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1. Introduction

Motivic homotopy theory, introduced by Voevodsky and Morel [52], [54], [55], [69]–[72], is

a successful application of abstract homotopy theory to solve problems in number theory

and algebraic geometry (see [57], [67], [73], for example).

Over SpecC, one may view the p-completed stable motivic homotopy category as

a deformation of the p-completed classical stable homotopy category. The parameter

of the deformation is given by an element τ in π0,−1 of the p-completed motivic sphere

spectrum, which can be intuitively viewed as the standard coordinate t 7!e2πit on Gm.

Formally speaking, following Hu–Kriz–Ormsby [28], the element τ is the inverse limit

of the Bockstein preimages of the Morel classes [53] of roots of unity. Dugger–Isaksen

[14] have identified the generic fiber “τ=1” with the classical stable homotopy category,

and the first main result of this paper identifies the special fiber “τ=0” with the derived

category of BP∗BP-comodules that are concentrated in even degrees, which is entirely

algebraic in nature. Moreover, under this identification, the motivic Adams–Novikov

spectral sequence for the motivic sphere spectrum corresponds to the τ -Bockstein spectral

sequence. This deformation induces a deformation of motivic Adams spectral sequences.

The second main result of this paper identifies the motivic Adams spectral sequence

for the motivic sphere spectrum at the special fiber “τ=0” with the algebraic Novikov

spectral sequence for the classical sphere spectrum, which is again entirely algebraic.
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This deformation makes it possible for Isaksen, the second and third authors [32], [33]

to compute classical stable homotopy groups of spheres at least to the 90-stem, with

ongoing computations into even higher dimensions.

1.1. Main results

In this paper, we prove two results in the stable motivic homotopy theory over SpecC,
with connections to chromatic homotopy theory and applications to classical homotopy

theory.

The first result identifies the special fiber “τ=0” of the motivic deformation with the

derived category of BP∗BP-comodules. We prove an ∞-category version of a conjecture

due to the first author and Isaksen in 2016 [19]. The derived category in the following

Theorem 1.1 is understood as a stable ∞-category in the sense of Lurie in the book

Higher Algebra [41, §1.3.2].

Theorem 1.1. (Theorem 1.13) At each prime p, there is an equivalence of stable

∞-categories equipped with t-structures,

Db(BP∗BP-Comodev)≃ Ŝ0,0/τ -Modb
harm,

between the bounded derived category of p-completed BP∗BP-comodules that are con-

centrated in even degrees, and the category of harmonic motivic left-module spectra over

Ŝ0,0/τ , whose MGL-homology has bounded Chow–Novikov degree, with morphisms the

Ŝ0,0/τ -linear maps.

Here, Ŝ0,0/τ is a motivic E∞-ring spectrum, which is also known as the cofiber of τ .

The motivic spectrum MGL is the algebraic cobordism spectrum introduced by Vo-

evodsky [69] and studied by Levine–Morel [39], Panin–Pimenov–Röndigs [58] and many

others. A motivic left-module spectrum over Ŝ0,0/τ is harmonic, if it is Ŝ0,0/τ -cellular

and the map to its MGL-completion induces an isomorphism on π∗,∗. See Definition 1.6

for a precise definition. The Chow–Novikov degree is the topological degree minus twice

the motivic weight.

The derived category of p-completed BP∗BP-comodules that are concentrated in

even degrees is also known as the derived category of quasi-coherent sheaves on the

moduli stack of formal groups over Zp-algebras. This connection is foundational to

chromatic homotopy theory, and is due to Quillen [61] and Morava [51] (see also Goerss–

Hopkins [20], [23]). Our theorem further connects these categories to motivic homotopy

theory.

The equivalence of stable∞-categories in Theorem 1.1 is in fact symmetric monoidal.

See Remark 4.15 for more details.
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By an Ind-object argument, we have an unbounded version of Theorem 1.1 that

connects to Hovey’s [24] derived category Stable(BP∗BP). Since every BP∗BP-comodule

splits into its even-graded and odd-graded parts, the underlying stable ∞-category of

Hovey’s unbounded derived category Stable(BP∗BP) splits accordingly:

Stable(BP∗BP)≃Stable(BP∗BP-Comodev)×Stable(BP∗BP-Comododd).

Corollary 1.2. There is an equivalence of stable ∞-categories at each prime p,

Stable(BP∗BP-Comodev)≃ Ŝ0,0/τ -Modcell,

between Hovey’s unbounded derived category of BP∗BP-comodules that are concentrated

in even degrees and the category of cellular motivic left-module spectra over Ŝ0,0/τ .

After the announcement of Theorem 1.1, alternative proofs of certain versions of

Corollary 1.2 have appeared in work of Krause [35] and Pstra̧gowski [60].

The second result identifies the motivic Adams spectral sequence at the special fiber

“τ=0” with the algebraic Novikov spectral sequence. It can be used to systematically

compute a huge number of classical Adams differentials that are hard to obtain by other

methods.

It is known to Isaksen [29, Proposition 6.2.5] and the first author [18, Corollary 3.14]

that there is an isomorphism between the motivic homotopy groups of Ŝ0,0/τ and the

classical Adams–Novikov E2-page. Our second result shows that there is an isomorphism

of spectral sequences that converge to them.

Theorem 1.3. (Theorem 1.17) For each prime p, there is an isomorphism of spec-

tral sequences between the motivic Adams spectral sequence for Ŝ0,0/τ and the algebraic

Novikov spectral sequence for the classical sphere spectrum Ŝ0.

Based on Theorem 1.3, Isaksen, the second and third authors [32], [33] have com-

puted classical stable stems at least to the 90-stem, with ongoing computations into even

higher dimensions. Computations of many historically difficult differentials in the range

up to the 45-stem are included in the appendix.

In contrast to the original motivations of motivic homotopy theory, Isaksen and

his collaborators [29]–[30], [34] have recently begun to reverse the information flow and

applied stable motivic homotopy theory to obtain computational results in the classical

stable homotopy theory. Our Theorems 1.1 and 1.3 have the same spirit and further

deepen the connections to chromatic homotopy theory. Using motivic homotopy theory,

we build up a new connection between the classical Adams spectral sequence and the

Adams–Novikov spectral sequence, that allows us to compute stable stems in a much

larger range than was previously possible.
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Remark 1.4. Our Theorems 1.1 and 1.3 actually hold for any algebraically closed

field of characteristic zero. In fact, it was clear in Dugger–Isaksen [14] that all related

computations in algebraic closed field of characteristic zero work in the same way as

over C, which are based on Voevodsky’s computation of the motivic Steenrod algebra

(see [72, Theorem 4.47] and [70, §11]).

1.2. The stable ∞-category of motivic spectra over Ŝ0,0/τ

We work with the stable ∞-category of motivic spectra over SpecC, denoted by

C-mot-Spectra.

This is a symmetric monoidal ∞-category in the sense of Lurie [41, §2.1.2].

There are several approaches for the construction of this category C-mot-Spectra.

For example, we can take the category of S-modules constructed by Hu [26], which is a

symmetric monoidal model category, and we take C-mot-Spectra as the underlying ∞-

category of Hu’s model category. There is another construction entirely in ∞-categorical

terms by Robalo [63]. In fact, any symmetric monoidal stable ∞-category satisfying the

universal properties of Corollary 2.39 in [63] would serve our purposes.

For a fixed prime p, Voevodsky (see [72, §3]) constructed the mod-p motivic

Eilenberg–Mac Lane spectrum that represents the mod-p motivic cohomology. We de-

note it by HFmot
p . By arguments in Dundas–Röndigs–Østvær [15, Example 3.4], HFmot

p

is an E∞-algebra in C-mot-Spectra.

Its value at a point is

(HFmot
p )∗,∗ =Fp[τ ],

where τ is in bi-degree (0,−1).

We denote by S0,0 the motivic sphere spectrum. For the grading, we denote by S1,0

the suspension spectrum of the simplicial sphere S1, and by S1,1 the suspension spectrum

of the multiplicative group Gm=A1\{0}.
Let Ŝs,w be the HFmot

p -completed motivic sphere spectrum in bi-degree (s, w). It

is a theorem of Hu–Kriz–Ormsby [27], [28] that Ŝ0,0 and the usual p-completion of the

motivic sphere spectrum have isomorphic motivic homotopy groups. Moreover, Ŝ0,0 is

an E∞-algebra in the symmetric monoidal ∞-category C-mot-Spectra. See §7 for more

details regarding this fact and discussion on the HFmot
p -completion.

We denote by

Ŝ0,0-Mod

the stable ∞-category of motivic module spectra over Ŝ0,0.
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The class τ can be lifted to a map between HFmot
p -completed motivic sphere spectra

τ : Ŝ0,−1 −! Ŝ0,0

that induces a non-zero map on mod-p motivic homology. The reader should be warned

that τ does not further lift to a map between uncompleted motivic sphere spectra. See

Dugger–Isaksen [14] and Hu–Kriz–Ormsby [28] for more details. We denote by Ŝ0,0/τ

the cofiber of τ :

Ŝ0,−1 τ−−! Ŝ0,0 −! Ŝ0,0/τ −! Ŝ1,−1

Convention 1.5. All smash products without subscript ∧ in this paper are under-

stood taken over the HFmot
p -completed sphere spectrum Ŝ0,0. We may still write ∧

Ŝ0,0

in a few places to emphasize that the smash product is taking over Ŝ0,0.

We have suspension functors

Σs,w(−)= Ŝs,w∧
Ŝ0,0−

in the category Ŝ0,0-Mod for any s, w∈Z. In particular, the suspension functor Σ1,0 gives

the translation automorphism (in the sense of Lurie [41, §1.3.2]) of the stable ∞-category

Ŝ0,0-Mod.

Given an E∞-algebra R∈Ŝ0,0-Mod, denote by

R-Mod

the stable ∞-category of left modules over R in Ŝ0,0-Mod.

Following Dugger–Isaksen [13, Definition 2.10], denote by

R-Modcell

the smallest stable subcategory containing R that is closed under arbitrary small colimits

and suspension by Ŝs,w for all p, q∈Z. We say that an object in R-Mod is R-cellular if

it is contained in R-Modcell.

Recall from Lurie [41, Definition 1.1.3.2] that a stable subcategory of a stable ∞-

category is a full subcategory containing a zero object and stable under the formation

of fibers and cofibers. We warn the reader that not all motivic spectra in Ŝ0,0-Mod are

weakly equivalent to a cellular object.



the special fiber of the motivic deformation is algebraic 325

It is a theorem of the first author [18] that Ŝ0,0/τ is an E∞-algebra in Ŝ0,0-Mod at

all primes p. In fact, the first author carried out all details in [18] for the p=2 case, using

the vanishing regions of π∗,∗Ŝ0,0/τ . It is straightforward to use the same arguments for

all primes p. See [18, §1.2, Theorem 1.1 and explanations] for more details.

We therefore have defined stable ∞-categories

Ŝ0,0/τ -Mod and Ŝ0,0/τ -Modcell.

We can view the ring map

Ŝ0,0 −! Ŝ0,0/τ

to exhibit Ŝ0,0/τ as the special fiber of the deformation parameterized by τ . The generic

fiber of this deformation is τ−1Ŝ0,0.

Let MGL be the cellular motivic algebraic cobordism spectrum introduced by Vo-

evodsky [69] and studied by Levine-Morel [39], Panin–Pimenov–Röndigs [58] and many

others. It is an E∞-algebra in C-mot-Spectra (See [26, Theorem 14.2] for example).

We define

MUmot :=MGL∧S0,0 Ŝ0,0.

It is therefore an E∞-algebra in Ŝ0,0-Modcell. There is a natural map

MUmot =MGL∧S0,0 Ŝ0,0 −!MGL∧
HFmot

p

to the HFmot
p -completion of MGL. As we will explain in Proposition 7.2, this map induces

an isomorphism on π∗,∗. Their motivic homotopy groups are computed by Hu–Kriz–

Ormsby [28] and Dugger–Isaksen [14, §8.3]:

π∗,∗MUmot =π∗,∗MGL∧
HFmot

p
=Zp[τ ][x1, x2, ... ].

Here, Zp is the p-adic integers and xi is in bi-degree (2i, i). Since π∗,∗MGL is much more

complicated, we will mostly work with MUmot instead of MGL in our paper.

For any X∈Ŝ0,0-Modcell, we define the MUmot-homology of X as

MUmot
∗,∗ X =π∗,∗(MUmot∧

Ŝ0,0X).

By adjunction, it is clear that the MUmot-homology of X equals to MGL∗,∗X when

taking X as its underlying motivic spectrum in C-mot-Spectra.

The spectrum MUmot/τ :=Ŝ0,0/τ∧
Ŝ0,0MUmot is an E∞-algebra in Ŝ0,0/τ -Modcell.

Its motivic homotopy groups are

π∗,∗(MUmot/τ)=Zp[x1, x2, ... ] =MUmot
∗,∗ /τ.

Forgetting the motivic weight, the bigraded ring MUmot
∗,∗ /τ can be identified as the

singly graded ring MU∗ completed at the prime p.
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Definition 1.6. Let X be a motivic spectrum in Ŝ0,0/τ -Mod. We say that X is

harmonic, if X is Ŝ0,0/τ -cellular and the map

X −!X∧
MGL

induces an isomorphism on π∗,∗. We denote by

Ŝ0,0/τ -Modharm

the full stable ∞-subcategory of harmonic Ŝ0,0/τ -module spectra.

Here the MGL-nilpotent completion X∧
MGL is understood taken in C-mot-Spectra.

For a precise definition, see §7 and [14], [28]. One could also define the MUmot-completion

X∧
MUmot in Ŝ0,0-Mod for any X in Ŝ0,0-Modcell. By adjunction, it is clear that the two

completions X∧
MGL and X∧

MUmot are equivalent:

X∧
MGL

≃−−!X∧
MUmot .

So we may equivalently define a cellular Ŝ0,0/τ -module to be harmonic, if the map to its

MUmot-completion induces an isomorphism on π∗,∗.

It is clear that the spectrum MUmot/τ is harmonic. See §4.1 for more examples and

non-examples.

We will define t-structures on certain stable ∞-categories of motivic spectra, such as

MUmot/τ -Modcell and Ŝ0,0/τ -Modharm. Recall that, by Lurie’s [41, Definition 1.2.1.4],

a t-structure on a stable ∞-category is a t-structure on its homotopy category, which is a

triangulated category. To describe these t-structures, we define the Chow–Novikov degree

of an element that belongs to the bigraded homotopy groups of a motivic spectrum.

