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A four-dimensional Neumann ovaloid

Lavi Karp and Erik Lundberg

Abstract. What is the shape of a uniformly massive object that generates a gravita-
tional potential equivalent to that of two equal point-masses? If the weight of each point-mass is
sufficiently small compared to the distance between the points then the answer is a pair of balls
of equal radius, one centered at each of the two points, but otherwise it is a certain domain of
revolution about the axis passing through the two points. The existence and uniqueness of such
a domain is known, but an explicit parameterization is known only in the plane where the region
is referred to as a Neumann oval. We construct a four-dimensional “Neumann ovaloid”, solving
explicitly this inverse potential problem.

1. Introduction

A domain Ω⊂R
n is called a quadrature domain if it admits a formula for the

integration of any harmonic and integrable function u in Ω,

(1)
∫

Ω
u dV = 〈T, u〉,

where T is a distribution (independent of u) such that T
∣∣
Rn\Ω=0. In particular,

when T is a measure, then by applying (1) to the Newtonian kernel it results that
the external potential of the body Ω with density one is equal to the potential
of the measure T . If T is a finitely-supported distribution of finite-order (so the
right-hand-side of (1) is a finite sum of weighted point evaluations of u and its
partial derivatives), then Ω is referred to as a quadrature domain in the classical
sense. There are many examples of quadrature domains in the classical sense in
the plane, where conformal mappings can be used to construct them (see e.g. [1]).
But in higher dimensional spaces, very few explicit examples are known [2] and [6],
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and the only known explicit example involving simple point evaluations (with no
partial derivatives appearing) is the ball. There are however existence results for
such quadrature domains [4] and [10].

1.1. Neumann’s oval

One of the simplest non-trivial examples of a quadrature domain (in the clas-
sical sense) in the plane is the region whose boundary is described by the real
algebraic curve (excluding the origin):

(2) (x2+y2)2 =α2(x2+y2)+4ε2x2.

This curve is referred to as Neumann’s oval (it is also known as the hippopede
of Booth). Denoting this region by Ω, the quadrature formula is a sum of two point
evaluations: ∫

Ω
u dA=πB ·u(−ε, 0)+πB ·u(ε, 0),

where the coefficient B is a function of α and ε. This quadrature identity was
discovered by C. Neumann in 1908 [9], see [1, Ch. 5, 14] or [11, Ch. 3] for details.

1.2. A four-dimensional Neumann ovaloid

More generally, we refer to a domain Ω⊂R
n as a Neumann ovaloid if it admits

a quadrature formula having two quadrature nodes with equal weights. We will
consider the case of a four-dimensional Neumann ovaloid Ω⊂R

4 satisfying:

(3)
∫

Ω
u dV =π2A {u(−ε, 0, 0, 0)+u(ε, 0, 0, 0)} ,

for some positive constant A.
As one should expect, Ω is axially-symmetric (see the next paragraph below).

However, the axially-symmetric domain in R
4 generated by the rotation of a two-

dimensional Neumann oval is not a Neumann ovaloid, and in fact, it is not even a
quadrature domain in the classical sense. Instead, as the first author showed in [6],
it has a quadrature formula supported on the whole segment joining the original
quadrature points.

Concerning uniqueness, suppose that the distribution T of (1) is a non-negative
measure with compact support in a hyperplane, as in the case of interest (3). If
Ω is a bounded quadrature domain for T , then Ω is symmetric with respect to the
same hyperplane and the complement of Ω is connected. This result was proved by
Sakai in the plane [10, §14], and for the n-dimensional case see [5] or [11, §4]. We
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may apply this to every hyperplane passing through the two quadrature points in
order to conclude that the Neumann ovaloid Ω is axially symmetric.

Since the Neumann ovaloid Ω is axially symmetric and has connected comple-
ment, it must be generated by rotation of a simply connected planar domain Dp.
Invoking the Riemann mapping theorem, there is a conformal map f from the unit
disk D to Dp, and f is unique once the value of f(0) and arg f ′(0) are prescribed. In
order to construct Ω, it thus suffices to determine explicitly the conformal map f .

