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Radial variation of Bloch functions on the unit
ball of Rd

Paul F. X. Müller and Katharina Riegler

Abstract. In [9] Anderson’s conjecture was proven by comparing values of Bloch functions
with the variation of the function. We extend that result on Bloch functions from two to arbitrary
dimension and prove that ∫

[0,x]

|∇b(ζ)|eb(ζ) d|ζ|<∞.

In the second part of the paper, we show that the area or volume integral∫

Bd

|∇u(w)|p(w, θ) dA(w)

for positive harmonic functions u is bounded by the value cu(0) for at least one θ. The integral is
also transferred to simply connected domains and interpreted from the point of view of stochastics.
Several emerging open problems are presented.

1. Introduction

In [9] it was proven that for every Bloch function b on the unit disc there is a
point x on the unit circle such that∫

[0,x]

|∇b(ζ)|eb(ζ) d|ζ|<∞.

This fact was used in [9] to show Anderson’s conjecture for conformal maps on
the unit disc. The proof used the result of Bourgain ([2]) that for every positive
harmonic function there is a direction of bounded radial variation, Pommerenke’s
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theorem on the existence of a dense set of rays along which a Bloch function on the
unit disc remains bounded (see [15, Proposition 4.6.]) and conformal mappings be-
tween starlike Lipschitz domains and the unit disc. The result of Bourgain ([2]) was
extended to half-spaces by Michael O’Neill in [14] and even to higher dimensional
Lipschitz domains by Mozolyako and Havin in [11]. The extension to Lipschitz do-
mains in higher dimensions by Mozolyako and Havin was the starting point of our
work in this paper. The main result of the present paper is the following Theorem 1,
extending the result of [9] to the unit ball of Rd. We refer to [13] and [14] where
this problem was posed in writing.

Theorem 1. Let b be a Bloch function on the unit ball B of Rd. Then there

is a point x on the unit sphere such that∫
[0,x]

|∇b(ζ)|eb(ζ) d|ζ|<∞.

Remarks The proof of Theorem 1 will show as well that there is an x such that
for y∈[0, x] and 1−|y| small enough we have

b(y)≤ b(0)−c

∫
[0,y]

|∇b(ζ)| d|ζ|.

As −b is also a Bloch function we get a point x̃ on the unit sphere such that for
y∈[0, x̃] and 1−|y| small enough we have

b(y)≥ b(0)+c

∫
[0,y]

|∇b(ζ)| d|ζ|.

This can also be written as

lim inf
y→1

b(y)−b(0)∫
[0,y]

|∇b(ζ)| d|ζ| > 0.

Comparing our proof of Theorem 1 with the one in [9] we observe the following.
1. The use of conformal maps onto Lipschitz domains is replaced by the result

of Mozolyako and Havin.
2. In [9] the straight line segments obtained by Pommerenke’s theorem are used

to suitably cut planar domains. While Pommerenke’s result on the radial behaviour
of Bloch functions is still valid in R

d for d>2 (see Nicolau [13]) the corresponding
line segments cannot be used to separate domains in R

d for d>2 (note that 1=d−1
iff d=2).
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3. Case 3 in our construction of points within a cone (see Figure 2) provides a
substitute for the use of Pommerenke’s result in [9].

Analysing the proof by Mozolyako and Havin, we are able to show the following
theorem, which was conjectured by Peter W. Jones in 2003 during conversations
with the first named author.

Theorem 2. Let u be a positive harmonic function on the unit ball of Rd and

p the Poisson kernel. Then there is a point θ on the unit sphere S such that∫
Bd

|∇u(w)|p(w, θ) dA(w)<cu(0)

where c=c(Bd) is a constant only depending on the dimension.

Note that the area or for d≥3 the volume integral is obviously larger than the
line integrals defining the usual radial variation. Theorem 2 is proved in Section 4.

In Section 5 we further investigate the significance of the integral in Theorem 2.
Utilizing its conformal invariance we are able to transfer it to arbitrary simply
connected domains and also provide its stochastic interpretation using Brownian
motion. We complement our work in Section 5 by presenting several connected
open problems.

2. Preliminaries

We use the notation B for the unit ball of R
d, S for its boundary the unit

sphere, D for the unit disc of C, Br or B(r) for the ball with center 0 and radius r.
The Euclidean distance between two points or a set and a point will be denoted by
d(·, ·) and the diameter of a set A with diam(A). For domains E their boundary is
denoted by ∂E, the inward unit vector of a point x of ∂E, if it is well-defined, by
N(x).

