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The Lelong number, the Monge-Ampère mass
and the Schwarz symmetrization of

plurisubharmonic functions

Long Li

Abstract. The aim of this paper is to study the Lelong number, the integrability index and
the Monge-Ampère mass at the origin of an S1-invariant plurisubharmonic function on a balanced
domain in Cn under the Schwarz symmetrization. We prove that n times the integrability index is
exactly the Lelong number of the symmetrization, and if the function is further toric with a single
pole at the origin, then the Monge-Ampère mass is always decreasing under the symmetrization.

1. Introduction

Let Ω⊂Cn be a bounded domain containing the origin O, and u be a plurisub-
harmonic function defined on Ω. Assume that the pluri-polar set {u=−∞} is non-
empty in Ω. Then we are interested to study the singularity of u at the origin. In
general, there are three useful quantities to characterise this singularity.

First, the Lelong number of u at the origin is defined as

νu(0)= lim inf
z→0

u(z)
log |z| ;

this is the supreme of all numbers γ≥0 such that

u(z)≤ γ log |z|+O(1)

near the origin. Moreover, one can show

νu(0)= lim
r→0

1
a2n−2r2n−2

∫
Br

Δu

2π ,

where 1
2πΔu is the Riesz measure of u, and aN is the volume of the unit ball in RN .
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The second quantity is the integrability index of u at the origin, and it is
defined as

ιu(0)= inf{r > 0; e−
2u
r ∈L1

loc(O)}.
If we assume that u is not identically equal to −∞ near the origin, then ιu(0) will
take its value in [0,+∞). According to Demailly and Kollár [7], the inverse of ιu(0)
is named as the complex singularity exponent of u at the origin, and the following
sharp estimate is obtained from Skoda’s work [16]

(1.1) 1
n
νu(0)≤ ιu(0)≤ νu(0).

The third quantity is the residue Monge-Ampère mass of u at the origin defined
as

(1.2) τu(0)= (ddcu)n|{O},

whenever the RHS of equation (1.2) is well defined. There are many cases in which
this residue mass can not make any sense. However, it was shown that the Monge-
Ampère measure (ddcu)n is always well defined provided that the polar set of u is
contained in a compact subset K⊂Ω [5].

There are many beautiful works to describe properties of these quantities or
relation between them. The purpose of this paper is to study how these quantities
change under certain symmetrization process, when the plurisubharmonic function
is also S1-invariant.

At this moment, we identify Cn as R2n, and then Ω is a bounded, open and
connected set in the real space. The Schwarz symmetrization of a real valued
measurable function u on Ω is a radial function û(x)=f(|x|), with f non-decreasing
and equimeasurable with u. That is to say, for each t∈R we have

|{u< t}|= |{û < t}|.

Back to the complex setting, one can ask the question whether the Schwarz
symmetrization of a plurisubharmonic function is still plurisubharmonic. Unfortu-
nately, this is not always the case, and any general Green kernel on the unit disk
will do a counter-example [1]. However, Berman and Berndtsson (Theorem (2.3),
[1]) confirm this question when the plurisubharmonic function is also S1-invariant.

Assume further that Ω is a balanced domain in Cn. Consider the following
S1-action for any point z∈Ω as

z−→ eiθz =(eiθz1, ..., e
iθzn),

for all θ∈R. Then a function f(z) is called S1-invariant if f(eiθz)=f(z) for every
z∈Ω and all θ∈R.
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Based on Berman-Berndtsson’s result, our results are presented as follows.
For simplicity, the domain Ω will always be taken as the unit ball B⊂Cn in the
statement.

Theorem 1.1. Let u be an S1-invariant plurisubharmonic function on the unit

ball B, which can be extended invariantly to a slightly larger ball B1+δ. Let û be its

Schwarz symmetrization. Then its Lelong number and integrability index both reach

their maximums at the origin, i.e. we have

(1.3) νu(0)=max
x∈B

νu(x); ιu(0)=max
x∈B

ιu(x).

In particular, the following formula holds:

(1.4) ιu(0)= νû(0)
n

= lim
t→−∞

2t
log |{u< t}| .

This main result will be proved through Proposition (3.5), Theorem (3.2)
and Theorem (3.3) in later sections. The key observation is a simple fact. Let
lz={sz}, s∈[0, 1] be the line segment connecting the origin and a point z∈B. Then
u must be non-decreasing along this line segment, since its restriction on the holo-
morphic disk Dz={λz}, λ∈D is a radial, subharmonic function [1].

Notice that the symmetrization û:B→R is a radial, non-decreasing plurisub-
harmonic function, with a single pole at the origin. In this case, it is well known
(Proposition (A.1), Appendix) that the residue Monge-Ampère mass is exactly the
nth-power of the Lelong number at the origin, i.e. we have

(1.5) τû(0)= [νû(0)]n.