Definition 1.7. For any motivic spectrumX, consider its bigraded motivic homotopy

groups

πs,wX.

Here, s is the topological degree under the Betti realization, and w is the motivic weight.

The Chow–Novikov degree of an element in πs,wX is defined as s−2w.

We say that π∗,∗X is concentrated in Chow–Novikov degrees I, where I is a set of

integers, if all non-zero elements in π∗,∗X are concentrated in Chow–Novikov degrees

belonging to I.

For example, the homotopy groups of MUmot/τ are concentrated in Chow–Novikov

degree zero, while the homotopy groups of MUmot are concentrated in non-negative even

Chow–Novikov degrees.
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Definition 1.8. (1) We define

MUmot/τ -Modb
cell

as the stable full subcategory of MUmot/τ -Modcell spanned by objects whose homotopy

groups are concentrated in bounded Chow–Novikov degrees.

(2) We define

MUmot/τ -Modb,⩾0
cell ,

MUmot/τ -Modb,⩽0
cell ,

MUmot/τ -Mod♡
cell

as the full subcategories of MUmot/τ -Modb
cell spanned by objects whose homotopy groups

are concentrated in non-negative, non-positive and zero Chow–Novikov degrees, respec-

tively.

(3) We define

Ŝ0,0/τ -Modb
harm

as the stable full subcategory of Ŝ0,0/τ -Modharm spanned by objects whose MUmot-

homology groups are concentrated in bounded Chow–Novikov degrees.

(4) We define

Ŝ0,0/τ -Modb,⩾0
harm,

Ŝ0,0/τ -Modb,⩽0
harm,

Ŝ0,0/τ -Mod♡
harm

as the full subcategories of Ŝ0,0/τ -Modb
harm spanned by objects whose MUmot-homology

groups are concentrated in non-negative, non-positive and zero Chow–Novikov degrees

respectively.

Definition 1.9. We define

MU∗-Modev

as the abelian category of graded modules that are concentrated in even degrees over the

p-completed ring MU∗, and

MU∗MU-Comodev,

BP∗BP-Comodev

as the abelian categories of graded comodules that are concentrated in even degrees over

the p-completed Hopf algebroids MU∗MU and BP∗BP, respectively.
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We define

Db(MU∗-Modev),

Db(MU∗MU-Comodev),

Db(BP∗BP-Comodev)

as their bounded derived categories.

Proposition 1.10. ([51, Proposition 1.2.3]) At each prime p, the categories

BP∗BP-Comodev and MU∗MU-Comodev

are equivalent as abelian categories.

The abelian categories of modules over p-completed MU∗ and BP∗ are not equiva-

lent. However, Proposition 1.10 states that the abelian categories of even comodules over

p-completed MU∗MU and BP∗BP are equivalent. We will work with MU and MUmot

since they are E∞-algebras in the corresponding categories while BP is not, due to a

recent result of Lawson [38].

Theorem 1.11. (1) The full subcategories

MUmot/τ -Modb,⩾0
cell and MUmot/τ -Modb,⩽0

cell

define a t-structure on MUmot/τ -Modb
cell.

(2) The functor

π∗,∗:MUmot/τ -Mod♡
cell −!MU∗-Modev

is an equivalence.

(3) There exists an equivalence of stable ∞-categories

MUmot/τ -Modb
cell −!Db(MU∗-Modev),

that preserves the given t-structures and extends the functor π∗,∗ on the heart.

Remark 1.12. The functor π∗,∗ naturally lands in the category of bigraded modules

over the bigraded ring MUmot
∗,∗ /τ . Since all elements of this bigraded ring are concentrated

in Chow–Novikov degree zero, it can be identified as the single graded ring MU∗ by

forgetting the motivic weight. A similar comment applies to the following theorem as

well.
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Theorem 1.13. (1) The full subcategories

Ŝ0,0/τ -Modb,⩾0
harm and Ŝ0,0/τ -Modb,⩽0

harm

define a t-structure on Ŝ0,0/τ -Modb
harm.

(2) The functor

MUmot
∗,∗ : Ŝ0,0/τ -Mod♡

harm −!MU∗MU-Comodev

is an equivalence.

(3) There exists an equivalence of stable ∞-categories

Ŝ0,0/τ -Modb
harm −!Db(MU∗MU-Comodev)

that preserves the given t-structures and extends the functor MUmot
∗,∗ on the heart.

Remark 1.14. The statements in Theorems 1.11 and 1.13 can be connected by the

following commutative diagram of stable ∞-categories with t-structures:

Ŝ0,0/τ -Modb
harm

//

−∧ ̂
S0,0/τ

MUmot/τ

��

Db(MU∗MU-Comodev)

��

MUmot/τ -Modb
cell

// Db(MU∗-Modev)

The vertical functor on the right is the forgetful functor.

Remark 1.15. From a deformation perspective, our Theorem 1.13 gives a new con-

nection between the moduli stack of formal groups and the classical stable homotopy

theory.

From the deformation

Ŝ0,0/τ

special

fiber
 −−−−− Ŝ0,0

generic

fiber
−−−−−! τ−1Ŝ0,0

parameterized by τ , we have two adjunctions of stable ∞-categories:

(Ŝ0,0-Mod)τ=0
 −−! Ŝ0,0-Mod−!

 − (Ŝ0,0-Mod)τ=1.

We call this deformation a “motivic deformation” intuitively.
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By Dugger–Isaksen [14], on the generic fiber, the full subcategory of cellular objects

in

(Ŝ0,0-Mod)τ=1 := τ−1Ŝ0,0-Mod

is equivalent to the classical stable homotopy category at the prime p. In fact, Dugger–

Isaksen showed that the motivic homotopy groups of the τ -inverted sphere spectrum

are isomorphic to that of the classical sphere spectrum. By an inductive argument, one

can show that a similar statement is true for all finite cellular objects. This shows that

τ -inverted Betti realization functor is fully faithful. It is also essentially surjective, since

the Betti realization functor admits a section with constant weight zero. An Ind-object

argument (similar to the proof of Corollary 1.2) gives us the claim.

Our main theorem shows that, on the special fiber, the full subcategory of harmonic

objects in the category

(Ŝ0,0-Mod)τ=0 := Ŝ0,0/τ -Mod

is equivalent to the derived category of comodules that are concentrated in even degrees

over the p-completed Hopf algebroid MU∗MU. By Quillen’s theorem [61], the latter can

be identified with the derived category of quasi-coherent sheaves on the moduli stack of

formal groups over Zp-algebras.

Remark 1.16. In our proof of Theorem 1.13, we set up a strongly convergent motivic

Adams–Novikov spectral sequence in the category Ŝ0,0/τ -Modb
cell,

Ext∗,∗,∗
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y )=⇒ [Σ∗,∗X,Y ∧

MUmot ]Ŝ0,0/τ
.

This is stated as Theorem 5.6 in §5. Classically, the Adams–Novikov spectral sequence

is set up in such a way that the first variable is the sphere spectrum. Our construction

could be generalized to an abstract setting and applied to the classical situation when the

first variable X is arbitrary. We will discuss this case in a general framework in future

work.

1.3. The motivic Adams spectral sequence and the algebraic Novikov

spectral sequence

The following Theorem 1.17 establishes an isomorphism between the algebraic Novikov

spectral sequence and the motivic Adams spectral sequence for Ŝ0,0/τ .

Theorem 1.17. At each prime p, there is an isomorphism of tri-graded spectral

sequences: the motivic Adams spectral sequence for Ŝ0,0/τ , which converges to the motivic

homotopy groups of Ŝ0,0/τ , and the regraded algebraic Novikov spectral sequence, which

converges to the Adams–Novikov E2-page for the sphere.



the special fiber of the motivic deformation is algebraic 331

The indexes are indicated in the following diagram:

Exts,2wBP∗BP/I(Fp, I
a−s/Ia−s+1)

Algebraic Novikov SS

��

∼= // Exta,2w−s+a,w
Amot

∗,∗
(Fp[τ ],Fp)

Motivic Adams SS

��

Exts,2wBP∗BP(BP∗,BP∗)
∼= // π2w−s,w(Ŝ0,0/τ).

Here, I=(p, v1, v2, ... ) is the augmentation ideal of BP∗ and Amot
∗,∗ is the motivic

mod p dual Steenrod algebra.

Recall that both of the two spectral sequences in Theorem 1.17 are multiplicative,

so there are multiplicative filtrations on the abutments.

Theorem 1.18. There is an isomorphism between

Ext∗,∗BP∗BP(BP∗,BP∗) and π∗,∗(Ŝ0,0/τ)

that preserves the multiplicative filtrations, composition products and higher compositions

in the respective categories.

Proof. The multiplicative structure on the abutments comes from composition of

morphisms in both categories

Ŝ0,0/τ -Modb
harm and Db(BP∗BP-Comodev).

The isomorphism on abutments is induced by the equivalence of categories in Theo-

rem 1.13, and in particular respects compositions.

The isomorphism between the abutments is known to Isaksen [29, Proposition 6.2.5]

and the first author [18, Corollary 3.14]. Our Theorem 1.18 further states that the

isomorphism preserves the multiplicative filtrations on the abutments. We do not prove

that the group isomorphism on the E2-pages is also a ring isomorphism. We shall prove

it in future work.

There has been huge interest in obtaining information on the stable homotopy groups

of spheres by comparing the Adams spectral sequence with the Adams–Novikov spectral

sequence. In fact, this is a dream entertained by Novikov [56, §12]. See also [46], [47], [62],

for example. An important connection and technique of studying both spectral sequences
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is the following Miller square [47]:

Exts,tP∗
(Fp, I

a−s/Ia−s+1)

Cartan–Eilenberg SS

u}

Algebraic Novikov SS

!)
Exta,t+a−s

A∗
(Fp,Fp)

Adams SS

!)

Exts,tBP∗BP(BP∗,BP∗)

Adams–Novikov SS

u}
πt−sŜ0.

By a change-of-ring isomorphism, the E2-page of the Cartan–Eilenberg spectral sequence,

which computes the Adams E2-page, is isomorphic to the algebraic Novikov spectral

sequence, which computes the Adams–Novikov E2-page. For p odd, the Cartan–Eilenberg

spectral sequence collapses for degree reasons.

To explore this square, Miller [47] smashes together the Adams resolution and the

Adams–Novikov resolution, and gets a comparison theorem on the d2-differentials in the

algebraic Novikov spectral sequence and the Adams spectral sequence. The following

theorem is due to Novikov [56], Miller [47, Theorem 4.2] and Andrews–Miller [1, Theo-

rem 9.3.3].

Theorem 1.19. Let z′ be an element in Exta,t+a−s
A∗

(Fp,Fp) with Cartan–Eilenberg

filtration s. Then, dASS
2 z′ has higher Cartan–Eilenberg filtration.

Moreover, if z′ is detected in the Cartan–Eilenberg spectral sequence by z in

Exts,tP∗
(Fp, I

a−s/Ia−s+1),

then

dASS
2 z′ is detected by dalgNSS

2 z,

where dalgNSS
2 z is in

Exts+1,t
P∗

(Fp, I
a−s+1/Ia−s+2).

Remark 1.20. We regraded the algebraic Novikov spectral sequence so our dalgNSS
2

is dalgNSS
1 in [1, Theorem 9.3.3].

Based on the Miller square and Theorem 1.19, Miller [47] proves the telescope con-

jecture at chromatic height 1 at odd primes.
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To understand the connection between higher differentials in the Adams and al-

gebraic Novikov spectral sequences, it would be desirable to establish new connections

between them.

For example, suppose in general that we have two spectral sequences

E2 =⇒E∞ and E′
2 =⇒E′

∞

that are not necessarily connected by a homomorphism of spectral sequences. To compare

them, it would be useful to have a third spectral sequence

E′′
2 =⇒E′′

∞

making a zig-zag diagram of spectral sequences:

E2

��

E′′
2

oo //

��

E′
2

��
E∞ E′′

∞
oo // E′

∞.

This is the one of the major techniques used by the second and third authors in [74]

to explore the Mahowald square [42] and compute differentials in the Adams spectral

sequences.

Following this philosophy, for the Miller square [47], a basic question would be the

following: Which spectral sequence can we put in between these two spectral sequences

and have a zig-zag diagram? Namely,

Exts,tP∗
(Fp, I

a−s/Ia−s+1)

Algebraic Novikov SS

��

?oo //

��

Exta,tA∗
(Fp,Fp)

Adams SS

��
Exts,tBP∗BP(BP∗,BP∗) ?oo // π∗Ŝ0.

Our Theorem 1.17 shows that we can achieve a zig-zag diagram in the motivic world.

In fact, consider the HFmot
p -completed motivic sphere spectrum Ŝ0,0. Inverting τ ,

we get the classical p-completed sphere Ŝ0 by Dugger–Isaksen [14], in the sense that

the corresponding Adams and Adams–Novikov spectral sequences have equivalent data.

On the other hand, reducing mod τ , we get Ŝ0,0/τ . Then, the naturality of the Adams
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spectral sequences gives us the following zig-zag diagram:

Ext
s,t+a−s,t/2
Amot

∗,∗
(Fp[τ ],Fp)

Motivic Adams SS

��

Ext
s,t+a−s,t/2
Amot

∗,∗
(Fp[τ ],Fp[τ ])oo //

Motivic Adams SS

��

Exta,t+a−s
A∗

(Fp,Fp)

Adams SS

��
π∗,∗Ŝ0,0/τ π∗,∗Ŝ0,0oo Re // π∗Ŝ0.

By Theorem 1.17, the left side spectral sequence, which is the motivic Adams spectral

sequence for Ŝ0,0/τ , is isomorphic to the algebraic Novikov spectral sequence.

More generally, we have the following motivic square:

Ext∗,∗,∗Amot
∗,∗

(Fp[τ ],Fp)[τ ]

Algebraic τ -Bockstein SS

v~

Motivic Adams SS

�&

Ext∗,∗,∗Amot
∗,∗

(Fp[τ ],Fp[τ ])

Motivic Adams SS

 (

π∗,∗Ŝ0,0/τ [τ ]

τ -Bockstein SS

x�

π∗,∗Ŝ0,0.

Let us compare the motivic square with the Miller square.

