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Optimal stretching for lattice points and
eigenvalues

Richard S. Laugesen and Shiya Liu

Abstract. We aim to maximize the number of first-quadrant lattice points in a convex
domain with respect to reciprocal stretching in the coordinate directions. The optimal domain is
shown to be asymptotically balanced, meaning that the stretch factor approaches 1 as the “radius”
approaches infinity. In particular, the result implies that among all p-ellipses (or Lamé curves),
the p-circle encloses the most first-quadrant lattice points as the radius approaches infinity, for
1<p<oo.

The case p=2 corresponds to minimization of high eigenvalues of the Dirichlet Laplacian on
rectangles, and so our work generalizes a result of Antunes and Freitas. Similarly, we generalize
a Neumann eigenvalue maximization result of van den Berg, Bucur and Gittins. Further, Ariturk
and Laugesen recently handled 0<p<1 by building on our results here.

The case p=1 remains open, and is closely related to minimizing energy levels of harmonic
oscillators: which right triangles in the first quadrant with two sides along the axes will enclose
the most lattice points, as the area tends to infinity?

1. Introduction

Among ellipses of given area centered at the origin and symmetric about both
axes, which one encloses the most integer lattice points in the open first quadrant?
One might guess the optimal ellipse would be circular, but a non-circular ellipse
can enclose more lattice points, as shown in Figure 1. Nonetheless, optimal ellipses
must become more and more circular as the area increases to infinity, by a striking
result of Antunes and Freitas [2].

Key words and phrases: lattice points, planar convex domain, p-ellipse, Lamé curve, spectral
optimization, Laplacian, Dirichlet eigenvalues, Neumann eigenvalues.
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Figure 1. Circle s=1 and ellipse s=1.15, for radius r=4.96. The ellipse encloses three more points
than the circle, as shown in bold.

To formulate the problem more precisely, consider the number of positive-
integer lattice points lying in the elliptical region

CINOES

where the ellipse has “radius” >0 and semiaxes proportional to s~ and s. Notice
that the area 72 of the ellipse is independent of the “stretch factor” s. Denote by
s=s(r) a value (not necessarily unique) of the stretch factor that maximizes the
lattice point count. The theorem of Antunes and Freitas says s(r)—1 as r—oo,
as illustrated in Figure 2. In other words, optimal ellipses become circular in the
infinite limit. (Their theorem was stated differently, in terms of minimizing the
n-th eigenvalue of the Dirichlet Laplacian on rectangles, with the square being
asymptotically minimal. Section 10 explains the connection.) The analogous result
for optimal ellipsoids becoming asymptotically spherical was proved recently in three
dimensions by van den Berg and Gittins [6] and in higher dimensions by Gittins
and Larson [11], once again in the eigenvalue formulation.

This paper extends the result of Antunes and Freitas from circles to essentially
arbitrary concave curves in the first quadrant that decrease between the intercept
points (0,1) and (1,0). The “ellipses” in this situation are the images of the con-
cave curve under rescaling by s~! and s in the horizontal and vertical directions,
respectively. Theorem 2 says the maximizing s(r) is bounded. Theorem 3 shows
under a mild monotonicity hypothesis on the second derivative of the curve that
s(r)—1 as r—o0. Thus the most “balanced” curve in the family will enclose the
most lattice points in the limit.

Marshall [21] recently extended this result to higher dimensions by somewhat
different methods. We have generalized also to translated lattices in 2-dimensions [19].
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Figure 2. Optimal s-values for maximizing the number of lattice points in the 2-ellipse. The graph
plots the largest value s(r) versus log r. The plotted r-values are multiples of \/5/107 an irrational
number chosen in the hope of exhibiting generic behavior. The horizontal axis is at height s=1.

Theorem 4 allows the curvature to blow up or degenerate at the intercept
points, which permits us to treat the family of p-ellipses for 1<p<oo. In each case
the p-circle is asymptotically optimal for the lattice counting problem in the first
quadrant. The case p=1 is open problem. Our numerical evidence in Section 9
suggests that the first-quadrant right triangle enclosing the most lattice points does
not necessarily approach a 45-45-90 degree triangle as r—o00. Instead one seems to
get an infinite limit set of optimal triangles. See Conjecture 15, where we describe
the recent proof by Marshall and Steinerberger [22].

If one counts lattice points in the closed first quadrant, that is, counting points
on the axes as well, then the results reverse direction from maximization to mini-
mization of the lattice count. Theorem 7 shows that the value s=s(r) minimizing
the number of enclosed lattice points will tend to 1 as r—oo. In the case of cir-
cles and ellipses, this result was obtained recently by van den Berg, Bucur and
Gittins [5] (and in higher dimensions by Gittins and Larson [11], generalized by
Marshall [21]). As explained in Section 10, they showed that the maximizing rect-
angle for the n-th eigenvalue of the Neumann Laplacian must approach a square as
n—0o.

This paper builds on the framework of Antunes and Freitas for ellipses, with
new ingredients introduced to handle general concave curves. First we develop a
new non-sharp bound on the counting function (Proposition 10) in order to con-
trol the stretch factor s(r). Then we prove more precise lattice counting estimates
(Proposition 11) of Krétzel type, relying on a theorem of van der Corput (Ap-
pendix A).

Convex decreasing curves in the first quadrant, such as p-ellipses with 0<
p<1, have been treated by Ariturk and Laugesen [4] by building on this paper’s
results.
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Spectral motivations and results

This paper is inspired by recent efforts to understand the behavior of high eigen-
values of the Laplacian. Write \,, for the n-th eigenvalue of the Dirichlet Laplacian
on a bounded domain 2 of area 1 in the plane. (We restrict to 2 dimensions for
simplicity.) Denote the minimum value of this eigenvalue over all such domains by
Ay, and suppose it is achieved on a domain €27. What can one say about the shape
of this minimizing domain?

For the first eigenvalue, the minimizing domain 7 is a disk, by the Faber—
Krahn inequality. For the second eigenvalue, Q2% is a union of two disjoint equal-
area disks, as Krahn and later P. Szego showed. A long-standing conjecture says

5 should be a disk and Q} should be a union of disjoint non-equal-area disks.
For higher eigenvalues (n>5), minimizing domains found numerically do not have
recognizable shapes; see [1] and [23] and references therein. Antunes and Freitas
remark, though, that the “most natural guess” is 2 approaches a disk as n— oo,
which is known to occur if the area normalization is strengthened to a perimeter
normalization [3] and [7]. This conjecture would imply the famous Pélya conjecture
An>4mn /|9, as Colbois and El Soufi [8, Corollary 2.2] showed using subadditivity
of n—= A% .

A partial result of Freitas [10] succeeds in determining the leading order asymp-
totic as n— o0 of the minimum value of the eigenvalue sum A;+...4+ A, (rather than
of Ay itself). This result provides no information on the shapes of the minimizing
domains. Larson [17] shows among convex domains that the disk asymptotically
maximizes the Riesz means of the Laplace eigenvalues, for Riesz exponents >3/2. If
this Riesz exponent could be lowered to 0, giving asymptotic maximality of the disk
for the eigenvalue counting function, then one would obtain the desired conjecture
about the eigenvalue minimizing domain 2.

