(x, y), sup
x∈T

inf
y∈S

d(x, y)
)

(32)

where d(x, y) is the usual distance function in (M3, g0). Then by Equa-
tion (29) and the triangle inequality,

|uε1t (x) − uε2t (x)| < 2δ(33)

so that by Equation (24) we have that∣∣∣∣∫ t

0
(vε1s (x) − vε2s (x)) ds

∣∣∣∣ < 2δ(34)

which by the triangle inequality once again implies that∣∣∣∣∫ t2

t1

(vε1s (x) − vε2s (x)) ds
∣∣∣∣ < 4δ.(35)

Since Σε2(t2) encloses Σε2(s) for s < t2, it follows from the maximum
principle that

vε2s (x) ≤ vε2t2 (x) (1 − ε2)
(⌊

s
ε2

⌋
−
⌊

t2
ε2

⌋)
.(36)

Similarly, since Σε1(t1) is enclosed by Σε1(s) for s > t1, it also follows
from the maximum principle that

vε1s (x) ≥ vε1t1 (x) (1 − ε1)
(⌊

s
ε1

⌋
−
⌊

t1
ε1

⌋)
.(37)

Now suppose that Σ̃γ2(t2) did not enclose Σ̃γ1(t1) for some t2 > t1 ≥
0. Then choose x0 strictly inside Σ̃γ1(t1) and strictly outside Σ̃γ2(t2),
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and choose any positive δ < 1
2 max

(
dis
(
x0, Σ̃γ1(t1)

)
, dis

(
x0, Σ̃γ2(t2)

))
.

Then we must have

vε2t2 (x0) < 0 and vε1t1 (x0) = 0.(38)

Then combining Equations (35), (36), (37) and (38) yields

−vε2t2 (x0)
∫ t2

t1

(1 − ε2)
(⌊

s
ε2

⌋
−
⌊

t2
ε2

⌋)
ds < 4δ.(39)

Let limε2→0 v
ε2
t2

(x0) = −α, which must be negative by the maximum
principle since Σε2(t2) is approaching Σ̃γ2(t2) smoothly. Then taking
the limit of inequality (39) as δ and ε2 both go to zero yields

α

∫ t2

t1

e(t2−s) ds ≤ 0,(40)

a contradiction since t2 is strictly greater than t1. Hence, Σ̃γ2(t2) must
enclose Σ̃γ1(t1) for all t2 > t1 ≥ 0, proving the theorem. q.e.d.

In the next section, we will prove:

Theorem 6. Let A0 be the area of the original outer minimizing
horizon Σ0 with respect to the original metric g0. Then

|Σ̃γ(t)|gt = A0(41)

for all t ≥ 0, where | · |gt denotes area with respect to the metric gt.

Corollary 2. In addition,

|Σ̃γ(t1)|gt2
= A0(42)

for all t2 ≥ t1 ≥ 0.

Proof. This statement follows from the previous two theorems and
the fact that vεit (x) is defined to be zero inside Σεi(t) so that gt1 = gt2
inside Σ(t2) for t2 ≥ t1 ≥ 0. q.e.d.

Definition 10. Define Σ(t) to be the outermost minimal area en-
closure of the original horizon Σ0 in (M3, gt).

We note that the outermost minimal area enclosure of a smooth
region is well-defined in that it always exists and is unique [5].
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Lemma 5. It is also true that

|Σ(t)|gt = A0.(43)

for all t ≥ 0.

Proof. Since by Lemma 3 Σεi(t) is the outermost minimal area
enclosure of Σ0 in (M3, gεit ), the result follows from Theorem 6 and the
fact that uεit (x) is locally uniformly Lipschitz and is converging to ut(x)
locally uniformly. This is also discussed in the next section. q.e.d.

Lemma 6. The surface Σ(t2) encloses Σ̃γ(t1) for all γ and t2 >
t1 ≥ 0.

Proof. By Lemma 5, the minimal area enclosures of Σ0 in (M3, gt2)
have area A0. But by Corollary 2, Σ̃γ(t1) has area A0 in (M3, gt2).
Hence, since Σ(t2) is the outermost minimal area enclosure by definition,
it follows that Σ(t2) encloses Σ̃γ(t1). q.e.d.

Lemma 7. The surface Σ̃γ(t2) encloses Σ(t1) for all γ and t2 >
t1 ≥ 0.

Proof. Suppose Σ̃γ(t2) did not (entirely) enclose Σ(t1) for some
t2 > t1 ≥ 0. Then we choose a subsequence {ε′i} ⊂ {εi} converging to
zero such that Σε′i(t2) is converging to Σ̃γ(t2) in the Hausdorff distance
sense.

On the other hand, by Lemma 5 we have

lim
ε′i→0

|Σ(t1)|
g

ε′
i

t1

= |Σ(t1)|gt1
= A0.(44)

However, for a given ε′i, the metric is shrinking outside of Σε′i(t2) for
t1 ≤ t ≤ t2 by a uniform amount which can be made independent of ε′i,
and follows from Lemma 2 and Equations (23) and (24). Hence,

lim
ε′i→0

|Σ(t1)|
g

ε′
i

t2

= |Σ(t1)|gt2
< A0,(45)

which by Definition 10 violates Lemma 5. q.e.d.

Corollary 3. The surface Σ(t2) encloses Σ(t1) for all t2 > t1 ≥ 0.

Proof. Follows directly from the two previous lemmas. q.e.d.
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Definition 11. Define

Σ+(t) = lim
s→t+

Σ(s), Σ̃+(t) = lim
s→t+

Σ̃γ(s),(46)

Σ−(t) = lim
s→t−

Σ(s), Σ̃−(t) = lim
s→t−

Σ̃γ(s),

where we define Σ−(0) = Σ0 = Σ̃−(0).

We note that by the inclusion properties of Theorem 5 and Corol-
lary 3 that these limits are always unique.

Definition 12. Define the jump times J to be the set of all t ≥ 0
with Σ+(t) 
= Σ−(t).

Theorem 7. We have the inclusion property that for all t2 > t1 ≥
0, the surfaces Σ(t2), Σ̃γ(t2),Σ+(t2), Σ̃+(t2),Σ−(t2), Σ̃−(t2) all enclose
the surfaces Σ(t1), Σ̃γ(t1),Σ+(t1), Σ̃+(t1),Σ−(t1), Σ̃−(t1). Also, for t ≥
0

Σ(t) = Σ+(t) = Σ̃+(t) and encloses Σ−(t) = Σ̃−(t),(47)

and all five surfaces are smooth with area A0 in (M3, gt). Furthermore,
except for t ∈ J , all five surfaces in Equation (47) are equal, Σ̃γ(t) is
single valued, and Σ(t) = Σ̃γ(t). In addition, the set J is countable.

Proof. The inclusion property follows directly from Lemmas 6 and 7.
These two lemmas also prove that Σ+(t) encloses Σ̃+(t) and that Σ̃+(t)
encloses Σ+(t), proving that they are equal. Similarly it follows that
Σ−(t) = Σ̃−(t), and these two lemmas also imply that Σ+(t) = Σ̃+(t)
encloses Σ−(t) = Σ̃−(t).

By Corollary 1 and Theorem 6, all five surfaces have area A0 in
(M3, gt). By Corollary 3, Σ(t) is enclosed by Σ+(t). On the other hand,
Σ+(t) has area A0 and Σ(t) encloses all other minimal area enclosures
of Σ0, so Σ(t) encloses Σ+(t). Hence, Σ(t) = Σ+(t).

By the definition of J , all five surfaces are equal for t /∈ J . Since each
Σ̃γ(t) is sandwiched between the surfaces Σ̃−(t) and Σ̃+(t) which are
equal, it follows that Σ̃γ(t) is a single limit surface and equals Σ̃−(t) =
Σ̃+(t) for these t /∈ J , from which it follows that Σ(t) = Σ̃γ(t).

Define ∆V (t) to equal the volume enclosed by Σ+(t) but not by
Σ−(t). Then

∑
t∈J∩[0,T ] ∆V (t) is finite for all T > 0 since it is less than

or equal to the volume enclosed by Σ(T + 1) but not by Σ0 which is
finite. Also, ∆V (t) > 0 for t ∈ J since by Corollary 15 of Appendix E
these surfaces are all uniformly smooth. Hence, J is countable. q.e.d.
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Definition 13. Given the horizon Σ(t), define vt(x) such that
∆g0vt(x) ≡ 0 outside Σ(t)

vt(x) = 0 on Σ(t)
limx→∞ vt(x) = −e−t

(48)

and vt(x) ≡ 0 inside Σ(t).

Lemma 8. Using the definition of vt(x) given above and the defi-
nition of ut(x) given in Corollary 1, we have that

ut(x) = 1 +
∫ t

0
vs(x)ds.(49)

Proof. By Theorem 7, limεi→0 v
εi
s (x) = vs(x) for almost every value

of s ≥ 0. Then using the inclusion property of Theorem 7 it follows
that we can pass the limit into the integral in Equation (24), proving
the lemma. q.e.d.

Lemma 9. The surfaces {Σ(t)} do not touch for different values of
t ≥ 0. Furthermore, the metric gt and the conformal factor ut(x) are
C1 in x, and Σ(t1), Σ+(t1), and Σ−(t1) are outer minimizing horizons
with area A0 in (M3, gt2) for t2 ≥ t1 ≥ 0.

Proof. First we note that by Equation (23) and Corollary 15 in
Appendix E that there exists a locally uniform constant c such that
vεt(x)−cf(x) is convex, where f(x) is any locally defined smooth function
with all of its second derivatives greater than or equal to one. Hence,
by Equation (24), the same statement is true for uεt(x), and then also
for ut(x) after taking the limit. Hence, for all x ∈ M the directional
derivatives of ut(x) exist in all directions and

∇�wut(x) ≤ −∇−�wut(x).(50)

The mean curvature of a surface Σ in (M3, gt) is

H = ut(x)−2H0 + 4ut(x)−3∇�νut(x)(51)

where H0 is the mean curvature and �ν is the outward pointing unit
normal vector of Σ in (M3, g0). Hence, by Equation (50), the mean
curvature of Σ on the outside is always less than or equal to the mean
curvature of Σ on the inside (but still using an outward pointing unit
normal vector). Since Σ0 has zero mean curvature in (M3, g0) and since
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ut(x) = 1 on Σ0 and ut(x) ≤ 1 everywhere else, it follows that the mean
curvature of Σ0 (on the outside) is nonpositive in (M3, gt) and thus acts
as a barrier for Σ(t).

Suppose Σ(t) touched Σ0 at x0 for some t > 0. Since Σ(t) is outside
Σ0, it must have nonpositive mean curvature in (M3, g0). Then by
Equation (49) we have ∇�νut(x0) < 0, where �ν is the outward pointing
unit normal vector to Σ(t) and Σ0 at x0 in (M3, g0). Hence, by Equation
(51) it follows that Σ(t) has negative mean curvature on the outside in
(M3, gt). This is a contradiction, since by the first variation formula and
the pseudo-convexity of ut(x) we could then flow Σ(t) out and decrease
its area, contradicting the fact that it is defined to be a minimal area
enclosure of Σ0 in (M3, gt). Hence, Σ(t) does not touch Σ0.

Then since the mean curvature of Σ(t) on the outside is less than
or equal to the mean curvature on the inside, it follows that both mean
curvatures for Σ(t) in (M3, gt) must be zero. Otherwise, it would be
possible to do a variation of Σ(t) which decreased its area in (M3, gt).
Similarly, by Corollary 2 and Theorem 7, |Σ(t1)|gt2

= A0 too, so that by
the same first variation argument the mean curvatures of Σ(t1) on the
outside and inside in (M3, g2) must both also be zero, for t2 ≥ t1 ≥ 0.
Hence, Σ(t1) is a horizon in (M3, gt2).

Hence, Σ(t1) acts as a barrier for Σ(t2) for t2 > t1 ≥ 0. As discussed
in Appendix A, the o.d.e. for ut(x) is actually translation invariant in
t since the rate of change of gt is a function of gt and not of t. Thus,
the argument proving that Σ(t2) does not touch Σ(t1) is essentially the
same as the argument two paragraphs above which proved that Σ(t) did
not touch Σ0.

To see that ut(x) is C1 in x, we first observe that by Equation (49)
the directional derivatives in x for ut(x) equal

∇�wut(x) =
∫ t

0
∇�wvs(x)ds.(52)

Furthermore, vt(x) is smooth everywhere except on Σ(t) and has lo-
cally uniform bounds on all of its derivatives off of Σ(t) because of
the regularity of Σ(t) coming from Theorem 7 and Corollary 15 of Ap-
pendix E. Hence, ut(x) will be C1 at x = x0 if and only if the set
I(x0) = {t | x0 ∈ Σ(t)} has measure zero in R. But since we just got
through proving that the horizons Σ(t) do not touch for different values
of t, I(x0) is at most one point, so ut(x) is C1 in x. q.e.d.

Theorem 2 then follows from Corollary 1, Definition 10, Corollary 3,
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Theorem 7, Definition 13, Lemma 8, Lemma 9, and Corollary 15 in
Appendix E.

5. Proof that A(t) is a constant

The fact that A(t), defined to be the area of the horizon Σ(t) in
(M3, gt), is constant in t was proven already in Lemma 5 of the previous
section. However, this lemma relied entirely on Theorem 6, the proof of
which we have postponed until now.

Proof of Theorem 6. We continue with the same notation as in the
previous section.

Definition 14. We define Aε(t) = |Σε(t)|gε
t

and

∆Aε(t) = Aε(t+ ε) −Aε(t),(53)

where t is a nonnegative integer multiple of ε.

Then if we can prove that for all T > 0,

lim
ε→0

Aε(t) = A0(54)

for all t ∈ [0, T ], Theorem 6 follows since each limit surface Σ̃γ(t) is the
limit of a Σεi(t) for some choice of {εi} converging to zero, all of the
surfaces involved are uniformly smooth (Corollary 15), and {gεit } are all
uniformly Lipschitz and are converging uniformly to gt (Corollary 1).

Our first observation is that since vεt(x) ≤ 0, the metric gεt gets
smaller pointwise as t increase. Hence, ∆Aε(t) is always negative, where
we are requiring that t = kε for some nonnegative integer k. Then since
Aε(0) = A0 by definition, it follows that

Aε(t) ≤ A0.(55)

Hence, all that we need to prove Equation (54) is a lower bound on
∆Aε(t)/ε which goes to zero as ε goes to zero for “most” values of t.

For convenience, we first set t = 0 and estimate ∆Aε(0). This es-
timate will then be generalizable for all values of t since the flow is
independent of the base metric g0 and t as discussed in Section 4 and
described in Appendix A. Since uεε(x) = 1 + εvε0(x), it follows that

Aε(ε) =
∫

Σε(ε)
(1 + εvε0(x))

4 dAgε
0

(56)
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where as usual dAgε
0

is the area form of Σε(ε) with respect to gε0. Then
since Σε(0) is outer minimizing in (M3, gε0), we also have

Aε(0) ≤
∫

Σε(ε)
1 dAgε

0
.(57)

Hence,

∆Aε(0) ≥
∫

Σε(ε)
[(1 + εvε0(x))

4 − 1] dAgε
0

(58)

≥ 4ε
∫

Σε(ε)

(
vε0(x) − ε2

)
dAgε

0
(59)

which follows from expanding and the fact that −1 ≤ vε0(x) ≤ 0, so that

∆Aε(0) ≥ 4ε|Σε(ε)|gε
0

(
min
Σε(ε)

vε0(x) − ε2
)
.(60)

More generally, from the discussion at the end of Appendix A, we
see that if we define

vεt(x) = vεt(x)/u
ε
t(x),(61)

then

∆Aε(t) ≥ 4ε|Σε(t+ ε)|gε
t

(
min

Σε(t+ε)
vεt(x) − ε2

)
,(62)

where as before t is a nonnegative integral multiple of ε. Furthermore,

|Σε(t+ ε)|gε
t
≤ |Σε(t+ ε)|gε

t+ε
(1 − ε)−4 ≤ A0(1 − ε)−4,(63)

since gεt and gεt+ε are conformally related within a factor of (1 − ε)−4

and by inequality (55). Thus,

∆Aε(t) ≥ 4εA0(1 − ε)−4

(
min

Σε(t+ε)
vεt(x) − ε2

)
.(64)

Definition 15. We define V ε(t) to be the volume of the region
enclosed by Σε(t) which is outside the original horizon Σ0 and define

∆V ε(t) = V ε(t+ ε) − V ε(t),(65)

where t is a nonnegative integer multiple of ε.
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We now require t ∈ [0, T ], for any fixed T > 0. Since (M3, g0)
is asymptotically flat and uεt(x) has uniform upper and lower bounds,
there exists a uniform upper bound V0 for V ε(T ) which is independent
of ε. Hence, by Lemma 2 it follows that

∆V ε(kε) ≤ V0

√
ε(66)

for k = 0 to
⌊
T
ε

⌋− 1 except at most
⌊

1√
ε

⌋
values of k.