For the lower-right side, it is proved by Isaksen [29] that the motivic Adams–Novikov

spectral sequence for Ŝ0,0 is isomorphic to the τ -Bockstein spectral sequence, and that it

is rigid, in the sense that it contains the same information as the classical Adams–Novikov

spectral sequence. Each non-trivial differential in the classical Adams–Novikov spec-

tral sequence corresponds to a family of non-trivial differentials in the motivic Adams–

Novikov spectral sequence, that are connected to each other by multiplication by τ . We

can recover all non-zero differentials in the motivic Adams–Novikov spectral sequence by

knowing all non-zero differentials in the classical Adams–Novikov spectral sequence, and

vice versa.

We would like to point out that the above isomorphism between the motivic Adams–

Novikov spectral sequence for the motivic sphere and the τ -Bockstein spectral sequence

for the motivic sphere does not come from a map between two towers. In particular,

the Chow–Novikov degree compresses motivic Adams–Novikov d2r+1-differentials to τ -

Bockstein dr-differentials, and the motivic Adams–Novikov E2-page is isomorphic to the
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τ -Bockstein E1-page, which is isomorphic to the homotopy groups of a motivic spectrum.

Moreover, the edge map of the τ -Bockstein spectral sequence has the advantage of being

induced by an actual map between motivic spectra, so naturality applies to motivic

homotopy groups. Naturality also gives us a map of the motivic Adams spectral sequences

from the motivic sphere to Ŝ0,0/τ , where the latter is isomorphic to the classical algebraic

Novikov spectral sequence.

For the upper-left side, the relation of the two spectral sequences in the motivic

square and the Miller square is the same as the relation on the lower-right side. The al-

gebraic τ -Bockstein spectral sequence can be thought as a motivic version of the Cartan–

Eilenberg spectral sequence, and contains the same information, in the same sense as the

lower-right-side situation.

For the upper-right side, our Theorem 1.17 says that the two spectral sequences are

isomorphic.

Therefore, for three out of the four sides, the motivic square contains exactly the

same information as the ones in the Miller square.

For the remaining lower-left side, Dugger–Isaksen [14] show that the τ -inverted mo-

tivic Adams spectral sequence is isomorphic to the τ -inverted classical Adams spectral

sequence. This means that the difference between the motivic square and the Miller

square lies in the τ -torsion information. Therefore, when comparing the higher differen-

tials in the classical and motivic Adams spectral sequences, the τ -torsion information is

necessary to make the zig-zag strategy work.

Now, to compute a non-trivial classical Adams differential, for any r, start with an

algebraic Novikov dr-differential. Theorem 1.17 gives us a motivic Adams dr-differential

for Ŝ0,0/τ . Pulling back to the bottom cell of Ŝ0,0/τ of the source element gives us

a motivic Adams dr′-differential for the motivic sphere with r′⩽r. Using the Betti

realization functor, we then obtain a classical Adams dr′-differential!

In practice, Isaksen, the second and the third authors [32], [33] extend the compu-

tation of classical and motivic stable stems into a large range using the following steps.

(1) Use a computer to carry out the entirely algebraic computation of the cohomol-

ogy of the C-motivic Steenrod algebra. These groups serve as the input to the C-motivic

Adams spectral sequence.

(2) Use a computer to carry out the entirely algebraic computation of the alge-

braic Novikov spectral sequence that converges to the cohomology of the Hopf algebroid

(BP∗,BP∗BP). This includes all differentials, and the multiplicative structure of the

cohomology of (BP∗,BP∗BP).
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(3) Use Theorem 1.17 to identify the algebraic Novikov spectral sequence with the

motivic Adams spectral sequence that computes the homotopy groups of Ŝ0,0/τ . This

includes an identification of the cohomology of (BP∗,BP∗BP) with the homotopy groups

of Ŝ0,0/τ .

(4) Use the inclusion of the bottom cell and the projection to the top cell to pull back

and push forward Adams differentials for Ŝ0,0/τ to Adams differentials for the motivic

sphere.

(5) Apply a variety of ad-hoc arguments to deduce additional Adams differentials

for the motivic sphere. The most important method involves shuffling Toda brackets.

(6) Use a long exact sequence in homotopy groups to deduce hidden τ -extensions in

the motivic Adams spectral sequence for the sphere.

(7) Invert τ to obtain the classical Adams spectral sequence and the classical stable

homotopy groups.

We would like to highlight a few consequences of our stem-wise computations.

Example 1.21. Consider the following four differentials in the classical Adams spec-

tral sequence for the 2-completed sphere.

(1) There is a d3-differential in the 15-stem:

d3(h0h4)=h0d0.

This is proved by May and Mahowald–Tangora in [43] , [44] by comparing with Toda’s

unstable computations [68].

(2) There is a d4-differential in the 38-stem:

d4(h3h5)=h0x.

This is proved in Mahowald-Tangora [43] by an ad-hoc method using a certain finite CW

spectrum.

(3) There is a d3-differential in the 38-stem:

d3(e1)=h1t.

This is proved by Bruner in [8] by power operations in the Adams spectral sequence.

(4) There is a d3-differential in the 61-stem:

d3(D3)=B3.

This is proved by the second and third authors [74] using the RP∞-technique. The proof

of this differential in [74] is a significant part of the proof that the 61-sphere has a unique

smooth structure.
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It turns out that all these four differentials can be proved by our method. They

all correspond to non-trivial differentials in the algebraic Novikov spectral sequence with

the same length, and therefore are all consequences of purely algebraic computations and

our Theorem 1.17.

Remark 1.22. For some of the differentials computed by Isaksen, the second and the

third authors [32], [33] using Theorem 1.17, our method gives the only known proof. For

example, we prove an Adams d3-differential in the 68-stem

d3(d2)=h2
0Q3,

which shows the non-existence of the homotopy class κ2 in π68. As another example, we

prove an Adams d5-differential in the 92-stem

d5(g3)=h6d
2
0,

which shows the non-existence of the homotopy class κ3 in π92. Since both the elements

d2 and g3 lie in a non-zero Sq0-family in the 4-line of the classical Adams E2-page,

the two new non-trivial differentials serve as new evidence of Minami’s new Doomsday

conjecture.

Remark 1.23. Theorem 1.17 can also be used to compute non-trivial extensions and

Toda brackets. For example, there is an η -extension from h3d1 to N in the 46-stem.

This is proved by the second and third authors [75, Proposition 1.3 (2)] using the RP∞-

technique. As another example, there is a Toda bracket

⟨θ4, 2, σ2⟩

in the 45-stem. It is computed by Isaksen in [29, Lemma 4.2.91] by ad-hoc methods.

This Toda bracket computation is crucial in the third author’s proof [77] that

2θ5 =0

in the 62-stem. Both the non-trivial η -extension and the Toda bracket computations

are present in the motivic homotopy groups of Ŝ0,0/τ . By Theorem 1.17, they can be

computed by the product and Massey product structure on the classical Adams–Novikov

E2-page. In particular, the corresponding 3-fold Massey product can be verified in the

algebraic Novikov spectral sequence using May’s convergence theorem [45]. Therefore,

both the non-trivial η -extension and the Toda bracket computations are consequences of

purely algebraic computations and our Theorem 1.17.
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1.4. Organization

This paper is organized in two parts.

In Part 1, we prove the equivalence of stable∞-categories in Theorems 1.11 and 1.13.

Our proofs use a theorem of Lurie in Higher Algebra [41] on the relation between a stable

∞-category with a t-structure and the derived category of its heart. We recall Lurie’s

theorem in §2, and prove Theorems 1.11 and 1.13 in §3 and §4, respectively. We also

prove Corollary 1.2 in the end of §4. We introduce the absolute Adams–Novikov spectral

sequence in the category

Ŝ0,0/τ -Modb
harm

in §5, which is necessary for our proof of Theorem 1.13. We propose some further

questions in §6. We discuss the HFmot
p -completion in §7.

In Part 2, we prove the isomorphism of spectral sequences in Theorem 1.17. In

§9, we check that, through the equivalence of stable ∞-categories in Theorem 1.13, the

algebraic Novikov tower in the derived category of BP∗BP-comodules corresponds to the

motivic Adams tower of Ŝ0,0/τ in the category of Ŝ0,0/τ -modules. In Appendix A, we

recompute certain low filtration and historically more difficult differentials in the range

up to the 45-stem at the prime 2, as an illustration of the power of the isomorphism of

spectral sequences in Theorem 1.17.

1.5. Conventions and notation

All colimits and limits in a stable ∞-category of spectra mean homotopy colimit and

homotopy limit in the classical sense.

All modules over graded rings are graded modules.

Here is a summary of a list of the notation we use in this paper.

(1) S1,0: the simplicial sphere S1.

(2) S1,1: the multiplicative group Gm=A1\{0}.
(3) HFmot

p : the mod-p motivic Eilenberg–Mac Lane spectrum.

(4) Ŝ0,0: the motivic HFmot
p -completed sphere spectrum.

(5) Ŝs,w: the motivic HFmot
p -completed sphere spectrum in bi-degree (s, w).

(6) Ŝ0,0/τ : the cofiber of τ .

(7) C-mot-Spectra: the stable ∞-category of motivic spectra over SpecC.
(8) Ŝ0,0-Mod: the stable ∞-category of motivic module spectra over Ŝ0,0.

(9) Σs,w(−): the suspension functor Ŝs,w∧
Ŝ0,0−.
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(10) R-Mod: the stable ∞-category of left modules over R in Ŝ0,0-Mod, for an

E∞-algebra R∈Ŝ0,0-Mod.

(11) R-Modcell: the stable ∞-category of cellular objects in R-Mod.

(12) MGL: the cellular motivic algebraic cobordism spectrum.

(13) MUmot: the E∞-algebra MGL∧S0,0 Ŝ0,0 in Ŝ0,0-Modcell.

(14) MUmot/τ : the E∞-algebra Ŝ0,0/τ∧
Ŝ0,0MUmot in Ŝ0,0/τ -Modcell.

(15) Ŝ0,0/τ -Modharm: the stable ∞-category of harmonic Ŝ0,0/τ -module spectra.

(16) The Chow–Novikov degree of an element in πs,wX: s−2w, for X a motivic

spectrum.

(17) MUmot/τ -Modb
cell: the stable ∞-category of cellular MUmot/τ -modules whose

homotopy groups are concentrated in bounded Chow–Novikov degrees.

(18) MUmot/τ -Modb,⩾0
cell , MUmot/τ -Modb,⩽0

cell and MUmot/τ -Mod♡
cell: full subcate-

gories of MUmot/τ -Modb
cell spanned by objects whose homotopy groups are concentrated

in non-negative, non-positive and zero Chow–Novikov degrees, respectively.

(19) Ŝ0,0/τ -Modb
harm: the stable ∞-category of harmonic Ŝ0,0/τ -modules whose

MUmot-homology groups are concentrated in bounded Chow–Novikov degrees.

(20) Ŝ0,0/τ -Modb,⩾0
harm, Ŝ

0,0/τ -Modb,⩽0
harm and Ŝ0,0/τ -Mod♡

harm: full subcategories of

Ŝ0,0/τ -Modb
harm spanned by objects whose MUmot-homology groups are concentrated

in non-negative, non-positive and zero Chow–Novikov degrees, respectively.

(21) MU∗-Modev: the abelian category of graded modules that are concentrated in

even degrees over the p-completed ring MU∗.

(22) MU∗MU-Comodev: the abelian category of graded comodules that are con-

centrated in even degrees over the p-completed Hopf algebroid MU∗MU.

(23) BP∗BP-Comodev: the abelian category of graded comodules that are concen-

trated in even degrees over the p-completed Hopf algebroid BP∗BP.

(24) MUmot
∗,∗ /τ -Mod: the abelian category of graded left modules over MUmot

∗,∗ /τ .

(25) MUmot
∗,∗ /τ -Mod0: the abelian category of graded left modules over MUmot

∗,∗ /τ

that are concentrated in Chow–Novikov degree zero.

(26) MUmot
∗,∗ MUmot/τ -Comod: the abelian category of graded left comodules over

the Hopf algebroid MUmot
∗,∗ MUmot/τ .

(27) MUmot
∗,∗ MUmot/τ -Comod0: the abelian category of graded left comodules over

the Hopf algebroid MUmot
∗,∗ MUmot/τ that are concentrated in Chow–Novikov degree zero.

(28) Db(A): the bounded derived category of an abelian category A as a stable

∞-category.

(29) Stable(BP∗BP): the underlying stable ∞-category of Hovey’s unbounded de-

rived category of BP∗BP-comodules.
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Part 1. Equivalence of stable ∞-categories

The question of when the homotopy category of module spectra over a certain ring

spectrum is equivalent to the derived category of an abelian category as a triangulated

category has been studied in many context by many people. For example, Schwede and

Shipley [65] studied the case for the Eilenberg–Mac Lane spectrum HR, where R is a

commutative ring, Patchkoria [59] studied the case for the complex periodic K-theory

localized at an odd prime, Greenlees [21] studied the case for the rational S1-equivarant

sphere spectrum, and Deligne and Goncharov [11] studied the case for the rational motivic

Eilenberg–Mac Lane spectrum HQmot. The answers are positive in these cases. On the

other hand, Schwede [64] showed that the classical stable homotopy category is not a

derived category.

The goal of Part 1 is to prove that the homotopy category of harmonic Ŝ0,0/τ -

spectra whose MUmot-homology are concentrated in bounded Chow–Novikov degrees is

equivalent to the bounded derived category of MU∗MU-comodules that are concentrated

in even degrees. In fact, we will prove Theorem 1.13, which states that there exists an
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equivalence of stable ∞-categories that preserves the given t-structures:

Ŝ0,0/τ -Modb
harm −!Db(MU∗MU-Comodev).

We apply a theorem of Lurie in Higher Algebra [41, Proposition 1.3.3.7] on the

relation between a stable ∞-category with a t-structure and the derived category of its

heart. As a warm-up, we will prove Theorem 1.11, which states that there exists an

equivalence of stable ∞-categories that preserves the given t-structures:

MUmot/τ -Modb
cell −!Db(MU∗-Modev).

2. Lurie’s theorem on t-structures

In [41, Proposition 1.3.3.7], Lurie proves a theorem on the relation between a stable ∞-

category with a t-structure and the derived category of its heart. In this section, we state

a corollary of Lurie’s theorem as Proposition 2.11, and its dual version Proposition 2.12.

Both propositions are used in §3 and §4. We will first recall relevant definitions and

Lurie’s theorem and then prove Proposition 2.11.

Let C be an ∞-category. Denote by hC its homotopy category, and by [−,−]C the

abelian group of homotopy classes of maps in C. When it is clear from the context,

we will also denote it by [−,−]. If C is further a stable ∞-category, denote by Σ its

translation automorphism.