A complete resolution for rectangular domains was found by Antunes and Fre-
itas [2], using lattice counting methods as explained in Section 10. They proved
that the minimizing domain for \,, among rectangles approaches a square as n— oco.
Similarly, the cube is asymptotically minimal in 3 and higher dimensions [6] and
[11].

Open problem for the harmonic oscillator

Asymptotic optimality of the square for minimizing Dirichlet eigenvalues of the
Laplacian on rectangles suggests an analogous open problem for harmonic oscilla-
tors. Consider the Schrédinger operator in 2 dimensions with parabolic potential
(s2)?+(y/s)?, where s>0 is a parameter. Write s(n) for a parameter value that
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Figure 3. A concave decreasing curve I' in the first quadrant, with intercepts at L. The point
(a, B) on the curve is relevant to Theorem 3.

minimizes the n-th eigenvalue of this operator. What is the limiting behavior of
s(n) as n—o00?

The results on rectangular domains (which may be regarded as infinite potential
wells) might suggest s(n)— 1, but we think that it is not the case. Instead we believe
s(n) might cluster around infinitely many values as n—oo. Indeed, after rescaling,
the Schrodinger operator has eigenvalues of the form s(j—1/2)+(k—1/2)/s, which
leads to a lattice point counting problem inside right triangles, like in Section 9 for
p=1, except now the lattices are shifted by 1/2 to the left and downwards. For the
unshifted lattice, numerical work in Section 9 suggests that the optimal stretching
parameter s does not converge to 1, and instead has many cluster points as r—
oo. Recent investigations [19, Section 10] suggest that this clustering phenomenon
persists for shifted lattices and hence for the harmonic oscillator.

2. Assumptions and definitions

The first quadrant is the open set {(x,y):x,y>0}.

Assume throughout the paper that I' is a concave, strictly decreasing curve
in the first quadrant. Our theorems assume the z- and y-intercepts of the curve
are equal, occurring at =L and y=L respectively, as shown in Figure 3. Write
Area(T") for the area enclosed by the curve I' and the z- and y-axes.

We represent the curve I' by y= f(z) for €0, L], so that f is a concave strictly
decreasing function, and of course f is continuous. In particular

L=f(0)>f(x)>f(L)=0

whenever z€ (0, L). Denote the inverse function of f(x) by g(y) for y€[0, L], so that
g also is concave and strictly decreasing.
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We define a rescaling of the curve by parameter r>0:

rI’ =image of I" under the radial scaling (§9)
=graph of rf(z/r),
and define an area-preserving stretch of the curve by:
I'(s) =image of I' under the diagonal scaling (*," )
=graph of sf(sx),

where s>0. In other words, I'(s) is obtained from I" after compressing the z-direc-
tion by s and stretching the y-direction by s. Define the counting function for rT'(s)
by

N(r,s) =number of positive-integer lattice points lying inside or on rT'(s)
=#{(j, k) eENXN:k<rsf(js/r)}.
For each >0, consider the set

S(r)=argmax N(r,s)
s>0
consisting of the s-values that maximize the number of first-quadrant lattice points
enclosed by the curve rI'(s). The set S(r) is well-defined because the maximum is
indeed attained, as the following argument shows. The curve rT'(s) has x-intercept
at 7s~ 'L, which is less than 1 if s>rL and so in that case the curve encloses no
positive-integer lattice points. Similarly if s<(rL)~!, then rT'(s) has height less
than 1 and contains no lattice points in the first quadrant. Thus for each fixed
r>0, if s is sufficiently small or sufficiently large then the counting function N(r, s)
equals zero, while obviously for intermediate values of s the integer-valued function
s—N(r,s) is bounded. Hence N(r,s) attains its maximum at some s>0.
For later reference, we write down this bound on optimal s-values.

Lemma 1. (r-dependent bound on optimal stretch factors) If T is a concave,
strictly decreasing curve in the first quadrant with equal intercepts (as in Figure 3),
then

S(ryc[(rL)~',rL] whenever r>2/L.

Proof. The curve rT'(1) has horizontal and vertical intercepts at rL>2. Hence
by concavity, rT'(1) encloses the point (1, 1), and so the counting function s— N(r, s)
is greater than zero when s=1. On the other hand when s<(rL)~! or s>rL, we
know N(r,s)=0 by the paragraph before the lemma. Thus the maximum can only
be attained when s lies in the interval [(rL)~!,rL]. O
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3. Main results

The curve I' has z- and y-intercepts at L, in the theorems in that follow; see
Figure 3. We start by improving Lemma 1 to show the maximizing set S(r) is
bounded, and the bounds can be evaluated explicitly in the limit as r—oo.

Theorem 2. (Uniform bound on optimal stretch factors) If ' is a concave,
strictly decreasing curve in the first quadrant then

S(r) C[s1,82] forallr>2/L,

for some constants s1,$2>0. Furthermore, given &>0,
S(r)C [%%74+8] for all large 7.

The proof appears in Section 4.

If the concave decreasing curve is smooth with monotonic second derivative,
then in addition to being bounded above and below the maximizing set S(r) con-
verges to {1}, as the next theorem shows. Recall that g is the inverse function
of f.

Theorem 3. (Optimal concave curve is asymptotically balanced) Assume
(o, B)ET is a point in the first quadrant such that f€C?[0,a] with f'<0 on (0, q]
and f"<0 on [0,a], and similarly geC?[0, 3] with ¢’<0 on (0,5] and ¢g""<0 on
[0,8]. Further suppose f" is monotonic on [0,a] and ¢g" is monotonic on [0, (].

Then the optimal stretch factor for mazimizing N(r,s) approaches 1 as r tends
to infinity, with

S(r)C [1—O(r_1/6), 1+O(r_1/6)],

and the maximal lattice count has asymptotic formula
max N(r,s) =12 Area(l')—rL+0(r?/3).
5>

The theorem is proved in Section 7. Slight improvements to the decay rate
O(r~'/6) and the error term O(r?/3) are possible, as explained after Proposition 11.

More general curves for lattice counting

We want to weaken the smoothness and monotonicity assumptions in Theo-
rem 3. We start with a definition of piecewise smoothness.

Definition (PC?)
(i) We say a function f is piecewise C?-smooth on a half-open interval (0, o] if

f is continuous and a partition 0=y <aj <...<a;=a exists such that f€C?(0, o]
and feC?[a;_1,q4) for i=2,...,1. Write PC?(0, ] for the class of such functions.
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(if) Write f'<0 to mean that f’ is negative on the subintervals (0, 1] and
(i1, ] for i=2,...,1, with the derivative being taken in the one-sided senses at
the partition points s, ..., ;. The meaning of f”/ <0 is analogous.

(iii) We label partition points using the same letter as for the right endpoint.
In particular, the partition for g€ PC?(0, ] is 0=Fp<...<B¢=p.

For the next theorem, take a point (o, 8)€T lying in the first quadrant and
suppose we have numbers a, az,b1,be >0 and positive valued functions 6(r) and
g(r) such that as r—oo:

(T1—4a2)

(7’1_4b2).

(1) (r)y=0@=2m), f"(5(r))
(2) e(r)=0(r=""), g"(e(r))”

(The second condition in (1) says that f”(z) cannot be too small as x—0.) Let

1:O
1:O

i 1
e=min{g, a1, az,b1,ba}.

Now we extend Theorem 3 to a larger class of concave decreasing curves.