Furthermore, it is possible to define a function f which is indepen-
dent of ε and only depends on T , Σ0, g0, and the uniform regularity
bounds on the surfaces Σε(t) in Corollary 15 in Appendix E such that

max
x∈Σε((k+1)ε)

dis(x,Σε(kε)) ≤ f(∆V ε(kε)),(67)

where f is a continuous, increasing function which equals zero at zero.
Also, from Corollary 15 we have

|∇vεt(x)|g0 ≤ K(68)

for 0 ≤ t ≤ T , where K is also independent of ε. Hence, since vεkε(x) = 0
on Σε(kε),

min
Σε((k+1)ε)

vεkε(x) ≥ −Kf(V0

√
ε),(69)

and since uεt(x) ≥ (1 − ε)�T
ε � for 0 ≤ t ≤ T ,

min
Σε((k+1)ε)

vεkε(x) ≥ −Kf(V0

√
ε)(1 − ε)−�T

ε �,(70)

for k = 0 to
⌊
T
ε

⌋− 1 except at most
⌊

1√
ε

⌋
values of k. At these excep-

tional values of k we will just use the fact that vεkε(x) > −1.
Hence, from Equation (64)

∆Aε(kε) ≥ −4εA0(1 − ε)−4
(
Kf(V0

√
ε)(1 − ε)−�T

ε � + ε2
)

(71)

for k = 0 to
⌊
T
ε

⌋− 1 except at most
⌊

1√
ε

⌋
values of k and

∆Aε(kε) ≥ −4εA0(1 − ε)−4
(
1 + ε2

)
(72)

for all values of k including the exceptional ones.
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Then from Equation (53) we have that

Aε(nε) = A0 +
n−1∑
k=0

∆Aε(kε)(73)

≥ A0 − 4TA0(1 − ε)−4
(
Kf(V0

√
ε)(1 − ε)−�T

ε � + ε2
)

− 4
√
εA0(1 − ε)−4

(
1 + ε2

)
for 1 ≤ n ≤ ⌊

T
ε

⌋
. Then since f goes to zero at zero, Equation (54)

follows from inequalities (55) and (73) for 0 ≤ t ≤ T . Since T > 0 was
arbitrary, this proves Theorem 6. q.e.d.

6. Green’s functions at infinity and the Riemannian Positive
Mass Theorem

In this section we will prove a few theorems about certain Green’s
functions on asymptotically flat 3-manifolds with nonnegative scalar
curvature which will be needed in the next section to prove that m(t) is
nonincreasing in t. However, the theorems in this section, which follow
from and generalize the Riemannian Positive Mass Theorem, are also
of independent interest.

The results of this section are closely related to the beautiful ideas
used by Bunting and Masood-ul-Alam in [11] to prove the non-existence
of multiple black holes in asymptotically flat, static, vacuum space-
times. Hence, while Theorems 8 and 9 do not appear in their paper,
these two theorems follow from a natural extension of their techniques.

Definition 16. Given a complete, asymptotically flat manifold
(M3, g) with multiple asymptotically flat ends (with one chosen end),
define

E(g) = inf
φ

{
1
2π

∫
(M3,g)

|∇φ|2 dV
}

(75)

where the infimum is taken over all smooth φ(x) which go to one in the
chosen end and zero in the other ends.

Without loss of generality, we may assume that (M3, g) is actually
harmonically flat at infinity (as defined in Section 2). Then since such a
modification can be done so as to change the metric uniformly pointwise
as small as one likes (by Lemma 1), it follows that E(g) changes as small
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as one likes as well. We remind the reader that the total mass of (M3, g)
also changes arbitrarily little with such a deformation.

From standard theory it follows that the infimum in the above defi-
nition is achieved by the Green’s function φ(x) which satisfies

limx→∞0 φ(x) = 1
∆φ = 0

limx→∞k
φ(x) = 0 for all k 
= 0

(76)

where ∞k are the points at infinity of the various asymptotically flat
ends and ∞0 is infinity in the chosen end. Define the level sets of φ(x)
to be

Σl = {x | φ(x) = l}(77)

for 0 < l < 1. Then it follows from Sard’s Theorem and the smoothness
of φ(x) that Σ(l) is a smooth surface for almost every l. Then by the
co-area formula it follows that

E(g) =
1
2π

∫ 1

0
dl

∫
Σl

|∇φ| dA =
1
2π

∫ 1

0
dl

∫
Σl

dφ

dη
dA(78)

since ∇φ is orthogonal to the unit normal vector η of Σl. But by the
divergence theorem (and since φ(x) is harmonic),

∫
Σ
dφ
dη dA is constant

for all homologous Σ. Hence,

E(g) =
1
2π

∫
Σ

dφ

dη
dA(79)

where Σ is any surface in M3 in S (which is the set of smooth, com-
pact boundaries of open regions which contains the points at infinity
{∞k} in all of the ends except the chosen one). Then since (M3, g) is
harmonically flat at infinity, we know that in the chosen end φ(x) =
1 − c/|x| + O(1/|x|2), so that from Equation (79) it follows that

φ(x) = 1 − E(g)
2|x| + O

(
1

|x|2
)

(80)

by letting Σ in Equation (79) be a large sphere in the chosen end.

Theorem 8. Let (M3, g) be a complete, smooth, asymptotically
flat 3-manifold with nonnegative scalar curvature which has multiple
asymptotically flat ends and total mass m in the chosen end. Then

m ≥ E(g)(81)

with equality if and only if (M3, g) has zero scalar curvature and is
conformal to (R3, δ) minus a finite number of points.
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Proof. Again, without loss of generality we will assume that (M3, g)
is harmonically flat at infinity, which by definition means that all of the
ends are harmonically flat at infinity. In Figure 3, (M3, g) has three
ends, the chosen end (at the top of the figure) and two other ends.

(M3, g)

Figure 3.

Then we consider the metric (M3, g̃), with g̃ = φ(x)4g, as depicted
in Figure 4. Since φ(x) goes to zero (and is bounded above by C/|x|) in
all of the harmonically flat ends other than the chosen one, the metric
g̃ = φ(x)4g in each end is conformal to a punctured ball with the con-
formal factor being a bounded harmonic function to the fourth power in
the punctured ball. Hence, by the removable singularity theorem, this
harmonic function can be extended to the whole ball, which proves that
the metric g̃ can be extended smoothly over all of the points at infinity
in the compactified ends.

(M3, φ(x)4g)

∞1 ∞2

Figure 4.

Furthermore, (M3, g̃) has nonnegative scalar curvature since (M3, g)
has nonnegative scalar curvature and φ(x) is harmonic with respect to
g (see Equation (240) in Appendix A). Moreover, (M3 ∪ {∞k}, g̃) has
nonnegative scalar curvature too since in a neighborhood of each ∞k the
manifold is conformal to a ball, with the conformal factor being a posi-
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tive harmonic function to the fourth power. Hence, since (M3∪{∞k}, g̃)
is a complete 3-manifold with nonnegative scalar curvature with a single
harmonically flat end, we may apply the Riemannian Positive Mass The-
orem to this manifold to conclude that the total mass of this manifold,
which we will call m̃, is nonnegative.

Now we will compute m̃ in terms of m and E(g). Since g is harmoni-
cally flat at infinity, we know that by Definition 2 we have g = U(x)4gflat,
where (M3, gflat) is isometric to (R3\Br(0), δ) in the harmonically flat
end of (M3, g),

U(x) = 1 +
m

2|x| + O
(

1
|x|2

)
,(82)

and the scale of the harmonically flat coordinate chart R3\Br(0) has
been chosen so that U(x) goes to one at infinity in the chosen end.
Furthermore, since g̃ = φ(x)4g is also harmonically flat at infinity (which
follows from Equation (239) in Appendix A), we have g̃ = Ũ(x)4gflat =
φ(x)4U(x)4gflat where

Ũ(x) = 1 +
m̃

2|x| + O
(

1
|x|2

)
.(83)

Then comparing Equations (80), (82), and (83) with Ũ(x) = U(x)φ(x)
yields

m̃ = m− E(g) ≥ 0(84)

by the Riemannian Positive Mass Theorem, which proves inequality
(81) for harmonically flat manifolds. Then since asymptotically flat
manifolds can be arbitrarily well approximated by harmonically flat
manifolds by Lemma 1, inequality (81) follows for asymptotically flat
manifolds as well.

To prove the case of equality, we require a generalization of the case
of equality of the Positive Mass Theorem given in [8] as Theorem 5.3. In
that paper, we say that a singular manifold has generalized nonnegative
scalar curvature if it is the limit (in the sense given in [8]) of smooth
manifolds with nonnegative scalar curvature.

Note that if (M3, g) is only asymptotically flat and not harmonically
flat, then we have not shown that (M3, g̃) can be extended smoothly
over the missing points {∞k}. However, as a possibly singular manifold,
it does have generalized nonnegative scalar curvature since it is the limit
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of smooth manifolds with nonnegative scalar curvature (since (M3, g)
can be arbitrarily well approximated by harmonically flat manifolds).

Then Theorem 5.3 in [8] states that if (M3, g̃) has generalized non-
negative scalar curvature, zero mass, and positive isoperimetric con-
stant, then (M3, g̃) is flat (outside the singular set). Hence, it follows
that if we have equality in inequality (81), then g̃ is flat. Hence, (M3, g̃)
is isometric to (R3, δ) minus a finite number of points, and since the har-
monic conformal factor φ(x) preserves the sign of the scalar curvature
by Equation (240), the case of equality of the theorem follows. q.e.d.

Definition 17. Given a complete, asymptotically flat manifold
(M3, g) with horizon Σ ∈ S (defined in Section 2), define

E(Σ, g) = inf
ϕ

{
1
2π

∫
M3

|∇ϕ|2 dV
}

(85)

where the infimum is taken over all smooth ϕ(x) which go to one at
infinity and equal zero on the horizon Σ (and are zero inside Σ). (By
definition of S, all of the ends other than the chosen end are contained
inside Σ.)

The infimum in the above definition is achieved by the Green’s func-
tion ϕ(x) which satisfies

limx→∞0 ϕ(x) = 1
∆ϕ = 0
ϕ(x) = 0 on Σ

(86)

and as before,

ϕ(x) = 1 − E(Σ, g)
2|x| + O

(
1

|x|2
)

(87)

in the chosen end.

Theorem 9. Let (M3, g) be a complete, smooth, asymptotically flat
3-manifold with nonnegative scalar curvature with a horizon Σ ∈ S and
total mass m (in the chosen end). Then

m ≥ 1
2
E(Σ, g)(88)

with equality if and only if (M3, g) is a Schwarzschild manifold outside
the horizon Σ.
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Figure 5.

Proof. Let M3
Σ be the closed region of M3 which is outside (or on) Σ.

Since Σ ∈ S, (M3
Σ, g) has only one end, and we recall that Σ could have

multiple components. For example, in Figure 5, Σ has two components.
Then the basic idea is to reflect (M3

Σ, g) through Σ to get a manifold
(M3

Σ, g) with two asymptotically flat ends. Then define φ(x) on (M3
Σ, g)

using Equation (76) and ϕ(x) on (M3
Σ, g) using Equation (86). It follows

from symmetry that φ(x) = 1
2 on Σ, so that

φ(x) =
1
2
(ϕ(x) + 1)(89)

on (M3
Σ, g). Then

E(g) =
1
2
E(Σ, g)(90)

so that Theorem 9 follows from Theorem 8.
The only technicality is that Theorem 8 applies to smooth manifolds

with nonnegative scalar curvature, and (M3
Σ, g) is typically not smooth

along Σ, which also makes it unclear how to define the scalar curvature
there. However, it happens that because Σ has zero mean curvature,
these issues can be resolved.

This idea of reflecting a manifold through its horizon is used by
Bunting and Masood-ul-Alam in [11], and the issue of the smoothness
of the reflected manifold appears in their paper as well. However, in



208 hubert l. bray

their setting they have the simpler case in which the horizon not only
has zero mean curvature but also has zero second fundamental form.
Hence, the reflected manifold is C1,1, which apparently is sufficient for
their purposes.

However, in our setting we can not assume that the horizon Σ has
zero second fundamental form, so that (M3

Σ, g) is only Lipschitz. To
solve this problem, given δ > 0 we will define a smooth manifold
(M̃3

Σ,δ, g̃δ) with nonnegative scalar curvature which, in the limit as δ

approaches zero, approaches (M3
Σ, g) (meaning that there exists a dif-

feomorphism under which the metrics are arbitrarily uniformly close to
each other and the total masses are arbitrarily close). Then by Defini-
tion 16 it follows that E(g̃δ) is close to E(g), from which we will be able
to conclude

m ≈ m̃δ ≥ E(g̃δ) ≈ E(g) =
1
2
E(Σ, g),(91)

where m̃δ is the mass of (M̃3
Σ,δ, g̃δ) and the approximations in the above

inequality can be made to be arbitrarily accurate by choosing δ small,
thereby proving inequality (88).

The first step is to construct the smooth manifolds

(M̃3
Σ,δ, gδ) ≈ (M3

Σ, g) ∪ (Σ × [0, 2δ], G) ∪ (M3
Σ, g),(92)

where identifications are made along the boundaries of these three man-
ifolds as drawn below. (To be precise, the second (M3

Σ, g) in the above
union is meant to be a copy of the first (M3

Σ, g) and therefore distinct.)
We will define the metric G such that the metric gδ is smooth, although
it will not have nonnegative scalar curvature. Then we will define

g̃δ = uδ(x)4gδ(93)

so that g̃δ is not only smooth but also has nonnegative scalar curvature,
and we will show that because of our choice of the metric G, uδ(x)
approaches one in the limit as δ approaches zero.

We will use the local coordinates (z, t) to describe points on Σ ×
[0, 2δ], where z = (z1, z2) ∈ a local coordinate chart for Σ and t ∈
[0, 2δ]. Then we define G(∂t, ∂t) = 1, G(∂t, ∂z1) = 0, and G(∂t, ∂z2) = 0.
Then it follows that Σ×t is obtained by flowing Σ×0 in the unit normal
direction for a time t, and that ∂t is orthogonal to Σ × t. Hence, all
that remains to fully define the metric G is to define it smoothly on the
tangent planes of Σ × t for 0 ≤ t ≤ 2δ.
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Figure 6.

Let G(z, t) be the metric G restricted to Σ × t. Then

d

dt
Gij(z, t) = 2Gik(z, t)hkj (z, t)(94)

where hkj (z, t) is the second fundamental form of Σ× t in (Σ× [0, 2δ], G)
with respect to the normal vector ∂t. Furthermore, since Σ×0 is identi-
fied with Σ ∈ (M3

Σ, g), we can extend the coordinates (z, t) for t slightly
less than zero into (M3

Σ, g), thereby giving us smooth initial data for
Gij(z, t) and hkj (z, t) for −ε < t ≤ 0, for some positive ε.

Now we extend hkj (z, t) smoothly for 0 ≤ t ≤ 2δ in such a way
that hkj (z, t) is an odd function about t = δ, meaning that hkj (z, t) =
−hkj (z, 2δ−t). Naturally there are many ways to accomplish this smooth
extension.

Then we define Gij(z, t) to be the smooth solution to the o.d.e. given
in Equation (94) using the initial data for Gij(z, t) at t = 0. By the
oddness of hkj (z, t) about t = δ it follows that Gij(z, t) is symmetric
about t = δ, that is, Gij(z, t) = Gij(z, 2δ − t). Hence, the identification
of Σ×(2δ) with Σ ∈ the second copy of (M3

Σ, g) is smooth by symmetry.
This completes the smooth construction of the metric (M̃3

Σ,δ, gδ).
Now define H(z, t) = Σjh

j
j(z, t) to be the mean curvature of Σ × t

in (Σ × [0, 2δ], G), and let Ḣ(z, t) = d
dtH(z, t). We note that

H(z, 0) = 0 = H(z, 2δ)(95)

since Σ is a horizon (and hence has zero mean curvature) in (M3
Σ, g).

Let α = supz Ḣ(z, 0) and let β = supz
∑

jk h
k
j (z, 0)hjk(z, 0), which we
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note are functions of the metric g on M3
Σ and are independent of δ.