Hyperbolic distance/metric On D the hyperbolic length of a smooth curve γ is
given by

2
∫
γ

d|z|
1−|z|2 .

The hyperbolic distance between two points z0 and z1 is the infimum of the hyper-
bolic lengths of all piecewise smooth curves in D with endpoints z0 and z1. It is
invariant under conformal self-mappings of the disc. The geodesics in this metric
are circles orthogonal to {|z|=1}. The distance from 0 to an arbitrary point z0∈D
is given by log

(
1+|z0|
1−|z0|

)
. See [15, Section 4.6].
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Bloch functions A function b on the unit ball B of Rd is called a Bloch func-
tion if it is harmonic and the semi-norm ‖b‖:=supz∈B |∇b(z)|(1−|z|) is finite. Bloch
functions are Lipschitz with respect to the hyperbolic metric. This means by defi-
nition that there is a constant L such that for all z, w∈Bd

|b(z)−b(w)| ≤Ldh(z, w)

where dh(z, w) is the hyperbolic distance between z and w. See [15, Section 4.2].

Poisson kernel The Poisson kernel on the unit ball p:B×S→R is given by
p(z, ζ):= 1−|z|2

ωd−1|ζ−z|d for |z|<1, |ζ|=1 and ωd−1 the surface area of the unit sphere.
Especially in Section 4 we use pr(θ, ζ) instead of p(rθ, ζ), generating a family of
kernels (pr)r∈[0,1). Analogously, we write ur(ζ) for u(rζ) for functions u on the unit
ball.

Green’s function A Green’s function for a domain Ω is a function g :Ω×Ω→
(−∞,∞] such that for each w∈Ω

1. g(·, w) is harmonic on Ω\{w} and bounded outside each neighbourhood of
w

2. g(w,w)=∞ and as z→w

g(z, w)=
{

log |z|+O(1) w=∞
− log |z−w|+O(1) w �=∞

3. g(z, w)→0 as z→ζ and ζ∈∂Ω.
See [16, Section 4.4].

Harnack’s inequality We will use Harnack’s inequality to compare values of
positive harmonic functions and to get a bound for their gradients.

Theorem 3. Let h be a positive harmonic function on the disc B(w, ρ). Then
for r<ρ and 0≤t<2π

ρ−r

ρ+r
≤h(w+reit)≤ ρ+r

ρ−r
.

See [16, Theorem 1.3.1].

Harmonic measure and harmonic majorant We use the notation wz0(F,E) for
the harmonic measure with pole z0 of F⊂∂E. A harmonic majorant of a function
on a given domain is a harmonic function which is pointwise larger or equal to the
function.
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Martin boundary To define the Martin boundary of a domain we consider
M(x, y):= g(x,y)

g(x0,y) where x0 is a fixed point in the domain. The function x 
→M(x, y)
is continuous for y∈Ω\{x}. We now use the theorem of Constantinescu-Cornea
(see [1, Theorem 7.2] or [5, Theorem 12.1]) to get a compact set Ω∗, unique up to
homeomorphisms such that

1. Ω is a dense subset of Ω∗,
2. for each y∈Ω the function x 
→M(x, y) has a continuous extension to Ω∗ and
3. the extended functions separate points of Ω∗\Ω.

The set Ω∗\Ω is the Martin boundary of Ω and denoted by ∂MΩ. The extensions
of M are called Martin kernels and denoted by kΩ. Martin kernels provide the
following fundamental representation theorem for positive harmonic functions.

Theorem 4. For every positive harmonic function h on Ω there is a measure

ν concentrated on ∂MΩ such that

h(x)=
∫

kΩ(x, y) dν(y).

See [1, Section II.7] or [5, Chapter 12].

Riemann mapping theorem In the last section we will use the Riemann map-
ping theorem to transfer Theorem 2 to arbitrary simply connected domains.

Theorem 5. Let Ω be a simply connected proper subdomain of C and w0∈Ω.

Then there is a conformal map γ :Ω→D with γ(w0)=0.

See [16, Theorem 4.4.11].