In particular, we have τû(0)=0 if νu(0)=0 from equation (1.1).
More generally, the residue mass of plurisubharmonic functions with toric sym-

metry was studied by Rashkoskii [14]. That is to say, u(z) is invariant under the
following (S1)×n-action on a balanced Reinhardt domain Ω

z−→ (eiθ1z1, ..., e
iθnzn),

for all θj∈R and j=1, ..., n.
Furthermore, Rashkoskii [13] also found a lower bound of the residue mass, in

terms of the so called refined Lelong numbers for plurisubharmonic functions with
a single pole at the origin.
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For any vector a∈Rn
+, the refined Lelong number of u at the origin, introduced

by Kiselman [11], is defined as

νu(0, a) = lim
t→−∞

t−1 sup{u(z); |zk| ≤ eakt, 1≤ k≤n}

= lim
t→−∞

t−1Tu(0, ta),(1.6)

where Tu(0, b) is the mean value of u over the set {z; |zk|=ebk , 1≤k≤n} for any
b∈Rn

+.
Based on these results, our identity (equation (1.4)) implies the following dom-

ination phenomenon of residue masses under the symmetrization.

Theorem 1.2. (Theorem (3.3)) Let u be a toric plurisubharmonic function on

the unit ball B with a single pole at the origin, which can be extended invariantly to

a slightly larger ball B1+δ. Let û be its Schwarz symmetrization. Then we have

τû(0)≤ τu(0).

Several examples for toric plurisubharmonic functions are presented in the
last section. One can see that the residue Monge-Ampère mass at the origin is
always decreasing under the symmetrization, whenever it is well defined. More
interestingly, even if it is not well defined as in Kiselman or Cegrell’s examples
([10], [4]), we can still compute the residue mass after taking the symmetrization.

Finally, one conjecture is made, and we expect that this domination phe-
nomenon also occurs for all S1-invariant plurisubharmonic functions.

2. Preliminaries

2.1. The increasing rearrangement

Let E be a (Lebesgue) measurable subset of RN , and we denote its N -dimen-
sional (Lebesgue) measure by |E|.

Suppose Ω⊂RN is a bounded measurable set. Let u:Ω→R be a measurable
function. For any t∈R, the sub-level set of u is defined as

{u< t} := {x∈Ω; u(x)<t}.

Then the distribution function of u is given by

μ(t, u)= |{u< t}|.

This function is a monotonically increasing function of t, and for t≤ess. inf(u), we
have μ(t, u)=0, while for t≥ess. sup(u), we have μ(t, u)=|Ω|.
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The increasing rearrangement of u is a function, denoted u∗, is defined on
[0, |Ω|] by

u∗(|Ω|)= ess. sup(u)
u∗(s)= inf{t∈R; |{u< t}|>s}, 0≤ s< |Ω|.(2.1)

This new function u∗ is essentially the inverse function of μ(t, u), but it is always
non-decreasing and right-continuous. In fact, the distribution function μ(t, u) is
strictly increasing for a continuous function u, and then u∗ must also be continuous.

Moreover, the mapping u→u∗ is non-decreasing, i.e. if u≤v, where u and v

are real valued function on Ω, then u∗≤v∗.

Definition 2.1. Two real valued functions (with possibly different domains of
definition) are said to be equimeasurable if they have the same distribution func-
tions.

One important figure of the increasing rearrangement is that two functions
u:Ω→R and u∗ :[0, |Ω|]→R are equimeasurable, i.e. we have

(2.2) |{u< t}|= |{u∗ <t}|,

for all t∈R. More generally, the following facts are well known, and readers can
refer to Kesavan’s book [9].

Lemma 2.2. Let u:Ω→R be measurable. Let F :R→R be a non-negative Borel

measurable function. Then

(2.3)
∫

Ω
F (u(x)) dx=

∫ |Ω|

0
F (u∗(s)) ds.

Lemma 2.3. Let Ω⊂RN be bounded and u:Ω→R be an integrable function.

Let E⊂Ω be a measurable subset. Then

(2.4)
∫
E

u(x) dx≥
∫ |E|

0
u∗(s) ds.

Equality holds in equation (2.4) if and only if,

(2.5) (u|E)∗ =u∗|{[0,|E]}, a.e.

Although we are not going to use, but it is still worthy mentioning that the
equation (2.5) holds if E is exactly a sub-level set of u, i.e. we have∫

{u<t}
u(x) dx=

∫ |{u<t}|

0
u∗(s) ds.
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2.2. The Schwarz symmetrization

Given a measurable subset E in RN of finite measure, we will denote by Ê, the
open ball centred at the origin O and having the same measure as E, i.e. |E|=|Ê|.
Let aN be the volume of the unit ball in RN . That is to say

aN = π
N
2

Γ(N2 +1)
,

where Γ(s) is the gamma function.

Definition 2.4. Let Ω⊂RN be a bounded domain, and u:Ω→R be a measurable
function. Then its Schwarz symmetrization is the function û:Ω̂→R defined by

û(x)=u∗(aN |x|N ), x∈ Ω̂.

Taking |x|=r and s=aNrN , we have the following from the change of variables:∫
Ω̂
û(x) dx=

∫ |Ω|

0
u∗(s) ds.

Several useful properties of the Schwarz symmetrization are listed in the fol-
lowing Proposition.

Proposition 2.5. Let Ω⊂RN be a bounded domain, and u:Ω→R be a mea-

surable function. Let û:Ω̂→R be its Schwarz symmetrization. Then we have

(i) û is radially symmetric and non-decreasing.

(ii) u, u∗ and û are all equimeasurable.

(iii) If F :R→R is a non-negative Borel measurable function, then∫
Ω̂
F (û(x)) dx=

∫
Ω
F (u(x)) dx.

(iv) If G:R→R is a non-decreasing function, then

Ĝ(u) =G(û), a.e.