Then we require that the smooth extension we choose for hkj satisfies

Ḣ(z, t) ≤ 2|α| + 1,(96)

(which is possible because of Equation (95)) and∑
jk

hkj (z, t)h
j
k(z, t) ≤ 2β + 1.(97)

Then combining Equations (95) and (96) also yields

|H(z, t)| ≤ (2|α| + 1)δ.(98)

These estimates allow us to bound the scalar curvature of (M̃3
Σ,δ, gδ)

from below since by the second variation formula and the Gauss equation
(see Equations (117) and (118)) we have that

R = −2Ḣ + 2K − |h|2 −H2(99)

where R(z, t) is scalar curvature and K(z, t) is the Gauss curvature of
Σ × t. At this point we realize that we also need a lower bound K0

for K(z, t) which is independent of δ, which follows from imposing an
upper bound on the C2 norm (in the z variable) of our smooth choice
of hkj (z, t). Then using this combined with inequalities (96), (97), and
(98) we get

R(z, t) ≥ R0(100)

where R0 is independent of δ (for δ < 1).
Now we are ready to define g̃δ using Equation (93). We already

know that (M̃3
Σ,δ, gδ) is smooth and has nonnegative scalar curvature

everywhere except possibly in Σ × [0, 2δ] where it has R ≥ R0. If
R0 ≥ 0, then we just let uδ(x) = 1 so that g̃ = g. Otherwise, we define
uδ(x) such that

(−8∆g + Rδ(x))uδ(x) = 0(101)

and uδ(x) goes to one in both asymptotically flat ends, where Rδ(x)
equals R0 in Σ×[0, 2δ], equals zero for xmore than a distance δ from Σ×
[0, 2δ], is smooth, and takes values in [R0, 0] everywhere. Then it follows
that for sufficiently small δ, uδ(x) is a smooth superharmonic function.
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Furthermore, since Rδ is zero everywhere except on an open set whose
volume is going to zero as δ goes to zero, and since Rδ is uniformly
bounded from below on this small set, it follows from bounding Green’s
functions from above that

1 ≤ uδ(x) ≤ 1 + ε(δ)(102)

where ε goes to zero as δ approaches zero.
Furthermore, by Equations (100), (93), and (240), (M̃3

Σ,δ, g̃δ) has

nonnegative scalar curvature, and since uδ(x) and and (M̃3
Σ,δ, gδ) are

smooth, so is (M̃3
Σ,δ, g̃δ). In addition, it follows from the construction of

(M̃3
Σ,δ, gδ) that there exists a diffeomorphism into (M3

, g) with respect
to which the metrics are arbitrarily uniformly close to each other in the
limit as δ goes to zero. Hence, by Equation (102), we see that the same
statement is true for (M̃3

Σ,δ, g̃δ). Finally, it follows from Equation (101)

that m̃δ, the mass of (M̃3
Σ,δ, g̃δ), converges to m, the mass of (M3

Σ, g),
in the limit as δ goes to zero. Hence, inequality (91) follows, proving
inequality (88).

To prove the case of equality, we note that we can view the above
proof in a different way. Since the singular manifold (M3

Σ, g) is the
limit of the smooth manifolds (M̃3

Σ,δ, g̃δ) which have nonnegative scalar

curvature, it follows that (M3
Σ, g) has generalized nonnegative scalar

curvature as defined in [8]. Then if we reexamine the proof of Theorem
8, we see that the theorem, including the case of equality, is also true
for singular manifolds like (M3

Σ, g) which have generalized nonnegative
scalar curvature (see the discussion at the end of the proof of Theorem
8). Hence, by Equation (90) and Theorem 8, we get equality in inequal-
ity (88) if and only if (M3

Σ, g) has zero scalar curvature and is conformal
to (R3, δ) minus a finite number of points.

Since (M3
Σ, g) has two ends, it must be conformal to (R3\{0}, δ),

and since it has zero scalar curvature, it follows from Equation (240)
that it must be a Schwarzschild metric. Hence, in the case of equality
for inequality (88), (M3, g) must be a Schwarzschild manifold outside
Σ. q.e.d.
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7. Proof that m(t) is nonincreasing

In this section we will finish the proof of Theorem 3 begun in Sec-
tion 5 by proving that m(t), the total mass of (M3, gt), is non-increasing
in t. The fact that m(t) is nonincreasing is of course central to the ar-
gument presented in this paper for proving the Riemannian Penrose
Conjecture and is perhaps the most important property of the confor-
mal flow of metrics {gt}.

We begin with a corollary to Lemma 8 and Theorem 7 in Section 4.

Corollary 4. The left and right hand derivatives d
dt± of ut(x) exist

for all t > 0 and are equal except at a countable number of t-values.
Furthermore,

d

dt+
ut(x) = v+

t (x)(103)

and

d

dt−
ut(x) = v−t (x)(104)

where v±t (x) equals zero inside Σ±(t) (see Definition 11) and outside
Σ±(t) is the harmonic function which equals 0 on Σ±(t) and goes to
−e−t at infinity.

We will use this corollary to compute the left and right hand deriva-
tives of m(t). As proven at the end of Appendix A, the flow of metrics
{gt} we are considering has the property that the rate of change of the
metric gt is just a function of gt and not of t or g0. Hence, we will
just prove that m′(0) ≤ 0, from which it will follow that m′(t) ≤ 0. So
without loss of generality, we will assume that the flow begins at some
time −t0 < 0, and then compute the left and right hand derivatives of
m(t) at t = 0.

Also, we remind the reader that we proved that Σ+(t) and Σ−(t)
are horizons in (M3, gt) in Lemma 9. Furthermore, v±0 (x) is harmonic
in (M3, g0), equals 0 on Σ±(0), and goes to −1 at infinity. Hence, by
Equation (87) and Theorem 9 of the previous section,

v±0 (x) = −1 +
E(Σ±(0), g0)

2|x| + O
(

1
|x|2

)
(105)

where

m(0) ≥ 1
2
E(Σ±(0), g0).(106)
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Now we are ready to compute m′(t). As in Section 2, let g0 =
U0(x)4gflat, where (M3, gflat) is isometric to (R3\Br0(0), δ) in the har-
monically flat end, where we have chosen r0 and scaled the harmonically
flat coordinate chart such that U0(x) goes to one at infinity. Then by
Definition 2 for the total mass, we have that

U0(x) = 1 +
m(0)
2|x| + O

(
1

|x|2
)
.(107)

We will also let gt = Ut(x)4gflat in the harmonically flat end. Then since
gt = ut(x)4g0, it follows that

Ut(x) = ut(x)U0(x).(108)

Now we define α(t) and β(t) such that

ut(x) = α(t) +
β(t)
|x| + O

(
1

|x|2
)
.(109)

Then since u0(x) ≡ 1 and d
dt± ut(x)|t=0 = v±0 (x), it follows from Equa-

tion (105) that

α(0) = 1, d
dt± α(t)|t=0 = −1,

β(0) = 0, d
dt± β(t)|t=0 = 1

2E(Σ±(0), g0).
(110)

Thus, by Equation (108),

Ut(x) = α(t) +
1
|x|
(
β(t) +

m(0)
2

α(t)
)

+ O
(

1
|x|2

)
(111)

so that by Definition 2

m(t) = 2α(t)
(
β(t) +

m(0)
2

α(t)
)
.(112)

Hence, by Equation (110)

d

dt±
m(t)|t=0 = E(Σ±(0), g0) − 2m(0) ≤ 0(113)

by Equation (106). Then since we were able to choose t = 0 without
loss of generality as previously discussed, we have proven the following
theorem.
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Theorem 10. The left and right hand derivatives d
dt± of m(t) exist

for all t > 0 and are equal except at a countable number of t-values.
Furthermore,

d

dt±
m(t) ≤ 0(114)

for all t > 0 (and the right hand derivative of m(t) at t = 0 exists and
is nonpositive as well).

Hence, m′(t) exists almost everywhere, and since the left and right
hand derivatives ofm(t) are all nonpositive, m(t) is nonincreasing. Since
we proved that A(t) is constant in Section 5, this completes the proof
of Theorem 3.

8. The stability of Σ(t)

A very interesting and important property of the horizons Σ(t) fol-
lows from the fact that they are locally stable with respect to outward
variations. Since Σ(t) is strictly outer minimizing in (M3, gt), we know
that each component of Σ(t) must be stable under outward variations
(holding t fixed). In particular, choose any component Σi(t) of Σ(t),
and flow it outwards in the unit normal direction at constant speed one.
Since Σ(t) is smooth, we can do this for some positive amount of time
without the surface forming singularities. Let A(s) be the area of the
surface after being flowed at speed one for time s. Then since Σi(t)
has zero mean curvature, A′(0) = 0. And since Σ(t) is strictly outer
minimizing, which we recall means that all surfaces in (M3, gt) which
enclose Σ(t) have strictly larger area, we must have A′′(0) ≥ 0.

On the other hand,

A′(s) =
∫
Hdµ(115)

where the integral is being taken over the surface resulting from flowing
Σi(t) for time s, H is the mean curvature of the surface, and dµ is the
area form of the surface. Then since H ≡ 0 at s = 0,

A′′(0) =
∫

Σi(t)

d

ds
(H)dµ.(116)

We will then use the second variation formula
d

dt
H = −|h|2 − Ric(�ν, �ν),(117)
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the Gauss equation,

Ric(�ν, �ν) =
1
2
R−K +

1
2
H2 − 1

2
|h|2,(118)

and the fact that |h|2 = 1
2(λ1 − λ2)2 + 1

2H
2, where h is the second

fundamental form of Σi(t) (so that H = trace(h)), Ric is the Ricci
curvature tensor of (M3, gt), �ν is the outward pointing normal vector to
Σi(t), R is the scalar curvature of (M3, gt), K is the Gauss curvature of
Σi(t), and λ1 and λ2 are the principal curvatures of Σi(t), to get

A′′(0) =
∫

Σi(t)
−1

2
R+K − 1

4
(λ1 − λ2)2(119)

since H = 0. Hence, since A′′(0) ≥ 0, R ≥ 0, and
∫
Σi(t)

K ≤ 4π by the
Gauss-Bonnet formula (actually we have equality in the last inequality
since Σi(t) is a sphere since Σ(t) is strictly outer minimizing in (M3, gt)
- see below), we conclude that∫

Σi(t)
(λ1 − λ2)2dµ ≤ 16π(120)

with respect to the metric gt. However, it happens that the left hand
side of inequality (120) is conformally invariant, and gt is conformal
to gflat (defined in Section 2). Thus, inequality (120) is also true with
respect to the metric gflat.

Theorem 11. Each component Σi(t) of the surface Σ(t) (which is
a strictly outer minimizing horizon in (M3, gt)) is a sphere and satisfies∫

Σi(t)
(λ1 − λ2)2dµ ≤ 16π(121)

with respect to the fixed metric gflat.

We also comment that Equation (119) can be used to prove that each
component of a strictly outer minimizing surface Σ in a manifold (M3, g)
with nonnegative scalar curvature is a sphere. First, we choose a su-
perharmonic function u(x) defined outside Σ in (M3, g) approximately
equal to one which has negative outward derivative on Σ. Then the
metric (M3, u(x)4g) has strictly positive scalar curvature by Equation
(240). Also, since Σ now has negative mean curvature in (M3, u(x)4g)
by the Neumann condition on u(x), Σ acts a barrier so that the out-
ermost minimal area enclosure of Σ does not touch Σ and hence is a
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stable horizon with zero mean curvature. Then by Equation (119) and
the Gauss-Bonnet formula, each component of this outermost minimal
area enclosure of Σ must be a sphere. In the limit as u(x) approaches
one, the area of this outermost minimal area enclosure in (M3, g) must
approach the area of Σ. Then since Σ is strictly outer minimizing in
(M3, g), these outermost minimal area enclosures must be approaching
Σ in the limit as u(x) goes to one, proving that each component of Σ is
a sphere.

Unfortunately, this argument doesn’t quite work for non-strictly
outer minimizing horizons, but Equation (119) does prove that each
component of the horizon is either a sphere or a torus. The torus pos-
sibility is then ruled out by [12].

We will need Theorem 11 in Sections 10 and 11.

9. The exponential growth rate of Diam(Σ(t))

In this section we will show that the diameter of Σ(t) is growing
approximately exponentially with respect to the fixed metric g0. This
fact will be used in Section 10 to prove that Σ(t) eventually encloses
any bounded set. It will also be used in Section 11 to help bound the
behavior of Σ(t) for large t.

We recall from Section 2 that we may write g0 = U0(x)4gflat, where
the harmonically flat end of (M3, gflat) is isometric to (R3\Br0(0), δ),
where now we have chosen r0 such that we can require U0(x) to go to
one at infinity. Let S(r) denote the sphere of radius r in R3 centered at
zero. Then for r ≥ r0, we can define S(r) to be a sphere in (M3, gflat).

Theorem 12. Given any t̃ ≥ 0, there exists a t ≥ t̃ such that Σ(t)
is not entirely enclosed by S(r(t)) (and r(t) ≥ r0), where

r(t) =
(
A0

65π

)1/2

e2t,(122)

and A0 = A(0).

Proof. The proof is a proof by contradiction. We will assume that
for some t̃ ≥ 0 (with r(t̃) ≥ r0) that Σ(t) is entirely enclosed by S(r(t))
for all t ≥ t̃. Then we will use this to prove that A(t) is not constant,
contradicting Theorem 3.

In fact, we will show that |S(r(t))|gt (which is the area of S(r(t))
with respect to the metric gt) is less than A0 ≡ A(0) for some t ≥ t̃.
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Then since A(t) is defined to be the area of Σ(t) which is defined to be
the outermost minimal area enclosure of Σ0, this will force A(t) < A0,
a contradiction.

As in Section 7, we define gt = ut(x)4g0 and gt = Ut(x)4gflat so that
Ut(x) = ut(x)U0(x). In addition, we define Vt(x) = vt(x)U0(x) so that

d

dt
Ut(x) = Vt(x)(123)

since d
dtut(x)=vt(x). Next we define Qt(x) outside S(r(t)) in (M3,gflat)

such that 
Qt = 0 on S(r(t))

∆gflat
Qt ≡ 0 outside S(r(t))
Qt → −e−t at infinity.

(124)

so that

Qt(x) = −e−t
(

1 − r(t)
|x|
)

(125)

outside S(r(t)).
Then since we are assuming that Σ(t) is entirely enclosed by S(r(t)),

it follows from Equations (15) and (239) that
Vt ≤ 0 on S(r(t))

∆gflat
Vt ≡ 0 outside S(r(t))
Vt → −e−t at infinity.

(126)

Hence, by the maximum principle,

Vt(x) ≤ Qt(x)(127)

for all x outside S(r(t)). Consequently,

Ut(x) = Ut̃(x) +
∫ t

t̃
Vs(x) ds(128)

≤ Ut̃(x) +
∫ t

t̃
Qs(x) ds

for x outside S(r(t)). Now choose k such that Ut̃(x) ≤ e−t̃ + k
|x| outside

S(r(t̃)). Then using this and Equation (125), we get

Ut(x) ≤ e−t +
1
|x|

[
k +

√
A0

65π

(
et − et̃

)]
(129)
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for x outside S(r(t)).
Now we define A(t) to be the area of S(r(t)) in (M3, gt). Then

A(t) =
∫
S(r(t))

Ut(x)4 dAgflat
(130)

≤ 4πr(t)2
(

sup
S(r(t))

Ut(x)
)4

≤ 4
65
A0

[
2 + e−t

(
k

√
65π
A0

− et̃
)]4

by inequality (129), where dAgflat
is the area form of S(r(t)) in (M3, gflat).

Hence,

lim
t→∞A(t) =

64
65
A0,(131)

which means that A(t) < A0 for some t ≥ t̃. But by Theorem 3,
|Σ(t)|gt = A0 for all t ≥ 0, and since Σ(t) was defined to be a min-
imal area enclosure of the original horizon Σ0 in (M3, gt), we have a
contradiction. q.e.d.

10. Proof that Σ(t) eventually encloses any bounded set

In this section we will prove that Σ(t) eventually encloses any boun-
ded set in a finite amount of time. In particular, this will allow us to
conclude that Σ(t) flows into the harmonically flat end of (M3, g0) in
a finite amount of time, which greatly simplifies the discussion in the
next two sections.

Theorem 13. Given any bounded set B ⊂M3, there exists a t ≥ 0
such that Σ(t) encloses B.

Proof. The proof of this theorem is a proof by contradiction. We
will show that if the theorem were false, then we would be able to find
a t such that A(t), the area of Σ(t) in (M3, gt), was greater than A0,
contradicting Theorem 3.

So suppose there exists a bounded set B ⊂M3 such that Σ(t) does
not (entirely) enclose B for any t ≥ 0. Then since B is bounded, there
exists an R1 > r0 such that the coordinate sphere S(R1) (defined in the
previous section) encloses B. Hence, Σ(t) does not enclose S(R1) for
any t.
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Now choose any R2 > R1. By Theorem 12, there exists a t such
that Σ(t) is not enclosed by S(R2). Then it follows that at least one
component Σi(t) of Σ(t) must satisfy

Σi(t) ∩ S(R) 
= ∅(135)

for all R1 ≤ R ≤ R2. This follows from the fact that each component
of the region inside Σ(t) must intersect the region inside S(r0) since
otherwise the area of Σ(t) could be decreased by simply eliminating
that component.