We recall from [41, Definition 1.2.1.4] that a t-structure on a stable ∞-category C is

defined as a t-structure on its homotopy category hC, which is a triangulated category.

More precisely, we have the following definition.

Definition 2.1. A t-structure on a stable ∞-category C is a pair of two full subcat-

egories C⩾0 and C⩽0 that are stable under equivalences, satisfying the following three

properties:

(1) for X∈C⩾0 and Y ∈Σ−1C⩽0, we have [X,Y ]C=0;

(2) there are inclusions ΣC⩾0⊆C⩾0 and Σ−1C⩽0⊆C⩽0;

(3) for any X∈C, there exists a fiber sequence

X⩾0 −!X −!X⩽−1,

with X⩾0∈C⩾0 and X⩽−1∈Σ−1C⩽0.

As in [41], we use homological indexing convention.
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Definition 2.2. Let C and C′ be stable ∞-categories equipped with t-structures. We

say that an exact functor f : C!C′ is right t-exact, if it carries C⩾0 to C′
⩾0. An exact

functor f : C!C′ is left t-exact, if it carries C⩽0 to C′
⩽0. A functor is t-exact if it is both

left and right t-exact.

Definition 2.3. Denote by C⩾n and C⩽n the ∞-categories ΣnC⩾0 and ΣnC⩽0, respec-

tively. For every integer n, the subcategories C⩾n and C⩽n sit in adjunctions

C⩾n
// C

τ⩾n

oo and C
τ⩽n
// C⩽noo

where τ⩾n and τ⩽n are called the nth truncation functors.

Sometimes the truncation functors are post-composed with the inclusion functors,

so they land in C.

Definition 2.4. Denote by C+ and C− the stable full subcategories spanned by left-

bounded and right-bounded objects in C, respectively:

C+ =
⋃
n⩾0

C⩽n and C− =
⋃
n⩾0

C⩾−n,

and by

Cb := C+∩C−

the stable subcategory of bounded objects. We say that the t-structure is left-bounded,

right-bounded or bounded, if the inclusion of C+, C− or Cb, respectively, in C, is an

equivalence.

The intersection

C♡ = C⩾0∩C⩽0

is called the heart of the t-structure.

The ∞-category C♡ is always equivalent to (the nerve of) its homotopy category

hC♡, which is an abelian category (see [41, Remark 1.2.1.12]). Following [41], we abuse

the notation by identifying C♡ with the abelian category hC♡.

Definition 2.5. Let C be a stable ∞-category equipped with a t-structure. We define

the left completion Ĉ of C to be the limit of the tower

...−! C⩽2
τ⩽1−−−! C⩽1

τ⩽0−−−! C⩽0
τ⩽−1−−−−! ... .

We say that C is left-complete if the functor C−!Ĉ is an equivalence.



the special fiber of the motivic deformation is algebraic 343

By [41, Proposition 1.2.1.17], the left completion Ĉ is again a stable ∞-category,

inherits a t-structure from C, and is left-complete.

Two important examples of stable∞-categories with t-structures are the∞-category

of spectra (as discussed in [41, §1.4]) and the derived ∞-category of an abelian category

(as discussed in [41, §1.3]).

Example 2.6. Denote by Spectra the ∞-category of spectra and the two full sub-

categories

Spectra⩾0 = {X ∈Spectra :πnX =0 for n< 0},

Spectra⩽0 = {X ∈Spectra :πnX =0 for n> 0}.

define a t-structure. Left- and right-bounded objects correspond to connective and co-

connective spectra, respectively, and its heart can be identified with the abelian category

of abelian groups. Moreover, as proved in [41, Proposition 1.4.3.6], it is left complete.

Example 2.7. Suppose that A is an abelian category with enough projective objects.

There exists an associated derived ∞-category D−(A), whose objects can be identified

with right-bounded chain complexes with values in A. This ∞-category D−(A) is stable

and its homotopy category hD−(A) can be identified as the usual derived category as

triangulated categories.

It admits a natural t-structure defined as follows:

� D−(A)⩾0 is the full subcategory spanned by the complexes whose homology van-

ishes in negative degrees;

� D−(A)⩽0 is the full subcategory spanned by the complexes whose homology van-

ishes in positive degrees.

As proved in [41, Proposition 1.3.3.16], this t-structure is left complete and right

bounded. Also, as proved in [41, Proposition 1.3.3.12], the derived ∞-category D−(A)

has a universal property in the sense that if C is any stable ∞-category equipped with a

left-complete t-structure, then any right exact functor A!C♡ extends (in an essentially

unique way) to a right t-exact functor D−(A)!C.

We have the following recognition criterion due to Lurie [41, Proposition 1.3.3.7].

Proposition 2.8. Let C be a stable ∞-category equipped with a left-complete t-

structure, whose heart A=hC♡ has enough projective objects. Then, there exists an

essentially unique t-exact functor

F :D−(A)−! C

extending the inclusion N(A)≃C♡⊆C. Here, N(A) is the nerve of the abelian category A.
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Moreover, the following two conditions are equivalent :

� the functor F is fully faithful ;

� for any pair of objects X,Y ∈A, if X is projective, then the abelian groups

[Σ−iX,Y ]C

vanish for i>0.

If the conditions are satisfied, then the essential image of F is the full subcategory

C− =
⋃
n

C⩾n

of right-bounded objects in C.

Remark 2.9. It is clear that if we restrict the functor F on the bounded stable

subcategory Db(A), then it gives an equivalence of stable ∞-categories

F :Db(A)−! Cb

that preserves t-structures.

Remark 2.10. Lurie’s theorem is exactly the reason we are working with stable ∞-

categories instead of triangulated categories. Given a triangulated category equipped

with a t-structure, there in general does not exist a functor from the derived category of

the heart to the original triangulated category extending the identity functor on the heart

(see [17, Remark IV.4.13] for a more detailed explanation for example). However, if the

triangulated category comes from the homotopy category of a stable ∞-category, then

such a functor always exists. Moreover, Lurie’s theorem gives us a recognition criterion

in terms of homological algebra to see when such a functor is also an equivalence and

preserves t-structures.

We now use Lurie’s theorem to prove the main result of this section.

Proposition 2.11. Let C be a stable ∞-category with a given bounded t-structure.

Suppose that the following conditions hold :

(1) the abelian category A=hC♡ has enough projective objects;

(2) for any pair of objects X,Y ∈A, if X is projective, then the abelian groups

[Σ−iX,Y ]C

vanish for i>0.
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Then, there exists an equivalence of stable ∞-categories

F :Db(A)−! C

extending the inclusion N(A)≃C♡⊆C, and which preserves t-structures. Here, N(A) is

the nerve of the abelian category A and Db(A) is the bounded derived category of A.

Proof. As explained in [41, Remark 1.2.1.18], for any stable ∞-category C with a

t-structure, the functor C!Ĉ induces an equivalence

C+−! (Ĉ )+.

For the stable ∞-category C with a bounded t-structure in the statement of Proposi-

tion 2.11, we consider its left completion Ĉ, so that we could apply Proposition 2.8.

Therefore, the equivalence in the statement of Proposition 2.11 comes from the following

zigzag of equivalences:

C −C+−! (Ĉ )+ − (Ĉ )b −Db(A),

where the first equivalence comes from the fact that the t-structure on C is bounded, the

third equivalence comes from the fact that the t-structure on Ĉ is right bounded, since

C is, and the last equivalence comes from Lurie’s theorem and Remark 2.9.

Considering the opposite category, we have the following dual version of Proposi-

tion 2.11.

Proposition 2.12. Let C be a stable ∞-category with a given bounded t-structure.

Suppose that the following conditions hold :

(1) the abelian category A=hC♡ has enough injective objects;

(2) for any pair of objects X,Y ∈A, if Y is injective, then the abelian groups

[Σ−iX,Y ]C

vanish for i>0.

Then, there exists an equivalence of stable ∞-categories

G:Db(A)−! C

extending the inclusion N(A)≃C♡⊆C, and which preserves t-structures. Here, N(A) is

the nerve of the abelian category A and Db(A) is the bounded derived category of A.
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3. An algebraic model for cellular MUmot/τ -modules

In this section, we use Proposition 2.11 to prove Theorem 1.11. Namely, there exists a

t-exact equivalence of stable ∞-categories

MUmot/τ -Modb
cell −!Db(MU∗-Modev),

whose restriction on the heart is given by

π∗,∗:MUmot/τ -Mod♡
cell −!MU∗-Modev.

In §3.1, we first recall the universal coefficient spectral sequence in the category

MUmot/τ -Modcell,

which is constructed by Dugger–Isaksen [13]. This is stated as Theorem 3.2. Using this

spectral sequence, we prove the equivalence on the heart as Proposition 3.5 in §3.2. Then,

using this spectral sequence again, we show in §3.3 that the full subcategories

MUmot/τ -Modb,⩾0
cell and MUmot/τ -Modb,⩽0

cell

define a t-structure. In the end of this section, we prove the equivalence of stable ∞-

categories as Theorem 3.8.

We will use in §5 the above equivalence of stable ∞-categories to construct enough

motivic spectra to build MUmot/τ -based Adams resolutions in the category

Ŝ0,0/τ -Modcell.

3.1. The category MUmot/τ -Modcell and the universal coefficient spectral

sequence

We begin with two adjunctions. The first adjunction

Ŝ0,0-Modcell

Ŝ0,0/τ∧−
//
Ŝ0,0/τ -Modcell

U
oo (3.1)

between cellular Ŝ0,0-modules and cellular Ŝ0,0/τ -modules is induced by the E∞-ring

map

Ŝ0,0 −! Ŝ0,0/τ.

Since MUmot/τ is an E∞-algebra that is cellular over Ŝ0,0/τ , the above adjunction

(3.1) extends to

Ŝ0,0-Modcell

Ŝ0,0/τ∧−
//
Ŝ0,0/τ -Modcell

U
oo

MUmot∧−
//
MUmot/τ -Modcell.

U
oo (3.2)
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Definition 3.1. Denote by

MUmot
∗,∗ /τ -Mod

the abelian category of graded left modules over MUmot
∗,∗ /τ , and by

MUmot
∗,∗ /τ -Mod0

the full subcategory of MUmot
∗,∗ /τ -Mod spanned by all graded modules M∗,∗ that are

concentrated in Chow–Novikov degree zero, i.e., Ms,w=0 whenever s ̸=2w.

We thus have a commutative diagram

MUmot/τ -Modcell MUmot
∗,∗ /τ -Mod

MUmot/τ -Mod♡
cell MUmot

∗,∗ /τ -Mod0.

π∗,∗

π∗,∗

Since MUmot
∗,∗ /τ is concentrated in Chow–Novikov degree zero, forgetting the motivic

weight we have an equivalence

MUmot
∗,∗ /τ -Mod0 ∼=MU∗-Modev.

To show that the restriction of π∗,∗ to the heart induces an equivalence

π∗,∗:MUmot/τ -Mod♡
cell

∼=−−!MU∗-Modev,

we recall the universal coefficient spectral sequence constructed by Dugger–Isaksen [13].

This spectral sequence is our main tool to compute homotopy classes of maps in the

stable ∞-category MUmot/τ -Modcell.

Theorem 3.2. (Universal coefficient spectral sequence) For any

X,Y ∈MUmot/τ -Modcell,

there is a conditionally convergent spectral sequence

Es,t,w
2 =Exts,t,w

MUmot
∗,∗ /τ

(π∗,∗X,π∗,∗Y )=⇒ [Σt−s,wX,Y ]MUmot/τ .

Moreover, if both π∗,∗X and π∗,∗Y are concentrated in bounded Chow–Novikov degrees,

then the spectral sequence converges strongly and collapses at a finite page.
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Proof. We refer to [13, Propositions 7.7 and 7.10] for the precise construction of the

spectral sequence and the proof of conditional convergence. For the second statement of

the theorem, we recall a few facts from the proof of [13, Propositions 7.7 and 7.10].

The E1-page arises from a free resolution over MUmot
∗,∗ /τ :

0 π∗,∗Xoo π∗,∗F0
oooo π∗,∗F1

oo ...,oo

and is given by

Es,t,w
1 :=HomMUmot

∗,∗ /τ (π∗,∗(Σ
t,wFs), π∗,∗Y ).

The E2-page is the cohomology of this chain complex, giving the claimed Ext groups.

Suppose that π∗,∗X and π∗,∗Y are concentrated in Chow–Novikov degrees [a, b] and

[c, d], respectively, where a⩽b and c⩽d. As MUmot
∗,∗ /τ is concentrated in Chow–Novikov

degree zero, we can choose all π∗,∗(Fs) such that they are concentrated in Chow–Novikov

degrees [a, b]. Therefore, π∗,∗(Σ
t,wFs) is concentrated in Chow–Novikov degrees

[a+(t−2w), b+(t−2w)]

for all s⩾0.

In order for the group Es,t,w
1 to be non-zero, we must have

c⩽ b+(t−2w) and d⩾ a+(t−2w).

For a fixed weight w, this gives that

t∈ [c−b+2w, d−a+2w].

Since later pages Es,t,w
r are iterated subquotients of Es,t,w

1 , their t-degrees are all con-

centrated in [c−b+2w, d−a+2w].

Recall that the dr-differential has the form

Es,t,w
r

dr−−−!Es+r,t+r−1,w
r .

In particular, it changes the t-degrees by r−1. Since the t-degrees of all possible non-zero

elements in the E1-page satisfy t∈[c−b+2w, d−a+2w], we must have dr=0 when

r−1> (d−a+2w)−(c−b+2w)= (b−a)+(d−c)

for degree reasons. In other words, the spectral sequence collapses at the page

E(b−a)+(d−c)+2.

Therefore, under the condition that both π∗,∗X and π∗,∗Y are concentrated in

bounded Chow–Novikov degrees, this spectral sequence convergences strongly and col-

lapses at a finite page.
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Recall from Definition 1.8 that

MUmot/τ -Modb,⩾0
cell , MUmot/τ -Modb,⩽0

cell and MUmot/τ -Mod♡
cell

are the full subcategories of MUmot/τ -Modb
cell that are spanned by objects whose ho-

motopy groups are concentrated in non-negative, non-positive and zero Chow–Novikov

degrees, respectively.

Corollary 3.3. Let

X ∈MUmot/τ -Modb,⩾0
cell and Y ∈MUmot/τ -Modb,⩽0

cell .

The abelian group of homotopy classes of bi-degree (0, 0) can be computed algebraically

by the isomorphism

[X,Y ]MUmot/τ −!HomMUmot∗,∗/τ (π∗,∗X,π∗,∗Y )

that is induced by applying π∗,∗.