Theorem 4. (Optimal concave curve is asymptotically balanced) Assume f€
PC2%(0,a] with f'<0 and f"<0, and f" is monotonic on each subinterval of the
partition. Similarly assume g€ PC?(0, ] with ¢’ <0 and g" <0, and g" is monotonic
on each subinterval of the partition. Suppose the positive functions d(r) and (r)
satisfy conditions (1) and (2).

Then the optimal stretch factor for maximizing N (r,s) approaches 1 as r tends
to infinity, with

S(r)c [1-0(r=%),14+0(r=%)],

and the mazimal lattice count has asymptotic formula

max N(r,s) =r%Area(T) —rL+O(r' 72).

The proof is presented in Section 7.

Ezample 5. (Optimal p-ellipses for lattice point counting) Fix 1<p<oo, and
consider the p-circle

U 2P+ Jy[P =1,

which has intercept L=1. That is, the p-circle is the unit circle for the /P-norm on
the plane. Then the p-ellipse

P (s):|sal? +]s~ ylP <r?
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has first-quadrant counting function
N(r,s)=#{(j. k) ENxN: (js)P +(ks™ )P <rP}.

We will show that the p-ellipse containing the maximum number of positive-
integer lattice points must approach a p-circle in the limit as r— o0, with

S(r)Cc[1-0(r=*),1+0(r~°)]

where e=min{%, ﬁ .

Theorem 3 fails to apply to p-ellipses when 1<p<2, because the second deriva-
tive of the curve is not monotonic (see f”(x) below), and the theorem fails to
apply when 2<p<oo because f(0)=0 in that case. Instead we will apply Theo-
rem 4.

To verify that the p-circle satisfies the hypotheses of Theorem 4, we let a=p=
2-1/7 and choose

S(ry=rYP e(r)y=r"1"P,

for all large r. Then 0(r)=r"2% with a;=1/2p. Next,

fla) = (=),
f/(@) = a1 (1=a?) T,

f(x) = —(p—l)xp_2(1_xp)—2+1/p’

so that
|f”(5(r)) ’_1 < (const.)rt =2/,

and hence a;=1/2p in (1). Thus f satisfies hypothesis (1).
Further, the interval (0, «) can be partitioned into subintervals on which f” is
monotonic, because the third derivative

(@) =—(p=1)2? 3 (1=a?) VP (14 p)a? +p—2)

vanishes at most once in the unit interval.

The calculations are the same for g, and so the desired conclusion for p-ellipses
follows from Theorem 4 when 1<p<oo.

For p=o00, the oo-circle is a Euclidean square and the oco-ellipse is a rectan-
gle. Many different rectangles of given area can contain the same number of lattice
points. For example, a 4x 1 rectangle and 2x 2 square each contain 4 lattice points
in the first quadrant. All such matters can be handled by the explicit formula
N(r,s)=|rs~!]|rs| for the counting function when p=oo.

The case p=1 is an open problem, as discussed in Section 9. The case 0<p<1
has been handled by Ariturk and Laugesen [4] using results in this paper.
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Incidentally, an explicit estimate on the number of lattice points in the full
p-ellipse in all four quadrants was obtained by Krétzel [16, Theorem 2] for p>2.
See the informative survey by Ivié et al. [14, §3.1].

Lattice points in the closed first quadrant, and Neumann eigenvalues

Our results have analogues for lattice point counting in the closed (rather than
open) first quadrant, as we now explain. When counting nonnegative-integer lattice
points, which means we include lattice points on the axes, the counting function for
rI'(s) is

N(r,s)=#{(j,k) €Ly x Ly -k <rsf(js/r)},
where Z;={0,1,2,3,...}. Define

S(r)=argmin N (r, s).
s>0

In other words, the set S(r) consists of the s-values that minimize the number of
lattice points inside the curve rT'(s) in the closed first quadrant. Notice we employ
the calligraphic letters NV and S when working with nonnegative-integer lattice
points.

Theorem 6. (Uniform bound on optimal stretch factors) If T' is a concave,
strictly decreasing curve in the first quadrant then

S(r)Cls1,s2] forallr>2/L,
for some constants sy, s2>0.

Theorem 7. (Optimal concave curve is asymptotically balanced) Under the
assumptions of Theorem 3, the optimal stretch factor for minimizing N (r,s) ap-
proaches 1 as r tends to infinity:

S(r)c[1=0(r %), 1+0(r= /%)),
m>i]61j\/(r, s) =72 Area(D)+rL+0(r?/3),

and under the assumptions of Theorem 4 we have similarly that:

S(r)C[1=0(r~¢),1+0(r~°)],

m>1(r)1 (r,s) =7% Area(I')+7rL+O(r'=2¢).

The proofs are in Section 8.
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Consequently, we reprove a recent theorem of van den Berg, Bucur and Gittins
[5] saying that the optimal rectangle of area 1 for maximizing the n-th Neumann
eigenvalue of the Laplacian approaches a square as n—oo. See Section 10 for
discussion, and an explanation of why the approach in this paper is simpler.

4. Proof of Theorem 2

To control the stretch factors and hence prove Theorem 2, we will first derive a
rough lower bound on the counting function, and then a more sophisticated upper
bound. The leading order term in these bounds is simply the area inside the rescaled
curve and thus is best possible, while the second term scales like the length of the
curve and so at least has the correct order of magnitude.

Assume I' is concave and decreasing in the first quadrant, with z- and y-inter-
cepts at L and M respectively. The intercepts need not be equal, in the lemmas
and proposition below. Recall that N(r, s) counts the positive-integer lattice points
under the curve T', while A/(r, s) counts nonnegative-integer lattice points.

Lemma 8. (Relation between counting functions) For each r,s>0,
N(r,s)=N(r,s)+r(s" L+sM)+p(r,s)
for some number p(r, s)€[—1,1].

Proof. The difference between the two counting functions is simply the number
of lattice points lying on the coordinate axes inside the intercepts of rI'(s). There
are

|7s 1L+ |rsM|+1

such lattice points, and so the lemma follows immediately. [

Lemma 9. (Rough lower bound) The number N(r,s) of positive-integer lattice
points lying inside rT(s) in the first quadrant satisfies

N(r,s)>r*Area(T)—r(s ' L+sM)—1, r,s>0.

Proof. Notice N (r, s) equals the total area of the squares of sidelength 1 having
lower left vertices at nonnegative-integer lattice points inside the curve rT'(s). The
union of these squares contains rT'(s), since the curve is decreasing. Hence N (r, s)>
r? Area(T), and so

N(r,8) >N(r,s)—r(s *L+sM)—1 by Lemma 8
>r? Area(T)—r(s ' L+sM)—1. O
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Figure 4. Positive integer lattice count satisfies N <Area(I')— Area(triangles), in proof of Propo-
sition 10(a).

For the upper bound in the next proposition, remember I' is the graph of
y=f(x), where f is concave and decreasing on [0, L], with f(0)=M, f(L)=0. We
do not assume f is differentiable in the next result, although in order to guarantee
the constant C in the proposition is positive, we assume f is strictly decreasing.

Proposition 10. (Two-term upper bound on counting function) Let C=M —
F(L/2).
(a) The number N of positive-integer lattice points lying inside I' in the first quad-
rant satisfies

(3) N < Area(l')— %C’

provided L>1.
(b) The number N(r,s) of positive-integer lattice points lying inside rT'(s) in the
first quadrant satisfies
1
N(r,s) <r*Area(T')— §Crs

whenever r>s/L.