We will show that it is possible to choose R2 large enough to make
the area of Σi(t) in (M3, gt) as large as we want, which is a contradiction.
Since

|Σi(t)|gt
=
∫

Σi(t)
Ut(x)4 dAgflat

(136)

where dAgflat
is the area form of Σi(t) in (M3, gflat), we can show that

|Σi(t)|gt
is large if we have adequate lower bounds on Ut(x) and on the

area of |Σi(t)| in (M3, gflat).
To find a lower bound on Ut(x) we will use Theorem 20 in Appendix

C. Let

U∞(x) = lim
t→∞Ut(x)(137)

Then since ut(x) is decreasing in t by Equation (16), so is Ut(x). Hence,

Ut(x) ≥ U∞(x).(138)

for all t ≥ 0. However, to use Theorem 20, we need a superharmonic
function defined on R3, whereas U∞(x) is defined on (M3, gflat) which is
only isometric to (R3\Br0(0), δ) in the harmonically flat end. Let c > 0
be the minimum value of U∞(x) on S(r0). and let φ be the isometry
mapping (R3\Br0(0), δ) to the harmonically flat end of (M3, gflat). Then
we can define U(x) on R3 as

U(x) =
{

min(c/2, U∞(φ(x))), for |x| ≥ r0
c/2, for |x| < r0.

(139)

Since the minimum value of two superharmonic functions is super-
harmonic, it follows that U(x) is superharmonic on (R3, δ). Further-
more, since U∞(x) goes to zero at infinity, there exists an r̃ ≥ r0 such
that

U(x) = U∞(φ(x))(140)
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for |x| > r̃. (Without loss of generality, we will assume that we chose
R1 from before so that R1 > r̃.)

Next, we observe that

|S(R)|gt =
∫
S(R)

Ut(x)4 dAgflat
≥ A0(141)

by Theorem 3 since Σ(t) has area A0 and is a minimal area enclosure
of Σ0 in (M3, gt). Hence, taking the limit as t goes to infinity, it follows
from Equation (140) that∫

SR(0)
U(x)4 dA ≥ A0(142)

in (R3, δ) for R > r̃, so that by Theorem 20 in Appendix C

U(x) ≥ cA
1/4
0 |x|−1/2(143)

for |x| ≥ r̃ and for some c > 0. Thus, by Equations (140) and (138)

Ut(x) ≥ cA
1/4
0 |x|−1/2(144)

for all t ≥ 0 and for all x in M3 outside S(r̃). This lower bound on
Ut(x) is the first of two steps needed to prove that integral in Equation
(136) is large.

The second step of the proof is to find the right lower bound on the
area of Σi(t) in (M3, gflat). So far all we have is Equation (135) which
tells us that the diameter of Σi(t) in (M3, gflat) is at least R2 − R1.
Naturally this is not enough to bound the area from below without
some control on the possible geometries of Σi(t) in (M3, gflat).

Fortunately, we do have very good control on the geometry of each
component Σi(t) of Σ(t) by virtue of Theorem 11. Using the same nota-
tion as in the Gauss equation given in Equation (118), we can substitute

(λ1 − λ2)2 = (2R− 4Ric(ν, ν)) − 4K +H2(145)

into Equation (121) to get∫
Σi(t)

H2 dAgflat
≤ 32π +

∫
Σi(t)

(4Ric(ν, ν) − 2R) dAgflat
(146)

where we have used the Gauss-Bonnet theorem and the fact that every
component of Σ(t) is a sphere. In addition, 4Ric(ν, ν) − 2R is zero in
the harmonically flat end of M3 since gflat is flat.
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Now we want to show that the right hand side of Equation (146)
is bounded. Let K be the compact set of points outside (or on) the
original horizon Σ0 and inside (or on) S(r0). Let

Rmax = sup
K

|4Ric(ν, ν) − 2R|(147)

which is finite since (M3, gflat) is smooth and K is compact. Then since

A0 = |Σ(t)|gt
≥ |Σi(t) ∩K|gt

=
∫

Σi(t)∩K
Ut(x)4 dAgflat

(148)

it follows that

|Σi(t) ∩K|gflat
≤ A0

infK Ut(x)4
≤ A0

infK u(x)4U0(x)4
(149)

where we recall that Ut(x) = ut(x)U0(x) and where u(x) is defined to
be the positive harmonic function which equals 1 (and hence also ut(x))
on the original horizon Σ0 and goes to zero at infinity and hence is a
barrier function for the superharmonic function ut(x) in (M3, gt). Thus,
we have that∫

Σi(t)
H2 dAgflat

≤ 32π +
RmaxA0

infK u(x)4U0(x)4
≡ k.(150)

We will need the Willmore functional bound in inequality (150) to
use the identity (Equation 16.31 in [21])

|Σ ∩Br(x)| ≥ πr2

(
1 − 1

16π

∫
Σ∩Br(x)

H2 dA

)
(151)

where Σ is any smooth, compact surface which is the boundary of a
region in R3 and everything is with respect to the standard flat metric
δ. Since (M3, gflat) is flat in the harmonically flat end region of M3, we
will be able to use this identity on Σi(t).

Since our choice of R2 could be arbitrarily large, let R2 = 3(2n
2 −

1)R1 where n is a positive integer which may be chosen to be arbitrarily
large. Then by Equation (135) we can choose

xk ∈ Σi(t) ∩ S(3(2k − 1)R1)(152)

for 1 ≤ k ≤ n2. Then if we define rk = 2kR1 it follows that the balls
Brk(xk) are all disjoint. Hence,∫

Σi(t)∩Brk
(xk)

H2 dAgflat
≤ k

n
(153)
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except at most n different values of k. Then for these values of k, it
follows from Equation (144) that∫

Σi(t)∩Brk
(xk)

Ut(x)4 dAgflat
≥ c4A0

∫
Σi(t)∩Brk

(xk)
|x|−2 dAgflat

(154)

≥ c4A0 |Σi(t) ∩Brk(xk)| (2k+2R1)−2

≥ c4A0 πr
2
k

(
1 − k

16πn

)
(2k+2R1)−2

= c4A0
π

16

(
1 − k

16πn

)
where |x| is defined to be r on S(r) in the harmonically flat end of
(M3, gflat). Hence, we have that

A0 = |Σ(t)|gt
≥ |Σi(t)|gt

(155)

=
∫

Σi(t)
Ut(x)4 dAgflat

≥
n2∑
k=1

∫
Σi(t)∩Brk

(xk)
Ut(x)4 dAgflat

≥ c4A0
π

16

(
1 − k

16πn

)
(n2 − n)

which is a contradiction since n can be chosen to be arbitrarily large.
Hence, given any bounded set B ⊂ M3, there must exist a t ≥ 0 such
that Σ(t) encloses B. q.e.d.

We immediately deduce a very useful corollary. Since Σ(t) always
flows outwards and must eventually entirely enclose S(r0) by the above
theorem, it follows that after a certain point in time Σ(t) is entirely in
the harmonically flat end of (M3, gflat). Furthermore, since Σ(t) is de-
fined to be the outermost surface with minimum area in (M3, gt) which
encloses the original horizon, these Σ(t) only have one component since
having any additional components would only increase the area of Σ(t).
Then since it follows from a stability argument that each component is
a sphere ([43] or see the end of Section 8), Σ(t) is a single sphere. Thus,
we get the following corollary to Theorem 13.

Corollary 5. There exists a t0 ≥ 0 such that for all t ≥ t0, topo-
logically Σ(t) is a single sphere and is in the harmonically flat end of
(M3, gflat) which is isometric to (R3\Br0(0), δ).
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We remind the reader that (M3, gflat) was defined in Section 2 and
is conformal to the harmonically flat manifold (M3, g0).

11. Bounds on the behavior of Σ(t)

The main objective of this section is to achieve upper and lower
bounds for the diameter of Σ(t) in (M3, g0) for large t. However, in
the process of deriving these bounds we also prove other interesting
although not essential bounds on the behavior of Σ(t).

As in the previous two sections, g0 = U0(x)4gflat, where the harmon-
ically flat end of (M3, gflat) is isometric to (R3\Br0(0), δ), and U0(x)
goes to one at infinity. From Corollary 5 of the previous section, we
see that Σ(t) is in the flat region of (M3, gflat) for t ≥ t0 so that the
behavior of Σ(t) for large t reduces to a problem in R3.

Furthermore, from Section 9 we know that the diameter of Σ(t) is
going up roughly as some constant times e2t. Then since R3 is linear,
it makes since and is convenient to rescale distances by the factor e−2t

so that in this new rescaled R3 the diameter of Σ(t) is approximately
bounded. In fact, the goal of this section is to show that the diameter
of Σ(t) in this rescaled R3 is bounded above and below by constants.
(From this point on Σ(t) will refer to the rescaled Σ(t).)

We will use capital letters to denote rescaled quantities. Recall that
gt = Ut(x)4gflat and gt = ut(x)4g0 so that Ut(x) = ut(x)U0(x). Let

Ut(x) = et Ut(xe2t).(162)

so that Ut(x) goes to one at infinity for all t since we arranged U0(x) to
go to one at infinity and ut(x) goes to e−t at infinity. Analogously, we
define Vt(x) = vt(x)U0(x) (so that d

dtUt(x) = Vt(x)) and we define

Vt(x) = et Vt(xe2t).(163)

Then we observe that Vt(x) goes to −1 at infinity (since vt(x) goes to
−e−t at infinity) and Vt(x) equals zero on Σ(t). Furthermore, differen-
tiating Equation (162) gives us

d

dt
Ut(x) = Vt(x) + Ut(x) + 2r

∂

∂r
Ut(x)(164)

where r is the radial coordinate in R3.



224 hubert l. bray

Lemma 10. For t ≥ t0 (as defined in Corollary 5), the Riemannian
manifold (R3\Br0e−2t(0), Ut(x)4δ) is isometric to the harmonically flat
end of (M3, gt) and has total mass m(t).

Consequently, Σ(t) has zero mean curvature in (R3\Br0e−2t(0),
Ut(x)4δ), from which it follows that UtH + 4dUt

d�ν = 0, where H is the
mean curvature of Σ(t) and �ν is the outward pointing unit normal vec-
tor of Σ(t) in (R3, δ). Also, since (M3, gt) has zero scalar curvature
outside Σ(t) (for t ≥ t0 in Corollary 5), it follows from Equation (240)
that Ut(x) is harmonic in (R3, δ) outside Σ(t). Then from the discussion
and definitions in the above paragraphs this in turn implies that Ut(x)
is harmonic, which implies that Vt(x) is harmonic, which implies that
Vt(x) is also harmonic outside Σ(t). To summarize:

�ν

Σ(t) ⊂ R3

Figure 7.


UtH + 4dUt

d�ν = 0 on Σ(t)
∆Ut ≡ 0 outside Σ(t)
Ut → 1 at infinity

(165)


Vt = 0 on Σ(t)

∆Vt ≡ 0 outside Σ(t)
Vt → −1 at infinity.

(166)

Equations (164), (165), and (166) characterize the new rescaled first
order o.d.e. in t for Ut(x). On the one hand Ut(x) determines Σ(t) since
Σ(t) is the outermost area minimizing horizon of (R3\Br0e−2t(0), Ut(x)4δ),
and on the other hand Σ(t) determines Vt(x) by Equation (166) which
determines the first order rate of change of Ut(x) in Equation (164). In
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the next section we will prove that Ut(x) actually converges to 1+M
2r for

some positive M in the limit as t goes to infinity in this o.d.e. and that
Σ(t) converges to a sphere of radius m/2. However, first it is necessary
to prove that the diameter of Σ(t) is bounded, which is what we will do
in this section.

In Section 7 we proved that m(t) was nonincreasing. In fact, by
closely reexamining Equations (84), (90), and (113) we have that

m′(t) = −2m̃(t) ≤ 0(167)

where m̃(t) is the total mass of the manifold (M3
Σ(t), g̃t), where g̃t =

φ(x)4gt, M3
Σ(t) is the closed region of M3 which is outside or on Σ(t),

(M3
Σ(t), gt) is the manifold obtained by reflecting (M3

Σ(t), gt) through

Σ(t), and φ(x) is the harmonic function on (M3
Σ(t), gt) which goes to

one in the original end and zero in the other end.
Then since (M3

Σ(t), gt) is isometric to (R3
Σ(t), Ut(x)

4δ) (where R3
Σ(t)

is the region in R3 outside Σ(t)), (M3
Σ(t), g̃t) is isometric to (R3

Σ(t),

Wt(x)4δ) where Wt(x) = φ(x)Ut(x). Furthermore, by Equation (239) it
follows that Wt(x) is harmonic in (R3, δ), and since φ(x) = 1

2 on Σ(t)
by symmetry and Ut(x) and φ(x) both go to one at infinity, we have
that 

Wt = 1
2Ut on Σ(t)

∆Wt ≡ 0 outside Σ(t)
Wt → 1 at infinity.

(168)

Lemma 11. For t ≥ t0, the Riemannian manifold (R3
Σ(t),Wt(x)4δ)

is isometric to (M3
Σ(t), g̃t) defined above and has total mass m̃(t).

Corollary 6. For t ≥ t0,

m(t) = − 1
2π

∫
Σ(t)

dUt
d�ν

(169)

and

m̃(t) = − 1
2π

∫
Σ(t)

dWt

d�ν
.(170)

Proof. In fact, by the divergence theorem, the above equations are
true if we replace Σ(t) with any homologous surface containing Σ(t)
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since Ut(x) and Wt(x) are harmonic in R3. Then the corollary follows
from the definition of total mass given in Definition 2 where we consider
the above statements with Σ(t) replaced by a large sphere at infinity.

q.e.d.

Furthermore, since Ut(x), Vt(x), and Wt(x) are all harmonic func-
tions in (R3, δ) outside Σ(t), it follows from their boundary values that

Vt(x) = Ut(x) − 2Wt(x)(171)

outside Σ(t). Then plugging this into Equation (164) we get

d

dt
Ut(x) = 2(Ut(x) −Wt(x) + r

∂

∂r
Ut(x))(172)

outside Σ(t).
The above equation reveals the key idea we will use to study the

behavior of the o.d.e. for Ut(x). By Equation (167), it follows that m̃(t)
must be going to zero for large t since m(t) cannot become less than
zero by the Positive Mass Theorem. Also, the Positive Mass Theorem
states that there is only one zero mass metric, namely (R3, δ), and in
Section 12 we will use this fact to prove that Wt(x) is approaching the
constant function one. Then it follows from studying Equation (172)
that Ut(x) approaches 1+M

2r for some positive M in the limit as t goes to
infinity. With a few additional observations this will prove that (M3, gt)
converges to a Schwarzschild metric outside the horizon Σ(t) as claimed
in Theorem 4.

In the rest of this section, we will show that the rescaled horizon Σ(t)
is very well behaved in R3 as t → ∞. In fact, we will show that both
the areas and the diameters of the surfaces Σ(t) have uniform upper
and lower bounds. Later in Section 12 we will use this to prove that the
harmonic functions Ut(x), Vt(x), and Wt(x) also have upper and lower
bounds independent of t, which will be needed when we take limits of
these harmonic function.

We recall that by Corollary 5, Σ(t) has only one component for
t ≥ t0, and that this component is a sphere. Furthermore, by Equation
(146), it follows that the conformal-invariant (and hence scale-invariant)
quantity ∫

Σ(t)
H2dµ ≤ 32π,(173)

whereH is the mean curvature and dµ is the area form of Σ(t) in (R3, δ).
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The Willmore functional of a surface in Rn is defined to be one
fourth of the integral of the mean curvature squared over the surface.
Surfaces with bounded Willmore functional have been widely studied,
and in particular, it was shown by L. Simon in [49] that the ratio of
the diameter squared to the area of a surface is bounded both from
above and from below by the Willmore functional of the surface. More
precisely, for a surface Σ in R3,

4∫
ΣH

2dµ
≤ diam(Σ)2

|Σ| ≤ C2

4

∫
Σ
H2dµ,(174)

where C is some positive constant. Hence, since Theorem 12 tells us
that the rescaled Σ(t) satisfy

diam(Σ(t)) ≥
(
A0

65π

)1/2

(175)

for arbitrarily large values of t, we get the following corollary.

Corollary 7. Given any t̃ ≥ 0, there exists a t ≥ t̃ such that

|Σ(t)| ≥ A0

k
,(176)

where A0 = A(0), |Σ(t)| denotes the area of the rescaled Σ(t) in (R3, δ),
and k = 8 · 65C2π2.

Now going back to Corollary 6 and using Equation (171), we get
that

m(t) − 2m̃(t) = − 1
2π

∫
Σ(t)

dVt
d�ν

.(177)

Then since m̃(t) is the total mass of (M3
Σ(t), g̃t), by the Positive Mass

Theorem it must be positive. Hence,

m(t) ≥ − 1
2π

∫
Σ(t)

dVt
d�ν

.(178)

But from Theorem 21 in Appendix D and Equation (173), we have that

− 1
2π

∫
Σ(t)

dVt
d�ν

≥ (24π)−1/2|Σ(t)|1/2(179)

which proves inequality (180) of the following theorem.
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Theorem 14. For t ≥ t0 (as defined in Corollary 5),

m(t) ≥
( |Σ(t)|

24π

)1/2

(180)

where |Σ(t)| denotes the area of the rescaled Σ(t) in (R3, δ). Also,

m(t) ≥
(

A0

24πk

)1/2

(181)

for all t ≥ 0, where again A0 = A(0) and k = 8 · 65C2π2.