Prime ends In a simply connected and bounded domain Ω⊂C a crosscut C of
Ω is an open Jordan arc in Ω such that ¸C=C∪{a, b} with a, b∈∂Ω. A sequence (Cn)
of crosscuts of Ω is called a null-chain if ¸Cn∩¸Cn+1=∅, diam(Cn)→0 and Cn+1 and
C0 are in different components of Ω\Cn. The component of Ω\Cn not containing
C0 is called Vn. Two null-chains (Cn) and (C ′

n) are equivalent if for every sufficiently
large m there exists n such that Vn⊂V ′

m and V ′
n⊂Vm. The equivalence classes of

null-chains are called prime ends of Ω. The set of prime ends is denoted by P (Ω).
The ordinary topology on Ω is extended in the following way. For a subdomain

A⊂Ω, EA is the set of prime ends that contain a null-chain whose crosscuts all lie
in A. We define the new topology by adding the set A∪EA as a neighbourhood
of each point in A and each prime end in EA. In this extended topology Ω is
dense in Ω∪P (Ω), Ω∪P (Ω) is a compact space and therefore called prime end
compactification of Ω. Now the following holds true.
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Theorem 6. If γ :Ω→D is a conformal homeomorphism, it can be extended to

a homeomorphism γ̂ between the prime end compactification of Ω and D̄.

The prime ends satisfy the conditions (1–3) of the Martin boundary. As the
Martin boundary is unique up to homeomorphisms, for simply connected domains
prime ends and Martin boundary coincide in this sense. See [15, Section 2.4] or [3,
Chapter 9].

Coarea formula For an open set Ω⊂R
d a real-valued Lipschitz function a and

an L1 function b we have∫
Ω

|∇a(x)|b(x) dx=
∫
R

∫
a−1(t)

g(x) dσt(x) dt

where σt is the n−1 dimensional Hausdorff-measure on the preimage of t under the
function a. See [4, Section 3.4.2].

Brownian motion and local time We call (Xt)t∈R+ Brownian motion started at
0 if it is a stochastic process on a probability space (Ω,F ,P) such that

1. X0=0 P-almost surely,
2. the increments Xt1−Xt0 , Xt2−Xt1 , Xtm−Xtm−1 are independent for 0≤

t1<t2<...<tm,
3. Xt−Xs∼N (0, t−s) for 0≤s≤t, in other words P(Xt−Xs∈A)=

1√
2π(t−s)

∫
A
e
− 1

2

(
t√
t−s

)2

dt and
4. the paths are almost surely continuous.

If X(1), X(2), ..., X(d) are independent Brownian motions starting in 0, the stochas-
tic process given by Z=(X(1), X(2), ..., X(d))t is called a d-dimensional Brownian
motion. The limit Lx

t :=limε→0
1
2ε

∫
1{x−ε<Xs<x+ε} ds exists and is called local time

of Brownian motion. See [1, Section I.2, I.6].

3. Proof of Theorem 1

The proof of Theorem 1 is based on a result of Mozolyako and Havin ([11]).
We use their result to find a point in a given subset of the boundary of a Lipschitz
domain such that the variation along the normal to the boundary is bounded.

The theorem of Mozolyako and Havin ([11]) will be used as stated in Theorem 7.
Note however that the original statement in [11] involves C2 domains. However, it
turns out – and is known – that their argument may be modified so as to work for
Lipschitz domains. For the convenience of the reader we recorded in [12] a version
of the Mozolyako-Havin proof, specifically taylored to Lipschitz-domains.
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Theorem 7. Let u be a positive harmonic function on a Lipschitz domain O

with starcenter z0 and boundary D. Let N(p) be any direction at p pointing “well-

inside” the domain and r be a positive function on D such that [p, p+r(p)N(p)]⊂O

for all p∈D. Then for all surface balls E⊂D with ωz0(E,O)≥c there is a p0∈E
and a harmonic majorant H of the gradient such that

r(p0)∫
0

H(p+yN(p)) dy < c1u(z0)

where the constant c1 only depends on the Lipschitz constant of the domain, the

constant c and the Harnack distance between z0 and p0+r(p0)N(p0).

Proof of Theorem 1. The proof consists of 4 parts.
1. First of all we construct Lipschitz domains on which we can use Theorem 7.
2. In the second part we look for points within a cone such that the variation

along the segments connecting the points is suitably bounded.
3. Part 3 is dedicated to shifting the points constructed in part 2 onto one

radius of the unit ball.
4. In the last part we collect the information of the previous parts to prove the

theorem.