Proof. Consider the E2-page of the universal coefficient spectral sequence. The tri-

degrees that converge to the bi-degree (0, 0) are of the form (t, t, 0), which correspond to

Es,t,w
2 =Et,t,0

2 , for t⩾0.

By the proof of Theorem 3.2, the t-degrees of all possible non-zero elements in the

E1-page, and therefore E2-page, satisfy t⩽d−a+2w=d−a. Since π∗,∗X and π∗,∗Y are

concentrated in non-negative and non-positive bounded Chow–Novikov degrees, we have

d=a=0. Therefore, we have t⩽0.

Combining both facts, we have established that the only possible non-zero elements

in the E2-page that converge to the bi-degree (0, 0) are in

E0,0,0
2 =HomMUmot∗,∗/τ (π∗,∗X,π∗,∗Y ).

To show that all elements in E0,0,0
2 survive in the spectral sequence, first note that they

are not targets of any non-zero differentials, since they are in s-degree zero. Second,

all dr-differentials for r⩾2 increase the t-degree. Since the t-degrees of all non-zero

elements are non-positive, the elements in E0,0,0
2 do not support non-zero differentials.

This completes the proof.

3.2. The equivalence on the heart

We are now ready to show that the functor π∗,∗ induces an equivalence on the heart.

The following is a special case of Corollary 3.3.
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Corollary 3.4. The functor

π∗,∗:MUmot/τ -Mod♡
cell −!MUmot

∗,∗ /τ -Mod0

is fully faithful. Here, the right-hand side is understood as a discrete ∞-category.

As a consequence, Corollary 3.4 shows that MUmot/τ -Mod♡
cell is also a discrete

∞-category.

Proof. For n⩾0 and two objectsX,Y ∈MUmot/τ -Mod♡
cell, by Corollary 3.3, the edge

homomorphism[
Σn,0X,Y

]
MUmot/τ

π∗,∗−−−−!HomMUmot
∗ /τ (π∗,∗Σ

n,0X,π∗,∗Y )

is an isomorphism. When n>0, the bigraded module π∗,∗Σ
n,0X is concentrated in posi-

tive Chow–Novikov degree. So the right-hand side of the above isomorphism is concen-

trated in the case n=0. This shows that π∗,∗ is fully faithful on MUmot/τ -Mod♡
cell.

To show the equivalence on the heart, we only need to show the essential surjectivity

of π∗,∗.

Proposition 3.5. The functor

π∗,∗:MUmot/τ -Mod♡
cell −!MUmot

∗,∗ /τ -Mod0

is an equivalence of ∞-categories.

Proof. We need to show that any object M∈MUmot
∗,∗ /τ -Mod0 can be realized as the

homotopy groups of an object in MUmot/τ -Mod♡
cell.

Suppose that M is a free MUmot
∗,∗ /τ -module that is concentrated in Chow–Novikov

degree zero:

M ∼=
⊕
i∈I

Σ2ki,kiMUmot
∗,∗ /τ.

Here, Σ2ki,kiMUmot
∗,∗ /τ is a free bigraded rank-1 module over MUmot

∗,∗ /τ with a generator

in bi-degree (2ki, ki). We can realize M as the homotopy groups of the wedge∨
i∈I

Σ2ki,kiMUmot/τ

with the same index set, which is cellular.

For an arbitrary M∈MUmot
∗,∗ /τ -Mod0, we can pick a free resolution

0 −M −F0
f1
 −−F1

f2−−!F2 − ... (3.3)

in MUmot
∗,∗ /τ -Mod0.
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Each Fi can be realized by

Zi ∈MUmot/τ -Mod♡
cell

and by Corollary 3.4, each map fi can be realized by a map gi∈MUmot/τ -Mod♡
cell as in

Z0
g1
 −−Z1

g2
 −−Z2 − ... .

Using the standard method of lifting an Adams resolution to an Adams tower, we claim

that we can construct a tower

X1 −!X2 −! ...,

with the property that the homotopy groups of Xi are given by the following groups

+∞⊕
l=−∞

π2l+k,l(Xi)=


M =Cokerf1, if k=0,

Σi,0Kerfi, if k= i,

0, otherwise.

and that the maps in this tower induce an isomorphism on the Chow–Novikov-degree-zero

part of these homotopy groups, which is M .

We prove this claim inductively.

In fact, we can choose X1 to be the cofiber of

g1:Z1 −!Z0.

This gives us a long exact sequence on homotopy groups

...−!π∗+1,∗X1 −!π∗,∗Z1
f1−−!π∗,∗Z0 −!π∗,∗X1 −! ... .

Since both π∗,∗Z0 and π∗,∗Z1 are concentrated in Chow–Novikov degree zero, we

must have that π∗,∗X1 is concentrated in Chow–Novikov degrees zero and 1. We can

compute directly from the long exact sequence that the Chow–Novikov degree-zero and

degree-1 parts of π∗,∗X1 are isomorphic to M=Cokerf1 and Σ1,0Kerf1, respectively.

Suppose now that we have constructed the tower up to Xi. We have a homomor-

phism

π∗,∗Zi+1
∼=Fi+1

// // Imfi+1
∼=Kerfi

� � // π∗,∗(Σ
−i,0Xi)

in MUmot
∗,∗ /τ -Mod0. Here, the first map is induced by fi+1 and the second map corre-

sponds to the Chow–Novikov-degree-i part of π∗,∗Xi.

By Corollary 3.3, this homomorphism can be realized as a map

Zi+1 −!Σ−i,0Xi.
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Define Xi+1 as the Σi,0-suspension of its cofiber, so we have a cofiber sequence

Σi,0Zi+1 −!Xi −!Xi+1.

By the associated long exact sequence in homotopy groups, we have that π∗,∗Xi+1

is concentrated in Chow–Novikov degrees zero and i+1. The Chow–Novikov-degree-zero

part is isomorphic to M , and the Chow–Novikov degree i+1 part is isomorphic to

Σi+1,0Kerfi+1,

as required.

Having the tower

X1 −!X2 −! ...,

we define X as its colimit

X := colim (X1 −!X2 −! ... ) .

The homotopy groups of X are computed by the colimit

π∗,∗X ∼=colim (π∗,∗X1 −!π∗,∗X2 −! ... )=M,

and are in particular concentrated in Chow–Novikov degree zero.

Therefore, we have proved that any module M∈MUmot
∗,∗ /τ -Mod0 can be realized as

a spectrum X∈MUmot/τ -Mod♡
cell.

3.3. The t-structure, and the equivalence of categories

We prove in this subsection that the full subcategories previously defined satisfy the

required axioms for the t-structure.

We first prove a general proposition regarding the existence of a t-structure.

Proposition 3.6. Let C be a stable ∞-category, and C⩾0 and C⩽0 be a pair of

full subcategories of C. Let C⩾n=ΣnC⩾0 and C⩽n=ΣnC⩽0. Suppose that the following

conditions hold :

(1) C⩾0 is closed under extensions and suspensions. C⩽0 is closed under extensions

and desuspensions;

(2)

C=
⋃
n∈Z

C⩾n;
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(3) for any X∈C⩾0 and Y ∈C⩽−1, we have

[X,Y ]C =0;

(4) for any X∈C⩾0, there is an object X0∈C⩾0∩C⩽0 and a morphism

X −!X0

such that its fiber lies in C⩾1.

Then, this pair of subcategories C⩾0 and C⩽0 defines a t-structure on C.

Proof. In view of Definition 2.1, it remains to check that, for any X∈C, there exists

a fiber sequence

X⩾0 −!X −!X⩽−1

such that X⩾0∈C⩾0 and X⩽−1∈C⩽−1.

By the second assumption, there exists n such that X∈C⩾n.

If n⩾0, we can take the fiber sequence to be

X −!X −! ∗.

If n<0, using the fourth assumption, there exits an object Xn∈C⩾n∩C⩽n and a fiber

sequence

X⩾n+1 −!X −!Xn

such that X⩾n+1∈C⩾n+1.

For n<0, iterating this process, we get a finite sequence of morphsims

X⩾0 −!X⩾−1 −! ...−!X⩾n+1 −!X

such that X⩾i∈C⩾i and that the cofiber Xi−1 of the morphism

X⩾i −!X⩾i−1

lies in C⩾i−1∩C⩽i−1, where i∈[n+1, 0].

We can now take X⩽−1 to be the cofiber of the morphism

X⩾0 −!X.

The object X⩽−1 can be build up by finite extensions from the objects Xi−1 for i∈
[n+1, 0]. Therefore, by the first assumption, we have X⩽−1∈C⩽−1.
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Proposition 3.7. The pair of full subcategories

MUmot/τ -Modb,⩾0
cell and MUmot/τ -Modb,⩽0

cell

defines a bounded t-structure on

MUmot/τ -Modb
cell.

Proof. We check the four conditions in Proposition 3.6.

The first two conditions follow directly from the definition of the Chow–Novikov

degree.

For the third condition, we need to show that

[X,Y ]MUmot/τ =0

for any objects

X ∈MUmot/τ -Modb,⩾0
cell and Y ∈Σ−1,0MUmot/τ -Modb,⩽0

cell .

By Corollary 3.3, we have that

[X,Y ]MUmot/τ
∼=HomMUmot

∗,∗ /τ (π∗,∗X,π∗,∗Y )

As π∗,∗X is concentrated in non-negative Chow–Novikov degrees and π∗,∗Y is concen-

trated in negative Chow–Novikov degrees, the right-hand side is zero.

For the fourth condition, we need to show that, for any

X ∈MUmot/τ -Modb,⩾0
cell ,

there exists a fiber sequence

X⩾1 −!X −!X0

such that

X0 ∈MUmot/τ -Mod♡
cell and X⩾1 ∈Σ1,0(MUmot/τ -Modb,⩾0

cell ).

Consider the Chow–Novikov-degree-zero part of π∗,∗(X), namely

π∗,∗(X)=0 :=
⊕
k

π2k,k(X).

By Proposition 3.5, there is a spectrum

X0 ∈MUmot/τ -Mod♡
cell
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realizing this bigraded MUmot
∗,∗ /τ -module

π∗,∗X0
∼=π∗,∗(X)=0.

Consider the projection map

π∗,∗(X) // // π∗,∗(X)=0 ∼=π∗,∗X0.

By Corollary 3.3, the projection map can be realized by a map

X −!X0.

Denote by X⩾1 its fiber. Then from the long exact sequence in homotopy groups, we

have that

X⩾1 ∈Σ1,0(MUmot/τ -Modb,⩾0
cell ).

Having this t-structure on MUmot/τ -Modb
cell, the main result of this section follows

from Proposition 2.11.

Theorem 3.8. There is a t-exact equivalence of stable ∞-categories

Db(MU∗-Modev)
∼=−−!MUmot/τ -Modb

cell.

Proof. By Proposition 3.7, the t-structure is bounded. By Proposition 3.5 and the

equivalence

MUmot
∗,∗ /τ -Mod0 ∼=MU∗-Modev,

the heart can be identified as modules over MU∗. Therefore, it has enough projective

objects.

It remains to show that, for any two objects,

X,Y ∈MUmot/τ -Mod♡
cell,

with π∗,∗X projective over MUmot
∗,∗ /τ , we have that

[Σ−i,0X,Y ]MUmot/τ =0

for i>0.

We apply the universal coefficient spectral sequence in Theorem 3.2, namely

Exts,t,w
MUmot

∗,∗ /τ
(π∗,∗X,π∗,∗Y )=⇒ [Σt−s,wX,Y ]MUmot/τ .
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Since π∗,∗X is projective over MUmot
∗,∗ /τ , the E2-page of the spectral sequence is

concentrated on the line s=0, and therefore collapses at the E2-page.

Moreover, since both π∗,∗X and π∗,∗Y are concentrated in Chow–Novikov degree

zero, the E2-page is also concentrated in Chow–Novikov degree zero, namely t−2w=0

in this case.

We are interested in the case when t−s=−i<0 and w=0. By the above analysis,

the corresponding tri-degrees in the E2-page are all zero in our case. Therefore, we must

have that

[Σ−i,0X,Y ]MUmot/τ =0.

This completes the proof.

4. An algebraic model for harmonic Ŝ0,0/τ -modules

After the warmup in §3, we use Proposition 2.12 to prove Theorem 1.13. Namely, there

exists a t-exact equivalence of stable ∞-categories

Ŝ0,0/τ -Modb
harm −!Db(MU∗MU-Comodev),

whose restriction on the heart is given by

MUmot
∗,∗ : Ŝ0,0/τ -Mod♡

harm −!MU∗MU-Comodev.

The structure of this section is similar to that of §3.

In §4.1, we discuss the category of harmonic Ŝ0,0/τ -modules. We will also recall

certain facts on the category of MU∗MU-comodules, such as Landweber’s filtration

theorem. Instead of using the universal coefficient spectral sequence in the category

MUmot/τ -Modcell, we will use the absolute Adams–Novikov spectral sequence in the

category of harmonic Ŝ0,0/τ -modules. This spectral sequence is constructed in §5. Using

this spectral sequence, we prove the equivalence on the heart as Proposition 4.11 in §4.2.

Then, using again this spectral sequence, we show in §4.3 that the full subcategories

Ŝ0,0/τ -Modb,⩾0
harm and Ŝ0,0/τ -Modb,⩽0

harm

define a t-structure, and conclude the equivalence of stable ∞-categories as Proposi-

tion 4.12 and Theorem 4.13.
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4.1. The categories Ŝ0,0/τ -Modharm and MU∗MU-Comodev

We first recall from Definition 1.6 that a Ŝ0,0/τ -module spectrum Y is harmonic if it is

Ŝ0,0/τ -cellular and the natural map

Y −!Y ∧
MUmot

is an isomorphism on π∗,∗. As pointed out after Definition 1.6, the two completionsX∧
MGL

in the category C-mot-Spectra and X∧
MUmot in the category Ŝ0,0-Mod are equivalent for

any X in Ŝ0,0-Modcell. It is clear that in the category Ŝ0,0/τ -Modcell, being harmonic

is closed under taking suspensions, finite products and fibers. The category of harmonic

Ŝ0,0/τ -module spectra is denoted by Ŝ0,0/τ -Modharm.

We have the following examples and non-examples of harmonic Ŝ0,0/τ -module spec-

tra.

Example 4.1. (1) Any finite cellular object in Ŝ0,0/τ -Mod is harmonic. In fact,

by discussion in §7 of Dugger–Isaksen [14], the HFmot
p -completed sphere Ŝ0,0 is MGL-

complete, and is therefore MUmot-complete. Then, the claim follows from an induction

argument.