Proof. Part (a). Clearly N equals the total area of the squares of sidelength
1 having upper right vertices at positive-integer lattice points inside the curve I'.
Consider also the right triangles of width 1 formed by secant lines on I' (see Fig-
ure 4), that is, the triangles with vertices (i—l, f(i—l)), (i, f(z)), (i—l, f(z)), where
i=1,...,| L]. These triangles lie above the squares by construction, and lie below I’
by concavity. Hence

(4) N+ Area(triangles) < Area(T").
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Since f is decreasing, we find

=

Area(triangles) = . %(f(z—l) —f(@))
6 = L)~ (L))
(©) > S(M-f(L/2)=5C,

because |L|>L/2 when L>1. Combining (4) and (6) proves Part (a).

Part (b). Simply replace I" in Part (a) with the curve rI'(s), meaning we replace
L, M, f(z) with rs=*L,rsM,rsf(sx/r) respectively. [

Proof of Theorem 2

Recall the intercepts are assumed equal (L=M) in this theorem. Let r>2/L
and suppose s€S(r). Then r>s/L by Lemma 1, and so the upper bound in Propo-
sition 10(b) gives

1
N(r,s) <r*Area(T)— 507“3.
The lower bound in Lemma 9 with “s=1" says

(7) N(r,1)>7r? Area(T)—2rL—1.

The value s€S(r) is a maximizing value, and so N(r,1)<N(r,s). The preced-
ing inequalities therefore imply

1
507"5 <2rL+1< grL.

Hence s<5L/C=s,, and so the set S(r) is bounded above.

Interchanging the roles of the horizontal and vertical axes, we similarly find
s*1§5L/(~J'Esf1, so that the set S(r) is bounded below away from 0, completing
the first part of the proof.

The fact that S(r) is bounded will help imply an improved bound in the limit
as r—o00. Going back to the proof of Proposition 10(a), we see from (4) and (5)
that

N+ 5 (F0)~ F(LL1)) < Area(T).
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Rescaling the curve from T' to rI'(s), so that N and f(x) become N(r,s) and
rsf (f:c), respectively, and the z-intercept L becomes rL/s, we see the last inequal-

ity becomes . .
N(r, s)+§rs(f(0)—f(; L%J)) <12 Area(T).

Hence 1
N(r,s) <r? Area(T")— irsL—i—o(r) as r —» 00,

where to get the error term o(r) we used that s€S(r) is bounded above and below
(s1<s<s3) and f(L)=0. Since s is a maximizing value we have N(r,1)<N(r,s),
and so (7) and the above inequality imply

1
57‘81)—&—0(7‘) <2rL+1,

which implies lim sup,._,, s<4. Similarly limsup,_,., s~} <4, by interchanging the
axes.

5. Two-term counting estimates with explicit remainder

We start with a result for C?-smooth curves. What matters in the following
proposition is that the right side of estimate (8) below has the form O(r?) for some
<1, and that the s-dependence in the estimate can be seen explicitly. The detailed
dependence on the functions f and g will not be important for our purposes.

The horizontal and vertical intercepts L and M need not be equal, in this
section.

Proposition 11. (Two-term counting estimate) Take a point (o, 8)€T lying
in the first quadrant, and assume that f€C?[0,a] with f'<0 on (0,a] and f”<0
on [0,a], and similarly g€ C%[0, 8] with ¢'<0 on (0, 8] and g” <0 on [0, B]. Further
suppose " is monotonic on [0,a] and g" is monotonic on [0, 5].

(a) The number N of positive-integer lattice points inside T in the first quadrant
satisfies:

| N —Area(T)+(L+M)/2|

o p 1 1
<6 " 1/3 d / 1 1/3 d 175
<O( ) 1@ ars [l W ) 175 - )

+1(7@)1+1g(B)) +3.

(b) The number N (r,s) of positive-integer lattice points lying inside rT'(s) in the
first quadrant satisfies (for r, s>0):



Optimal stretching for lattice points and eigenvalues 125

(8)  |N(r,s)—r*Area(I')+r(s~'L+sM)/2|
a B
7,2/3 " 1/3 T 1 1/3
<ot ([ 1@ et [l )1 a)

—3/2 §3/2

S _
T2 (i S e ) 4 () g ()43

Proposition 11 and its proof are closely related to work of Krétzel [16, Theo-
rem 1]. We give a direct proof below for two reasons: we want the estimate (8) that
depends explicitly on the stretching parameter s, and we want a proof that can be
modified to use a weaker monotonicity hypothesis, in Proposition 12.

A better bound on the right side of (8), giving order O(r?+¢) with §=131/208~
0.63<2/3, can be found in work of Huxley [13], with precursors in [12, Theo-
rems 18.3.2 and 18.3.3]. That bound is difficult to prove, though, and the im-
provement is not important for our purposes since it leads to only a slight improve-
ment in the rate of convergence for S(r), namely from O(r=1/6) to O(r(0+s=1)/2)
in Theorem 3.

Proof. Part (a). We divide the region under I" into three parts. Let N7 count
the lattice points lying to the left of the line xt=a and above y=g, and N5 count
the lattice points to the right of z=a and below y=g, and N3 count the lattice
points in the remaining rectangle (0, o] x (0, 8]. That is,

= > Z 1= > (Lfm)]-18]),

0<m<a B<n<f(m 0<m<a

> Z 1= 3 (lgm)-La)),

0<n<B a<m<g(n)  0<n<B
Ns=a)|8].

In terms of the sawtooth function v, defined by

(r)=z—[x]=1/2,

one can evaluate

Ni= 3 (flm)—w(f(m)~1/2-|5]).

0<m<a«
Then we apply the Euler—-Maclaurin summation formula

/fdxw)ﬂ /f

0<m<a
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(which we observe for later reference holds whenever f is piecewise C'l-smooth) to
deduce that

Nl/fdxw( /f

- Z O(f la](1/2+|8])
0<m<a
:/a F(z) dz—(a) BfM/2+/a F(2)
0
- > w(f al(1/2+(8]).
0<m<a
Similarly
N —/ﬁ (v) dy—(8) —L/2+/ﬁ (y)(y)d
2= o g\y)ay o g\y)v\y)ay
- > (g BI(1/24a)),
0<n<pg
and so
9) N =Ni+Ny+Nj
a B
= [ f@ydo+ [ o) du=la] 11— (L +20)/2
—(a)B—la]/2—¢(B)a—|B]/2
+ [ s / ¢ (y)(y) dy
- > v - Y ¥(g(n)
o<m<a 0<n<pB
a B
= Area(T")—(L+M) /2+/ f(x)w x)dx+/ g (y)v(y) dy
- Z o (f(m Z ¥(g(n)) +remainder
o<m<a 0<n<pB
where
(10) remainder = —(a—|a])(B—|8])+(a—|a]+5-|8])/2.