Construction of Lipschitz domains We want to construct a Lipschitz domain
W (z0) for an arbitrary point z0∈B on which b is bounded from below. In the
following M∈N is a large enough constant only depending on supz∈B |∇b(z)|(1−|z|).
The Lipschitz domain should satisfy the following conditions.

1. The function b−b(z0)+M is positive on the whole domain.
2. The domain W (z0) has starcenter z0 and the Lipschitz constant is indepen-

dent of z0.
• For z∈B with |z|> 15

16 we use the following notations:

I(z) := {ζ ∈S : |z−ζ| ≤ 8(1−|z|)}
r(z) := 2|z|−1
T (z) := {w∈B : |w|= r(z), |w−z| ≤ 2(1−|z|)}.

The domain V (z) is the convex hull of T (z) and I(z), intersected with B\Br(z) (see
Figure 1).
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Figure 1. The domain V (z).

• We consider the Whitney decomposition (Cn)n∈N of B, so we have a decom-
position of B into disjoint cubes with

diam(Cn)≤ d(Cn, S)≤ 4 diam(Cn)

for n∈N. Next, we fix n∈N, check if there is a point z∈Cn satisfying

b(z)−b(z0)≤−M

and set NT :={n∈N:∃z∈Cn :b(zn)−b(z0)≤−M}. For n∈NT select any zn∈Cn such
that b(zn)−b(z0)≤−M holds true. Finally, we define T :={zn :n∈NT }.

• For all z∈T we set Ṽ (z)=V (z) if dist(T (z), ∂V (z0))> 1
2 (1−|z|). If the con-

dition does not hold true, we set T̃ (z):={w∈B:|w|=r(z), |w−z|≤3(1−|z|)} and
Ṽ (z)=conv(T̃ (z)∪I(z))∩(B\Br(z)). The boundary of Ṽ (z) consists of three dis-
joint sets: the top T̃ (z), the bottom ∂Ṽ (z)∩S and L̃(z).

• The Lipschitz domain we were looking for is now given by

W (z0) :=V (z0)\
⋃

zn∈T

Ṽ (zn).

Once again the boundary of W (z0) consists of different parts. First, we have T (z0)
and ∂W (z0)∩L(z0). The new bottom is divided into three subsets ∂W (z0)∩S, the
tops ∂W (z0)∩

⋃
z∈T T (z) and ∂W (z0)∩

⋃
z∈T L(z).

On the tops, so for z∈∂W (z0)∩
⋃

z∈T T (z) we have

−2M <b(z)−b(z0)<−M

2 .

Construction of points within a cone In the following we construct a sequence
of points such that the integral of a harmonic majorant of the gradient along the
segments connecting two consecutive points (i.e. the variation) is bounded.

In the first step we look at x0=0 and the corresponding domain W (0). Now, by
Theorem 7, we find a point x1 in ∂W (0) such that the variation of b along the line
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segment connecting x1 and y1 :=x1+N(x1) is bounded by c1M . As y1 has small
hyperbolic distance from x0, the variation along the interval [y1, x0] is bounded
because of Harnack’s inequality.

Now we assume that points x0, ..., xn and y1, ..., yn are already chosen. We
consider the domain W (xn) and scale it by a homothetic transformation such that
the diameter is 100. As b−b(xn)+M is a positive harmonic function on W (xn) we
can apply Theorem 7. We get a point x on the lower part of the boundary of W (xn)
such that the variation along the line segment connecting x and yn+1 :=x+N(x) is
bounded by c1M . We distinguish three cases.

1. If x is in the unit sphere, we take xn+1 :=x and stop the construction.
2. If x is on a top, so in the set ∂W (xn)∩

⋃
z∈T T (z), we define xn+1 :=x.

3. If x is in ∂W (xn)∩
⋃

z∈T L(z), we take the intersection point y of the normal
to the boundary at x and the sphere with radius r(zn), which is the radius of the
corresponding top, and set xn+1 :=y (see Figure 2).

Figure 2. The case x∈∂W (xn)∩
⋃

z∈T L(z).