Theorem 1. Let Ω⊂R
4 be the quadrature domain that satisfies the formula (3),

and let Dp denote the simply connected domain that generates Ω by rotation. Let f

be the conformal map from the unit disk D to Dp such that f(0)=0 and f ′(0)>0.
Then f is given by:

(4) f(ζ)= C

2πi

∫
{|w|=1}

1
w−ζ

(w2−1)
√

(w2+a2)(1+a2w2)
(w2−b2)(1−b2w2) dw,

for some real-valued positive constants a, b and C.

Remark 2. There are existence results for point mass quadrature domains [3],
[4] and [10]; the important attribute of Theorem 1 is the explicit formula for the
domain. For each ε and A, the Neumann ovaloid (3) is unique, this follows from the
uniqueness of bounded quadrature domains for non-negative measures with compact
support in a hyperplane (see [5], [10] and [11]).

In Section 2, we review some essential background on axially symmetric quadra-
ture domains in R

4 following [2] and [6]. We prove Theorem 1 in Section 3. The
proof is based on the approach introduced in [2] where A. Eremenko and the second
author used it to give a negative answer to the question of H. S. Shapiro [11] on the
algebraicity of quadrature domains in n>2 dimensions. In Section 4 we describe
how a and b of formula (4) are related when C=1 is fixed, and we show that the
quadrature formula for the ball is recovered from (3) in the limit as a and b tend to
zero. In Section 5, we present some graphics based on numerical implementation of
Theorem 1.

2. Preliminaries

Here we review an algebraic technique that applies to axially symmetric quadra-
ture domains in R

4. For further details see [2] and [6]. An equivalent definition of
the quadrature domain (1) is by the free boundary problem

(5)
{

Δu=T, in Ω
u= 1

2 |x|2,∇u=x on ∂Ω .
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The two notions are equivalent when the distribution T is compactly supported
in Ω. A solution u to the overdetermined system (5) is called the Schwarz potential
of Ω ([7] and [11]).

In the case of the Neumann ovaloid (3), the distribution T , as well as the
domain Ω has axial symmetry about the x1-axis. Hence the Schwarz potential u
can be represented by a function of two variables, namely

u(x1, x2, x3, x4)=U(X,Y ),

where X=x1, Y =
√

x2
2+x2

3+x2
4 and U extended to the lower plane by U(X,Y )=

U(X,−Y ). Then the function U satisfies the free boundary problem

(6)
{

ΔU+2Y −1 ∂U
∂Y =T, in Dp

U= 1
2 (X2+Y 2),∇U=(X,Y ), on ∂Dp

,

where Dp⊂R2 is the domain whose rotation generates Ω.
The main idea is to set V (X,Y )=Y U(X,Y ). Then V satisfies the Cauchy

problem

(7)

⎧⎨
⎩

ΔV =0, near ∂Dp

V = Y
2 (X2+Y 2), on ∂Dp

∇V =(XY, 1
2 (X2+3Y 2)), on ∂Dp

.

This enables us to solve the free boundary problem (6) by means of the Schwarz
function. Indeed, letting z=X+iY and Vz= 1

2
(
∂V
∂X −i∂V∂Y

)
, then on the bound-

ary ∂Dp,

Vz(X,Y )= 1
2XY −i

1
4(X2+3Y 2)= i

4(z̄2−2z̄z),

where z̄=X−iY . Next, we replace z̄ by S(z) on the boundary ∂Dp, and we obtain
that

(8) V (z)= 2Re
(∫

Vz(z, S(z)) dz
)

is the solution to the Cauchy problem (7) (see [6, Lemma 2.3]). The representation of
the solution V by (8) implies that the singularities of Vz(z, S(z))= i

4
(
S2(z)−2zS(z)

)
determine the distribution T in (5). Since we are interested only in the structure
of the distribution T , we may perturb this expression by a holomorphic function.
Thus we conclude that the singularities of the expression

(9) i

4
(
S2(z)−2zS(z)

)
+ i

4z
2 = i

4 (S(z)−z)2

govern the distribution T .
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Due to the axial symmetry, the support of the distribution T is on the x1=
X-axis. So if the expression in (9) has non-vanishing residue at the points (±ε, 0),
then in the integration (8) causes to a logarithmic term and consequently the sup-
port of T is on a segment joining these two points. This implies that Ω will not be
point masses quadrature domain. For example, if Dp is the Neumann oval (2), then

i

4 (S(z)−z)2 = i
(α2+2ε2)2

16

(
1

(z−ε)2 + 1
(z+ε)2

)
+i

α4

16ε

(
1

z−ε
− 1
z+ε

)
+h(z),

where h is holomorphic in Dp.
However, if we require that

(10) 1
2 (S(z)−z)2 = A

(z−ε)2 + A

(z+ε)2 +h(z),

then

V (X,Y )= 2Re
(∫

Vz(z, S(z)) dz
)