Inequality (181) then follows from inequality (180), Corollary 7, and
the fact that m(t) is nonincreasing. We note that since m(t) and A0 are
respectively the total mass of (M3, gt) and the area of the horizon Σ(t)
in (M3, gt), inequality (181) is a weak Penrose inequality for (M3, gt).
Furthermore, since the area of the horizon A(t) is constant and m(t) is
non-increasing, we get this same weak Penrose inequality for the original
metric (M3, g0).

Now going back to Equation (165), we observe that

m(t) = − 1
2π

∫
Σ(t)

dUt
d�ν

=
1
8π

∫
Σ(t)

Ut(x)H.(182)

Thus, by the Cauchy-Schwarz inequality,

m(t) ≤ 1
8π

(∫
Σ(t)

Ut(x)2
)1/2(∫

Σ(t)
H2

)1/2

.(183)

Furthermore, since the area of Σ(t) in (M3, gt) equals A0, by Lemma 10

A0 =
∫

Σ(t)
Ut(x)4.(184)

Thus, ∫
Σ(t)

Ut(x)2 ≤ |Σ(t)|1/2A1/2
0 ,(185)

so that by Equation (173) we have that

m(t) ≤ (2π)−1/2A
1/4
0 |Σ(t)|1/4,(186)

which, when combined with Theorem 14, gives inequality (187) of the
following theorem.



proof of the riemannian penrose inequality 229

Theorem 15. For t ≥ t0 (as defined in Corollary 5),

1
(12k)2

≤ |Σ(t)|
A0

≤ 122(187)

and

1
8π(12k)2

≤ diam(Σ(t))2

A0
≤ 8π(12C)2(188)

where A0 = A(0) and k = 8 · 65C2π2.

Inequality (188) then follows from inequalities (187), (173), and
(174), and is important for Section 12.

12. The limit metric

In this section we will prove that, outside the horizons Σ(t), the
metrics (M3, gt) approach a Schwarzschild metric. More precisely, we
will prove Theorem 4 by showing that the rescaled Σ(t), defined in the
previous section as the original Σ(t) rescaled by the factor e−2t, converge
to a coordinate sphere of radius M/2 in (R3, δ) and that

lim
t→∞Ut(x) = 1 +

M

2|x|(189)

for |x| ≥M/2, where M = limt→∞m(t).
The first step is to bound Ut(x) from above. From inequality (188)

in Section 11, it follows that the rescaled Σ(t) (defined for t ≥ t0) stay
inside Srmax(0), where rmax = 12C(8πA0)1/2. Hence, by the maximum
principle and Equation (166),

Vt(x) ≤ −1 +
rmax

|x| .(190)

Now choose b such that

Ut0(x) ≤ 1 +
b

|x|(191)

and let c = max(b, rmax). Then analyzing Equation (164) allows us to
conclude that

Ut(x) ≤ 1 +
c

|x|(192)
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for all t ≥ t0 and all x outside the ball of radius r0e−2t. Then since
Wt(x) ≤ (1 + Ut(x))/2 by the maximum principle and Equation (168),
it follows that

Wt(x) ≤ 1 +
c

2|x|(193)

for all t ≥ t0 and all x outside Σ(t).
Since Wt(x) is harmonic outside Srmax(0) in (R3, δ) and goes to one

at infinity, it is completely determined in this region by its values on
Srmax+1(0).

Definition 18. For α ∈ (0, 1/2), we define Hα to be the set of pos-
itive harmonic functions h(x) defined outside Srmax(0) in (R3, δ) which
go to one at infinity and which satisfy

|h(x) − 1| ≤ α(194)

for all x ∈ Srmax+1(0).

Now let’s put the supremum topology (for x outside Srmax+1(0))
on Hα, so that k(x) is in an ε neighborhood of h(x) if and only if
|k(x) − h(x)| < ε for all x ∈ Srmax+1(0), for k(x), h(x) ∈ Hα. Then it
follows that Hα is a compact space with this topology [21].

Next we define the following very useful continuous functional F on
Hα.

Definition 19. Given h(x) ∈ Hα, let (P 3, k) be the Riemannian
manifold isometric to (R3\Brmax+2(0), h(x)4δ). Then we define

F(h(x)) = inf
ψ(x)

{
1
4π

∫
(P 3,k)

|∇ψ|2 dV
∣∣∣ lim

x→∞ψ(x) = ψ0

}
(195)

where ψ is a spinor, ψ0 is a fixed constant spinor of norm one defined
at infinity, ∇ is the spin connection, and dV is the volume form on P 3

with respect to the metric k.

Furthermore, from standard theory there exists a minimizing spinor
for each h(x) which satisfies ∇j∇jψ(x) = 0, for x ∈ P 3

νj∇jψ = 0, for x ∈ ∂P 3

limx→∞ ψ(x) = ψ0

(196)

where ∇j is the spin connection in (P 3, k), ∇j its formal adjoint, and �ν
is the outward pointing unit normal vector to the boundary of P 3.
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Lemma 12. The functional F is continuous on Hα.

Proof. Working with respect to the standard flat metric on
R3\Brmax+2(0), we can write down explicit formulas for the spin connec-
tion derived in [17] for the case of two-component Weyl spinors. Hence,
we let ψ(x) = (ψ1(x), ψ2(x)) be a pair of complex-valued functions and

F(h(x)) =
1
4π

∫
R3\Brmax+2(0)

h(x)2
∣∣∣∣∣�∇ψ + i

(
�∇h
h

× �σ

)
ψ

∣∣∣∣∣
2

dV(197)

where × is the cross product in R3, σi are the Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,(198)

�∇ is now the usual gradient in R3, and dV is the usual volume form
in R3. Using the fact that (196) is the Euler-Lagrange equation for
Equation (197), one can show that |ψ(x)| is uniformly bounded. It also
follows that |�∇ψ(x)| ≤ c/r2, and since h(x) is harmonic, |�∇h(x)| ≤ c/r2

too, for some uniform constant c > 0.
Using these facts, we can compute the derivative of F(ht(x)) with

respect to t at t = 0. Since the energy functional of the spinors in
Equation (195) is strictly convex, it follows that the minimizing spinor
varies smoothly for smooth variations of h(x). Furthermore, it follows
from Equation (196) that the contribution to the first order rate of
change of F(ht(x)) due to the variation of the minimizing spinor is
zero. Hence, from the previous paragraph it follows that the derivative
of F(ht(x)) with respect to t at t = 0 is uniformly bounded (with respect
to the supremum norm on Hα) in all directions, from which it follows
that F is continuous on Hα. q.e.d.

Definition 20. Define Hα to be the closure in the topological space
Hα of the set of all h(x) such that the corresponding manifold with
boundary (P 3, k) defined in the previous definition can be extended to
be a complete, smooth, asymptotically flat manifold with nonnegative
scalar curvature (with possibly multiple ends but without boundary).

Note that since Hα is a closed subset of a compact topological space,
Hα is also compact using this same supremum topology.

Using Definition 2, we can define the total mass functional m(h(x))
for h(x) ∈ Hα to be the total mass of (P 3, k) (defined in Definition 19).
We note that m is continuous on Hα.
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Lemma 13. Given h(x) ∈ Hα,

m(h(x)) ≥ F(h(x)).(199)

Proof. This lemma follows directly from Witten’s proof of the Posi-
tive Mass Theorem [52], [40]. In Witten’s argument, he showed that the
total mass is bounded below by such an integral over the whole manifold
for a spinor which satisfies the Dirac equation and goes to a constant
spinor with norm one at infinity. Thus, the infimum of the same integral
over a smaller region and over more spinors must be smaller than the
original integral. This proves the inequality for h(x) which correspond
to (P 3, k) which can be extended smoothly. Then the inequality fol-
lows for all h(x) ∈ Hα since the total mass m and the functional F are
continuous functionals on Hα. q.e.d.

Lemma 14. For h(x) ∈ Hα, F(h(x)) = 0 if and only if h(x) ≡ 1.

Proof. By Equation (196), it follows that the norm of the minimiz-
ing spinor is not identically zero, from which it follows that F(h(x)) = 0
implies the existence of a parallel spinor. Hence, since (P 3, k) is asymp-
totically flat, it must be flat everywhere, which implies that h(x) ≡ 1.
Conversely, if h(x) ≡ 1, choosing ψ(x) ≡ ψ0 proves that F(h(x)) = 0.

q.e.d.

Lemma 15. For all δ > 0, there exists an ε > 0 such that

F(h(x)) < ε ⇒ sup
x∈Srmax+1(0)

|h(x) − 1| < δ(200)

for h(x) ∈ Hα.

Proof. Since F is a continuous functional on the compact space Hα

and only equals zero if h(x) ≡ 1, the lemma follows. q.e.d.

Corollary 8. For all δ > 0, there exists an ε ∈ (0, 2(rmax + 1)δ)
such that

m(h(x)) < ε ⇒ sup
x∈Srmax+1(0)

|h(x) − 1| < δ(201)

for h(x) ∈ Hα.

Proof. The fact that there exists an ε > 0 follows directly from
Lemmas 13 and 15. Then by considering h(x) = 1 + a/2|x| for a > 0
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which corresponds to a Schwarzschild metric with total mass a, it follows
that ε < 2(rmax + 1)δ. q.e.d.

Alternatively, the previous discussion with spinors beginning with
Definition 19 and ending with the above corollary could be replaced by
quoting Theorem 1.1 of [8] (the proof of which also uses spinors) which
proves Corollary 8 as well.

Now we are ready to apply these results to understand the asymp-
totic behavior of Ut(x) as t goes to infinity.

Theorem 16. For all δ > 0, there exists a t such that for all t ≥ t∣∣∣∣Ut(x) − (1 +
M

2|x|
)∣∣∣∣ ≤ δ(202)

for |x| ≥ rmax + 1, where M ≡ limt→∞m(t) > 0.

Proof. First, we let

U t(x) = Ut(x) −
(

1 +
m(t)
2|x|

)
(203)

and

W t(x) = Wt(x) −
(

1 +
m̃(t)
2|x|

)
(204)

so that by Lemmas 10 and 11 the harmonic functions U t(x) and W t(x)
do not have a constant term or a 1/|x| term in their expansions us-
ing spherical harmonics. Then substituting these two expressions into
Equation (172) yields

d

dt
U t(x) = 2

(
U t(x) −W t(x) + r

∂

∂r
U t(x)

)
(205)

by Equation (167).
Also, by Equation (167) and the Positive Mass Theorem,

∫∞
0 m̃(t) dt

≤ m(0)/2, so Tbad = {t | m̃(t) ≥ ε} has finite measure less than or equal
to m(0)/2ε. Hence, by Lemma 11 and Corollary 8, for all δ > 0, there
exists an ε > 0 such that

sup
x∈Srmax+1(0)

|Wt(x) − 1| < δ(206)
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and hence

sup
x∈Srmax+1(0)

|W t(x)| < 2δ(207)

since

m̃(t) < ε < 2(rmax + 1)δ,(208)

for all t /∈ Tbad. Also, for all t we have the uniform bound

sup
x∈Srmax+1(0)

|W t(x)| < B(209)

(where B = 1 + c/2(rmax + 1)) by Equations (204) and (193) and since
m̃(t) ≤ c by Equation (193). Then since W t(x) is a harmonic function
without a constant term or a 1/|x| term, it follows that

|W t(x)| ≤ k
(rmax + 1)2

|x|2
{

2δ for t /∈ Tbad

B for t ∈ Tbad
(210)

for |x| ≥ rmax +1 and some positive constant k (which we will not need
to compute). Then from analyzing Equation (205) and using the fact
that U t(x) does not have a constant term or a 1/|x| term and the fact
that Tbad has finite measure, it follows that we can choose some t large
enough such that

|U t(x)| ≤ k
(rmax + 1)2

|x|2 (2.01)δ(211)

for all t ≥ t and |x| ≥ rmax + 1. Hence, since δ > 0 was arbitrary and
M = limt→∞m(t) (and is positive by inequality (181)), Theorem 16
follows. q.e.d.

Corollary 9. For all δ > 0, there exists a t such that∣∣∣∣Vt(x) − ( M

2|x| − 1
)∣∣∣∣ ≤ δ(212)

for |x| ≥ rmax + 1 and all t ≥ t except on a set with measure less than
δ.

Proof. We recall from Equation (171) that Vt(x) = Ut(x) − 2Wt(x).
Hence, since Ut(x) is converging to 1 + M

2|x| by Theorem 16 and Wt(x)
is converging to 1 (for t /∈ Tbad) by Equations (204), (207), and (208),
then the corollary follows from the fact that Tbad has finite measure.

q.e.d.
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Corollary 10. For all δ > 0, there exists a t such that for all t ≥ t,∣∣∣∣Vt(x) − ( M

2|x| − 1
)∣∣∣∣ ≤ δ(213)

and

|Wt(x) − 1| ≤ δ(214)

for |x| ≥ rmax + 1.

Proof. Equation (213) follows from the previous corollary, Equation
(166), and Theorem 7. Equation (214) then follows from Equation (213),
Theorem 16, and Equation (171). q.e.d.

The next two lemmas use Corollary 10 to prove that Σ(t) converges
to the sphere of radius M/2. The main idea is that since Vt(x) converges
to M

2|x| − 1 and equals zero on Σ(t) by definition, then Σ(t) must be
converging to SM/2(0).

In the rest of this section we will want to take limits of certain se-
quences of surfaces, and naturally there are several ways to do this.
However, in our case, all of the surfaces we are dealing with are bound-
aries of regions, so it seems most natural to follow [39]. In [39], a very
general definition of the measure of the perimeter of a Lebesgue mea-
surable set is given on p. 64. Then on p. 70, it is shown that the
space of Lebesgue measurable sets with equally bounded perimeters in
a compact region K is compact with respect to the L1 norm of the char-
acteristic functions of the regions, meaning that any sequence of such
sets contains a subsequence such that the characteristic functions of the
subsequence converge in L1(K). Thus, in what follows, we will say that
Σ∞ is a limit of a sequence of surfaces {Σ(ti)} if it is the boundary of a
Lebesgue measurable set with bounded perimeter whose characteristic
function is the L1 limit of the characteristic functions of a subsequence
of the {Σ(ti)}. We note that (187) implies that the {Σ(ti)} have equally
bounded perimeters for ti ≥ t0. We also note that since this perimeter
function is shown to be lower semicontinuous in [39], Σ∞ has bounded
perimeter. (We also note that we define the boundary of a region to be
the set of boundary points such that every open ball around a boundary
point contains a positive measure of both the region and the complement
of the region.)

From the above considerations, it also turns out that the {Σ(ti)} will
converge to Σ∞ in the Hausdorff distance sense as well. This follows
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from the fact that each Σ(ti) minimizes area in (R3\Br0e−2t(0), Ut(x)4δ)
and we have uniform upper and lower bounds on the Uti(x). (This is
related to the proof of Lemma 24 in Appendix E.)

Lemma 16. Let Σ∞ be any limit of Σ(t) in (R3, δ). Then no part
of Σ∞ lies inside SM/2(0).

Proof. Let R be the open region outside Σ∞, and consider a sequence
of ti going to infinity such that Σ(ti) is converging to a limit Σ∞. Since
each Σ(ti) is outer minimizing and we have uniform upper and lower
bounds on Uti(x) (and hence on the corresponding metric), it follows
that R must be connected. Then Vti(x) must converge to a harmonic
function in R, and by Corollary 10 this limit harmonic function equals
M
2|x| −1. But each Vti(x) ≤ 0 by definition, so R∩BM/2(0) = ∅, proving
the lemma. q.e.d.

Lemma 17. Let Σ∞ be any limit of Σ(t) in (R3, δ). Then no part
of Σ∞ lies outside SM/2(0).

Proof. Suppose otherwise. Then we can consider a sequence of ti
going to infinity such that Σ(ti) is converging to a limit Σ∞ which lies at
least partially outside SM/2(0). Again, defining the region R as above,
Vti(x) must converge to a harmonic function in R, and by Corollary 10
this limit harmonic function equals M

2|x| − 1.
Since Vti(x) is harmonic, it minimizes its energy among functions

with the same boundary data. Thus, since Σ(ti) is contained inside
Srmax(0), the energy of Vti(x) is less than 4πrmax. Now choose x0 ∈ Σ∞
which maximizes distance from the origin, and let |x0| = M/2 + 2r for
some r > 0. Then by the co-area formula,

4πrmax >

∫
Ri

|∇Vti(x)|2 dV >

∫
Ri∩Br(x0)

|∇Vti(x)|2 dV

(215)

=
∫ 0

−1
dz

∫
Lz∩Br(x0)

|∇Vti(x)| dAz

≥
∫ 0

−1
dz |Lz ∩Br(x0)|2

(∫
Lz∩Br(x0)

|∇Vti(x)|−1 dAz

)−1

where Ri is the region outside Σ(ti), dV is the standard volume form
on R3, Lz is the level set on which Vti equals z, dAz is the area form of
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Lz, and | · | denotes area in R3. Next, we define

V(z) = the volume of the region {x ∈ Br(x0) | Vti(x) > z}(216)

for −1 < z ≤ 0. Then from inequality (215),

4πrmax >

∫ 0

−1
|Lz ∩Br(x0)|2 V ′(z)−1 dz.(217)

Since Vti(x) equals zero on Σ(ti) and yet is converging to M
2|x| − 1 in

R, we must have V ′(z) approaching zero and the surfaces Lz ∩ Br(x0)
converging to Σ(ti) ∩Br(x0) for z ∈

(
M

2|x0| − 1, 0
)

as ti goes to infinity.