We have constructed two sequences of points (xn)n∈N∪{0} and (yn)n∈N, both
converging to a point on the boundary x. They are contained in the cone with apex
x and opening angle π/2 and satisfy the following conditions:

1.
∫
[yn+1,xn+1] Hn+1(ζ) d|ζ|≤c1M ,

2.
∫
[xn,yn+1] Hn+1(ζ) d|ζ|≤c1M ,

3. b(xn)−b(0)≤−nM
2 and

4. for ζ∈[xn, yn+1]∪[yn+1, xn+1] we have b(ζ)−b(0)≤−nM
2 +2c1M

where Hn+1 is a harmonic majorant of |∇b| on the domain W (xn) (see Figure 3).
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Figure 3. Cone, radius and some points.

Shifting of points and corresponding segments We want to shift the points xn

and yn and the corresponding segments to the radius connecting 0 and the limit x

of our point sequences.
Shifting [xn, yn+1]: As in the construction for the segment [xn, yn+1], we can

use Harnacks inequality to bound the integral of the harmonic function along the
segment [an, bn+1]=[|xn|x, |yn+1|x].

Shifting [yn+1, xn+1]: We shift yn+1 to bn+1=|yn+1|x and xn+1 to an+1=
|xn+1|x and distinguish the following two cases.

Case 1: |xn+1|=1. In this case we have already reached the unit sphere and
xn+1=x so we already have a suitable bound for∫

[bn+1,an+1]

|∇b(ζ)| d|ζ|

as yn+1=bn+1 and xn+1=an+1.
Case 2: If |xn+1| �=1, we note that the distance of xn+1 to the radius is bounded

by c|xn+1| because the point is in the cone. Next, we take s:=[yn+1, xn+1]∩B(0, 1−
3
2 (1−|xn+1|)). The distance of s to the boundary of W (xn) is at least 1

2 (1−|xn+1|)
and therefore comparable to the distance from the radius to which we want to
shift our segment. We can use Harnack’s inequality once again and get a bound
of ∫

[(1− 3
2 (1−|xn+1|))x,bn+1]

|∇b(ζ)| d|ζ|

where bn+1 :=|yn+1|x (see Figure 4).
The segment [an+1, (1− 3

2 (1−|xn+1|))x] with an+1 :=|xn+1|x is left. Here we
use the next harmonic majorant Hn+2 on the domain W (xn+1). There we can easily
bound
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Figure 4. Case 2.

∫
[|xn+1|x,(1− 3

2 (1−|xn+1|))x]

Hn+2(ζ) d|ζ|

by c1M .

Collecting the information We obtained a point x on the unit sphere and se-
quences of points (an) and (bn) on [0, x] both converging to x that satisfy:

1. |an|<|bn+1|<|an+1|
2.

∫
[bn+1,an+1] |∇b(ζ)| d|ζ|≤c1M

3.
∫
[an,bn+1] |∇b(ζ)| d|ζ|≤c1M

4. b(an)−b(0)≤−nM
2

5. for ζ∈[an, bn+1]∪[bn+1, an+1] we have b(ζ)−b(0)≤−nM
2 +2c1M .

To finish the proof we can write this in a more compact form as∫
[0,x]

|∇b(ζ)|eb(ζ) d|ζ|=

=
∞∑

n=0

∫
[an+1,bn+1]

|∇b(ζ)|eb(ζ) d|ζ|+
∫

[bn+1,an]

|∇b(ζ)|eb(ζ) d|ζ| ≤

≤ 2eb(0)+2c1M
∞∑

n=0
e−nM

2 c1M <c(c1,M, b(0)). �
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4. Proof of Theorem 2

In the previous section we used the result of Mozolyako and Havin ([11]) to
prove Theorem 1. In this section we present a result of the analysis of the proof
given in [11] to prove Theorem 2.

Let u be a positive harmonic function on Bd. Following the notation of Mo-
zolyako and Havin in [11] we define σ(x) as the normalized gradient of u at the
point x. By differentiating the Poisson kernel with respect to the first variable
in direction σ(x), we get a new kernel cr(ζ, θ):= ∂p

∂σ(r2ζ) (rζ, θ). We define the
kernel br(ζ, θ):=

∫
pr(ζ, x)cr(x, θ) dx and Br denotes the integral operator Br(f)=∫

S
br(ζ, θ)f(θ) dθ.

Mozolyako and Havin ([11]) proved that for every positive harmonic function
u on Bd there is a probability measure ν such that

J =
∫
S

1∫
0

Br(ur)(ζ) dr dν(ζ)≤ cu(0).