= −AY

(X−ε)2+Y 2 + −AY

(X+ε)2+Y 2 +H(X,Y ),

with H harmonic in Dp. Recalling that U(X,Y )=Y −1V (X,Y ), we see that the sin-
gular part of the Schwarz potential (5) comprises the expression A

(x1±ε)2+x2
2+x2

3+x2
4
,

which is the fundamental solution of the Laplacian in R
4 at the points (±ε, 0, 0, 0).

Hence
T =π2A

(
δ(−ε,0,0,0)+δ(+ε,0,0,0)

)
is the distribution of the Schwarz potential (5) and consequently the rotation of Dp

yields the Neumann Ovaloid (3), here δ denote the Dirac measure.

3. Construction of the Neumann ovaloid

As in the statement of Theorem 1, take f to be the conformal map from the
unit disk D into Dp such that f(0)=0 and f ′(0)>0 is real. With this normalization,
the conformal map is unique. By symmetry of the domain Dp under complex
conjugation, and uniqueness of the conformal map, f is real, i.e., f∗(w):=f(w)=
f(w).

Let S be the Schwarz function of the boundary ∂Dp. Following [2], we consider
the pullback of (10) under the conformal map f . Using the relation S(f(w))=
f∗(1/w)=f(1/w), we have

(11) 1
2

(
f(w)−f

(
1
w

))2

= A

(f(w)−ε)2 + A

(f(w)+ε)2 +h(f(w)).
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Setting

(12) g(w)=
(
f(w)−f

(
1
w

))2
,

then obviously g(1/w)=g(w). Using this fact, we can use (11) to analytically con-
tinue g(w) to the entire plane as a meromorphic (and in fact rational) function.
Namely, we prove the following:

Lemma 3. The function g is a rational function of degree exactly 8 and takes

the form:

(13) g(w)= c(w2−1)2(w2+a2)(1+a2w2)
(w2−b2)2(1−b2w2)2 ,

with a, b, c real constants and a, b �=±1.

Proof of Lemma 3. The points ±b∈D are the preimages of ±ε∈Dp under f .
From (11) g has a pole of order two at ±b and no other poles in D. Since g

( 1
w

)
=

g(w), g has also poles of order two at ±1
b . There are no other poles in C\D,

since otherwise we would have a contradiction to (10). Thus, g is a meromorphic
function in the entire plane with exactly four poles of order two. If g(0)=0, then
the conformal map satisfies f(w)→∞ as w→∞, and that would imply that the
Schwarz function has a pole at the origin, which contradicts (10). This implies that
g is a rational function of degree exactly 8.

Having determined the location of the poles, we have

g(w)= P (w)
(w2−b2)2(1−b2w2)2 ,

where P is a polynomial of degree 8. From (12) we see that g(±1)=0 and the zeros
have order two. Hence g has additional four zeros. So suppose w0 is a zero of g, then
w0 �=0 since g(0) �=0. Note that f(w)=−f(−w), which follows from the symmetry
of Dp with respect to the real and imaginary axes, hence −w0 is a zero of g, and
by (12) g vanishes ±1/w0. Thus

P (w)= c(w2−1)2(w2−w2
0)(w2−1/w2

0).

Now set w=x+iy and w0=aeiθ for some positive a, then

(x2−w2
0)(x2−1/w2

0)=x4−x2(a2ei2θ+a−2e−i2θ)+1.

Since f(w)=f∗(w)=f(ẇ), g is non-negative on the real axis. Hence the above
expression is real, and therefore

a2ei2θ+a−2e−i2θ = a2ei2θ+a−2e−i2θ = a2e−i2θ+a−2ei2θ,
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which results in the identity

a2 sin 2θ= a−2 sin 2θ.