(v) If E⊂Ω is a measurable subset, then∫
E

u(x) dx≥
∫ |E|

0
u∗(s) ds=

∫
Ê

û(x) dx.

Equality occurs if and only if, (̂u|E)=û|Ê .
(vi) (Pólya-Szegö) Let 1≤p<∞. Let u∈W 1,p

0 (Ω) be a non-positive function.

Then we have û∈W 1,p
0 (Ω̂) and∫

Ω̂
|∇û|p dx≤

∫
Ω
|∇u|p dx.
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3. S1-invariant plurisubharmonic functions

Let Ω be an open, connected and bounded subset of RN with N=2n, n∈Z+.
Then the set Ω can also be viewed as a domain in Cn. It is called a balanced domain
if for every λ∈D (the unit disk) and z∈Ω, we have λz∈Ω. Consider the following
S1-action on Ω:

z−→ eiθz =(eiθz1, ..., e
iθzn),

for θ∈R. A function f defined on a balanced domain is called S1-invariant if
f(eiθz)=f(z) for all θ∈R at every z∈Ω.

Let u be a plurisubharmonic function on a balanced domain Ω. It is natural
to ask whether its Schwarz symmetrization û on Ω̂ is still plurisubharmonic. Un-
fortunately, this is not true in general. As indicated in Berman-Berndtsson [1], the
Green function on the complex disk

u(z)= log
∣∣∣∣ z−a

1−āz

∣∣∣∣
has plurisubharmonic Schwarz symmetrization û only if a=0.

However, Berman-Berndtsson [1] gave an affirmative answer to this question
when u is S1-invariant.

Theorem 3.1. (Berman-Berndtsson) Let Ω be a balanced domain in Cn, and u

be an S1-invariant plurisubharmonic function on Ω. Then its Schwarz symmetriza-

tion û is plurisubharmonic on Ω̂.

Since we are interested with the singularity of u, we assume that its polar set
{u=−∞} is non-empty in Ω. By the maximum principle. we can also assume
that supΩ u=sup∂Ω u=0. Then its symmetrization function û:Ω̂→R is radially
symmetric, non-decreasing w.r.t. the radius r=|z|, and reaches its maximum on
the boundary, i.e. supΩ̂ û=û|∂Ω̂=0.

Moreover, û is continuous outside the origin and decreases to −∞ as r is
converging to zero, since the function f(t):=û(et) is convex and bounded from
above for t∈(−∞, 0) by Berman-Berndtsson’s result.

The convex function f(t) is locally Lipschitz, and then its first derivative f ′(t)
exists almost everywhere and is non-decreasing for t∈(−∞, 0). In fact, the following
limit

lim
t→−∞

f ′(t)

always exits and is equal to the Lelong number νû(0) of û at the origin.
Then we can compare this Lelong number νû(0) with the original one νu(0).

Notice that the Lelong number of a plurisubharmonic function is purely a local
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concept. Hence we will assume that the domain Ω is the unit ball B⊂Cn from now
on.

Let u be an S1-invariant plurisubharmonic function on B, and we say that it
can be extended invariantly to a larger ball B1+δ, if there exists an S1-invariant
plurisubharmonic function v on B1+δ such that the restriction v|B is equal to u.
Based on these assumptions, we state our main theorem as follows.

Theorem 3.2. Let u be an S1-invariant plurisubharmonic function on the unit

ball B, which can be extended invariantly to a slightly larger ball B1+δ. Let û be its

Schwarz symmetrization. Then we have

(3.1) νu(0)≤ νû(0)≤nνu(0).

In particular, if νu(0)=0, then νû(0)=0.

The first observation is that the Schwarz symmetrization always increases the
Lelong number at the origin.

Lemma 3.1. Let u be an S1-invariant plurisubharmonic function on the unit

ball B, and û be its Schwarz symmetrization. Then we have

νu(0)≤ νû(0).

Proof. Take the following average of u on a small ball Br centred at the origin:

Vu(0, r)= 1
a2nr2n

∫
¸Br

u dλ.

Then the Lelong number νu(0) is equal to the limit

lim
r→0

Vu(0, r)
log r .

However, a basic property of the symmetrization, Proposition 2.5 - (v), says that
we have ∫

¸Br

u dλ≥
∫
¸Br

û dλ,

since (̂¸Br)=¸Br. This implies Vu(0, r)≥Vû(0, r) for each r small, and we conclude
the proof by taking r→0 as

(3.2) νu(0)= lim
r→0

Vu(0, r)
log r ≤ lim

r→0

Vû(0, r)
log r = νû(0). �

Before going to the proof of the reversed inequality, we need to introduce the
following tool, which is studied by Demailly and Kollár ([7]).
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3.1. The complex singularity exponent

Let u be a plurisubharmonic function on a domain Ω in Cn. For any point
x∈Ω, we introduce the complex singularity exponent of u at x as

Cu(x) := sup{c≥ 0; e−2cu is L1 on a neighbourhood of x}.

This number Cu(x) will take its value in (0,+∞], if we assume that u is not
identically equal to −∞ in a neighbourhood x. By equation (1.1), we further have
the following estimate

(3.3) n−1νu(x)≤C−1
u (x)≤ νu(x),

where νu(x) is the Lelong number of u at x. More generally, we can define the
complex singularity exponent of u on any relatively compact sub-domain Ω′⊂⊂Ω
as

Cu(Ω′) := sup{c≥ 0; e−2cu is L1 on Ω′}.