Let V (u) be the set of points in S such that the radial variation of u is bounded.
In [11] they showed that for every point p∈S and ρ>0 the Hausdorff dimension of
V (u)∩Bd(p, ρ) is n−1. We use the same fact to prove Theorem 2.

Proof. First we rewrite the integral in the theorem as follows

∫
Bd

|∇u(w)|p(w, θ) dA(w)=
∫
S

∫
S

1∫
0

c√r(ζ, α)u√
r(α)pr(ζ, θ)r dr dζ dα.

Using the symmetry of pr and because pr≤2p√r pointwise, we obtain

1∫
0

2B√
r(u√

r)(θ) dr

as an upper bound for our integral and by a simple substitution this is equal to

4
1∫

0

Bs(us)(θ) ds.

This integral is bounded by cu(0) for at least one θ as ν is a probability
measure. �
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By similar computation

I =
∫
S

∫
S

1∫
0

Pr(|∇ur(ζ)|)pr(ζ, θ) dr dζ dν(θ),

where Pr is the operator with integral kernel pr, is also bounded.

5. Discussion and related open problems

In the following discussion we exploit the remarkable flexibility of the inte-
gral ∫

Bd

|∇u(w)|p(w, θ) dA(w)

in Theorem 2, in particular its conformal invariance and its connection to Brownian
martingales.

First application of the coarea formula By applying the coarea formula to the
integral in Theorem 2 we get that

∞∫
0

∫
u−1(c)

p(w, θ) dHn−1(w) dc< cu(0)

where Hn−1 is the n−1 dimensional Hausdorff measure and u−1(c) is the preimage
of the value c. For a harmonic function v with |v|<A we get

A∫
−A

∫
v−1(c)

p(w, θ) dHn−1(w) dc

and as there is a θ such that the expression is bounded, we know that∫
v−1(c) p(w, θ) dHn−1 is in L1([−A,A]). Therefore we can ask the following ques-

tion:

Open Problem 1. For which p>1 exists a θ such that the integrand∫
v−1(c) p(w, θ) dHn−1 is in Lp([−A,A])?
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Simply connected domains In order to get from an arbitrary simply connected
domain to the unit disc we use the Riemann mapping theorem.

We make use of two concepts regarding the boundary of simply connected
domains. The first one is the Martin boundary of a domain (cf. [1] or [5]) and
the second one is the concept of prime ends introduced by Carathéodory (cf. [15]
and [3]). For simply connected domains, prime ends and the Martin boundary
coincide up to homeomorphisms.

We can now take advantage of the conformal invariance and transfer our result
of Theorem 2 to this setting.

Theorem 8. Let Ω be a simply connected bounded domain, v a positive har-

monic function on Ω, kΩ the Martin kernel and gΩ(·, w0) the Green’s function with

singularity in w0∈Ω. Then there is a prime end ζ such that∫
Ω

|∇v(w)|kΩ(w, ζ)|∇gΩ(w,w0)| dA(w)<c

where c is a constant only depending on the value v(w0) and the domain Ω.

Proof. Let γ :Ω→D be a Riemann map with γ(w0)=0. The function u:=v¨f ,
where f is the inverse of γ, is a positive harmonic function on D. So we know by
Theorem 2 that there is a θ∈T with∫

D

|∇(v ¨ f)(z)|p(z, θ) dA(z)<cv(w0).

By substitution we get that∫
Ω

|∇v(w)|p(γ(w), θ)||γ′(w)| dA(w)<cv(w0).

Next we use that p(γ(w), θ) is the Martin kernel kΩ(w, ζ) where ζ is the prime end
of Ω such that the extension γ̂ of γ to the prime ends of Ω satisfies γ̂(ζ)=θ and get∫

Ω

|∇v(w)|kΩ(w, ζ)|γ′(w)| dA(w)<cv(w0).