Thus either a=1 or θ=0 or θ= π
2 . Note that a=1 is impossible since then √

g would
have branch points on the unit circle and consequently f is not single valued. If
θ=0, then

(x2−w2
0)(x2−1/w0)2 =x4−x2(a2+a−2)+1

=
(
x2− a2+a−2

2

)2

+1−
(
a2+a−2

2

)2

is negative for some x when a �=±1. Hence θ= π
2 and then

(x2−w2
0)(x2−1/w0)2 =x4+x2(a2+a−2)+1≥x4+2x2+1 = (x2+1)2 > 0.

Thus w0=ia, and we have

P (w)= c(w2−1)2(w2+a2)(1+a2w2)

and we have obtained (13). �

Applying Lemma 3, and taking the square root in (12) we have:

f(w)−f

(
1
w

)
=
√

g(w) :=
C(w2−1)

√
(w2+a2)(1+a2w2)

(w2−b2)(1−b2w2) ,

where C=
√
c. Multiplying by (2πi(w−ζ))−1 and integrating with respect to dw

along the contour {|w|=1}, we obtain

1
2πi

∫
{|w|=1}

f(w)−f(1/w)
w−ζ

dw= 1
2πi

∫
{|w|=1}

√
g(w)

w−ζ
dw.

The term f(1/w)
w−ζ integrates to zero since it is analytic in C\D and

f(1/w)
w−ζ

=O(1/|w|2), as w−→∞.

Since f(w) is analytic in D, we may apply the Cauchy integral formula:

f(ζ)= 1
2πi

∫
{|w|=1}

f(w)
w−ζ

dw= 1
2πi

∫
{|w|=1}

√
g(w)

w−ζ
dw.

Thus we have:

(14) f(ζ)= C

2πi

∫
{|w|=1}

1
w−ζ

(w2−1)
√

(w2+a2)(1+a2w2)
(w2−b2)(1−b2w2) dw,

and this completes the proof of Theorem 1.
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4. The relation between a and b

Notice that the quadrature domain depends on only two parameters, ε and A,
while the conformal map f appears to depend on three real parameters, a≥0, b≥0,
and C>0. However, fixing C>0, then the value of a is determined by the value of b.
In this section, we fix C=1, which gives that f is the identity map when a=b=0.
We will show how the parameters a and b are related, and that as a and b tend to
zero, then the quadrature formula for the unit ball is recovered.

Notice that (10) provides a constraint relating a and b. Namely, we observe that
the residue of (S(z)−z)2 at z=±ε vanishes, which is equivalent to Res(gf ′ :±b)=0.

Since the pole is of order two, we have:

(15) Res(gf ′ : b)= d

dζ

(
(ζ−b)2g(ζ)f ′(ζ)

) ∣∣
ζ=b

=0.

Setting

H(ζ, a, b)= (ζ−b)2g(ζ)= (w2−1)2(w2+a2)(1+w2a2)
(w+b)2(1−w2b2)2 ,

then by the formula of f (4),

Res(gf ′ : b)= 1
2πi

∫
{|w|=1}

[
∂H
∂ζ (b, a, b)
(w−b)2 +2H(b, a, b)

(w−b)3

]√
g(w) dw

=:F (a, b).
(16)

Thus we conclude that the rotation of the domain Dp generates the Neumann oval-
oid (3) if and only if F (a, b)=0 for some positive a and b. We shall use the implicit
function theorem in order to justify that identity (16) determines the parameter a

as a function of b.
To this end, the expressions ∂H

∂ζ (b, a, b) and H(b, a, b) can be computed using
symbolic computation software:
(17)
∂H

∂ζ
(ζ, a, b)

∣∣∣
ζ=b

= a2+b2(−4a4+4a2−1)+4b4(a4−a2+1)+b6(a4+4a2+4)+3b8a2

4b11+8b9−8b5−4b3 ,

(18) H(b, a, b)= a2+b2(a4+1)+b4a2

4b6+8b4+4b2 .

It follows from the above computations that the functional F (a, b) is not con-
tinuous when b=0. Hence, we set a=

√
δ and

G(δ, b)= b3F (
√
δ, b).
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Then obviously F (a, b)=0 for (a, b)∈R2
+ if and only if G(δ, b)=0. We shall now

compute the Taylor expansion of G near the origin. From (17) and (18) we see that

G(δ, 0)= 1
2πi

∫
{|w|=1}

(
−δ

4

)
(w2−1)

√
(w2+δ)(1+δw2)
w4 dw.