This remainder lies between 0 and 1, since 0<—zy+(z+y)/2<1 when z,y€][0,1].
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We estimate the sum of sawtooth functions in (9) by using Theorem 18 (which
is due to van der Corput): since f” is monotonic and nonzero on [0, ], the theorem
implies

o 1
(11) ’0<Z< z/;(f(m))’ﬁ(i/o | (x )|1/3dx+175max|f”|1/2+1
and similarly
1
(12) ‘ > 1/J(g(n))‘§6/ g’ ()|1/3dy—|—175max YRR
0<n<pg 0 | |

To estimate the integrals of f/ 1/) and g'¢ in (9), we introduce the antiderivative
of the sawtooth function, W(¢ fo z) dz, and observe that —1/8<W(¢)<0 for all
teR. By integration by parts and the fact that f” <0, we have

W) | @ ad=|F v - [ e
<glr@igl [ 7 asl
= @5 (£~ (@)
<217

since f'(a)<f’(0)<0. The same argument gives

B
(14 [ st < 100

Combining (9)—(14) completes the proof of Part (a).
Part (b). Simply apply Part (a) to the curve rI'(s) by replacing L, M, f(x),
9(y), a, B with rs = L,rsM,rsf(sx/r),rs tg(s~ty/r),rs ta, rsB respectively. O

Remark Proposition 11 continues to hold if the point (o, 8)=(L,0) lies at the
right endpoint of the curve. One simply removes all mention of g, 3; and ¢ from
the hypotheses of the proposition, and removes all such terms from the conclusions,
as can be justified by inspecting the proof above. The same remark holds for the
advanced counting estimate in the following Proposition 12.

Advanced counting estimate

The hypotheses in the last result are somewhat restrictive. In particular, we
would like to handle infinite curvature at the intercepts of the curve I', meaning f”
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must be allowed to blow up at x=0. Further, we would like to relax the monotonicity
assumption on f”/. The next result achieves these goals.

Two numbers ¢ and ¢ appear in the next Proposition. Their role in the proof is
that on the intervals 0<z <4 and 0<y<e we bound the sawtooth function trivially
with |1|<1/2. On the remaining intervals we seek cancellations.

Proposition 12. (Two-term counting estimate for more general curve) Take
a point (c, B)ET lying in the first quadrant, and assume f€PC2(0 a] with f'<0
and f"”<0, and that " is monotonic on (c;—1,q;] fori=1,...,1. Similarly assume
g€ PC?(0, 8] with ¢'<0 and g" <0, and that g" is monotomc on (Bj—1,B;] for j=
1,...,¢
(a) If 6€(0,0) and £€(0,5) then the number N of positive-integer lattice points
inside ' in the first quadrant satisfies:

|N— Area(I')+(L+M) /2|

6(/a | ()] dx+/ﬁ 9" (y)® dy)

1 1
+175(|f//( )‘1/2 | //( )|1/2)+350<Z |f// |1/2 Z ‘g// |1/2>

L
+3 ; (i |+Zlg (B)) 6+5)+l+£+1

(b) If functions
§:(0,00) — (0,a), €:(0,00) —(0,8),

are given, then the number N(r,s) of positive-integer lattice points inside rI'(s) in
the first quadrant satisfies (for r,s>0):

(15) |N(r,s)—r* Area(I')+r(s~' L+sM)/2|

o B
<6 ( [ 1@ ans 1w a)
0 0

—3/2 3/2

S

If”( (r >)\1/2+|g~( (r >)|1/2>
5—3/2

+350T1/2(Z ‘f” |1/2 Z 1/2)

175012

Zs2|f Q; |+Zs‘2|g (B)]) ( “1o(r)+se(r)) +l4+L+1.
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The integral of |f”|'/% appearing in the conclusion of Proposition 12 is finite,
because by Holder’s inequality and the fact that f”/<0 and f is decreasing, we have

[ i@ ar <ot [ @ il =l 100 - a1 <oc.
0 0

The integral of |¢”|'/3 is finite for similar reasons.

Proof. Part (a). The lattice point counting (9) holds just as in the proof of
Proposition 11, and so the task is to estimate each of the terms on the right side of
that equation.

Estimate (11) on the sum of the sawtooth function is no longer valid, because
1" is no longer assumed to be monotonic on the whole interval [0, «]. To control
this sawtooth sum, we first observe

> B

0<m§5

l\3|H

since |1)|<1/2 everywhere. Next, we have d€(a;_1, a;] for some je{1,...,l}, and

J 1 1

Z w(f ]<6/ |f”(x)|1/3dm+175max{|f,,(5)|1/2> |f”(aj)|1/2}+1

d<m=<a;

by Theorem 18 applied on the interval [, ;). Applying that theorem again on each
interval [a;—1, ;] with =541, ...,1 gives that

Y sUm)lss [ @

ai—1<m=Zaq; i

1 1 1
()72 |f~<ai>|1/2}+ '

+175 max {

By summing the last three displayed inequalities, we deduce a sawtooth bound

—_

* 175 350 175
- // 1/3 s
254'6/(S £ ()] dx-i-‘f,,( |1/2+§ : 1f"(a |1/2 TEOEE Hi-j+l

1 « 175 350
<z // 1/3
= 25+6/0 | ( )| d.L“-i— ‘f”( |1/2 +Z |f” |1/2 +l
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Next, we adapt estimate (13) on the integral of f’t) by simply applying the
same argument on each interval [o;_1, @;], hence finding

l

an | [ el <Y [Fr el () -re)]

i=1

<

MN

1y
Zi | f ()]

I
—

By combining (9), (10) with (16), (17) and the analogous estimates on g, we com-
plete the proof of Part (a).

Part (b). Apply Part (a) to the curve rT'(s) by replacing L, M, f(x), g(y), o, 5,
§,e withrs= L rsM,rsf(sz/r),rs 1g(s~ty/r),rs ta,rsB,rs16(r), rse(r) respec-
tively. O

6. A unified approach

The next proposition provides a unified framework for proving our theorems
later in the paper. It adapts the scheme of proof employed by Antunes and Fre-
itas [2].

Proposition 13. Let AcR, L>0, and 0<0<1. Consider a real valued function
H(r,s) (for r,s>0) such that for each closed interval [s1, $2]C(0,00) one has

(18) Hr, s):147“2—Lr(s—i—s_l)/2—1—0(7"9)7

with s€[s1, s3] allowed to vary as r—oo. Assume the function s—H(r,s) attains
its mazimum value, for each >0, and write S(r)=argmax,. o H(r,s) for the set of
mazximizing points. Suppose

(19) S(r) C[s1,82] for all large r >0,

for some constants sy, s2>0.
Then the mazimizing set S(r) converges to the point {1} as r— o0, with

S(r)C [I—O(r_(l_g)/z), 1+O(r_(1_9)/2)},
and the mazximum value of H has asymptotic formula

max H(r,s)=Ar*—Lr+0(r?).

The error term O(r?) in (18) has implied constant depending on the interval
[s1, 82)-
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Proof. Since S(r)C[s1,s2] by hypothesis (19), the asymptotic estimate (18)
implies
H(r,s)=Ar*—Lr(s+s~1)/24+0(r?),
H(r,1)=Ar?—Lr4+0(r?),

for s€S(r) and r—o0. Since s is a maximizing value, we have H(r,1)<H(r, s) and
S0

(20) s+s 1 <24+0(r~ 179,

Hence s=1+0(r~1~9/2) by Lemma 19, which proves the first claim in the theorem.
For the second claim, when s€S(r) we have H(r,s)=Ar?—Lr+0(r?) as r— oo, by
(18) and using also that 1<(s+s71)/2<14+0(r=1=9) by (20). O

7. Proof of Theorem 3 and Theorem 4
Proof of Theorem 3

The theorem follows directly from Proposition 13 with H(r, s) being the lattice
counting function N (r, s). The hypotheses of the proposition are verified as follows.
Suppose 0< s1<s3<00. By Proposition 11(b) with L=M one has

(21) N(r,s)=Area(T)r?>—Lr(s+s~1)/24+0(r*/?),

with s€[s1, s3] as r—o00. Thus hypothesis (18) holds for N(r,s) with the choices
A=Area(T'),0=2/3, and L equalling the intercept value of T".
The boundedness hypothesis (19) holds by Theorem 2.