(2) Any finite cellular object in MUmot/τ -Mod is harmonic.

(3) The η -inverted cofiber of τ is Ŝ0,0/τ -cellular but not harmonic.

Here, η is the Hopf map in π1,1Ŝ0,0. Post-composing with the unit map Ŝ0,0
!Ŝ0,0/τ ,

we also denote its Hurewicz image in π1,1Ŝ0,0/τ by η. It is non-nilpotent in the ring

π∗,∗Ŝ0,0/τ . One way to see this fact is to identify π∗,∗Ŝ0,0/τ as Ext∗,∗BP∗BP(BP∗,BP∗) by

Gheorghe–Isaksen, and to use the fact from Miller–Ravenel–Wilson [50] that the element

that detects η in Ext∗,∗BP∗BP(BP∗,BP∗) is non-nilpotent. The η -inverted cofiber of τ ,

η−1Ŝ0,0/τ := colim(Ŝ0,0/τ −!Σ−1,−1Ŝ0,0/τ −!Σ−2,−2Ŝ0,0/τ −! ... ),

is a cellular object in Ŝ0,0/τ -Mod. Since η maps to zero in π∗,∗MUmot, we have that

MUmot
∗,∗ (η−1Ŝ0,0/τ)= 0.

Therefore, the completion (η−1Ŝ0,0/τ)∧MUmot is contractible. This shows that the spec-

trum η−1Ŝ0,0/τ is not harmonic.

The following Lemma 4.2 will be used in the proof of Proposition 4.11. We postpone

the proof of Lemma 4.2 until the end of §5.
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Lemma 4.2. Suppose that {Yα}α is a filtered system in Ŝ0,0/τ -Mod♡
cell such that

each Yα is harmonic. Then, the colimit of {Yα}α in Ŝ0,0/τ -Mod♡
cell is also harmonic.

Recall that, for a Ŝ0,0/τ -module X, its MUmot-homology can also be described as

MUmot
∗,∗ X =π∗,∗(MUmot∧

Ŝ0,0X)∼=π∗,∗(MUmot/τ∧
Ŝ0,0/τ

X).

Following computations of MUmot
∗,∗ MUmot from Hu–Kriz–Ormsby [28] and Dugger–

Isaksen [14], we have the following MUmot-homology of MUmot/τ :

π∗,∗(MUmot/τ∧
Ŝ0,0/τ

MUmot/τ)∼=MUmot
∗,∗ /τ [b1, b2, ... ]

∼=MUmot
∗,∗ MUmot/τ,

where |bi|=(2i, i), and is in Chow–Novikov degree zero. Since τ can be realized as a map

Ŝ0,−1
!Ŝ0,0, it is primitive in MUmot. Therefore, MUmot

∗,∗ MUmot/τ is a Hopf algebroid.

Definition 4.3. Denote by

MUmot
∗,∗ MUmot/τ -Comod

the abelian category of graded left comodules over the Hopf algebroid MUmot
∗,∗ MUmot/τ ,

and by

MUmot
∗,∗ MUmot/τ -Comod0

its full subcategory spanned by all graded comodules whose underlying MUmot
∗,∗ /τ -modules

are concentrated in Chow–Novikov degree zero.

We therefore have a commutative diagram

Ŝ0,0/τ -Modharm MUmot
∗,∗ MUmot/τ -Comod

Ŝ0,0/τ -Mod♡
harm MUmot

∗,∗ MUmot/τ -Comod0.

MUmot
∗,∗

MUmot
∗,∗

Forgetting the motivic weight, we have the equivalence

MUmot
∗,∗ MUmot/τ -Comod0 ∼=MU∗MU-Comodev.

Recall that we have the adjunction between modules and comodules

U :MUmot
∗,∗ MUmot/τ -Comod

//
MUmot

∗,∗ /τ -Mod:MUmot
∗,∗ MUmot/τ⊗MUmot

∗,∗ /τ−.oo (4.1)
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The forgetful functor is a left adjoint, while the tensor-up functor is a right adjoint. We

refer to [24, §1.1] for more details.

Using the ring map Ŝ0,0/τ−!MUmot/τ , we can form the commutative diagram

MUmot/τ -Modcell

π∗,∗
// MUmot

∗,∗ /τ -Mod

Ŝ0,0/τ -Modcell

MUmot
∗,∗
//

MUmot/τ∧ ̂
S0,0/τ

−

OO

MUmot
∗,∗ MUmot/τ -Comod.

U

OO

For the category of comodules over MU∗MU, we recall the Landweber’s filtration

theorem. Recall from [36] and [37] that there are elements vn∈MU∗, with v0=p, giving

the invariant prime ideals In=(v0, ..., vn)⊴MU∗. Moreover, these elements satisfy the

formula

ηR(vn)≡ vn mod In−1,

and so MU∗/In is canonically a comodule over MU∗MU. This gives a short exact sequence

of comodules

0−!MU∗/In
·vn−−−!MU∗/In −!MU∗/In+1 −! 0,

for every n⩾0. Landweber’s filtration theorem [36], [37] states that any comodule M

over MU∗MU whose underlying MU∗-module is finitely presented, can be reconstructed

by finitely many extensions of suspensions of MU∗/In’s.

Theorem 4.4. (Landweber’s filtration theorem) Suppose that S is a class of co-

modules over MU∗MU such that the following conditions hold :

(1) S contains MU∗ and MU∗/In for all n⩾0;

(2) S is closed under suspensions and extensions.

Then, S contains all comodules over MU∗MU whose underlying MU∗-modules are

finitely presented.

There are two more facts that we will use on the category of comodules over MU∗MU.

The first one is the following lemma. For a proof, see Miller–Ravenel [49, Lemma 2.11]

and Hovey [24] for example.

Lemma 4.5. Any comodule over MU∗MU is a filtered colimit of finitely presented

comodules.

The second one is a consequence of the fact that the forgetful functor from the

category MU∗MU-Comodev to MU∗-Modev has a right adjoint. For a precise argument,

see the proof of Lemma 5.4 for its motivic analogue.
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Lemma 4.6. The category MU∗MU-Comodev has enough injective objects.

We will construct the absolute Adams–Novikov spectral sequence, namely, for any

two objects X and Y in this category, there is a strongly convergent spectral sequence

that collapses at a finite page:

Exts,t,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y )=⇒ [Σt−s,wX,Y ]

Ŝ0,0/τ
,

with differentials

dr:E
s,t,w
r −!Es+r,t+r−1,w

r .

The existence of this absolute Adams–Novikov spectral sequence in Ŝ0,0/τ -Modb
harm is

proved as Theorem 5.7 in §5.

Using the absolute Adams–Novikov spectral sequence, we will prove the following

Corollaries 4.7 and 4.8 in §5.3.

Corollary 4.7. For X∈Ŝ0,0/τ -Modb,⩾0
harm and Y ∈Ŝ0,0/τ -Modb,⩽0

harm, the following

map induced by applying the functor MUmot
∗,∗ is an isomorphism:

[X,Y ]
Ŝ0,0/τ

−!HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ Y ).

Corollary 4.8. Given X,Y ∈Ŝ0,0/τ -Mod♡
harm, for any bi-degree (t, w) there is an

isomorphism

[Σt,wX,Y ]
Ŝ0,0/τ

∼=Ext2w−t,2w,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y ).

4.2. The equivalence on the heart

We are now ready to show that the functor MUmot
∗,∗ induces an equivalence on the heart.

The following is a special case of Corollary 4.7.

Corollary 4.9. The functor

MUmot
∗,∗ : Ŝ0,0/τ -Mod♡

harm −!MUmot
∗,∗ MUmot/τ -Comod0

is fully faithful. Here, the right-hand side is understood as a discrete ∞-category.

As a consequence, Corollary 4.9 shows that Ŝ0,0/τ -Mod♡
harm is also a discrete ∞-

category.
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Proof. For n⩾0 and two objects X,Y ∈Ŝ0,0/τ -Mod♡
harm, by Corollary 4.7, the edge

homomorphism

[Σn,0X,Y ]
Ŝ0,0/τ

MUmot
∗,∗−−−−−−!HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ Σn,0X,MUmot

∗,∗ Y )

is an isomorphism. When n>0, the bigraded module MUmot
∗,∗ Σn,0X is concentrated in pos-

itive Chow–Novikov degree. So, the right-hand side of the above isomorphism is concen-

trated in the case n=0. This shows that MUmot
∗,∗ is fully faithful on Ŝ0,0/τ -Mod♡

harm.

To show the equivalence on the heart, we only need to show the essential surjectivity

of MUmot
∗,∗ .

Unlike the case for modules over MUmot
∗,∗ /τ , we do not have free resolutions for

comodules over MUmot
∗,∗ MUmot/τ . We will instead use Landweber’s filtration theorem to

realize all comodules that are finitely presented, and then extend the result using filtered

colimits. In particular, all Smith–Toda complexes exist in Ŝ0,0/τ -Mod.

We start with the following two-out-of-three lemma.

Lemma 4.10. Consider any short exact sequence in MUmot
∗,∗ MUmot/τ -Comod0,

0−!M ′ f ′

−−!M
f ′′

−−−!M ′′ −! 0. (4.2)

If any two of the three comodules M ′, M and M ′′ are realizable in Ŝ0,0/τ -Mod♡
harm,

then so is the third.

Proof. There are three cases that we need to prove.

(1) Suppose that both comodules M ′ and M are realizable by

M ′ ∼=MUmot
∗,∗ X ′ and M ∼=MUmot

∗,∗ X.

By Corollary 4.9, the algebraic map f ′ is also realizable as the MUmot
∗,∗ -homology of a

map

X ′ F ′

−−−!X.

Since Ŝ0,0/τ -Modb
harm is closed under taking cofibers, we can realize the comodule M ′′

by the MUmot
∗,∗ -homology of the cofiber of F ′. In fact, the associated long exact sequence

on the MUmot
∗,∗ -homology tells us that

M ′′ ∼=MUmot
∗,∗ X ′′,

where X ′′ is the the cofiber of F ′.

(2) Suppose that both comodules M and M ′′ are realizable. Then, we realize the

algebraic map and take the fiber instead. The same argument shows that it realizes M ′.
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(3) Suppose that both comodules M ′ and M ′′ are realizable by

M ′ ∼=MUmot
∗,∗ X ′ and M ′′ ∼=MUmot

∗,∗ X ′′.

In this case, the short exact sequence (4.2) corresponds to an element in

Ext1,0,0
MUmot

∗,∗ MUmot/τ
(M ′′,M ′).

By Corollary 4.8, this algebraic element can be realized by a map

F : Σ−1,0X ′′ −!X ′.

Define X to be the cofiber of the map F . We claim that X realizes M . In fact, the map

F has Adams–Novikov filtration 1, so it induces the zero homomorphism on MUmot
∗,∗ .

Therefore, the cofiber sequence that defines X induces a short exact sequence on MUmot
∗,∗ .

Since the isomorphism in Corollary 4.8 comes from the collapse of the absolute Adams–

Novikov spectral sequence on the E2-page, this shows that this short exact sequence on

MUmot
∗,∗ is isomorphic to the the short exact sequence (4.2). Therefore,

M ∼=MUmot
∗,∗ X.

This completes the proof.

We now prove the equivalence on the heart.

Proposition 4.11. The functor

MUmot
∗,∗ : Ŝ0,0/τ -Mod♡

harm

∼=−−!MUmot
∗,∗ MUmot/τ -Comod0

is an equivalence of categories.

Proof. We only need to show that the functor MUmot
∗,∗ is essentially surjective. In

other words, for any comodule M∈MUmot
∗,∗ MUmot/τ -Comod0, we show that it can be

realized as a harmonic Ŝ0,0/τ -module X, whose MUmot
∗,∗ -homology is M . This follows

from Lemmas 4.10, 4.5, 4.2 and Landweber’s filtration theorem via the equivalence

MUmot
∗,∗ MUmot/τ -Comod0 ∼=MU∗MU-Comodev.

In fact, MU∗ corresponds MUmot
∗,∗ /τ , and is thus realized by Ŝ0,0/τ . By Lemma 4.10,

we can inductively realize comodules MU∗/In for all n⩾0. Then, by Landweber’s filtra-

tion theorem and Lemma 4.10, we can realized all finitely presented comodules.
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For any comodule M∈MUmot
∗,∗ MUmot/τ -Comod0, or equivalently a comodule over

MU∗MU that is concentrated in even degrees, by Lemma 4.5, we can write it as a filtered

colimit of finitely presented ones Mα:

M ∼=colimMα.

By the above discussion, we can realize each Mα by Xα∈Ŝ0,0/τ -Mod♡
harm. Moreover,

by Corollary 4.9, we can realize the whole filtered system {Mα}α by a filtered system

{Xα}α. Taking the colimit, we define

X := colimXα.

By Lemma 4.2, X is harmonic. Since MUmot
∗,∗ commutes with filtered colimits, we have

that the comodule M is realized by X. This completes the proof.

4.3. The t-structure and the equivalence of categories

We prove that two full subcategories satisfy the required axioms for the t-structure.

Proposition 4.12. The pair of full subcategories

Ŝ0,0/τ -Modb,⩾0
harm and Ŝ0,0/τ -Modb,⩽0

harm

defines a bounded t-structure on Ŝ0,0/τ -Modb
harm.

Proof. The proof is exactly analogous to the proof of Proposition 3.7, with Corol-

lary 4.7 replacing Corollary 3.3, and Proposition 4.11 replacing Proposition 3.5.

Having this t-structure on Ŝ0,0/τ -Modb
harm, the main result of this section follows

from Proposition 2.12.

Theorem 4.13. There is a t-exact equivalence of stable ∞-categories

Db(MU∗MU-Comodev)
∼=−−! Ŝ0,0/τ -Modb

harm.

Proof. The proof is analogous to the proof of Theorem 3.8. It is clear that the

t-structure is bounded. By Proposition 4.11, and the equivalence

MUmot
∗,∗ MUmot/τ -Comod0 ∼=MU∗MU-Comodev,

the heart can be identified as comodules over MU∗MU. By Lemma 4.6, it has enough

injective objects.
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It remains to show that, for objects

X,Y ∈ Ŝ0,0/τ -Mod♡
harm,

with MUmot
∗,∗ Y injective over MUmot

∗,∗ MUmot/τ , we have that

[Σ−i,0X,Y ]
Ŝ0,0/τ

=0

for any i>0.