It is clear that for any x∈Ω′ we have

Cu(Ω′)≤Cu(x).

Then we are going to prove a simpler version of Theorem (3.2) first.

Proposition 3.2. Let u be an S1-invariant plurisubharmonic function on the

unit ball B, which can be extended invariantly to a slightly larger ball B1+δ. Assume

that the Lelong number of u on the closed unit ball reaches its maximum at the origin,

i.e.

sup
x∈¸B

νu(x)= νu(0).

Then we have νû(0)≤nνu(0).

Proof. As explained before, we can assume that the function u is always neg-
ative and has non-trivial polar set, and then the symmetrization û on B is also
negative, radially symmetric, non-decreasing and has only a single pole at the ori-
gin O. Then it is clear that we have

Cû(O)= Cû(B),

and then the inequality νû(0)≤nC−1
û (B) follows from equation (1.1). On the other

hand, we claim that the following estimate holds:

(3.4) ν−1
u (0)≤Cu(B).
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In fact, we have
ν−1
u (0)≤ ν−1

u (x)≤Cu(x)
for all x∈¸B by our assumptions and equation (1.1). Taking any real number 0<c<

ν−1
u (0), there exist a small radius 0<r<δ/10 for each x∈¸B such that the following

integral is finite ∫
Br(x)

e−2cu dλ<+∞.

Moreover, there are finitely many such balls {Brj (xj)}j=1,...,k covering the
closed unit ball B, and their union is contained in B1+δ. Eventually, we can control
the following integral as

(3.5)
∫
B

e−2cu dλ≤
k∑

j=1

∫
Brj

(xj)
e−2cu dλ<+∞.

This implies c≤Cu(B), for all c∈(0, ν−1
u (0)), and our claim (equation (3.4)) follows

by taking the supreme.
Next notice that the complex singularity exponent is unchanged under the

symmetrization, i.e. Cu(B)=Cû(B). This is because we have

(3.6)
∫
B

e−2cu dλ=
∫
B

e−2cû dλ,

for all c∈R+ (two sides can possibly both equal to ∞), by Proposition (2.5)-(iii).
Finally, our estimate follows since we have

(3.7) νû(0)≤nC−1
û (B)=nC−1

u (B)≤nνu(0). �

3.2. The Lelong number

In the following, we will argue that the Lelong number of an S1-invariant
function u indeed reaches its maximum at the center of the ball, and then the proof
of Theorem (3.2) boils down to the case in Proposition (3.2).

A useful observation is made by Berman and Berndtsson [1] to argue that
each sub-level set Ωt={u<t} is a path-connected domain. In fact, if we assume
that a point z∈Ω is contained in the sub-level set Ωt. Then the holomorphic disk
Dz={λz}, λ∈D is also contained in Ωt by the following lemma.

Lemma 3.3. (Berman-Berndtsson) There exist a non-decreasing function g :
[0, |z|]→R∪{−∞} such that for all λ∈D we have

u(λz)= g(|λ|).

In particular, if z∈{u−1(−∞)}, then Dz⊂{u−1(−∞)}.
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This is because the restriction u|Dz is an S1-invariant subharmonic function
on the disk Dz, and then everything follows from the maximum principle.

For a point z∈Ω, we denote lz={s·z}, s∈[0, 1] by the line segment connecting
the origin O and z. The key observation is that the function u is always non-
decreasing along the line segment lz by Lemma (3.3). Then we will see that the
Lelong number also inherits this property.

Lemma 3.4. The Lelong number νu(x) is non-increasing along the line seg-

ment lz possible except at the origin.

Proof. It is enough to prove the following. For any point z′=sz, s∈(0, 1), we
have νu(z′)≥νu(z). Recall that u can be extended invariantly to a larger ball B1+δ.
For any small radius 0<r<r0, where we take

(3.8) r0 =min
{
δs|z|
100 ,

(1−s)s|z|
100

}
,

the maximum of u on the ball Br(z′) must be obtained on the boundary, i.e. there
exist a point ζ∈∂Br(z′) such that we have

u(ζ)= max
Br(z′)

u.

Next we can think of the n-dimensional complex space Cn as the 2n-dimen-
sional real space R2n, by identifying a point z∈Cn with a real vector Xz∈R2n.
Consider a plane p spanned by the two vectors Xz′ , Xζ , i.e.

p := span{Xz′ , Xζ}.

On this plane, the point z′ is the centre of the circle S ′=∂Br(z′)
⋂

p, and we have
ζ∈S ′. Notice that the point z is also in the plane p.

Let S=∂BR(z)
⋂

p be another circle centred at z with radius R= r
s , and then

the two circles S ′ and S are disjoint by our choices of r and R. Let r={tXζ}, t∈
[0,+∞) be a ray initiated from the origin passing through the point ζ. It must
also intersect with the circle S by elementary Euclidean geometry. Moreover, if ξ
is the last intersection point of the ray r and the circle S, then it is clear to have
|Xξ|≥|Xζ |. By considering the holomorphic disk Dξ={λξ}, λ∈D, we conclude the
following estimate by Lemma (3.3):

(3.9) u(ζ)≤u(ξ)≤ max
BR(z)

u.