Proof of Theorem 4

Again let H(r,s) be the lattice counting function N(r,s), take A=Area(T),
let L be the intercept value of T, and note the boundedness hypothesis (19) holds
by Theorem 2. To finish verifying the hypotheses of Proposition 13, we suppose
0<s1<sa<o0 and show that (18) holds.

Take 0=1—2e, where the number e:min{%, ay,as, by, b} was defined in The-
orem 4. Hypothesis (18) is the assertion that

(22) N(r,s)=Area(T)r?—Lr(s+s~1)/2+0(r'~2¢),

with s€[s1, s2] as r—oo. To verify this asymptotic, we will estimate the remainder
terms in Proposition 12(b) as follows. In that proposition take L=M, and note
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0(r)<a and e(r)<f for all large r by assumptions (1) and (2). We will show the
right side of estimate (15) in Proposition 12(b) is bounded by

O(T2/3)+573/20(T172a2)+83/20(T172b2)+(873/2+83/2)O(T1/2)
+(s24+57H)0(1)+s7 1O 724 +50(r17201) + O(1)

for large enough r, where the implied constants in the O(-)-terms depend only on
the curve I" and are independent of s. Since each one of these O(-)-terms is bounded
by O(r1=2¢), and s and s~! are bounded when s€&[s1, s2], hypothesis (18) will hold
as desired.

Examining now the right side of (15), we see the first two terms are obviously
O(r?/3). For the next term, observe by assumption in (1) that

1/2 ,—3/2

r/esT . / 1
Lfr@r)2

and similarly for the analogous term involving ¢”. Since f”(o;) and ¢”(8;) are
constant, the corresponding terms in (15) can be estimated by (s~3/2+5%/2)O(r'/?).
Similarly, the terms in (15) involving f’(c;) and ¢’(8;) can be estimated by (s?+
572)O(1). Next, s~ 1rd(r)=s"10(r'=2%) by the assumption in (1), and similarly
for e(r). And, of course, [4+/¢+1 is constant, which completes the verification of
hypothesis (18).

8. Proof of Theorem 6 and Theorem 7

First we need a two-term bound on the counting function in the closed first
quadrant, as provided by the next proposition. The result is an analogue of Propo-
sition 10, although the constant C is slightly different than in that result.

Assume f is concave and strictly decreasing on [0, L], with f(0)=M, f(L)=0.
The intercepts L and M need not be equal.

Proposition 14. (Two-term lower bound on counting function) Let C=M —

f(L/4).
(a) The number N of nonnegative-integer lattice points lying inside T' in the closed
first quadrant satisfies:

(23) N> Area(l")—i—%c.

(b) The number of nonnegative-integer lattice points lying inside rT'(s) in the closed
first quadrant satisfies (for r, s>0):

N(r,s)>r? Area(I‘)—i—%Cm.
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Figure 5. Nonnegative integer lattice count satisfies N'>Area(I")+ Area(triangles), in proof of
Proposition 14(a) when L>2.

Proof. Part (a). Clearly N equals the total area of the squares of sidelength
1 having lower left vertices at nonnegative-integer lattice points inside the curve T'.
The union of these squares contains I', since the curve is decreasing.

We separate the proof into cases according to the value of L.

Case (i) Suppose L<2, so that L/4<1/2. Consider a rectangle whose lower
left vertex sits on the curve at x=_L/4, and has vertices

(L/4 FL/A),  (LALA), (1LM), (L/4,M).
By construction, this rectangle lies inside the union of squares of sidelength 1, and
it lies above I' because the curve is decreasing. Hence
N > Area(T")+ Area(rectangle)
= Area(T)+(1—L/4)(M—f(L/4))

> Area() + 5 (M~ F(L/4))
as desired.

Case (ii) Suppose L>2. Consider the right triangles of width 1 formed by
tangent lines from the right on I', that is, the triangles with vertices (i7 f (l)), (z’—l—
1,f(i)), (i—i—l,f(i)—i—f’(i"’)), where i=0,1,...,| L] —1. These triangles all lie above
the horizontal axis, since by concavity f(i)+f'(i*)> f(i+1)>0; the last inequality
explains why the biggest i-value we consider is |L|—1.

Thus these triangles lie inside the union of squares of sidelength 1, and lie
above I' by concavity. Hence

N > Area(T)+ Area(triangles).
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To complete the proof of Case (ii), we estimate

| e
Area(trlangles)2§ l:zl [ £/ (7))
R
> 5 (f(z—l)—f(z)) by concavity
=1
= (70— s(L1-)
> (M- f(1/4),

because |L|—1>L/2>L/4 when L>2.

Part (b). Replace I' in Part (a) with the curve rI'(s), meaning we replace
L, M, f(z) with rs~*L,rsM,rsf(sx/r) respectively. [

Proof of Theorem 6
Since N(r,s)<r? Area(T), taking s=1 and L=M in Lemma 8 gives that
N(r,1) <7? Area(I")+2rL+1.
Now suppose s€S(r) is a minimizing value, so that N'(r,s) <N (r,1). Since
1
N(r,s)>r? Area(T)+ EC’/‘S

by Proposition 14(b), we conclude from above that

1 )

iCrs <2rL+1< 57‘L,

where the last inequality holds for r>2/L. Hence s<5L/C, and so the set S(r) is
bounded above. Interchanging the horizontal and vertical axes and recalling L=M
(i.e., the intercepts are equal in this theorem), one finds similarly that s=* §5L/5.
Hence S(r) is bounded below away from 0, which completes the proof.

Proof of Theorem 7

The theorem will follow from Proposition 13 with the choice H(r, s)=—N(r, s),
since maximizing s+ H (r, s) corresponds to minimizing s—N(r, s). The bounded-
ness hypothesis (19) of the proposition holds by Theorem 6. The other hypothesis
(18) is verified as follows.
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Taking L=M in the relation between N (r,s) and N(r,s) in Lemma 8, and
calling on the asymptotic for N(r,s) in either (21) (under the assumptions of The-
orem 3) or (22) (under the assumptions of Theorem 4), we deduce

N(r,s) = Area(D)r* + Lr(s~ ' +s) /2+0(r%)
with s€[s1, so] allowed to vary as r— o0, where

0 {2 /3 under the assumptions of Theorem 3,

1—2e under the assumptions of Theorem 4.

That is, we have verified hypothesis (18) with H=-—N, A=— Area(T'), and L the
intercept value of T'.