However, since Σ(ti) minimizes area in (R3\Br0e−2ti (0), Uti(x)
4δ) and

Uti(x) is uniformly bounded, it follows that |Lz ∩ Br(x0)| is not going
to zero for z ∈

(
M

2|x0| − 1, 0
)
. Hence, the right hand side of inequality

(217) is going to infinity as ti goes to infinity, giving us a contradiction
and proving the lemma. q.e.d.

Theorem 17. The surfaces Σ(t) converge to SM/2(0) in the Haus-
dorff distance sense in the limit as t goes to infinity,

lim
t→∞Ut(x) = 1 +

M

2|x|(218)

for |x| ≥M/2, and

lim
t→∞Ut(x) =

√
2M
|x|(219)

for 0 < |x| ≤M/2, where as usual M = limt→∞m(t) > 0.

Proof. First we observe that for all δ > 0, there exists a t such that

Σ(t) ⊂ BM
2

+δ(0)\BM
2
−δ(0)(220)

for all t ≥ t. Otherwise, we could choose a sequence of ti going to
infinity such that each Σ(ti) did not lie entirely in the annulus. By
previous discussions, a limit Σ∞ would have to exist, and since this
limit is valid in the Hausdorff distance sense as previously discussed, at
least part of Σ∞ would have to lie off of SM/2(0), contradiction at least
one of the two previous lemmas. This proves Equation (220).
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As a corollary, we get that for all δ > 0, there exists a t such that

FM
2
−δ(x) ≤ Vt(x) ≤ FM

2
+δ(x)(221)

where we define

Fa(x) =
{ a

|x| − 1 for |x| ≥ a

0 for |x| ≤ a
(222)

for a > 0. Then Equations (218) and (219) follow (with uniform con-
vergence on compact subsets of R3 − {0}) from inequality (221) and
analyzing the behavior of Equation (164). q.e.d.

Theorem 4 then follows from the above theorem and Corollary 5.

13. Generalization to asymptotically flat manifolds and the
case of equality

Up to this point in the paper we have assumed that (M3, g0) was
harmonically flat at infinity. In particular, Theorems 2, 3, and 4 only
apply to harmonically flat manifolds as stated. In this section, we will
extend Theorems 2 and 3 and elements of Theorem 4 to asymptotically
flat manifolds. This will prove the main theorem, Theorem 1, except for
the case of equality, which we will see follows from the case of equality
of Theorem 9.

It is worth noting that the main reason for initially considering only
harmonically flat manifolds was convenience. Alternatively, we could
have ignored harmonically flat manifolds and dealt only with asymp-
totically flat manifolds. However, this would have complicated some of
the arguments unnecessarily, so we chose to delay these considerations
until now.

Definition 21. The manifold (Mn, g) is said to be asymptotically
flat if there is a compact set K ⊂ M such that M\K is the disjoint
union of ends {Ek}, such that for each end there exists a diffeomorphism
Φk : Ek → Rn\ B1(0) such that, in the coordinate chart defined by Φk,

g =
∑
i,j

gij(x)dxidxj ,
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where

gij(x) = δij +O(|x|−p)
|x||gij,k(x)| + |x|2|gij,kl(x)| = O(|x|−p)

|R(g)| = O(|x|−q)
for some p > n−2

2 and some q > n, where we have used commas to
denote partial derivatives in the coordinate chart, and R(g) is the scalar
curvature of (Mn, g).

These assumptions on the asymptotic behavior of (Mn, g) at infinity
imply the existence of the limit

MADM(g) =
1

16π
lim
σ→∞

∫
Sσ

∑
i,j

(gij,iνj − gii,jνj) dµ(225)

where Sσ is the coordinate sphere of radius σ, ν is the unit normal
to Sσ, and dµ is the area element of Sσ in the coordinate chart. The
quantity MADM is called the total mass of (Mn, g) (see [1], [2], [42], and
[46]), and agrees with the definition of total mass for harmonically flat
3-manifolds given in Definition 2.

First we observe that the arguments in the proof of the existence
theorem, Theorem 2, did not use harmonic flatness anywhere, so we
immediately get existence of the conformal flow of metrics for asymp-
totically flat manifolds. Similarly, the arguments used in Section 5 to
prove that A(t) is constant still hold. Next we reexamine the proof
of Theorem 10 which proved that m(t) was nonincreasing. The only
modification we need to make is to use the more general definition for
the total mass of an asymptotically flat manifold given by Equation
(225). It is then straight forward to check that Equation (113) and
hence Theorem 10 are still true. Hence:

Theorem 18. Theorems 2 and 3 are true for asymptotically flat
manifolds as well as harmonically flat manifolds.

We choose not to extend Theorem 4 to asymptotically flat manifolds,
but conjecture that it is still true. Instead, we observe that we must
still have

m(t) ≥
√
A(t)
16π

(226)

for asymptotically flat manifolds. Otherwise, given an asymptotically
flat counterexample, we could use Lemma 1 to perturb the manifold
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slightly making it harmonically flat at infinity such that it still vio-
lated Equation (226). Then applying the conformal flow of metrics to
this harmonically flat manifold would violate Theorems 3 and 4, which
is a contradiction. Setting t = 0 in inequality (226) then proves the
Riemannian Penrose inequality for asymptotically flat manifolds.

The case of equality of Theorem 1 then follows from Equation (113)
and Theorem 9. If we have equality in the Riemannian Penrose inequal-
ity, then applying the conformal flow of metrics to this initial metric
must also give equality in inequality (226) for all t ≥ 0. Hence, the
right hand derivative of m(t) at t = 0 equals zero, so by Equation (113),

E(Σ+(0), g0) = 2m(0).(227)

By Definition 11 and Equation (14), Σ+(0) is the outermost minimal
area enclosure of Σ0 in (M3, g). Furthermore, by the case of equality of
Theorem 9, (M3, g) is a Schwarzschild manifold outside Σ+(0). Hence,
Σ+(0) is the outermost horizon of (M3, g), so (M3, g) is isometric to
a Schwarzschild manifold outside their respective outermost horizons.
This completes the proof of Theorem 1 and the Riemannian Penrose
inequality.

The reader might also have noticed that none of the arguments in
this paper have used anything about the original manifold inside the
original horizon Σ0. Hence, we can generalize Theorem 1 to the follow-
ing.

Theorem 19. Let (M3, g) be a complete, smooth, asymptotically
flat 3-manifold with boundary which has nonnegative scalar curvature
and total mass m. Then if the boundary is an outer minimizing horizon
(with one or more components) of total area A, then

m ≥
√

A

16π
(228)

with equality if and only if (M3, g) is isometric to a Schwarzschild man-
ifold outside their respective outermost horizons.

14. New quasi-local mass functions

Given a region in a space-like slice of a space-time, it is natural to
ask how much energy and momentum is contained in that region. As
described in the introduction, there does exist a well-defined notion of
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total mass and also of energy-momentum density. However, when the
region in question is some finite region which is not the entire manifold
or just a single point, it is not very well understood how to define how
much energy and momentum is in that region.

Various definitions of “quasi-local” mass exist, such as the Hawk-
ing mass, which was used by Huisken and Ilmanen in [30] to prove
their Riemannian Penrose inequality, for example. Good definitions of
quasi-local mass should satisfy certain reasonable properties [14] such
as positivity and some kind of monotonicity, either under a flow or by
inclusion. In addition, for a large region, the quasi-local mass function
should approach the total mass of the manifold, and for horizons with
area A it is thought that the mass should be

√
A/16π.

Let (M3, g) be a complete asymptotically flat manifold with non-
negative scalar curvature and total mass m. Let Σ be any surface in
M3 which is in the class of surfaces S defined in Section 2.

Definition 22. Suppose u(x) is a positive harmonic function in
(M3, g) outside Σ going to a constant at infinity scaled such that (M3,
u(x)4g) has the same total mass as (M3, g).

Then if Σ is an outer minimizing horizon with areaA in (M3, u(x)4g),
we define the quasi-local mass of Σ in (M3, g) to be

mg(Σ) =

√
A

16π
.(229)

Definition 23. We define S to be the subset of S of surfaces Σ
for which such a conformal factor u(x) exists, and we note that (by
Equation (239) mostly) this conformal factor is unique for each Σ when
it exists.

As usual Σ could have multiple components. It is also interesting
that

mg(Σ̃) = mu(x)4g(Σ̃)(230)

for all surfaces Σ̃ ∈ S where the conformal factor u(x) is any harmonic
function in (M3, g) defined outside Σ̃ which goes to a constant at infinity
scaled such that (M3, u(x)4g) has the same total mass as (M3, g).

Lemma 18. The quasi-local mass function mg(Σ) defined for
(M3, g) is nondecreasing for the family of surfaces Σ(t) defined by Equa-
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tion (14). That is, mg(Σ(t)) is nondecreasing in t. Furthermore,

mg(Σ(0)) =

√
A

16π
(231)

where A is the area of the original outer minimizing horizon Σ0 in
(M3, g), and

lim
t→∞mg(Σ(t)) = m,(232)

the total mass of (M3, g).

Proof. We consider the conformal flow of metrics gt beginning with
(M3, g) as discussed throughout this paper and in the previous section
for asymptotically flat manifolds. Then we note that by Equation (14),
Σ(t) is an outer minimizing horizon in (M3, ut(x)4g) with area A(t).
Hence, ut(x) satisfies the conditions in Definition 22 except that it is
not scaled to have the correct mass. Hence, since mass has units of
length, it follows that

mg(Σ(t)) =
m

m(t)

√
A(t)
16π

(233)

where again m is the total mass of (M3, g). Then the lemma follows
from Theorems 3 and 4 and the fact that m(0) = m. q.e.d.

There is a trick which allows us to extend the definition of this
quasi-local mass function to all surfaces in S.

Definition 24. Define

m̃g(Σ) = sup
{
mg(Σ̃) | Σ (entirely) encloses Σ̃ ∈ S

}
(234)

where Σ is any surface in S.

It follows trivially that m̃g(Σ) is monotone with respect to enclosure,
which is a desirable property for quasi-local mass functions to have since
larger regions should contain more mass in the nonnegative energy den-
sity setting which we are in. We also note that this same construction
can be used with the Hawking mass to make it monotone with respect
to enclosure too, where the original Hawking mass should only be de-
fined to exist for surfaces which are their own outermost minimal area
enclosures, as motivated by the results of Huisken and Ilmanen in [30].
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We also notice that the existence of the Penrose inequality allows
us to define another new quasi-local mass function which is similar in
nature to the Bartnik mass [3], [30]. In fact, whereas the Bartnik mass
could also be called an outer quasi-local mass function, it makes sense
to call the new quasi-local mass function defined below the inner quasi-
local mass function, which is clear from the definition. We have recently
learned that Huisken and Ilmanen have also considered something sim-
ilar to the following definition.

Definition 25. Given a surface Σ ∈ S in (M3, g), consider all
other asymptotically flat, complete, Riemannian manifolds (M̃3, g̃) with
nonnegative scalar curvature which are isometric to (M3, g) outside Σ.
Then we define

minner(Σ) = sup

√
Ã

16π
(235)

where Ã is the infimum of the areas of all of the surfaces in (M̃3, g̃) in
S̃.

We note here that S̃ is defined the same way as S in Definition
3 and that the surface in S̃ with minimum area may have multiple
components. We also note that for Ã to be nonzero that (M̃3, g̃) must
have more than one asymptotically flat end.

Lemma 19. Let (M3, g) be an asymptotically flat, complete, Rie-
mannian manifold with nonnegative scalar curvature, and let Σ1,Σ2 ∈ S
such that Σ2 (entirely) encloses Σ1. Then

m ≥ minner(Σ2) ≥ minner(Σ1)(236)

where m is the total mass of (M3, g).

Proof. Follows directly from the Penrose inequality and Defini-
tion 25. q.e.d.

Also, if Σ is outer minimizing (see Definition 6), then

mouter(Σ) ≥ minner(Σ)(237)

where mouter(Σ) is basically the Bartnik mass [3] except that we only
consider extensions of the metric in which Σ continues to be outer min-
imizing. The proof of this inequality and related discussions will be
included in a paper on quasi-local mass which is currently in progress.
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15. Open problems and acknowledgments

Even though the original Penrose Conjecture concerned only three
dimensional, space-like slices of a space-time, it is easy to generalize
the conjecture to higher dimensions using the same motivation as the
three-dimensional case. In this paper we have restricted our atten-
tion to proving the three dimensional case of the Riemannian Penrose
Conjecture, which is perhaps the most physically interesting dimension.
However, the techniques presented here generalize to higher dimensions.
The author is currently working on a paper to treat dimensions 4,5,6,7.
Dimensions 8 and higher present additional technical challenges because
the horizons, which are minimal hypersurfaces, can have co-dimension
7 singularities.

The Positive Mass Theorem is also technically still open in dimen-
sions 8 and higher for manifolds which are not spin. The Witten proof
[52] only works for spin manifolds (but in any dimension) and the
Schoen-Yau proof [46] (which uses minimal hypersurface techniques)
has the same technical difficulties that the author has encountered in
dimension 8 and higher. It seems plausible that these technical difficul-
ties might be able to be overcome so that the Schoen-Yau proof would
work in all dimensions. This is a good problem to study.

Another important problem is to prove the Penrose Conjecture for
arbitrary space-like slices (as opposed to totally-geodesic slices treated
here) of a space-time as described in Section 1. There seem to be several
natural ideas to try in this regard. First, one could attempt to solve
a variant of Jang’s equation which was used to extend the Riemannian
Positive Mass Theorem to the general case [46]. Otherwise, one could
try to modify the flow of metrics defined in this paper to define a flow
of the Cauchy data (M3, g, h) which has good monotonicity properties.
Both of these approaches are speculative but could yield interesting
results.

We also note that in this paper we did not ever prove the uniqueness
of the conformal flow of metrics defined by Equations (13), (14), (15),
and (16), although we conjecture that this is true. It would also be
interesting to understand the relationship between the Hawking mass
used in the Huisken-Ilmanen paper and the quasi-local mass functionmg

defined in the previous section. In the spherically symmetric case, mg

is bounded below by the Hawking mass on the spherically symmetric
spheres since the Hawking mass equals the Bartnik mass in this case
(outside the outermost horizon). It is unclear if such a relationship
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generally holds.
I have many people to thank who have helped make this paper pos-

sible. I am very fortunate to have been introduced to the Penrose Con-
jecture by Richard Schoen, who has shared many of his thoughts on
the problem with me and has given me much helpful feedback about
this paper. I would also like to thank Shing-Tung Yau, who hosted me
during my stay at Harvard University during the academic year 1997-
98, and the NSF (grant #DMS-9706006) for supporting my research
during that time in which the idea of this paper materialized. I am
also indebted to David Jerison, Leon Simon, and Gang Tian who all
gave me very helpful suggestions for working out many of the impor-
tant details of this paper. I also thank Robert Bartnik for explaining the
Bunting/Masood-ul-Alam paper [11] to me, which turned out to be very
useful. I must also thank Felix Finster and Kevin Iga who both helped
me think about certain aspects of this paper so much that in both cases
it resulted in other papers [8], [9]. Finally, I would like to thank Hel-
mut Friedrich, Gerhard Huisken, Tom Ilmanen, Richard Rennie, Dan
Stroock, and Brian White for enthusiastic and helpful conversations.

A. The harmonic conformal class of a metric

In this appendix we define a new equivalence class and partial or-
dering of conformal metrics. This provides a natural motivation for
studying conformal flows of metrics to try to prove the Riemannian
Penrose inequality.

Let

g2 = u(x)
4

n−2 g1(238)

where g2 and g1 are metrics on an n-dimensional manifold Mn, n ≥ 3.
Then we get the surprisingly simple identity that

∆g1(uφ) = u
n+2
n−2 ∆g2(φ) + φ∆g1(u)(239)

for any smooth function φ.
This motivates us to define the following relation.

Definition 26. Define

g2 ∼ g1

if and only if Equation (238) is satisfied with ∆g1(u) = 0 and u(x) > 0.
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Then from Equation (239) we get the following lemma.

Lemma 20. The relation ∼ is reflexive, symmetric, and transitive,
and hence is an equivalence relation.

Thus, we can define the following equivalence class of metrics.

Definition 27. Define

[g]H = {g | g ∼ g}
to be the harmonic conformal class of the metric g.

Of course, this definition is most interesting when (Mn, g) has non-
constant positive harmonic functions, which happens for example when
(Mn, g) has a boundary.

Also, we can modify the relation ∼ to get another relation �.

Definition 28. Define

g2 � g1

if and only if Equation (238) is satisfied with −∆g1(u) ≥ 0 and u(x) > 0.