Eventually this implies that we have

maxBr(z′) u

log r = u(ζ)
log r ≥

maxBR(z) u

logR+log s ,
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for any r∈(0, r0). Since r=sR for some fixed s, our result follows as

νu(z′) = lim
r→0

maxBr(z′) u

log r

≥ lim
R→0

maxBR(z) u

(logR+log s) = lim
R→0

maxBR(z) u

logR
= νu(z). �(3.10)

Proposition 3.5. Let u be an S1-invariant plurisubharmonic function on the

unit ball B, which can be extended invariantly to a slightly larger ball B1+δ. Then

its Lelong number νu(x) reaches the maximum at the origin.

Proof. Suppose a point z∈B belongs to the polar set of u, and u has its Lelong
number νu(z)=c at this point. We claim that the punctured disk D∗

z is contained
in the set {νu(x)≥c}. Then the whole disk Dz must be contained in the same set,
since the set {νu(x)≥c} is an analytic subset of the unit ball by Siu’s decomposition
theorem [15].

In fact, we can consider a circle as the boundary of the disk ∂Dz={eiθz}, θ∈R.
By our previous Lemma (3.4), the claim will be proved if we can prove for all
z′∈∂Dz.

νu(z′)= νu(z).
Let w be a maximum point of u on a small ball Br(z) centred at z,i.e.

u(w)= max
Br(z)

u.

Then we can assume that the point w appears on the boundary ∂Br(z). For any
z′=eiθz, the point w′=eiθz is on the boundary ∂Br(z′) since we have

|z−w|= |eiθ ·(z−w)|= |z′−w′|,
and we have u(w)=u(w′)≤maxBr(z′) u. Hence the Lelong number is decreasing
under this S1-action as

(3.11) νu(z)= lim
r→0

maxBr(z) u

log r ≥ lim
r→0

maxBr(z′) u

log r = νu(z′).

Similarly, we can prove νu(z)≤νu(z′) by considering the reversed S1-action, i.e.
z=e−iθz′, and our result follows. �

Finally, Theorem (3.2) is proved by combining with Lemma (3.1), Proposition
(3.5) and Proposition (3.2).

Remark 3.6. Besides the unit ball, our arguments in Lemma (3.4) and Propo-
sition (3.5) also work on any other balanced domains in Cn. Then we can conclude
that the Lelong number νu(x) always obtains its maximum at the origin, for any
S1-invariant plurisubharmonic function u defined on a balanced domain Ω.
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3.3. The sharp estimate

The inverse of the complex singularity exponent is called the integrability index
[12] of a plurisubharmonic function u at a point x, and we denote it by

ιu(x)= C−1
u (x).

In this subsection, we will show that this integrability index also reaches its
maximum at the origin for an S1-invariant plurisubharmonic function, and there
is an explicit formula for the Lelong number of the Schwarz symmetrization at the
origin.

Theorem 3.3. Let u be an S1-invariant plurisubharmonic function on the unit

ball B, which can be extended invariantly to a slightly larger ball B1+δ. Let û be its

Schwarz symmetrization. Then we have

(3.12) ιu(0)=max
x∈B

ιu(x).

In particular, the following formula holds:

(3.13) ιu(0)= νû(0)
n

= lim
t→−∞

2t
log |{u< t}| .

According to Kiselman’s work on the integrability index [12], Theorem (3.3)
immediately implies that the estimate (equation (3.1)) we obtained in Theorem
(3.2) is sharp.

It is enough to prove the complex singularity exponent Cu(x) always reaches
its minimum at the origin, i.e.

(3.14) Cu(0)=min
x∈B

Cu(x).

Notice that the symmetrization û is a radially symmetric, plurisubharmonic function
with a single pole at the origin, and then it is well known (Proposition (A.3),
Appendix) that we have

(3.15) νû(0)=nιû(0)=nιû(B),

for any such function. Therefore, the formula (equation (3.13)) is obtained as in
Proposition (3.2):

(3.16) νû(0)=nιû(B)=nιu(B)=nιu(0).

We begin with a lemma from Euclidean geometry. The proof is elementary,
and we recall it for the convenience of the reader.
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Lemma 3.7. Let z, z′, s, r, R be chosen as in Lemma (3.3). For any measur-

able set A⊂BR(z), the rescaled set A′=s·A will be contained in the ball Br(z′).
Moreover, we have

|A′|= s2n|A|.

Proof. For any point ζ∈A′, we can write ζ=s·ξ for some ξ∈A. After identifying
Cn with R2n, the two vectors Xζ , Xz′∈R2n will span a plain p passing through the
origin, and the two points z, ξ are also in this plane. Notice that the triangle built
by the three points {O, ζ ′, ζ} are similar to the triangle built by {O, z, ξ}. Therefore
we have |ζ−z′|=s|ξ−z|<sR, and hence A′⊂Br(z′) by definition.

Next, the volume of a set E can be taken as its 2n-dimensional Hausdroff
measure H2n(E). Suppose the set A is covered by a union of small open balls, i.e.
A⊂

⋃
j Bε(xj). From what we just proved, the set A′ will be covered by the union

of their rescalings as
A′ ⊂

⋃
j

s·Bε(xj),

and the volume of each ball is rescaled by a factor s2n. Hence we have H2n(A′)≤
s2nH2n(A), and the reversed inequality follows from a similar argument. �

According to Demailly-Kollár [7], there is another way to describe the complex
singularity exponent. Let u be a plurisubharmonic function on Ω. For any point
x∈Ω, we can consider the following set in R:

Eu(x)=
{
c≥ 0; e−2ct|{u< t}| is bounded as t−→−∞ for some U 	x

}
.