9. Open problem for 1-ellipses — lattice points in right triangles

Lattice point maximization for right triangles appears to be an open problem.
Consider the p-circle with p=1, which is a diamond with vertices at (£1,0) and
(0,£1). It intersects the first quadrant in the line segment I' joining the points
(0,1) and (1,0). Here L=M=1. Stretching the 1-circle in the z- and y-directions
gives a 1-ellipse

|sz|+|s™ 1yl =1,

which together with the coordinate axes forms a right triangle of area 1/2 in the first
quadrant, with one vertex at the origin and hypotenuse I'(s) joining the vertices
at (s71,0) and (0,s). As previously, we write S(r) for the set of s-values that
maximize the number of positive-integer (first quadrant) lattice points below or on
rI'(s), when r>0.

First of all, the 45-45-90 degree triangle (s=1) does not always enclose the
most lattice points: Figure 6 shows an example.

The open problem is to understand the limiting behavior of the maximizing
s-values. Does S(r) converge to {1} as r—o00? We proved the answer is “Yes” for
p-ellipses when 1<p<oo (Example 5), but for p=1 we suggest the answer is “No”.
Numerical evidence in Figure 7 suggests that the set S(r) does not converge to {1}
as r—o00. Indeed, the plotted heights appear to cluster at a large number of values,
possibly dense in some interval around s=1. These cluster values presumably have
some number theoretic significance.

In the remainder of the section we remark that maximizing s-values are <3 in
the limit as r—o00, and we describe the numerical scheme that generates Figure 7.
Lastly, we explain why s=+/2 is a good candidate for a cluster value as r—oo.
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Figure 6. The 1-ellipse sz+s~ly=r with r=4.96, for s=1 (solid) and s=+/2 (dashed). The dashed
line encloses three more lattice points (shown in bold) than the solid line.

S

o

log(100) ogr

Figure 7. Optimal s-values for maximizing the number of lattice points in the 1-ellipse (triangle).
The graph plots sup S(r) versus logr. The plotted r-values are multiples of \/E/ 10, and the

horizontal axis is at height s=1.
The bound on maximizing s-values for right triangles (p=1)

Given >0, we claim

1
S(r)c [3—4_5, 3+e] for all large 7.

This bound is slightly better than the one in Theorem 2 (which had 4 instead of 3),
and can be proved in the same way with the help of a special formula for N(r,1):
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(24) N(r,1) =# first-quadrant lattice points under the line y=r—x
L] lr=1]

1
(r—=1)(r—2)= 57“2—;7“—1—1.

>

DN = DN =

How can one efficiently maximize the lattice counting function for the
1-ellipse?

A brute force method of counting how many lattice points lie under the line
r['(s), and then varying s to maximize that number of lattice points, is simply
unworkable in practice. The counting function N(r, s) jumps up and down in value
as s varies, sometimes jumping quite rapidly, and a brute force method of sampling
at a finite collection of s-values can never be expected to capture all such jump
points or their precise locations.

Instead, for a given r we should pre-identify the possible jump values of s,
and use that information to count the lattice points. We start with the simple
observation that a lattice point (j, k) lies under the line rT'(s) if and only if

sj+s k<,
which is equivalent to
(25) js*—rs+k<0.
For this quadratic inequality to have a solution, the discriminant must be non-

negative, 72—4jk>0, and thus we need only consider lattice points beneath the
hyperbola r72=4xy. For each such lattice point, equality holds in (25) for two posi-

r—+/r2—45k sl k.r):r+\/r2—4jk
2j b max 9 ) 2j .

The geometrical meaning of these values can be understood, as follows: as s in-

tive s-values, namely

Smin(J, K; T) =

creases from 0 to oo, one endpoint of the line segment rT'(s) slides up on the y-axis
while the other endpoint moves left on the z-axis. The line segment passes through
the point (j,k) twice: first when s=smin(j, k;7) and again when s=smax(J, k;7).
The point (j, k) lies below the line when s belongs to the closed interval between
these two values.

Thus the counting function is abad

N(T’, 5) :#{(]7 k) : Smin(ja k’ T) S S S smax(jv ka T’)}

= E T (ki) <s — E Lo (Gokir) <5

J;k>0 3,k>0
where we sum only over positive-integer lattice points with 4jk<r2.
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The last formula says that the counting function N(r,s) equals the number
of values spin(j, k;7) that are less than or equal to s minus the number of values
Smax(J, k; ) that are less than s. To facilitate the evaluation in practice, one should
sort the list of values of syin(j, k;7) into increasing order, and similarly sort the
list of values of spmax (4, k;7). The numbers in these two lists are the only numbers
where N(r,s) can change value, as s increases. In particular, when s increases
t0 Smin(J, k;7), the point (j, k) is picked up by the line segment for the first time
and so N(r,s) increases by 1. When s increases strictly beyond smax (4, k;7), the
point (4, k) is dropped by the line segment and so N(r, s) decreases by 1. Note the
counting function might increase or decrease by more than 1 at some s-values, if the
sorted lists of spin and smayx values have repeated entries (arising from lattice points
that are picked up by, or else dropped by, the line segment at the same s-value).

After sorting the smin and spax lists, we evaluate the maximum of N(r,s) by
scanning through the two lists, increasing a counter by 1 at each number in the
sorted Spmin list, and decreasing the counter just after each number in the sorted
Smax list. The largest value achieved by the counter is the maximum of N(r, s), and
S(r) consists of the closed interval or intervals of s-values on which this maximum
count is attained.

By this method, we can maximize the lattice counting function for the 1-ellipse
in a computationally efficient manner, for any given r>0. The code is available in
[20, Appendix B].

When presenting the results of this method graphically, in Figure 7, we plot
only the largest s value in S(r), because the family of 1-ellipses is invariant under
the map s+—1/s and so the smallest value in S(r) will be just the reciprocal of the
largest value.

Why is the 1-ellipse not covered by our theorems?

For the p-ellipse with p=1, Theorem 4 does not apply because f is linear and
so f”=0. Specifically, in the proof we see inequalities (11) and (12) are no longer
useful, since their right sides are infinite. The situation cannot easily be rescued,
because the left side of (8) need not even be o(r). For example, when s=1 and r
is an integer, by evaluating the number N(r,1) of lattice points under the curve
y=r—x we find

1 1 1
N(r,1)—r? Area(T)+r(L+M)/2 = §r(r— 1)— 57“2—&—7" =57

which is of order  and hence has the same order as the “boundary term” r(L+M)/2
on the left side. Thus the method breaks down completely for p=1. We seek instead
to illuminate the situation through numerical investigations.
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A cluster value at s=v27

Inspired by the numerical calculations in Figure 7, we will show that s=v/2
gives a substantially higher count of lattice points than s=1, for a certain sequence
of r-values tending to infinity. This observation suggests (but does not prove) that
/2 or some number close to it should belong to S(r) for those r-values. To be clear:
we have not found a proof of this claim. Doing so would provide a counterexample
to the idea that the set S(r) converges to {1} as r—oo.

To compare the counting functions for s=1 and s=+/2, we first notice that for
s=1 the counting function for the 1-circle is given by

N(r,1)=|r]|r—1]/2, r>0.

At s=+/2 the slope of the 1-ellipse is —2, and for the special choice r=+v/2(m+1/2)
with m>1 the counting function can be evaluated explicitly as

N(r,v/2)=m?.

We further choose m such that r€(n—1/4,n) for some integer n, noting that an
increasing sequence of such m-values can be found due to the density in the unit
interval of multiples of v/2 mod 1. Then, writing r=n—¢ where e<1/4, we have

N(r,v2)=N(r,1)=m’~(n—1)(n—2)/2

(r?—v/2r4+1/2)— %(r+5—1)(r+5—2)

3

> —r—(constant).