Hence G(0, 0)=0 and

∂G

∂δ
(0, 0)= lim

δ→0

1
δ
G(δ, 0)

= lim
δ→0

1
2πi

∫
{|w|=1}

(
−1

4

)
(w2−1)

√
(w2+δ)(1+δw2)
w4 dw

= 1
2πi

∫
{|w|=1}

(
−1

4

)
(w2−1)w

w4 dw=−1
4 .

Since both b3 ∂H
∂ζ (b, 0, b) and b3H(b, 0, b) are of order O(b2) for b near zero,

∂G
∂b (0, 0)=0 and

∂G

∂b
(0, b)= 1

2πi

∫
{|w|=1}

[(
∂2

∂b∂ζ

(
b3H(b, 0, b)

)
(w−b)2 +2

∂
∂b

(
b3H(b, 0, b)

)
(w−b)3

)

× (w2−1)w
(w2−b2)(1−b2w2)

]
dw+O(b2).

From (17) and (18) we see that ∂2

∂b∂ζ

(
b3H(b, 0, b)

)
= b

2 +O(b2) and ∂
∂b

(
b3H(b, 0, b)

)
=

O(b2), hence

∂2G

∂b2
(0, 0)= lim

b→0

1
b

∂G

∂b
(0, b)= 1

2πi

∫
{|w|=1}

(
1
2

)
(w2−1)w

w4 dw= 1
2 .

In a similar manner we have computed ∂2G
∂b∂δ (0, 0)= ∂2G

∂δ2 (0, 0)=0 (see Appendix A),
hence

(19) G(δ, b)= 1
4
(
−δ+b2

)
+O(δ3)+O(b3).

Thus by the implicit function theorem there is a function δ(b) such that G(δ(b), b)=0
for b near zero and positive. Moreover, we see from (19) that δ=δ(b)=b2+O(b3).
Hence the functional F (a, b), which is defined by (16), vanishes near the origin on
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a curve, in which a≈b, or more precisely

(20) a2 = b2+O(b3).

The coefficient A of the quadrature identity (3) can be computed as follows.
When F (a, b)=0, then (10) holds and therefore by (11)

A= 1
4πi

∫
{|z−ε|=ρ}

(S(z)−z)2 (z−ε) dz

= 1
4πi

∫
{|w−b|=ρ̃}

g(w) (f(w)−f(b)) f ′(w) dw.

Writing f(w)−f(b)=(w−b) (f ′(b)+Φ(b)), where Φ(b)=0, then by Lemma 3,

A=A(b)= 1
4πi

∫
{|w−b|=ρ̃}

(w2−1)2(w2+a2)(1+w2a2) (f ′(b)+Φ(b)) f ′(w)
(w+b)2(1−w2b2)2

dw

(w−b)

= 1
2

(b2−1)2(b2+a2)(1+b2a2)
(2b)2(1−b4)2 (f ′(b))2 .

The estimate (20) enables us to examine the asymptotic behavior as b goes to zero.
We see that

lim
b→0

A(b)= 1
4(f ′(0))2,

and since when b→0, the conformal mapping f tends to the identity, we conclude
that limb→0 A(b)=A(0)= 1

4 . On the other hand, letting ε tend to zero in (3), then
the right-hand side goes to 2π2A(0)u(0, 0, 0, 0)= π2

2 u(0, 0, 0, 0), and the domain Ω
tends to the unit ball. Hence the limit coincides with the mean value property of
harmonic functions.

5. Numerics

Numerical implementation of Theorem 1 requires determining appropriate
choices of parameters. The parameter C simply scales the domain, so that there is
only a one-parameter family of different shapes. While varying the choice of b, we
choose a to satisfy the relation (15). This is done numerically using Matlab. We
then use the condition f(b)=ε (where C appears as a scalar) in order to choose
C so that ε=1. This leads to a one-parameter family of different shapes having
the same “foci” ±ε=±1. We note that this family can also be interpreted as a
four-dimensional Hele-Shaw flow with two point sources (located at the foci).