Then it is easy to see the following fact:

Cu(x)= sup
Eu(x)

c.

By the famous openness conjecture ([7], [2]), we even have Cu(x) /∈Eu(x). In other
words, any real number c>0 is no less than Cu(x) if, and only if for any R>0 small
enough, and any k∈Z+, there exist a t<0 (depends on R and k) such that we have

(3.17) e−2ct
∣∣∣{u< t}

⋂
BR(x)

∣∣∣>k.

Bearing this in mind, under the assumption of Theorem (3.3), we can argue
as in Lemma (3.4). Recall that we denote lz={s·z}, s∈[0, 1] by the line segment
connecting the origin and a point z∈B.

Lemma 3.8. The complex singularity exponent Cu(x) is non-decreasing along

lz possibly except at the origin.
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Proof. It is enough to prove Cu(z′)≤Cu(z) for all z′=sz, s∈(0, 1). For this
purpose, we can always assume Cu(z)=c∈(0,+∞). Take any k∈Z+ and R small
enough such that equation (3.17) holds for some t<0. Denote A by the set

A := {u< t}
⋂

BR(z).

For any fixed s∈(0, 1), the radius r=sR will be smaller than r0 (equation(3.8))
when R is small. Then the rescaled set A′=sA is contained in the ball Br(z′) by
Lemma (3.7).

Writing ζ=s·ξ for any point ζ∈A′, we have u(ζ)≤u(ξ). This is again because
u is non-decreasing along the line segment lξ by Lemma (3.3). Hence we have

A′ ⊂{u< t}
⋂

Br(z′).

Therefore, the following estimate is true in the ball Br(z′)

(3.18) e−2ct|{u< t}
⋂

Br(z′)| ≥ e−2ct|A′|= s2ne−2ct|A|>s2nk.

This implies c /∈Eu(z′), and then Cu(z′)≤Cu(z) follows. �

Proof of Theorem (3.3). It is left to prove equation (3.14). Suppose a point z∈
B is contained in the polar set of u, and we can assume Cu(z)=c∈(0,+∞) as before.
Then we claim that the punctured disk D∗

z is contained in the set {Cu(x)≤c}. Since
the complex singularity exponent is lower semi-continuous w.r.t the holomorphic
Zariski topology [7], the whole disk Dz must be contained in the same set, and we
conclude our proof.

Based on Lemma (3.8), it is again enough to prove that the complex singularity
exponent is invariant on the boundary circle ∂Dz. This fact is true because the
distance function and the measure are also invariant under the S1-action, i.e. for
all θ∈R, we have

|z−w|= |eiθ(z−w)|,

and
|A|= |eiθA|,

for all z, w∈B and any measurable subset A⊂B. Then this invariance result follows
from a similar argument as in Proposition (3.5) and Lemma (3.8). �

Remark 3.9. Besides the unit ball, our previous arguments also work on any
other balanced domains in Cn. Therefore, for any S1-invariant plurisubharmonic
function u on a balanced domain Ω, its integrability index ιu(x) always obtains its
maximum at the origin, and formula (3.13) holds.
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4. Toric plurisubharmonic functions

In this section, we would like to study the residue Monge-Ampère mass

τu(0)= (ddcu)n|{O}

of a plurisubharmonic function u at the origin O. However, this quantity is not
always well defined as we can see from Cegrell’s example [3]. Even if it is well
defined, there are only few ways to handle the complex Monge-Ampère measure
under the Schwarz symmetrization. Therefore, we will investigate plurisubharmonic
functions with stronger symmetry than S1-invariant at this stage.

A domain Ω⊂Cn is called a Reinhardt domain if it is invariant under the
following (S1)×n-action:

z−→ (eiθ1z1, ..., e
iθnzn),

for all θj∈R, j=1, ..., n. A function f defined on a Reinhardt domain Ω is called
toric if it satisfies

f(eiθ1z1, ..., e
θnzn)= f(z)

for all θj∈R, j=1, ..., n at every z∈Ω.
Let Ω⊂Cn be a bounded balanced Reinhardt domain, and u be a toric plurisub-

harmonic function on it. As before, we assume that the polar set {u=−∞} is non-
empty and supΩ u=sup∂Ω u=0. Furthermore, we also assume that the function u

has only a single pole at the origin, and then its Monge-Ampère measure (ddcu)n is
well defined in terms of of the Bedford-Talyor-Demailly product [5]. In particular,
its residue Monge-Ampère mass τu(0) is well defined.

Now its symmetrization û:Ω̂→R is a radially symmetric, non-decreasing pluri-
subharmonic function, with only a single pole at the origin. It is well known that
its residue mass is well defined and we further have

(4.1) τû(0)= [νû(0)]n,

for such function as û (Proposition (A.1), Appendix). Then our previous identity
(equation (3.13)) implies the following domination phenomenon of residue masses.

Theorem 4.1. Let u be a toric plurisubharmonic function on the unit ball B

with a single pole at the origin, which can be extended invariantly to a slightly larger

ball B1+δ. Let û be its Schwarz symmetrization. Then we have

(4.2) τû(0)≤ τu(0).
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Proof. From our identity (3.13) and equation (4.1), we obtain

(4.3) τû(0)=nn[ιu(0)]n.