N =N =

Hence limsup,_,, (N(r,v2)—N(r,1))/r>1/2, and so s=v/2 can give (for certain
choices of 1) a substantially higher count of lattice points than s=1, as we wanted
to show.

The work above implies that 1¢S(r) for a sequence of r-values tending to
infinity. More generally, Marshall and Steinerberger showed that if >0 is rational
then /z¢S(r) for a sequence of r-values tending to infinity (see [22, Theorem 1]),
while if >0 is irrational then \/z¢.S(r) for all sufficiently large r (see [22, Lemma 2]
and its associated discussion).

Conjecture for p=1

To finish the chapter, we state some of our numerical observations as a conjec-
ture. Let

S={(r,s):r>0,s€5(r)} C(0,00)x(0,0),
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S = closure of S in [0, 0o] x [0, oc],
S(c0) ={s€10,00]:(00,s) €S}

Earlier in the chapter we proved that S(oc0)C[1/3, 3].

The clustering behavior of S(r) observed in Figure 7 suggests the following
conjecture.

Conjecture 15. (p=1) The limiting set S(0c0) is countably infinite, and is
contained in

[1/3,3]N{Vx:2€Q,z>0}.

Marshall and Steinerberger [22, Theorem 2] recently proved that S(oco) contains
(countably) infinitely many square roots of rational numbers and is contained in
[1/4/5,V/5]. For example, they showed the set S(co) contains 1 and /3/2. Yet a
precise characterization of the set remains elusive. One would like a characterization
in terms of some number theoretic condition.

10. Connection between counting function maximization and eigenvalue
minimization

Maximizing a counting function is morally equivalent to minimizing the size

of the things being counted. Let us apply this general principle to the case of the

circle
I':2%4+y?>=1 in the first quadrant,

and its associated ellipses rI'(s). In this section, L=M=1 and Area(I')=m/4.

Minimizing eigenvalues of the Dirichlet Laplacian on rectangles
Write
(26) Mn(s):n=1,2,3,.. 3 ={(s)?+(ks71)?:5,k=1,2,3,...}

so that A, (s) is the nth eigenvalue of the Dirichlet Laplacian on a rectangle of side
lengths s~1m and sm. (The eigenfunctions have the form sin(jsz)sin(ks~1y).) Then
the lattice point counting function is the eigenvalue counting function, because

N(r,s)=#{(j, k) : (js)* +(ks™)* <%}
=#{n: A .(s) <12}

Define

S.(n) =argmin \,(s),
s>0
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so that S, (n) is the set of s-values that minimize the nth eigenvalue.
The next result says that the rectangle minimizing the nth eigenvalue will
converge to a square as n— 00.

Corollary 16. (Optimal Dirichlet rectangle is asymptotically balanced, due to
Antunes and Freitas [2, Theorem 2.1]; Gittins and Larson [11]) The optimal stretch
factor for minimizing A, (s) approaches 1 as n— o0, with

S.(n) C [1—O(n~112),14+0(n~1/12)],

and the minimal Dirichlet eigenvalue satisfies the asymptotic formula

min A, (s) = én—&— (éi/in/Q—I—O(nl/g).
s>0 s ™
The proof is a modification of our Theorem 3. Full details are provided in the

ArXiv version of this paper [18, Corollary 10]. In the proof one relies on Propo-
sition 10 to bound the stretch factor s of the optimal rectangle. Proposition 10 is
simpler in both statement and proof than the corresponding Theorem 3.1 of Antunes
and Freitas [2], which contains an additional lower order term with an unhelpful
sign.

Remark One would like to prove using only the definition of the counting func-
tion that

Si(n)—1 ifand only if S(r)—1,

or in other words that the rectangle minimizing the nth eigenvalue will converge to
a square if and only if the ellipse maximizing the number of lattice points converges
to a circle. Then Corollary 16 would follow qualitatively from Theorem 3, without
needing any additional proof. Our attempts to find such an abstract equivalence
have failed due to possible multiplicities in the eigenvalues. Perhaps an insightful
reader will see how to succeed where we have failed.

Maximizing eigenvalues of the Neumann Laplacian on rectangles

If one considers lattice points in the closed first quadrant, that is, allowing also
the lattice points on the axes, then one obtains the Neumann eigenvalues of the
rectangle having side lengths s~ '7 and s

{pn(s):n=1,2,3,..y={(js) >+ (ks 1)?:5,k=0,1,2,...}.
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Notice the first eigenvalue is always zero: pq(s)=0 for all s. The lattice point
counting function is once again an eigenvalue counting function, because

N(r,s)=#{(, k) : (78)* +(ks™1)? < v} =#{n: pa(s) <12}
The appropriate problem is to maximize the nth eigenvalue (rather than minimizing
as in the Dirichlet case), and so we let
S.(n) =argmax i, (s).
s>0
The corollary below says that the rectangle maximizing the nth Neumann
eigenvalue will converge to a square as n— oo.

Corollary 17. (Optimal Neumann rectangle is asymptotically balanced, due
to van den Berg, Bucur and Gittins [5]; Gittins and Larson [11]) The optimal stretch
factor for maximizing p,(s) approaches 1 as n— o0, with

Se(n) C[1-0(n~"12), 14+0(n~ 112,

and the mazximal Neumann eigenvalue satisfies the asymptotic formula

One adapts the arguments used for Theorem 7. A complete proof is in [18,
Corollary 11]. Note that our lower bound on the counting function in Proposition 14,
which one uses to control the stretch factor s of the optimal rectangle, is simpler in
both statement and proof than the corresponding Lemma 2.2 by van den Berg et
al. [5]. Further, our Proposition 14 holds for all »>0, whereas [5, Lemma 2.2] holds
only for r>2s. Consequently we need not establish an a priori bound on s as was
done in [5, Lemma 2.3].

Those authors did obtain a slightly better rate of convergence than we do, by
calling on sophisticated lattice counting estimates of Huxley; see the comments after
Proposition 11.
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A. The van der Corput sum

The next theorem is due to van der Corput [9, Satz 5], and is central to the
proofs of Proposition 11 and Proposition 12. We formulate the theorem as in Krétzel
[15, Korollar zu Satz 1.5, p. 24]. The constants in the theorem are interesting only
for being modest in size.

Recall the sawtooth function ¢ (z)=x—|x]—1/2.

Theorem 18. Suppose a<b and h€C?[a,b] with h" monotonic and nonzero.
Then

1
// 1/3
‘a<§n<:b¢ ’<6/ WO A4 175 a1 +1.

Krétzel’s result has “42” as the final term. We obtain the theorem with “+1”
by correcting a gap in the proof and arguing carefully in one case, as explained in
[20, Theorem A.8]. The constant term is irrelevant for our purposes in this paper,
in any case.

B. An elementary lemma
Lemma 19. If s>0 and 0<t<1 then
s+sT1<24t = |s—1| <3Vt

Proof. By taking the square root on both sides of the inequality
(s12—s71/2)2 =545 12 <1,
and then using that the number 1 lies between s'/2 and s~1/2, we find
|81/2_1‘ <1/2,

Hence 1—t1/2<s'/2<1+t'/2, and now squaring both sides and using that t<t!/2
(when t<1) proves the lemma. O
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