We used Matlab to perform numerical integration of the Cauchy transform
appearing in (4). This requires some care in checking that the branch of the square
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Figure 1. Profiles of some confocal ovaloids plotted using Matlab. Each curve is the image of the
unit circle under a conformal mapping f obtained as a numerical Cauchy transform.

root is defined appropriately. The radius of the contour of integration should also
be increased slightly (without crossing any singularities of the integrand); this is a
convenient way to avoid numerically integrating through the simple pole presented
by the fact that ζ is on the unit circle.

Having carried out these steps, we display some images of the profile curves
for the resulting confocal Neumann ovaloids in Figure 1.

A. Appendix

Here we shall provide further details for the computations of the second order
derivatives ∂2G

∂b∂δG(0, 0) and ∂2G
∂2δ G(0, 0). From the expressions (17) and (18) we see

that
∂G

∂δ
(δ, b)= 1

2πi

∫
{|w|=1}

[(
δ+b2(−4δ2+4δ−1)

−4(w−b)2 +2 bδ

4(w−b)3

)

× (w2−1)(1+2δw2+w4)
(w2−b2)(1−w2b2)2

√
(w2+δ)(1+w2δ)

]
dw

+ 1
2πi

∫
{|w|=1}

[(
1+b2(−8δ+4)
−4(w−b)2 +2 b

4(w−b)3

)

× (w2−1)
√

(w2+δ)(1+w2δ)
(w2−b2)(1−w2b2)

]
dw+O(b2).(21)
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Letting δ=0 and recalling that ∂G
∂δ (0, 0)=−1

4 , we see that

∂G

∂δ
(0, b)− ∂G

∂δ
(0, 0)

= 1
2πi

∫
{|w|=1}

[(
−1

4(w−b)2 + 2b
4(w−b)3

)
(w2−1)w

(w2−b2)(1−w2b2)

]
dw+ 1

4 +O(b2)

= 1
2πi

∫
{|w|=1}

[(
2b

4(w−b)3

)
(w2−1)w

(w2−b2)(1−w2b2)

]
dw

+ 1
2πi

∫
{|w|=1}

1
4

[
(w2−1)w

(
1
w4 −

1
(w−b)2(w2−b2)(1−w2b2)

)]
dw+O(b2).

In the last equality we used the fact that

(22) 1
2πi

∫
{|w|=1}

(w2−1)w
w4 dw=1.

By Taylor expansion,

1
w4 −

1
(w−b)2(w2−b2)(1−w2b2) = 1

w4

(
−2b
w

+O(b2)
)
,

and hence
∂2G

∂b∂δ
(0, 0)= lim

b→0

1
b

(
∂G

∂δ
(0, b)− ∂G

∂δ
(0, 0)

)

= 1
2πi

∫
{|w|=1}

[(
2(w2−1)w

4w5

)]
dw− 1

2πi

∫
{|w|=1}

[(
2(w2−1)w

4w5

)]
dw

=0.

We turn now to the computation of ∂2G
∂δ2 (0, 0). Using (21) and (22), we have that

∂G

∂δ
(δ, 0)− ∂G

∂δ
(0, 0)

= 1
2πi

∫
{|w|=1}

−1
8

[
δ(w2−1)(1+2δw2+w4)
w4

√
(w2+δ)(1+w2δ)

]
dw

+ 1
2πi

∫
{|w|=1}

−1
4

[
(w2−1)

√
(w2+δ)(1+w2δ)
w4

]
dw+ 1

4

= 1
2πi

∫
{|w|=1}

−1
8

[
δ(w2−1)(1+2δw2+w4)
w4

√
(w2+δ)(1+w2δ)

]
dw

+ 1
2πi

∫
{|w|=1}

1
4

[
(w2−1)w

w4

(
1−

√
1+δ

(
1
w2 +w2

)
+δ2

)]
dw.



A four-dimensional Neumann ovaloid 197

Taylor expansion√
1+δ

(
1
w2 +w2

)
+δ2 =1+ δ

2

(
1
w2 +w2

)
+O(δ2)

yields that

∂2G

∂δ2 G(0, 0)= lim
δ→0

1
δ

(
∂G

∂δ
G(δ, 0)− ∂G

∂δ
G(0, 0)

)

= 1
2πi

∫
{|w|=1}

−1
8

[
(w2−1)(1+w4)

w5

]
dw

+ 1
2πi

∫
{|w|=1}

1
8

[
(w2−1)w

w4

(
1
w2 +w2

)]
dw

= 1
8−

1
8 =0.
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