We apply the absolute Adams–Novikov spectral sequence

Exts,t,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y )=⇒ [Σt−s,wX,Y ]

Ŝ0,0/τ

in the category Ŝ0,0/τ -Modb
harm, as in Corollary 5.7.

Since MUmot
∗,∗ Y is an injective MUmot

∗,∗ MUmot/τ -comodule, the E2-page of the spectral

sequence is concentrated on the line s=0, and therefore collapses at the E2-page.

Moreover, since both MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated in Chow–Novikov

degree zero, the E2-page is also concentrated in Chow–Novikov degree zero, namely

t−2w=0

in this case.

We are interested in the case where t−s=−i<0 and w=0. By the above analysis,

the corresponding tri-degrees in the E2-page are all zero in our case. Therefore, we must

have that

[Σ−i,0X,Y ]
Ŝ0,0/τ

=0.

This completes the proof.

Remark 4.14. For the equivalence of stable ∞-categories in Theorem 4.13, we com-

ment on its bi-grading through some examples.

(1) It is clear that Ŝ0,0/τ corresponds to MU∗ in the derived category of MU∗MU-

comodules.

(2) Consider Σ2,1Ŝ0,0/τ . As its MUmot-homology is concentrated in Chow–Novikov

degree zero, it lives in the heart. Therefore, by the t-exactness, it corresponds to a cochain

complex that is concentrated in cohomological degree zero. A direct computation shows

that it corresponds to Σ2MU∗. We also denote this object in the category

Db(MU∗MU-Comodev)

by Σ2,1MU∗.
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(3) Consider Σ1,0Ŝ0,0/τ . Its MUmot-homology is concentrated in Chow–Novikov

degree 1. By the t-exactness, it corresponds to the cochain complex that is concentrated

in cohomological degree −1, with the comodule MU∗ in that cohomological degree. We

also denote this object by Σ1,0MU∗.

(4) In general, denote by Σm,nMU∗ the object in the category

Db(MU∗MU-Comodev)

that Σm,nŜ0,0/τ corresponds to. Then Σm,nMU∗ is a cochain complex that is concen-

trated in cohomological degree 2n−m, with the comodule Σ2nMU∗ in that cohomological

degree.

By Proposition 1.10, we have that there exists an exact equivalence of categories

between BP∗BP-Comodev and MU∗MU-Comodev. Therefore, Theorem 4.13 implies

Theorem 1.1.

Remark 4.15. The equivalence of stable ∞-categories in Theorem 1.1 is actually

symmetric monoidal. In fact, the equivalence preserves colimits, so we have the following

commutative diagram

D−(BP∗BP-Comodev)⩾0
// (Ŝ0,0/τ -Modb,⩾0

harm)
∧

s(BP∗BP-Comodev
rel proj) //

F1

OO

s(Ŝ0,0/τ -Mod♡
harm)

F2

OO
.

Here, (Ŝ0,0/τ -Modb,⩾0
harm)

∧ is the left completion of Ŝ0,0/τ -Modb,⩾0
harm with respect to its

t-structure, s(BP∗BP-Comodev
rel proj) is the category of simplicial objects of relative

projective BP∗BP-comodules that are concentrated in even degrees (see [24, Defini-

tion 2.1.2]), and s(Ŝ0,0/τ -Mod♡
harm) is the category of simplicial objects in the category

Ŝ0,0/τ -Mod♡
harm. The horizontal arrows are induced by the equivalence in Theorem 1.1,

and the vertical arrows are geometric realizations.

By [40, Proposition 5.5.9.14], geometric realization functors are symmetric monoidal.

The lower-horizontal arrow is also symmetric monoidal, since it is level-wise symmetric

monoidal, which is implied by Proposition 4.11 and the universal coefficient theorem (see

[12, Proposition 7.10]).

Let W1 and W2 denote the class of morphisms in the ∞-categories

s(BP∗BP-Comodev
rel proj) and s(Ŝ0,0/τ -Mod♡

harm)
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that are sent to equivalences by the functors F1 and F2. Let

s(BP∗BP-Comodev
rel proj)[W

−1
1 ] and s(Ŝ0,0/τ -Mod♡

harm)[W
−1
2 ]

denote the localizations with respect to W1 and W2. The above commutative diagram

factors through the following one:

D−(BP∗BP-Comodev)⩾0
// (Ŝ0,0/τ -Modb,⩾0

harm)
∧

s(BP∗BP-Comodev
rel proj)[W

−1
1 ] //

OO

s(Ŝ0,0/τ -Mod♡
harm)[W2

−1].

OO

By the Dold–Kan correspondence and [24, Lemma 1.4.6], the left vertical arrow is

an equivalence.

By [41, Proposition 2.2.1.9], localization functors preserve symmetric monoidal struc-

tures. Thus, the upper-horizontal arrow is symmetric monoidal. Restricting it to the

bounded subcategory and by the universal property of stablization [63, Theorem 2.14],

this gives us the claim.

We now prove Corollary 1.2.

Proof of Corollary 1.2. Let Ŝ0,0/τ -Modfin be the category of finite cellular motivic

left-module spectra over Ŝ0,0/τ , and Db(BP∗BP-Comodev)fin be the full subcategory of

Db(BP∗BP-Comodev) consisting of objects generated by BP∗, under finite colimits and

shifts by both homological and even internal degrees.

Since Ŝ0,0/τ is harmonic, the category Ŝ0,0/τ -Modfin is the full subcategory of

Ŝ0,0/τ -Modb
harm consisting of objects generated by Ŝ0,0/τ , under finite colimits and shifts

by both the topological degree and the motivic weight.

Since Ŝ0,0/τ corresponds to BP∗ under the equivalence in Theorem 1.1, we have an

equivalence of stable ∞-categories with given t-structures at each prime p:

Db(BP∗BP-Comodev)fin ≃ Ŝ0,0/τ -Modfin.

By Theorem 5.3.5.11 of Lurie’s higher topos theory [40], if D is an ∞-category

that admits filtered colimits, and C is an essentially small full subcategory of D, whose

elements are compact, and generate D under filtered colimits, then D is equivalent to

the ∞-category Ind(C) of Ind-objects of C.
It follows that

Ŝ0,0/τ -Modcell ≃ Ind(Ŝ0,0/τ -Modfin).
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On the other hand, BP∗ generates Db(BP∗BP-Comodev)fin under finite colimits.

Moreover, it is proved by Hovey in [24, §6] that objects in Db(BP∗BP-Comodev)fin are

compact, and generate Stable(BP∗BP-Comodev) under filtered colimits. It then follows

from [40, Theorem 5.3.5.11] that

Stable(BP∗BP-Comodev)≃ Ind(Db(BP∗BP-Comodev)fin).

Therefore, we have an equivalence of stable ∞-categories at each prime p

Stable(BP∗BP-Comodev)≃ Ŝ0,0/τ -Modcell.

5. The absolute Adams–Novikov spectral sequence

In §3, we used the universal coefficient spectral sequence

Es,t,w
2 =Exts,t,w

MUmot
∗,∗ /τ

(π∗,∗X,π∗,∗Y )=⇒ [Σt−s,wX,Y ]MUmot/τ

of Theorem 3.2 to compute homotopy classes of maps in MUmot/τ -Modb
cell. This is a

very convenient tool since both the t-structure on MUmot/τ -Modb
cell and the E2-page of

the universal coefficient spectral sequence are defined in terms of homotopy groups. The

bounds in the t-structure correspond to vanishing areas in the spectral sequence.

For the category Ŝ0,0/τ -Modb
harm, the t-structure is defined in terms of MUmot-

homology. We therefore need a version of the motivic Adams–Novikov spectral sequence

that computes Ŝ0,0/τ -linear maps.

Recall from Dugger–Isaksen [14, §8] or Hu–Kriz–Ormsby [28] the usual MUmot-based

motivic Adams–Novikov spectral sequence

Ext∗,∗,∗
MUmot

∗,∗ MUmot(MUmot
∗,∗ Ŝ0,0,MUmot

∗,∗ Y )=⇒π∗,∗Y
∧
MUmot .

This spectral sequence is not what we need. We need a spectral sequence of the

form

ExtMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ Y )=⇒ [X,Y ∧

MUmot ]Ŝ0,0/τ
,

for the following two reasons. Note that Y ∧
MUmot has the natural structure of being a

Ŝ0,0/τ -module. (See property (3) after Definition 7.1 for this fact.)

First, we need a spectral sequence computing homotopy classes of maps in the

category Ŝ0,0/τ -Modcell, instead of homotopy classes of maps between the underlying

motivic spectra.

Second, we need the first variable X to be a general cellular Ŝ0,0/τ -module than

just the unit object Ŝ0,0/τ . Classically, when the first variable X is the sphere spectrum,
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we can use the standard cosimplicial cobar Adams–Novikov resolution for the second

variable Y ∈Ŝ0,0/τ -Mod to set up this spectral sequence. This is done in [62, Chapter 2]

classically, and in [14, §8] and [28] motivically. Such a resolution induces a resolution

of MUmot
∗,∗ Y by relative injective comodules. It computes the E2-page as an Ext-group

only when the first variable MUmot
∗,∗ X is a projective module over MUmot

∗,∗ /τ [62, Corol-

lary A1.2.12]. Since our first variable X is arbitrary, the E2-page in general does not

have a description as a relative Ext-group.

Instead of using the canonical Adams–Novikov tower that produces a resolution of

MUmot
∗,∗ Y by relative injectives, we construct an absolute Adams–Novikov tower that

produces a resolution of MUmot
∗,∗ Y by absolute injectives. The first step is to establish

Lemmas 5.1 and 5.3, where we produce enough Ŝ0,0/τ -modules whose MUmot-homology

are injective comodules. The second step is Lemma 5.4, where we show that we can

algebraically resolve comodules in MUmot
∗,∗ MUmot/τ -Comod by these injective comodules.

The third step is Proposition 5.5, where we topologically realize the algebraic construction

to produce an absolute Adams–Novikov tower in the category Ŝ0,0/τ -Modb
cell. Finally, in

Theorem 5.6, we construct the absolute Adams–Novikov spectral sequence and analyze

its convergence.

5.1. The absolute Adams–Novikov tower

We construct the absolute Adams–Novikov tower in this subsection.

Recall that the forgetful functor from the abelian category MUmot
∗,∗ MUmot/τ -Comod

to the category of abelian groups reflects monomorphisms, epimorphisms and exactness.

The following Lemma 5.1 is a consequence of Proposition 3.5 and the homology ver-

sion of Dugger–Isaksen’s the universal coefficient spectral sequence [13, Propositions 7.7

and 7.10].

Lemma 5.1. For any injective module N∈MUmot
∗,∗ /τ -Mod0, the following statements

hold :

(1) MUmot
∗,∗ MUmot/τ⊗MUmot

∗,∗ /τN is an injective MUmot
∗,∗ MUmot/τ -comodule;

(2) there exists I in MUmot/τ -Mod♡
cell such that

π∗,∗I ∼=N ;

(3) for any such an object I,

MUmot
∗,∗ I ∼=MUmot

∗,∗ MUmot/τ⊗MUmot
∗,∗ /τN.
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Proof. (1) is straightforward (see [62, Lemma A1.2.2] for example). Statement (2)

follows directly from Proposition 3.5.

For (3), we have the equivalences

MUmot∧I ≃MUmot/τ∧
Ŝ0,0/τ

I

≃MUmot/τ∧
Ŝ0,0/τ

(MUmot/τ∧MUmot/τ I)

≃ (MUmot/τ∧
Ŝ0,0/τ

MUmot/τ)∧MUmot/τ I.

Since MUmot/τ is Ŝ0,0/τ -cellular, the homotopy groups of the last term can be computed

by the following homology version of Dugger–Isaksen’s universal coefficient spectral se-

quence [13, Proposition 7.10]:

Tor
MUmot

∗,∗ /τ

s,t,w (MUmot
∗,∗ MUmot/τ, π∗,∗I)=⇒πt+s,w(MUmot/τ∧

Ŝ0,0/τ
MUmot/τ∧MUmot/τ I)

in the category MUmot/τ -Modcell.

Since MUmot
∗,∗ MUmot/τ is free, the spectral sequence is concentrated on the line s=0

and collapses at the E2-page. This proves statement (3).

Remark 5.2. In statement (3) we do not require that N is injective.

Lemma 5.1 is our source of motivic Ŝ0,0/τ -modules whose MUmot/τ -homology is

injective as a comodule.

Lemma 5.3. Suppose that I is an object in MUmot/τ -Mod♡
cell such that π∗,∗I is an

injective MUmot
∗,∗ /τ -module.

Then, for any X∈Ŝ0,0/τ -Modb
cell, we have

[X, I]
Ŝ0,0/τ

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ I).

Proof. The lemma follows from the following isomorphisms:

[X, I]
Ŝ0,0/τ

∼= [MUmot/τ∧
Ŝ0,0/τ

X, I]MUmot/τ

∼=HomMUmot
∗,∗ /τ (MUmot

∗,∗ X,π∗,∗I)

∼=HomMUmot
∗,∗ /τ (MUmot

∗,∗ X,N)

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ MUmot/τ⊗MUmot

∗,∗ /τN)

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ I).

In fact, the first isomorphism follows from the adjunction (3.2) between Ŝ0,0/τ -modules

and MUmot/τ -modules. The third and last isomorphisms follow from Lemma 5.1. The
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fourth isomorphism follows from a change-of-ring isomorphism. It remains to show the

second isomorphism.

Since both I and MUmot/τ∧
Ŝ0,0/τ

X belong to MUmot/τ -Modcell, the set of homo-

topy classes of maps

[MUmot/τ∧
Ŝ0,0/τ

X, I]MUmot/τ

can be computed by the universal coefficient spectral sequence of Theorem 3.2, that is

Exts,t,w
MUmot

∗,∗ /τ
(MUmot

∗,∗ X,π∗,∗I)=⇒ [Σt−s,wMUmot/τ∧
Ŝ0,0/τ

X, I]MUmot/τ .

As π∗,∗I∼=N is an injective MUmot
∗,∗ /τ -module, the spectral sequence is concentrated

on the line s=0 and collapses at the E2-page. This gives the second isomorphism.

Lemma 5.4. For any M∈MUmot
∗,∗ MUmot/τ -Comod that is concentrated in Chow–

Novikov degree k, there exists a monomorphism

M �
�
// MUmot

∗,∗ MUmot/τ⊗MUmot
∗,∗ /τN,

where N is injective in MUmot
∗,∗ /τ -Mod and is concentrated in Chow–Novikov degree k.