Then from Equation (239) we get the following lemma.

Lemma 21. The relation � is reflexive and transitive, and hence
is a partial ordering.

Since � is defined in terms of superharmonic functions, we will call
it the superharmonic partial ordering of metrics on Mn. Then it is
natural to define the following set of metrics.

Definition 29. Define

[g]S = {g | g � g}.
This set of metrics has the property that if g ∈ [g]S , then [g]S ⊂ [g]S
Also, the scalar curvature transforms nicely under a conformal

change of the metric. In fact, assuming Equation (238) again,

R(g2) = u(x)−( n+2
n−2

) (−cn∆g1 +R(g1))u(x)(240)

where cn = 4(n−1)
n−2 [42]. This gives us the following lemma.

Lemma 22. The sign of the scalar curvature is preserved pointwise
by ∼. That is, if g2 ∼ g1, then sgn(R(g2)(x)) = sgn(R(g1)(x)) for all
x ∈Mn.

Also, if g2 � g1, and g1 has non-negative scalar curvature, then g2
has non-negative scalar curvature.
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Hence, the harmonic conformal equivalence relation ∼ and the su-
perharmonic partial ordering � are useful for studying questions about
scalar curvature. In particular, these notions are useful for studying
the Riemannian Penrose inequality which concerns asymptotically flat
3-manifolds (M3, g) with non-negative scalar curvature. Given such a
manifold, define m(g) to be the total mass of (M3, g) and A(g) to be the
area of the outermost horizon (which could have multiple components)
of (M3, g). Define P (g) = m(g)√

A(g)
to be the Penrose quotient of (M3, g).

Then an interesting question is to ask which metric in [g]S minimizes
P (g).

This paper can be viewed as an answer to the above question. We
showed that there exists a conformal flow of metrics (starting with g0)
for which the Penrose quotient was non-increasing, and in fact this
conformal flow stays inside [g0]S . Furthermore, gt2 ∈ [gt1 ]S for all
t2 ≥ t1 ≥ 0. We showed that no matter which metric we start with, the
metric converges to a Schwarzschild metric outside its horizon. Hence,
the minimum value of P (g) in [g]S is achieved in the limit by metrics
converging to a Schwarzschild metric (outside their respective horizons).

In the case that the g is harmonically flat at infinity, a Schwarzschild
metric (outside the horizon) is contained in [g]S . More generally, given
any asymptotically flat manifold (M3, g), we can use R3\Br(0) as a
coordinate chart for the asymptotically flat end of (M3, g) which we
are interested in, where the metric gij approaches δij at infinity in this
coordinate chart. Then we can consider the conformal metric

gC =
(

1 +
C

|x|
)4

g(241)

in this end. In the limit as C goes to infinity, the horizon will ap-
proach the coordinate sphere of radius C. Then outside this horizon in
the limit as C goes to infinity, the function (1 + C

|x|) will be close to a
superharmonic function on (M3, g) and the metric gC will approach
a Schwarzschild metric (since the metric g is approaching the stan-
dard metric on R3). Hence, the Penrose quotient of gC will approach
(16π)−1/2, which is the Penrose quotient of a Schwarzschild metric.

As a final note, we prove that the first order o.d.e. for {gt} defined
in Equations (13),(14), (15), and (16) is naturally defined in the sense
that the rate of change of gt is a function only of gt and not of g0 or
t. To see this, given any solution gt = ut(x)4g0 to Equations (13),(14),
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(15), and (16), choose any s > 0 and define ut(x) = ut(x)/us(x) so that

gt = ut(x)4gs(242)

and us(x) ≡ 1. Then define vt(x) such that
∆gsvt(x) ≡ 0 outside Σ(t)

vt(x) = 0 on Σ(t)
limx→∞ vt(x) = −e−(t−s)

(243)

and vt(x) ≡ 0 inside Σ(t). Then what we want to show is

ut(x) = 1 +
∫ t

s
vr(x)dr(244)

To prove the above equation, we observe that from Equations (239),
(243), and (15) it follows that

vt(x) = vt(x)us(x)(245)

since limx→∞ us(x) = e−s. Hence, since

ut(x) = us(x) +
∫ t

s
vr(x)dr(246)

by Equation (16), dividing through by us(x) yields Equation (244) as
desired. Thus, we see that the rate of change of gt(x) at t = s is
a function of vs(x) which in turn is just a function of gs(x) and the
horizon Σ(s). Hence, to understand properties of the flow we need only
analyze the behavior of the flow for t close to zero, since any metric in
the flow may be chosen to be the base metric. This point is used many
times throughout the paper.

B. An example solution to the conformal flow of metrics

In this section we give the simplest example of a solution to the
first order o.d.e. conformal flow of metrics defined by Equations (13),
(14), (15), and (16). The initial metric in this example is the three
dimensional, space-like Schwarzschild metric which represents a single,
non-rotating black hole in vacuum. The Schwarzschild metrics are also
very natural from a geometric standpoint as well since they are spheri-
cally symmetric and have zero scalar curvature.



proof of the riemannian penrose inequality 249

Since the flow does not change the metric inside the horizon, we
will define this metric to have its horizon as a boundary, which is
always allowable. Then (M3, g0) will be defined to be isometric to
(R3 −Bm/2(0),U0(x)4δij), where

U0(x) = 1 +
m

2r
(247)

where r is the distance from the origin in (R3, δij) and m is a positive
constant equal to the mass of the black hole.

Next we define (M3, gt) to be isometric to (R3−Bm/2(0),Ut(x)4δij),
where

Ut(x) =

{
e−t + m

2re
t, for r ≥ m

2 e
2t√

2m
r , for r < m

2 e
2t.

(248)

We note that on this metric the outermost horizon (and also the outer-
most minimal area enclosure of the original horizon) is the coordinate
sphere given by r = m

2 e
2t, so by Equation (14) we define this horizon to

be Σ(t).
Next we recall from Equation (13) that gt = ut(x)4g0. Hence,

ut(x) = Ut(x)/U0(x). Furthermore, by Equation (16) we must have
vt(x)= d

dtut(x), so

vt(x) =
1

U0(x)

{ −e−t + m
2re

t, for r ≥ m
2 e

2t

0, for r < m
2 e

2t.
(249)

By Equation (239), vt(x) is harmonic on (M3, g0) outside Σ(t) since
a+b/r is harmonic in (R3, δij). Then since vt(x) goes to −e−t at infinity,
is continuous, and equals zero inside Σ(t), it follows that Equation (15)
is satisfied. Hence, (M3, gt) is a solution to the first order conformal
flow of metrics defined by Equations (13), (14), (15), and (16).

This example is a good example to keep in mind when consider-
ing the main theorems of this paper. For example, we notice that by
Definition 2 the total mass m(t) of (M3, gt) equals m and hence is non-
increasing as claimed in Section 7, and the area A(t) of the horizon Σ(t)
in (M3, gt) is constant as claimed in Section 5. Also, we see that the
diameter of Σ(t) is growing exponentially as claimed in Theorem 12 and
contains any given bounded set in a finite amount of time as claimed
by Theorem 13.

Finally, we note that for all t ≥ 0 in this example, (M3, gt) is isomet-
ric to a Schwarzschild metric of total mass m outside their respective
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horizons. Hence, even though the metric is shrinking pointwise, it is
not changing at all outside its horizon, after a reparametrization of the
metric. It is in this sense that Theorem 4 states that no matter what
the initial metric is, it eventually converges to a Schwarzschild metric
outside its horizon.

C. A nonlinear property of superharmonic functions in R3

In this appendix we present a nonlinear property of superharmonic
functions in R3 which we needed in Section 10. However, this result
is of independent interest and, as is proven in [9], directly implies the
Riemannian Penrose inequality with suboptimal constant for manifolds
which are conformal to R3. Furthermore, the following theorem can
be generalized to higher dimensions (for certain powers which unfortu-
nately are not applicable to the Riemannian Penrose inequality in higher
dimensions) and is fully discussed and proven in [9].

Theorem 20. There exists a constant c > 0 such that if u(x) is
any positive, continuous, superharmonic function in R3 satisfying∫

Sr(0)
u(x)4 dA ≥ a(250)

for all r > r0, then

u(x) ≥ c a1/4|x|−1/2(251)

for |x| ≥ r0.

Discussion of proof. We refer the reader to [9] (which is a joint work
with Kevin Iga) for the details of the proof. In that paper we show that
without loss of generality we may assume that u(x) goes to zero at
infinity. Then the next important step is a symmetrization argument
to argue that without loss of generality we may also assume that the
support of ∆u is on the x-axis. Then it follows that

u(�x) =
∫ ∞

0

dµ(t)
|�x− (t, 0, 0)|(252)

where µ(t) is a positive measure on [0,∞). The remainder of the proof
then involves converting inequality (250) to a lower bound on an integral
expression of dµ(t) which is then used to prove inequality (251). q.e.d.
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D. Lower bound for the capacity of a surface in R3 with
bounded Willmore functional

In this appendix we consider surfaces Σ which are smooth, com-
pact boundaries of open sets in R3 and which have bounded Willmore
functional. That is, we will assume that∫

Σ
H2dµ ≤ w,(253)

where H is the mean curvature (equal to the trace of the second funda-
mental form) and dµ is the area form of Σ.

�ν

Σ ⊂ R3

Figure 8.

Define the potential function f of Σ to be the constant function 1
inside Σ and the function satisfying

f(x) = 1 on Σ
∆f ≡ 0 outside Σ
f → 0 at infinity

(254)

outside Σ. Expanding in terms of spherical harmonics, we see that

f(x) =
a

r
+O

(
1
r2

)
.(255)

We define a to be the capacity of both f(x) and Σ. Also, since f is
nonnegative, a is always nonnegative. Furthermore, we notice that

a = lim
r→∞− 1

4π

∫
Sr(0)

df

dr
dµ,(256)

where Sr(0) is the sphere of radius r centered around zero. But since
f(x) is harmonic, it follows from the divergence theorem that if we
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perform the above integral over any surface enclosing Σ, we will get the
same result. Thus,

a = − 1
4π

∫
Σ

df

d�ν
dµ,(257)

where �ν is the outward pointing unit normal vector to Σ. The goal of
this appendix is to find a lower bound for a in terms of the area of Σ
and the Willmore bound w.

Since f is harmonic off of Σ, the support of the distribution ∆f is
on Σ. In fact

∆f(φ) =
∫
R3

f∆φ =
∫

Σ
φ
df

d�ν
dµ(258)

where df
d�ν is defined to be the outward directional derivative of f (which

does not equal the inward directional derivative which is zero). Then
since f equals ∆f convolved with the Green’s function − 1

4π|x| , we get
that

f(y) = − 1
4π

∫
Σ

df

d�ν
· 1
|y − x|dx,(259)

where dx is the area form of Σ with respect to the variable x. In a
moment dy will be the area form of Σ with respect to the variable y.
Then using the fact that f(y) = 1 on Σ, we find that

|Σ| =
∫

Σ
f(y)dy = − 1

4π

∫
Σ

df

d�ν
·
(∫

Σ

1
|y − x|dy

)
dx.(260)

The next step is to find an upper bound for
∫
Σ

1
|y−x|dy. To do this,

we need the following lemma which follows from Equation 16.34 in [21]
(when R is chosen to go to infinity). We note that the definition of
mean curvature in [21] is half that of ours.

Lemma 23. Given a surface Σ which is a smooth, compact bound-
ary of an open set in R3,

|Σ ∩Br(x)| ≤
(

3
4

∫
Σ
H2dµ

)
r2(261)

for all r > 0 and all x ∈ Σ.
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Hence, in our case,

|Σ ∩Br(x)| ≤
(

3
4
w

)
r2,(262)

for any x ∈ Σ. Then since 1
|y−x| is maximized when x and y are closest

together, we get that
∫
Σ

1
|y−x|dy is maximized subject to the constraint

in Equation (262) when |Σ ∩Br(x)| = (3
4w)r2, which gives us

∫
Σ

1
|y − x|dy ≤

∫ √
4|Σ|
3w

0

1
r
· 2
(

3
4
w

)
rdr = (3w)1/2|Σ|1/2.(263)

Thus, from Equation (260),

|Σ| ≤ − 1
4π

∫
Σ

df

d�ν
dx · (3w)1/2|Σ|1/2,(264)

so that we have

a = − 1
4π

∫
Σ

df

d�ν
dµ ≥ (3w)−1/2|Σ|1/2.(265)

Thus, in summary, we have the following theorem.

Theorem 21. Let Σ be a smooth, compact boundary of an open set
in R3 with

∫
ΣH

2dµ ≤ w. Let f(x) be the harmonic function equal to
one on Σ and going to zero at infinity. Then the capacity

a ≡ − 1
4π

∫
Σ

df

d�ν
dµ ≥ (3w)−1/2|Σ|1/2.(266)

We need this lower bound on the capacity of Σ(t) in Section 11.

E. Regularity of the horizons Σε(t)

In this appendix we compute upper bounds on the Ck,α “norms”
(see Definition 33) of the surfaces Σε(t), for some α ∈ (0, 1). We will
also compute upper bounds on the Ck,α norms of the metrics gεt outside
Σε(t). These bounds are independent of ε, allowing us to conclude in
Section 4 that that the horizons Σ(t) are smooth and the metrics gt are
smooth outside Σ(t).

The critical step will be to achieve a uniform (independent of ε)
bound on the C1,α norms of the surfaces Σε(t) in the coordinate charts,
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for t ∈ [0, T ]. Then by Equations (23) and (24), we will also have a
uniform bound on the C1,α norms of the metrics gεt = uεt(x)

4g0 out-
side Σε(t). Schauder estimates applied to the minimal surface equation
will then give us a uniform bound on the C2,α norms of the surfaces
Σε(t). Repeating this bootstrapping argument yields the desired uni-
form bounds on the Ck,α norms of the surfaces Σε(t) and the metric gεt
outside Σε(t).

We note that it follows from the definition of Σε(t) given in Equation
(22) (and from Equation (23)) that Σε(t) globally minimizes area among
surfaces in S (defined in Section 2) which contain the original horizon
Σ0. Then as in Section 6, let us define M3

Σ0
to be the closed region of

M3 which is outside (or on) Σ0, and define (M3
Σ0
, g0) to be two distinct

copies of (M3
Σ0
, g0) identified along Σ0. Hence, (M3

Σ0
, g0) has a reflection

symmetry which keeps Σ0 fixed.

With out loss of generality, let us now replace (M3, g0) with (M3
Σ0
, g0)

for the remainder of this section. We can do this since the portion of
(M3, g0) which is inside Σ0 does not affect the conformal flow of metrics
defined in Equations (21), (22), (23), and (24). It is true that this oper-
ation means that the new (M3, g0) will not be smooth along Σ0, but this
turns out not to be important. Furthermore, the big advantage (which
we leave to the reader to check) is that now Σε(t) globally minimizes
area among all surfaces in S, which is a fact we will use in the next
lemma. However, because of this construction, all of the constants we
will be defining will depend on Σ0, although this is not a problem.

We will continue with the same notation as defined in Section 4.
Since the initial manifold (M3, g0) is smooth (except possibly on Σ0 be-
cause of the above construction, which we will ignore) and harmonically
flat at infinity, it may be covered by a finite number of smooth coordi-
nate charts {Ci}, where each harmonically flat end (of which there can
only be a finite number) has R3\B1(0) as an asymptotically flat coor-
dinate chart and all of the other coordinate charts are different copies
of B1(0) ⊂ R3. For the rest of this appendix we will work inside the
coordinate charts {Ci} which have the standard R3 metric.

Definition 30. Let disi(x, S) be the infimum (which could equal
infinity) of the lengths of all of the paths in Ci between the point x
and the set S with respect to the coordinate chart metric in Ci. Also,
let disg0(x, S) be the infimum of the lengths of all of the paths in M3

between the point x and the set S with respect to the metric g0.
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Definition 31. Let Xε(t) be the three dimensional open region
inside Σε(t) so that

Σε(t) = ∂Xε(t).(267)

The region Xε(t) always exists since Σε(t) ∈ S.

Lemma 24. There exists a constant c1 > 0 depending only on T ,
Σ0, g0, and the choice of coordinate charts {Ci} such that for all i and
all x0 ∈ Σε(t) ∩ Ci,

|Xε(t) ∩ Sr(x0)|Ci ≥ c1r
2(268)

for all r ∈ (0, disi(x0, ∂Ci)) and t ∈ [0, T ].