By calculation we know |γ′(w)|=|∇gΩ(w,w0)||γ(w)| where gΩ is the Green’s
function of Ω. Therefore we obtain∫

Ω

|∇v(w)|kΩ(w, ζ)|∇gΩ(w,w0)||γ(w)| dA(w)<cv(w0).
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We now use the fact that for bounded simply connected plane domains the integral
of the gradient of the Green’s function∫

Ω

|∇gΩ(w, z)| dA(z)

is bounded by a constant only depending on Ω (see [4]). Partitioning the domain
into one part where |γ|< 1

2 and one where |γ|≥ 1
2 leads to the following. On the

domain where |γ|< 1
2 we know that kΩ and |∇v| are bounded by constants only

depending on the domain Ω and the value v(w0). On the second part we only use
that |γ|≥ 1

2 . Then we obtain∫
Ω

|∇v(w)|kΩ(w, ζ)|∇gΩ(w,w0)| dA(w)<c

where the constant c only depends on the value v(w0) and Ω. �

The area integral in Theorem 8 depends expressly on the Green’s function and
the Martin kernels of the simply connected domain Ω⊂C and not on the Riemann
map itself. This allows us to consider it in more general domains, either in multiply
connected domains or in higher dimensions.

Open Problem 2. Let v be a positive harmonic function on a not necessarily

simply connected domain Ω⊂C with Green’s function gΩ. Is there an element ζ of

the Martin boundary of Ω such that the integral∫
Ω

|∇v(w)|kΩ(w, ζ)|∇gΩ(w,w0)| dA(w)

is bounded? Even for Denjoy domains, that is when ∂Ω⊂R, this problem seems to

be open.

We refer to Jerison and Kenig ([8]) for the concept of nontangentially accessible
(NTA) domains and can ask the following.

Open Problem 3. Let v be a positive harmonic function on a nontangentially

accessible domain Ω⊂Rd. Is there an element ζ of the Martin boundary of Ω such

that the integral ∫
Ω

|∇v(w)|kΩ(w, ζ)|∇gΩ(w,w0)| dA(w)

is bounded? The problem is even open for Lipschitz domains.
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Second application of the coarea formula We continue by transforming the in-
tegral ∫

Ω

|∇v(w)|kΩ(w, ζ)|∇gΩ(w,w0)||γ(w)| dA(w)

Using the coarea formula we get that the integral
∞∫
0

∫
g−1(c)

|∇v(w)|kΩ(w, ζ)(w)|γ(w)| dσc(w) dc

is bounded. In fact, we apply the coarea formula to a partition of Ω into subdomains
where the Green’s function is Lipschitz and put the results together. As we know
that |γ(w)|=e−g(w,w0), the expression

∞∫
0

∫
g−1(c)

|∇v(w)|kΩ(w, ζ)(w) dσc(w)e−c dc,

where σc is the Hausdorff-measure, is bounded. As this implies that∫
g−1(c)

|∇v(w)|kΩ(w, ζ)(w) dσc(w)

is in L1([0,∞), e−c dc), we can ask the following question.

Open Problem 4. Is there a ζ such that the function c 
→∫
g−1(c) |∇v(w)|kΩ(w, ζ)(w) dσc(w) is in Lp([0,∞), e−c dc) for p>1?

Brownian martingales We also want to present the link to stochastic analysis.
Therefore, let Zt be the d-dimensional Brownian motion stopped at the unit sphere.
We apply the formula

E

⎛⎝ τ∫
0

m(Zt) dt

⎞⎠=
∫
Bd

m(z)g(z, 0) dA(z)

for bounded continuous functions m, the Green’s function g and Brownian mo-
tion Zt. Now the integral in Theorem 2 can be written as∫

Bd

|∇u(w)|p(w, θ) dA(w) =E

⎛⎝ τ∫
0

|∇u(Zt)|p(Zt, θ)
1

g(0, Zt)
dt

⎞⎠ .

As u(Zt) can be written as
∫ t

0 ∇u(Zs) dZs for t<τ , a new question arises naturally:
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Open Problem 5. For F :Ω→R
+ with F=

∫ τ

0 Gt dZt+F0, where Gt is a mar-

tingale, show that there is a θ such that E
(∫ τ

0 |Gt|p(Zt,θ)
g(0,Zt) dt

)
<c.

Using the local time of Brownian motion Lw
τ and the fact E(Lw

τ )=g(0, w) we
could also rewrite the integral of Theorem 2

∫
Bd

|∇u(w)|p(w, θ) 1
g(0, w)E(Lw

τ ) dA(w)=E

⎛⎝∫
Bd

|∇u(w)|p(w, θ) 1
g(0, w)L

w
τ dA(w)

⎞⎠.

These expressions are all bounded for at least one θ because of their equality to the
integral in Theorem 2.
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