However, Kiselman [12] proved the following identity for all toric plurisubharmonic
functions

ιu(0)= sup{νu(0, a); a∈Rn
+,

n∑
j=1

aj =1},

where νu(0, a) is the refined Lelong number (see equation (1.6)) of u at the origin
in the direction

a=(a1, ..., an), ∀aj > 0.

On the other hand, Rashkovskii [13] proved a lower bound of the residue mass
for all plurisubharmonic functions with a single pole at the origin as

τu(0)≥ [νu(0, a)]n

a1...an
, ∀a∈Rn

+.

Combining equation (4.3), Kiselman’s identity and Rashkovskii’s estimate, it
is enough to prove that for all refined Lelong number νu(0, a) where a∈Rn

+ and∑n
j=1 aj=1, we have

(4.4) nνu(0, a)≤ νu(0, a)
(a1...an) 1

n

,

but this follows from the inequality of arithmetic and geometric means

n(a1...an) 1
n ≤ (a1+...+an)= 1,

and our result follows. �

Remark 4.1. Again, our assumption on the domain is just for simplicity. This
domination phenomenon for the residue masses under symmetrization occurs for all
toric plurisubharmonic functions with a single pole at the origin, defined on any
balanced Reinhardt domain Ω⊂Cn.

Next we will give some examples of toric plurisubharmonic functions on the
unit ball B in C2. First, the following example shows that the estimate we obtained
in Theorem (3.2) is sharp.
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Example 4.2. Consider the following function

u(z)= log |z1|

defined on B⊂C2. It is clear that the Lelong number of u at the origin is equal
to 1. However, the sub-level set of u is a “complex cylinder” in the unit ball, i.e.
{u<logR}={z∈B; |z1|<R}, and then we have its volume

|{u< logR}|=π2(R2−R4/2).

Therefore, the Lelong number of its symmetrization û at the origin is 2, since we
have

νû(0)= lim
R→0

4 logR
log(R2−R4/2)+log 2 =2,

and this implies ιu(0)=1 and τû(0)=4.

If the function u is already radially symmetric, then its Schwarz symmetrization
is itself. Therefore, we have νu(0)=νû(0) in this case. Next, we provide an example
where the value νû(0) is in between.

Example 4.3. Consider the following function on B

u(z)= log(|z1|2+|z2|
1
2 ).

The Lelong number of u at the origin is equal to 1
2 , since we have

log(|z1|2+|z2|
1
2 )−log 2 ≤ max{log |z1|2, log |z2|

1
2 }

≤ log(|z1|2+|z2|
1
2 ),(4.5)

and the well known equation νmax{u,v}(x)=min{νu(x), νv(x)} for two plurisubhar-
monic functions u, v [6]. By Demailly’s comparison theorem [5], it follows from
equation (4.5) that we have τu(0)=1. On the other hand, the sub-level set of u is
an ellipsoid:

{u< 2 logR}= {|z1|2+|z2|
1
2 <R2},

and its volume can be computed as

|{u< 2 logR}| = 4π2
∫ R

0
r1 dr1

∫ (R2−r2
1)2

0
r2 dr2

= 2π2
∫ R

0
(R2−r2

1)4r1 dr1

= O(R10).(4.6)
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Therefore, we have

νû(0)= lim
R→0

2 logR
1
4 (logR10+O(1))

= 4
5 ,

and this implies ιu(0)= 2
5 and τû(0)= 16

25<τu(0).

In general, Demailly [5] considered the following function on B for any 0<ε<1
as

u(z)=max{ε−1 log |z1|, ε log |z2|}.

One can show that its residue mass is always 1 at the origin, whereas its Lelong
number at the origin is ε. In this case, we have for its symmetrization νû(0)=
2(ε+ε−1)−1, ιu(0)=(ε+ε−1)−1 and τû(0)=4(ε+ε−1)−2<1.

The next example was provided by Kiselman [10], and we can see that the
Monge-Ampère measure near the origin is indeed “regularised” by the Schwarz
symmetrization.

Example 4.4. Consider the following function on B1/2

u(z)= (− log |z1|)
1
2 (|z2|2−1).

This function is smooth outside the hyperplane H={z1=0}, and its Monge-Ampère
measure is

det(ujk̄)= 1−2|z2|2
8n|z1|2(− log |z1)

,

on B1/2\H. This measure will accumulate infinite mass near any point on H, and
we can say τu(0)=+∞.

However, it is easy to see that the Lelong number of u is zero everywhere, and
hence the integrability index ιu(x) is also zero for all x∈B1/2. Therefore, we have
τû(0)=4[ιu(0)]2=0.

Finally, we present Cegrell’s example [3], for which the residue mass is not
uniquely determined by decreasing sequences.

Example 4.5. Consider the function on B

u(z)= 2 log |z1z2|.

It is easy to see that the Lelong number νu(0)=4. However, its residue Monge-
Ampère mass can not be well defined at the origin. In fact, the the following two
smooth sequences {uj}, {vj} are both decreasing to u

uj = log(|z1z2|2+1/j),
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and

vj = log(|z1|2+1/j)+log(|z2|2+1/j).

Then one can show that (ddcuj)2 is zero for every j, whereas (ddcvj)2 converges
weakly to 32δ0, where δ0 is the Dirac mass at the origin.

On the other hand, it is easy to see that its integrability index at the origin is
equal to 2 since we have

e−2cu = |z1|−4c|z2|−4c.

Hence it follows that we have νû(0)=4 and τû(0)=16.

