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Equivalence of sparse and Carleson coefficients
for general sets

Timo S. Hänninen

Abstract. We show that sparse and Carleson coefficients are equivalent for every countable
collection of Borel sets and hence, in particular, for dyadic rectangles, the case relevant to the
theory of bi-parameter singular integrals.

The key observation is that a dual refomulation by I. E. Verbitsky for Carleson coefficients
over dyadic cubes holds also for Carleson coefficients over general sets.

1.

The usual definitions of Carleson and sparse coefficients generalize word by
word from the collection of dyadic cubes to an arbitrary countable collection of
Borel sets:

Definition 1.1. (Carleson coefficients in the generality of a collection of Borel
sets) Let μ be a locally finite Borel measure on R

d. Let S be a countable collection
of Borel sets. A family {λS}S∈S of non-negative reals is Carleson (with the constant
C≥1) if we have

(1.1)
∑

S∈S:S⊆Ω
λS ≤Cμ(Ω)

for every union Ω of sets of the collection S.
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Remark (a) It is equivalent to state the Carleson condition as follows: We
have

(1.2)
∑
S∈S′

λS ≤Cμ(
⋃

S∈S′

S).

for every subcollection S ′⊆S.
(b) For the collection D of dyadic cubes, the equivalence between the seemingly

stronger condition (1.2) and the usual definition can be seen, for example, by first
decomposing the collection D′⊆D into the subcollections of cubes with a common
ancestor and further splitting these subcollections into the subsubcollection of cubes
with finitely many ancestors and into the subsubcollection of cubes with infinitely
many ancestors and then applying the usual condition.

(c) In the case of the Lebesgue measure and the collection of dyadic rectangles,
it is equivalent to require the Carleson condition (1.1) to hold for every open set Ω,
in place of every union of dyadic rectangles, via approximating dyadic rectangles
by open rectangles.

Definition 1.2. (Sparse coefficients in the generality of a collection of Borel
sets) Let μ be a locally finite Borel measure on R

d. Let S be a countable collection
of Borel sets. A family {λS}S∈S of non-negative reals is sparse (with the constant
C≥1) if for each S∈S there exists a subset ES⊆S such that λS≤Cμ(ES) and such
that the sets {ES}S∈S are pairwise disjoint.

The sparse coefficients are Carleson coefficients simply because∑
S:S⊆Ω

λS ≤C
∑

S:S⊆Ω
μ(ES)≤Cμ(Ω)

but the converse is more complicated, as well-known.

Remark Regarding the converse, note that Carleson coefficients may fail to
be sparse coefficients by a simple obstruction: a point mass can not be divided.
This obstruction is illustrated by the following example: Let δx be a Dirac measure
at a point x. Then, for any nonzero coefficients λS1 and λS2 associated with any
sets S1 and S2 such that S2∩S1�x, the coefficients λS1 and λS2 are Carleson but
unsparse. Therefore, the assumption that the measure μ has no point masses is
needed in general for the converse.

In the case of the collection of dyadic cubes, the converse was proven by I. E.
Verbitsky [6, Corollary 2] by combining the following two steps:

• First step: Dual reformulation of the Carleson condition as a certain esti-
mate, by I. E. Verbitsky [6, Theorem 4]. This can be viewed as duality in discrete
Littlewood–Paley spaces.
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• Second step: Characterizing such general estimates in terms of the existence
of pairwise disjoint sets, by L. E. Dor [3, Proposition 2.2]. This is based on functional
and convex analysis.

In the case of the collection of dyadic cubes, an alternative proof (constructive
hands-on proof avoiding functional analysis) was given by A. K. Lerner and F.
Nazarov [5, Lemma 6.3] for the most important particular type of coefficients, and
this proof was generalized for the general type of coefficients by Cascante and Ortega
[2, Theorem 4.3].

The case of the collection of dyadic rectangles is relevant to the theory of bi-
parameter singular integrals. Whether the converse holds in this case is mentioned
as an open problem by A. Barron and J. Pipher in their recent preprint [1].

In this note, we observe that, thanks to the Dor–Verbitsky approach, the con-
verse holds for the collection of dyadic rectangles and, more generally, for every
countable collection of Borel sets:

Theorem 1.3. (Carleson coefficients are sparse coefficients in the generality
of a collection of Borel sets) Let μ be a locally finite Borel measure on R

d. Assume

that μ has no point masses. Let S be a countable collection of Borel sets. Then,

a family {λS}S∈S of non-negative reals is Carleson if and only if it is sparse, and

moreover, the constants in both the conditions are the same.

In order to run the Dor–Verbitsky proof in this generality, we need only to
prove the dual reformulation of the Carleson condition in this generality; a proof
for it is the contribution of this note. The proof is an elementary measure-theoretic
proof, essentially a standard proof for the dyadic Carleson embedding theorem.

In what follows, we explain the Dor–Verbitsky approach and prove the needed
dual reformulation in this generality.

First step: Dual reformulation

I.E. Verbitsky [6, Theorem 4] proves that the Carleson condition in the case
of dyadic cubes can be rephrased as the following dual condition: The coefficients
{λQ}Q∈D are Carleson if and only if we have the estimate

(1.3)
∑
Q∈D

λQaQ ≤C

∫
sup
Q∈D

aQ1Qdμ

for every family a:={aQ}Q∈D of nonnegative reals.