Proof. Let Sr(x0) andBr(x0) respectively be the coordinate 2-sphere
and closed coordinate 3-ball of radii r centered at x0 ∈ Σε(t)∩Ci. Define

A(r) = |Σε(t) ∩Br(x0)|Ci ,(269)
L(r) = |Σε(t) ∩ Sr(x0)|Ci ,(270)

A(r) = |Xε(t) ∩ Sr(x0)|Ci .(271)

Let us also define f(a) = l for a ∈ [0, 4π], where l is the minimum
length required to enclose a region of area a in the unit sphere S2.
Hence, for small a, f(a) ≈ √

4πa.
Finally, we let γ1 be the infimum of the smallest eigenvalue and let

γ2 be the supremum of the largest eigenvalue of the metric g0 over every
point in all of the coordinate charts {Ci}, and then define γ = γ1/γ2.
Since the coordinate charts are smooth and g0 approaches the standard
metric δij in the ends of the noncompact coordinate charts, γ > 0. Then
since

1 ≥ uεt(x) ≥ (1 − ε)� t
ε� ≈ e−t(272)

by the maximum principle and Equations (25) and (26), it then fol-
lows that the corresponding ratio of eigenvalues for the metric gεt in the
coordinate charts {Ci} is at least γT , where

γT = (1 − ε)� 4T
ε �γ > 0,(273)

t ∈ [0, T ], and as usual we are requiring t to be an integral multiple of ε.
In the limit as ε goes to zero, we note that γT approaches e−4Tγ, which
is positive.
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Now we are ready to begin the actual proof of the lemma. Since
Σε(t) is globally area minimizing among surfaces in S with respect to
the metric gεt , we know that it has area in (M3, gεt) less than or equal to
the areas of the two comparison surfaces ∂(Xε(t)\Br(x0)) and ∂(Xε(t)∪
Br(x0)). Putting this into terms of the above definitions, this yields

γTA(r) ≤ A(r) ≤ 4πr2 − γTA(r).(274)

Hence, it follows from the above equation that

f

(
A(r)
r2

)
≥ f

(
γTA(r)
r2

)
(275)

since f(a) = f(4π − a) and is monotone increasing from 0 to 2π. Fur-
thermore, it follows from the definition of f that

L(r) ≥ f

(
A(r)
r2

)
r.(276)

Hence, since from multivariable calculus we have that A′(r) ≥ L(r), we
deduce that

A′(r) ≥ f

(
γTA(r)
r2

)
r.(277)

It is then straightforward to show that inequalities (274) and (277) imply
inequality (268) with c1 = 4γ2

T /π, proving the lemma. q.e.d.

Corollary 11. Let w(x) be any nonnegative harmonic function in
(M3, g0) defined outside Σε(t) which equals zero on Σε(t). Define w(x)
to be identically zero inside Σε(t). Then there exists a constant c2 ∈
(0, 1) depending only on T , Σ0, g0, and {Ci} such that for all i and all
x0 ∈ Σε(t) ∩ Ci,

sup
Sr/2(x0)

w(y) ≤ c2 sup
Sr(x0)

w(y)(278)

for all r ∈ (0,disi(x0, ∂Ci)) and t ∈ [0, T ].

Proof. The function w(x) is subharmonic in (M3, g0), and hence is
bounded above by the harmonic function h(x) defined in the coordi-
nate ball Br(x0) with Dirichlet boundary data h(x) = supSr(x0)w(y) on
Sr(x0)\Xε(t) and h(x) = 0 on Sr(x0)∩Xε(t). The corollary then follows
by estimating h(x) on Sr/2(x0) using the Poisson kernel and Lemma 24.

q.e.d.
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Corollary 12. There exist constants c3, c4, and β ∈ (0, 1) depend-
ing only on T , Σ0, g0, and {Ci} such that

|vεt(x)| ≤ c3disg0(x,X
ε(t))β(279)

and for all y ∈ Ci with disg0(x, y) ≤ disg0(x,X
ε(t))

|vεt(x) − vεt(y)| ≤ c4disg0(x, y)
β(280)

for all t ∈ [0, T ]

Proof. First we note that since distances with respect to the coor-
dinate chart metrics and g0 are within a bounded factor of each other,
we only need to prove each of the above inequalities in each coordinate
chart.

Inequality (279) follows from the definition of vεt(x) given in Equa-
tion (23) and from recursively applying Corollary 11. Inequality (279)
then implies the interior gradient estimate

|∇vεt(x)| ≤ c5 disg0(x,X
ε(t))β−1,(281)

which, when integrated along the straight path connecting x and y,
implies inequality (280). q.e.d.

Corollary 13. Let c6 = 2 max(c3, c4). Then

|vεt(x) − vεt(y)| ≤ c6disg0(x, y)
β.(282)

for all x and y and for t ∈ [0, T ].

Proof. Let rx = disg0(x,X
ε(t)) and ry = disg0(y,X

ε(t)), and let B
now denote geodesic balls in (M3, g0). Then we consider two cases.

Case 1. Suppose Brx(x)∩Bry(y) = ∅. Then inequality (282) follows
from inequality (279) and the triangle inequality.

Case 2. Suppose Brx(x) ∩ Bry(y) 
= ∅. Then choose z ∈ Brx(x) ∩
Bry(y) which is on the length minimizing geodesic connecting the points
x and y. Then inequality (282) follows from the triangle inequality and
inequality (280) applied to the points x and z and to the points y and z.

q.e.d.
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Definition 32. Let w(x) be any Ck function defined on (M3, g0).
Then we define the following norm and seminorms (denoted by brack-
ets), all of which depend on our choice of coordinate charts {Ci}, α ∈
(0, 1), and k = 0, 1, 2, . . .

[w]k;Ω = sup
i

sup
x∈Ci

sup
|γ|=k

|Dγw(x)|,(283)

[w]k,α;Ω = sup
i

sup
x �=y

sup
|γ|=k

{ |Dγw(x) −Dγw(y)|
|x− y|α | x, y ∈ Ci

}
,(284)

and

||w||Ck,α(Ω) = [w]k,α;Ω +
k∑
j=1

[w]j;Ω,(285)

where we also require that x, y ∈ Ω ⊂M3 in the above equations.

Hence, from Corollary 13 and Equation (24), it follows that

||uεt||C0,β(M3) ≤ c7(286)

for t ∈ [0, T ], where c7 depends only on T , Σ0, g0, and {Ci}.
Definition 33. Let S be any smooth surface in (M3, g0) which is

the boundary of a region. Let η be any vector field defined on all of
(M3, g0) such that on S it equals the outward pointing unit normal
vector of S. Let η = (η1, η2, η3) be the pull back of η on each coordinate
chart. We note that Definition 32 can be used for vector valued functions
as well as real valued functions. Then abusing notation slightly (since
the following is not a norm), we define

||S||Ck,α = inf
η
||η||Ck−1,α(S)(287)

for α ∈ (0, 1) and k = 1, 2, . . .

The next part of the proof is to use inequality (286) and the fact that
Σε(t) minimizes area in (M3, gεt = uεt(x)

4g0) to conclude that the Σε(t)
are uniformly C1,β/4 surfaces. By this we mean that we will find an up-
per bound on ||Σε(t)||C1,β/4 which is independent of ε. Conveniently, the
main theorem we need, Theorem 22, was essentially proved already by
De Giorgi [15] to understand the regularity of codimension one minimal
surfaces in Rn, and is summarized in [39]. However, the application of
this theorem to this setting is quite interesting, so we summarize the
arguments below.
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Definition 34. Let X and Y be regions in (M3, g0) (and hence
also in the coordinate charts {Ci}) with smooth boundaries of finite
area. Then we define

ψg0(X,x, r) =
|∂X ∩Br(x)|g0 − inf

{|∂Y ∩Br(x)|g0 | Y = X outside Br(x)
}

for x ∈ Ci and r ∈ (0,disi(x, ∂Ci)), where Br(x) is the closed ball of
radius r in the coordinate chart Ci.

Hence, the function ψg0(X,x, r) can be thought of as the excess area
of ∂X in (M3, g0) in the coordinate ball Br(x). We note that the above
definition for ψg0(X,x, r) in the coordinate chart Ci equals ψ(X,x, r)
defined in [39] in the special case that g0 equals the coordinate chart
metric.

Definition 35. Let X be a region in (M3, g0) which has a smooth
boundary of finite area. Then following [39], we define X to be (K,λ)g0-
minimal in {Ci} if and only if

ψg0(X,x, r) ≤ Kr2+λ(288)

for all i, x ∈ Ci, and r ∈ (0,disi(x, ∂Ci)).
Again, we note that a region which is (K,λ)g0-minimal in the coordi-

nate chart Ci as defined above is (K,λ)-minimal as defined in [39] in the
special case that g0 equals the coordinate chart metric. The usefulness
of the above definition can be seen in the next lemma and theorem.

Lemma 25. Suppose X is a region in (M3, g0) which has a smooth
boundary of finite area and which is (K,λ)g0-minimal in {Ci}. We note
that the metric g0 and the coordinate charts {Ci} are assumed to be
smooth. Then for all ε > 0, there exists a δ > 0 (depending only on K,
λ, g0, and {Ci}) such that for all i and x0 ∈ ∂X ∩ Ci,

ωi(X,x0, r) ≡ |DχX |(Br(x0)) − |DχX(Br(x0))| < ε r2(289)

for all r ∈ (0,min(δ, disi(x0, ∂Ci))].
Proof. We note that we are adopting the notation of [39], so that χX

is the characteristic function of the region X and DχX is the distribu-
tional derivative (with respect to the coordinate chart) of that charac-
teristic function. Hence, ωi equals zero for regions with flat boundaries
in the coordinate chart Ci, and in general can be thought of as a way of
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measuring how far a boundary is from being flat inside the coordinate
ball Br(x0).

For convenience, we will also assume that g0 equals the standard R3

metric in each of the finite number of coordinate charts. Then since g0
is smooth and the proof uses a blow up argument, it is easy to adapt
the proof we give here to the general case.

We proceed with a proof by contradiction. Suppose that for some
ε > 0, there existed a counterexample region Xδ for all δ > 0 such that

ωi(Xδ, x0, rδ) ≥ ε r2δ(290)

for some i and x0 ∈ ∂Xδ ∩ Ci and for some rδ ∈ (0,min(δ, disi(x0, ∂Ci)].
We may as well think of each region Xδ being in the same R3, and for
convenience we translate each region by −x0 (which depends on δ) so
that 0 ∈ ∂Xδ. Let Xδ be Xδ rescaled by a factor of 1/rδ. Then we have
that

ω(Xδ, 0, 1) ≥ ε,(291)

where ω is defined for regions in R3. Furthermore, Xδ is (Krλδ , λ)-
minimal in B1/rδ(0) ⊂ R3.

Let X be a limit region of {Xδ}, in the sense that the characteristic
function of X is the L1 limit of the characteristic functions of {Xδi},
for some sequence of {δi} converging to zero. The fact that such a limit
region exists is proven on p. 70 of [39], and relies on the fact that the
areas of the boundaries of {Xδ} are uniformly bounded above, which
follows from Theorem 1 of Section 2.5.3 of [39]. Furthermore, by the
lower semicontinuity of the area functional as defined in [39], it follows
that X has minimal boundary. Since the only minimizing boundaries
in R3 are planes, ∂X must be a plane going through the origin, which
we may as well assume is the x-y plane in R3 after a suitable rotation.

Let π be the projection of R3 to the x-y axis, and let �ν be the
outward pointing normal vector of ∂Xδi . Then

lim
δi→0

|
∫
∂Xδi

∩B1(0)
νz| = lim

δi→0
|π(∂Xδi ∩B1(0))| = lim

δi→0
|∂Xδi ∩B1(0)|

(292)

since {Xδ} → X and the areas converge as well since each
Xδ is (Krλδ , λ)-minimal. The above equation then implies that
limδi→0 ω(Xδi , 0, 1) = 0, contradicting inequality (291) and proving the
lemma. q.e.d.
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Theorem 22. Suppose X is a region in M3 which has a smooth
boundary of finite area and which is (K,λ)g0-minimal in {Ci}. Then
∂X is a C1,λ/4 surface and

||∂X||C1,λ/4 ≤ k,(293)

where k depends only on K, λ, g0, and {Ci}.
Proof. We restrict our attention to each coordinate chart Ci one at

a time, and first consider the case that g0 equals the coordinate chart
metric. In this case, the theorem follows directly from the proof of
Theorem 1 of Section 2.5.4 of [39] and Lemma 25. Then it is then a
somewhat long but straightforward task to adapt the relevant theorems
of [39] to verify that Theorem 1 of Section 2.5.4 of [39] is still true if we
replace the standard metric on R3 with any smooth fixed metric g0.

q.e.d.

Lemma 26. The region Xε(t), which we recall is defined to be the
region inside Σε(t), is a (K,β)g0-minimal set in {Ci}, for t ∈ [0, T ],
where K depends only on T , Σ0, g0, and {Ci}.

Proof. We need to estimate

(294) ψg0(X
ε(t), x, r) =

|∂Xε(t) ∩Br(x)|g0 − inf
{|∂Y ∩Br(x)|g0 | Y = Xε(t) outside Br(x)

}
from above. Well, since ∂Xε(t) has minimal area in (M3, gεt), we have
that

|∂Y ∩Br(x)|gε
t
≥ |∂Xε(t) ∩Br(x)|gε

t
,(295)

which gives us

|∂Y ∩Br(x)|g0 ≥ |∂Xε(t) ∩Br(x)|g0
(
umin

umax

)4

(296)

where umin and umax are respectively the minimum and maximum values
of uεt(x) on the closed coordinate ball Br(x). Hence,

ψg0(X
ε(t), x, r) ≤ |∂Xε(t) ∩Br(x)|g0

[
1 −

(
umin

umax

)4
]
.(297)

The lemma then follows from Equations (272), (274), and (286). q.e.d.
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Corollary 14. The surface Σε(t) is a C1,β/4 surface, and

||Σε(t)||C1,β/4 ≤ c1,(298)

for t ∈ [0, T ], where c1 depends only on T , Σ0, g0, and {Ci}.
Proof. Follows directly from Theorem 22 and Lemma 26. q.e.d.

The remainder of the arguments presented in this appendix are
mostly standard applications of [21]. For convenience, we now let α =
β/4.

Lemma 27. For k ≥ 1,

||Σε(s)||Ck,α ≤ ck for all s ∈ [0, T ] ⇒ ||uεt(x)||Ck,α(M3\Xε(t)) ≤ ck

(299)

for t ∈ [0, T ], where ck depends only on ck, T , Σ0, g0, and {Ci}.
Proof. By the hypothesis of the lemma, the definition of vεt(x) given

in Equation (23), and standard theorems found in [21] and [51] (for
k = 1), we get an upper bound on ||vεs(x)||Ck,α(M3\Xε(t)). The lemma
then follows from Equation (24). q.e.d.

Lemma 28. For k ≥ 1 and t ∈ [0, T ] an integer multiple of ε,

||uεt(x)||Ck,α(M3\Xε(t)) ≤ ck, ⇒ ||Σε(t)||Ck+1,α ≤ ck+1(300)

where ck+1 depends only on ck, T , Σ0, g0, and {Ci}.
Proof. Since Σε(t) minimizes area in (M3, gt) and since it can be

viewed as a graph of a function of two variables over a uniformly large
domain by Corollary 14, we can apply Schauder estimates to the mini-
mal surface equation to prove the lemma.

Let the graph of x3 = f(x1, x2) represent the minimal surface Σε(t)
in the coordinate chart Ci ⊂ R3 with metric gij(x1, x2, x3) given by the
metric gεt = uεt(x)

4g0. Then we note that the minimal surface equation
in this setting is

aij(x)Dijf(x) = p(x)(301)

where

aij = Gij − GiαNαG
jβNβ

N tGN
,(302)

p =
1
2
N tG3N +

(
Di(Gαβ)NαNβG

iλ

2N tGN
−Di(Giλ)

)
Nλ,(303)
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where

Gαβ = gα+1,β+1gα+2,β+2 − gα+1,β+2gα+2,β+1(304)

is the determinant of the αβ minor matrix and the subscript addition
in the above equation is modulo 3,

Gαβ3 =
∂

∂x3
Gαβ ,(305)

and

N = (D1f,D2f,−1),(306)

where x = (x1, x2) and naturally x3 = f(x1, x2) in the above equations,
and we are using the convention that Latin indices are summed from 1
to 2 while Greek indices are summed from 1 to 3.

We also note that since

Λ1|v|2 ≤ gαβv
αvβ ≤ Λ2|v|2(307)

for some positive Λ1 and Λ2 which depend on t by Equation (272), and
since

|Df | ≤ B(308)

over a uniformly sized domain by Corollary 14, then it can be shown
that

aijvivj ≥ λ|v|2,(309)

where

λ =
Λ8

1

4Λ6
2(1 +B2)2

.(310)

Hence, since the aij are uniformly positive definite and aij(x) and
p(x) involve only first order derivatives of f(x) and the metric gij , the
lemma follows from Corollary 14 and bootstrapping with Schauder es-
timates applied to Equation (301). q.e.d.

Then combining Corollary 14 with Lemmas 27 and 28, we get the
main result in this appendix.
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Corollary 15. For t ∈ [0, T ], for some α ∈ (0, 1/4), and for k ≥ 1,
we have uniform bounds on the Ck,α norms of uεt(x) outside Σε(t) and
on the surfaces Σε(t), as defined in Definitions 32 and 33. Furthermore,
these bounds depend only on k, T , Σ0, g0, and {Ci}, and are independent
of ε.
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