For any S1-invariant plurisubharmonic function u with a single pole at the
origin, its residue mass is always well defined. Then we can still ask a similar
question about this domination phenomenon.

Conjecture 4.6. Let u be an S1-invariant plurisubharmonic function with a

single pole at the origin on a balanced domain Ω, and û be its symmetrization. Then

we have

τû(0)≤ τu(0).

A. Appendix

Let R be the class of all radial, upper semi-continuous functions on the unit
ball B⊂Cn. Denote PSH∞(B) by the family of plurisubharmonic functions on B

with non-empty polar set. By the maximum principle, any u∈R
⋂
PSH∞(B) is

non-decreasing and has only a single pole at the origin.
For such function, the measure (ddcu)n is well defined [5], and then we have the

following relation between the residue mass and the Lelong number at the origin.

Proposition A.1. For any u∈R
⋂
PSH∞(B), we have τu(0)=[νu(0)]n.

Before going to the proof, the following regularization technique is standard.

Lemma A.2. For any u∈R
⋂
PSH∞(B), there exits a sequence of smooth

plurisubharmonic functions uj∈R decreasing to u. In particular, we have

(A.1)
∫
K

(ddcu)n = lim
j→+∞

∫
K

(ddcuj)n,

for any relative compact Borel subset K of B.
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Proof. Let ρ(x) be the standard cut-off function on Cn. That is to say, a smooth
function ρ is supported on the unit ball of Cn with ρ(x)=ρ(|x|) and

∫
Cn ρ(x) dx=1.

Denote ρj by its rescaling as ρj(x)=j2nρ (jx). Consider the following regularization

uj(x)=
∫
Cn

u(y−x)ρj(y) dλ(y),

and then uj is a sequence of smooth plurisubharmonic functions decreasing to u.
Moreover, we claim that uj is radial.

Let x be a point in B. Any other point w which is differ from x by a rotation
can be written as w=A·x, for some special orthogonal matrix A. Then we have for
any y∈Cn and z=A−1 ·y

uj(w) =
∫
Cn

u(y−Ax)ρj(y)dλ(y)

=
∫
Cn

u(A−1 ·y−x)ρj(y)dλ(y)

=
∫
Cn

u(z−x)ρj(z) dλ(z)

= uj(x).(A.2)

The identity on the third line of equation (A.2) is because the cut off function ρj
and the Lebesgue measure dλ are both invariant under the action by A, and our
result follows. �

Proof of Proposition (A.1). By Lemma (A.2), it boils down to prove for any
smooth radial plurisubharmonic function u on B we have

(A.3)
∫
BR

(ddcu)n =
{

1
a2n−2R2n−2

∫
BR

Δu

2π

}n

,

for any small radius R>0.
Writing |z|=r and t=log r, the function f(t)=y(r)=u(z) is convex for t<0.

Thanks to Theorem (2.32) in [8], the RHS of equation (A.3) is exactly equal to

[R·∂ry(R)]n = [∂tf(T )]n,

for almost everywhere R∈[0, 1) and T=logR.
On the other hand, we have

(ddcu)n = 2nn!
πn

det(ujk̄) dλ,
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and then an easy computation shows

det(ujk̄) = 1
2n+1

(
y′′+ y′

r

) (
y′

r

)n−1

= 1
n2n+1

1
r2n−1 {(ry

′)n}′.(A.4)

Using the spherical coordinate, the LHS of equation (A.3) is equal to the following
∫
BR

(ddcu)n = 2πa2n−2

∫ R

0

(n−1)!
2πn

det(ujk̄)r2n−1 dr

=
∫ R

0
{(ry′)n}′ dr

=
[
R
∂y

∂r
(R)

]n

,(A.5)

since a2n−2= πn−1

(n−1)! , and we conclude the proof. �

For radial plurisubharmonic functions, there is also a simple relation between
the Lelong number and the integrability index at the origin.

Proposition A.3. For u∈R
⋂
PSH∞(B), we have νu(0)=nιu(0).

Proof. By the estimate (equation (1.1)), it is enough to prove for any 0<c<

nν−1
u (0), the integral ∫

BR

e−2cu dλ

is finite for R>0 small enough. Writing f(t)=u(z) and T=logR as usual, the
convex function f(t) is Lipschitz continuous, and then we can apply the fundamental
theorem of Calculus as

1
2πa2n−2

∫
BR

e−2cu dλ=
∫ T

−∞
e−2cfe2nt dt

= 1
2ne

2nt
(
1− cf

nt

)∣∣T
−∞+ c

n

∫ T

−∞
f ′(t)e−2cf+2nt dt.(A.6)

Notice that the two positive functions f ′(t) and t−1f(t) are non-decreasing, and
both converge to νu(0) as t→−∞. By our assumption on c, there exists some t0<0
such that we have

min{1− c

n
f ′(t), 1− c

nt
f(t)}>ε,
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for some ε>0 small and all t<t0. Picking up T=t0−1, we have

e
2nt

(
1− cf

nt

)∣∣T
−∞ =

∫ T

−∞
(1− c

n
f ′(t))e2nt

(
1− cf

nt

)
dt

≥ ε

∫ T

−∞
e−2cf+2nt dt.(A.7)

Since ε<1− cf
nt<1 for all t∈(−∞, T ), the LHS of equation (A.7) is bounded above

by e2nT , and our result follows. �
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