Remark The discrete Littlewood–Paley spaces fp,q(μ) with p, q∈(0,∞] were
essentially introduced by M. Prazier and B. Jawerth [4]. For the exponents p, q∈
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[1,∞], the dual spaces (fp,q(μ))∗=fp′,q′(μ), where p′, q′ denote the Hölder conjugate
exponents of p, q, were computed by I.E. Verbitsky [6, Theorem 4]. Therefore, in
particular, the dual norm formula

(1.4) ‖λ‖f∞,1(μ) =sup{
∑
Q∈D

λQaQμ(Q) : a∈ f1,∞(μ) with ‖a‖f1,∞(μ) ≤ 1}

holds for the norms

‖λ‖f∞,1(μ) := sup
Q∈D

1
μ(Q)

∑
R∈D:R⊆Q

λRμ(R) and ‖a‖f1,∞(μ) :=
∫

sup
Q∈D

aQ1Qdμ.

The dual norm formula (1.4) for discrete Littlewood–Paley spaces states precisely
the equivalence between the Carleson condition and the estimate (1.3) in the case
of dyadic cubes, and hence it is fitting to call the estimate ‘a dual reformulation’ of
the Carleson condition.

The statement (1.3) of the dual reformulation generalizes word by word to an
arbitrary countable collection of Borels sets:

Proposition 1.4. (Dual formulation in the generality of a collection of Borel
sets) Let μ be a locally finite Borel measure on R

d. Let S be a countable collection

of Borel sets. Let {λS}S∈S be a family of non-negative reals. Then, the following

assertions are equivalent:

(i) The family λ is Carleson, that is∑
S∈S′

λS ≤Cμ(
⋃

S∈S′

S)

for every subcollection S ′ of the collection S.
(ii) We have the estimate

(1.5)
∑
S∈S

λSaS ≤C

∫
sup
S∈S

aS1Sdμ

for every family a:={aS}S∈S of nonnegative reals.

Next, we give a proof for the statement. The proof is essentially a slight variant
of the standard proof for the dyadic Carleson embedding theorem.

Proof. First, we prove that the estimate (ii) implies the Carleson condition (i).
Let S ′ be a subcollection of the collection S. We set aS :=1 if S∈S ′ and aS :=0
otherwise, so that

(1.6)
∑
S∈S′

λS =
∑
S∈S

λSaS .
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By the assumed estimate (ii), we have

(1.7)
∑
S∈S

λSaS ≤C

∫
sup
S∈S

aS1Sdμ.

Observe that, by the choice of the coefficients {aS}S∈S , we have supS∈S aS1S=
1⋃

S∈S′ S and hence

(1.8)
∫

sup
S∈S

aS1Sdμ=μ(
⋃

S∈S′

S).

Combining the estimates (1.6), (1.7), and (1.8) yields the claimed Carleson condition
(i).

Next, we prove that the Carleson condition (i) implies the estimate (ii). Recall
the distribution formula: for a non-negative measurable function f :X→[0,∞] on
a measure space (X, ν), we have

∫
X
fdν=

∫ ∞
0 ν(f>t)dt. By applying this formula,

we have

(1.9)
∑
S∈S

λSaS =
∫ ∞

0

∑
S∈S:aS>t

λSdt.

Observe that {supS∈S aS1S>t}=
⋃

S∈S:aS>t S. Therefore, by the assumed Carleson
condition,

(1.10)
∑

S∈S:aS>t

λS ≤Cμ(
⋃

S∈S:aS>t

S)=Cμ({sup
S∈S

aS1S >t}).

By applying the distribution formula again, we have

(1.11)
∫ ∞

0
μ({sup

S∈S
aS1S >t})dt=

∫
sup
S∈S

aS1Sdμ.

Combining the estimates (1.9), (1.10), and (1.11) yields the claimed estimate
(ii). �

Second step: Characterization of the dual estimate via the existence of
pairwise disjoint sets

Estimates of the same form as the dual reformulation has been characterized
by L. E. Dor [3, Proposition 2.2] in terms of the existence of pairwise disjoint
sets. Thanks to the (functional-analytic) generality of the characterization, the
application of it to the case of Borel sets is word by word as in I. E. Verbitsky’s
[6, Corollary 2] application of it to the case of dyadic cubes. For the reader’s
convenience, we repeat the application here.
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Proposition 1.5. (Proposition 2.2 in L. E. Dor’s article [3]) Let μ be a locally

finite Borel measure on R
d. Assume that μ has no point masses. Let (gi)∞i=1 be

a sequence of non-negative measurable functions in L1(μ). Let C≥1. Then, the

following assertions are equivalent:

1. We have
∞∑
i=1

ai ≤C

∫
sup

i=1,2,...
aigidμ

for all sequences (ai)∞i=1 of nonnegative reals.

2. There exist disjoint measurable sets E1, E2, ... in R
d such that

1≤C

∫
Ei

gidμ

for every i=1, 2, ....

Remark In fact, L. E. Dor states and proves this proposition [3, Proposition
2.2] for the Lebesgue measure on the unit interval [0, 1]. In finding the auxiliary
function h in his proof [3, Proof of Lemma 2.3], he is implicitly using the property
that the Lebesgue measure is non-atomic, which means that every set having pos-
itive measure can be splitted into two disjoint sets each having positive measure.
Inspection of his proof shows that it works for every locally finite Borel measure μ

on R
d that is non-atomic or, equivalently, that has no point masses.

Recall that the dual reformulation (Proposition 1.4) states, after the change of
variable ãS :=λSaS , that

∑
S∈S

ãS ≤C

∫
sup
S∈S

ãS
1S
λS

dμ

for every family ã:={ãS}S∈S of nonnegative reals. Applying L E. Dor’s character-
ization (Proposition 1.5) to the functions gS := 1S

λS
produces pairwise disjoint sets

ẼS such that
1≤C

1
λS

μ(ẼS∩S),

and hence the sets ES :=ẼS∩S are the desired sets: these sets ES are pairwise
disjoint, ES⊆S, and λS≤Cμ(ES).
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