Proof. Since there are enough injective objects in the category MUmot
∗,∗ /τ -Mod, we

may choose an embeddingM↪!N into an injective object in the category MUmot
∗,∗ /τ -Mod.

Then, the induced comodule map

M �
�
// MUmot

∗,∗ MUmot/τ⊗MUmot
∗,∗ /τN,

is also a monomorphism.

Proposition 5.5. For any Y ∈Ŝ0,0/τ -Modb
cell, there exists a tower of the following

form

Y Y0

��

Y1

��

oo Y2

��

oo ...oo

I0 I1 I2

in the category Ŝ0,0/τ -Modb
cell, such that the following statements hold :

(1) each map Ys−!Ys−1 induces the zero homomorphism in MUmot-homology ;

(2) each cofiber Is is a finite product of suspensions of objects I in MUmot/τ -Mod♡
cell

such that π∗,∗I is an injective MUmot
∗,∗ /τ -module.

We call such a tower an absolute Adams–Novikov tower.

Moreover, any map f :X−!Y in Ŝ0,0/τ -Modb
cell can be lifted to a map of absolute

Adams–Novikov towers.
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Proof. Suppose that MUmot
∗,∗ Y is concentrated in Chow–Novikov degrees [a, b], namely

MUmot
∗,∗ Y ∼=

b⊕
k=a

+∞⊕
l=−∞

MUmot
2l+k,lY.

By Lemma 5.4, for every k∈[a, b], there exists a monomorphism

+∞⊕
l=−∞

MUmot
2l+k,l(Y )∼=MUmot

∗,∗ (Σ−k,0Y )=0 � � // MUmot
∗,∗ MUmot/τ⊗MUmot

∗,∗ /τN0,k,

where N0,k is injective module that is concentrated in Chow–Novikov degree zero. By

Lemma 5.1, there exists a spectrum I0,k∈MUmot/τ -Mod♡
cell such that

π∗,∗I0,k ∼=N0,k

and

MUmot
∗,∗ I0,k ∼=MUmot

∗,∗ MUmot/τ⊗MUmot
∗,∗ /τN0,k.

By Lemma 5.3, we have that

[Σ−k,0Y, I0,k]Ŝ0,0/τ

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ (Σ−k,0Y ),MUmot
∗,∗ MUmot/τ⊗MUmot

∗,∗ /τN0,k)

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ (Σ−k,0Y )=0,MUmot
∗,∗ MUmot/τ⊗MUmot

∗,∗ /τN0,k).

The second isomorphism follows from the fact that N0,k is concentrated in Chow–Novikov

degree zero. Therefore, the algebraic map of comodules

MUmot
∗,∗ (Σ−k,0Y ) // // MUmot

∗,∗ (Σ−k,0Y )=0 �
�
// MUmot

∗,∗ MUmot/τ⊗MUmot
∗,∗ /τN0,k,

where the first map is the project map to the Chow–Novikov-degree-zero part, can be

realized as a Ŝ0,0/τ -linear map

Σ−k,0Y −! I0,k.

Combining these maps for all k∈[a, b], we obtain a map

Y −!
b∏

k=a

Σk,0I0,k.

This map induces a monomorphism in MUmot-homology.
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Denote the finite product by

I0 :=

b∏
k=a

Σk,0I0,k,

and the fiber of the map Y!I0 by Y1, as in

Y

��

Y1
oo

I0.

By the associated long exact sequence in MUmot-homology, the map Y1−!Y induces the

zero map in MUmot-homology, and MUmot
∗,∗ Y1 is concentrated in Chow–Novikov degrees

[a−1, b−1]. So, in particular, we have

Y1 ∈ Ŝ0,0/τ -Modb
cell.

We can repeat the procedure, producing an absolute Adams–Novikov tower

Y

��

Y1

��

oo Y2

��

oo ...oo

I0 I1 I2

satisfying the desired properties.

We now prove the second claim of the theorem. For any Ŝ0,0/τ -linear map

f0:X0 −!Y0,

we may assume that MUmot
∗,∗ X0 and MUmot

∗,∗ Y0 are both concentrated in Chow–Novikov

degrees [a, b]. Denote the first step of their tower by

X0

��

f0 // Y0

��

I0 J0,

where I0 and J0 are the finite products of suspensions of objects that satisfy the conclu-

sions of Lemma 5.1. Applying MUmot
∗,∗ , we have the following diagram of MUmot

∗,∗ MUmot/τ -

comodules:

MUmot
∗,∗ X0 MUmot

∗,∗ Y0

MUmot
∗,∗ I0 MUmot

∗,∗ J0.

(f0)∗,∗

ϕ
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Here the existence of the homomorphism ϕ is due to the universal property of injective

objects in the category MUmot
∗,∗ MUmot/τ -Comod.

We have

MUmot
∗,∗ I0 =MUmot

∗,∗

( b∏
k=a

Σk,0I0,k

)
=

b∏
k=a

MUmot
∗,∗ (Σk,0I0,k),

MUmot
∗,∗ J0 =MUmot

∗,∗

( b∏
k=a

Σk,0J0,k

)
=

b∏
k=a

MUmot
∗,∗ (Σk,0J0,k).

The Chow–Novikov-degree-k parts of MUmot
∗,∗ I0 and MUmot

∗,∗ J0 are given by

MUmot
∗,∗ (Σk,0I0,k) and MUmot

∗,∗ (Σk,0J0,k).

Therefore, the homomorphism ϕ is given by the product of homomorphisms

ϕk:MUmot
∗,∗ (Σk,0I0,k)−!MUmot

∗,∗ (Σk,0J0,k)

for each k∈[a, b].
Since J0,k satisfies the conclusions of Lemma 5.1, we have that

[Σk,0I0,k,Σ
k,0J0,k]Ŝ0,0/τ

∼= [I0,k, J0,k]Ŝ0,0/τ

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ I0,k,MUmot
∗,∗ J0,k)

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ (Σk,0I0,k),MUmot
∗,∗ (Σk,0J0,k)),

where the second isomorphism is given by Lemma 5.3. Therefore, the homomorphism

ϕk can be realized by a Ŝ0,0/τ -linear map

g0,k: Σ
k,0I0,k −!Σk,0J0,k.

Taking the product of g0,k for all k∈[a, b], we define a map g0 :I0!J0. Then g0 realizes

ϕ, and we have the diagram

X0

��

f0 // Y0

��

I0
g0 // J0.

To see that the square commutes up to homotopy, we have

[X,J0]Ŝ0,0/τ
∼=
[
X,

b∏
k=a

Σk,0J0,k

]
Ŝ0,0/τ

∼=
b∏

k=a

HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ (Σk,0J0,k))

∼=HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ J0),
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where the second isomorphism is given by Lemma 5.3.

Therefore, the commutativity of this square follows from the commutativity of the

corresponding square in MUmot-homology.

The commutative diagram in Ŝ0,0/τ -Modb
cell induces a map f1:X1!Y1 between the

fibers, so the following diagram commutes, up to homotopy:

X X1 X2 ...

I0 I1

Y Y1 Y2 ...

J0 J1.

f0

g0

f1

Iterating this process produces the desired map of absolute Adams–Novikov towers.

5.2. The spectral sequence

Every absolute Adams–Novikov tower gives rise to an absolute Adams–Novikov spectral

sequence. In the following Theorem 5.6, we identify the E2-page of the spectral sequence

and its abutment. We also show that it does not depend on the absolute Adams–Novikov

tower, and converges strongly for objects with bounded Chow–Novikov degree.

Theorem 5.6. For X,Y ∈Ŝ0,0/τ -Modb
cell, there is an absolute Adams–Novikov spec-

tral sequence

Es,t,w
2

∼=Exts,t,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y )=⇒ [Σt−s,wX,Y ∧

MUmot ]Ŝ0,0/τ
,

with differentials

dr:E
s,t,w
r −!Es+r,t+r−1,w

r ,

that does not depend on the absolute Adams–Novikov tower. Here, Y ∧
MUmot is the MUmot-

completion of Y . Moreover, this spectral sequence converges strongly and collapses at a

finite page.
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Proof. The arguments for the existence of the absolute Adams–Novikov spectral

sequence and its independence of the absolute Adams–Novikov tower are both standard.

Under the hypotheses that both MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated in bounded

Chow–Novikov degrees, the argument for the strongly convergence and collapse at a

finite page is similar to the one given in the proof of Theorem 3.2: it follows from degree

reasons.

To complete the proof, we only need to identify the abutment.

Let Y/Ys be the cofiber of the map Ys!Y in the absolute Adams–Novikov tower

Y

��

Y1

��

oo Y2

��

oo ...oo

I0 I1 I2,

and define the limit in Ŝ0,0/τ -Mod

Ŷ = lim(Y/Ys).

The spectral sequence converges conditionally to

[X, Ŷ ]
Ŝ0,0/τ

.

See, for example, [6, §5 and §15] for a discussion of convergence issues of the Adams

spectral sequence.

To identify it as [X,Y ∧
MUmot ]Ŝ0,0/τ

, since X is Ŝ0,0/τ -cellular, we only need to show

that Ŷ has the same homotopy groups as the Y ∧
MUmot .

Take X=Ŝ0,0/τ . Since MUmot
∗,∗ Ŝ0,0/τ=MUmot

∗,∗ /τ is free over itself, we can use the

canonical MUmot/τ -Adams resolution [62, Definition 2.2.10] for Y in this case. Now we

compare the canonical MUmot/τ -based Adams–Novikov tower of Y with the absolute

Adams–Novikov tower of Y .

As we did in the proof of Proposition 5.5, we have a map of towers from the canonical

MUmot/τ -based one to the absolute one. The identity map on Y induces a homomorphism

from the canonical cobar resolution of MUmot
∗,∗ Y to the absolute injective resolution of

MUmot
∗,∗ Y , so in particular a homomorphism of relative injective resolutions.

This induces a homomorphism from the usual Adams–Novikov spectral sequence to

the absolute Adams–Novikov spectral sequence, with an isomorphism on the E2-page. It

is therefore an isomorphism of spectral sequences and we have an isomorphism

π∗,∗Ŷ
∼=−!π∗,∗Y

∧
MUmot .
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Since any cellular Ŝ0,0/τ -module X can be written in terms of filtered colimits and

cofibers of suspensions of Ŝ0,0/τ ’s, there is an isomorphism

[X, Ŷ ]
Ŝ0,0/τ

∼=−−! [X,Y ∧
MUmot ]Ŝ0,0/τ

.

Therefore, the absolute Adams–Novikov spectral sequence computes

[X,Y ∧
MUmot ]Ŝ0,0/τ

.

When Y is harmonic, the isomorphism

π∗,∗Ŷ
∼=−!π∗,∗Y

∧
MUmot

gives the following corollary.

Corollary 5.7. For any X,Y ∈Ŝ0,0/τ -Modb
harm, there is an absolute Adams–

Novikov spectral sequence

Es,t,w
2 =Exts,t,w

MUmot
∗,∗ MUmot/τ

(MUmot
∗,∗ X,MUmot

∗,∗ Y )=⇒ [Σt−s,wX,Y ]
Ŝ0,0/τ

,

with differentials

dr:E
s,t,w
r −!Es+r,t+r−1,w

r ,

that converges strongly and collapses at a finite page.

Remark 5.8. The above arguments can be applied to more general situations. How-

ever, this construction of an absolute Adams–Novikov spectral sequence depends on

realizability of categorical injective objects, so the range of situations to which it applies

may be rather limited.

In the case of the classical stable homotopy category, for spectra X and Y , there is

a conditionally convergent spectral sequence

Exts,tMU∗MU(MU∗X,MU∗Y )=⇒ [Σt−sX,Y ∧
MU],

where MU∗X does not have to be projective over MU∗. We will discuss this case in a

general framework in future work.

5.3. Proofs of Lemma 4.2 and Corollaries 4.7 and 4.8

We give the proofs of Lemma 4.2 and Corollaries 4.7 and 4.8 in this section.

Corollary 4.7 states that, if X∈Ŝ0,0/τ -Modb,⩾0
harm and Y ∈Ŝ0,0/τ -Modb,⩽0

harm, then the

abelian group of homotopy classes of bi-degree (0, 0) maps can be computed algebraically

by the isomorphism

[X,Y ]
Ŝ0,0/τ

−!HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ Y )

that is induced by applying MUmot
∗,∗ .



the special fiber of the motivic deformation is algebraic 377

Proof of Corollary 4.7. The proof is similar to the one of Corollary 3.3.

Consider the E2-page of the absolute Adams–Novikov spectral sequence. The tri-

degrees that converge to the bi-degree (0, 0) are of the form (t, t, 0), which correspond to

Es,t,w
2 =Et,t,0

2 , for t⩾0.

By the proof of Theorem 5.6, the t-degrees of all possible non-zero elements in the

E1-page and therefore E2-page satisfy t⩽d−a+2w=d−a. Since MUmot
∗,∗ X and MUmot

∗,∗ Y

are concentrated in non-negative and non-positive bounded Chow–Novikov degrees, we

have d=a=0. Therefore, we have t⩽0.

Combining both facts, we have established that the only possible non-zero elements

in the E2-page that converge to the bi-degree (0, 0) are in

E0,0,0
2 =HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ X,MUmot

∗,∗ Y ).

To show that all elements in E0,0,0
2 survive in the spectral sequence, note that they are

not targets of any non-zero differentials since they are in s-degree zero. Second, all dr-

differentials for r⩾2 increase the t-degree. Since the t-degrees of all non-zero elements

are non-positive, the elements in E0,0,0
2 do not support non-zero differentials. There are

no hidden extensions due to degree reasons. This completes the proof.

Corollary 4.8 states that, givenX,Y ∈Ŝ0,0/τ -Mod♡
harm, for any bi-degree (t, w) there

is an isomorphism

[Σt,wX,Y ]
Ŝ0,0/τ

∼=Ext2w−t,2w,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y ).

Proof of Corollary 4.8. Consider the E2-page of the absolute Adams–Novikov spec-

tral sequence. Since both MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated in Chow–Novikov

degree zero, the E2-page

Es,t,w
2 =Exts,t,w

MUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ X,MUmot
∗,∗ Y

)
is concentrated in degrees t=2w. Since all differentials preserves the motivic weights w,

this spectral sequence collapses at the E2-page. There are no hidden extensions due to

degree reasons. Therefore, we have the isomorphism

[Σt,wX,Y ]
Ŝ0,0/τ

∼=Ext2w−t,2w,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y ).

We prove Lemma 4.2, which states that if {Yα} is a filtered system in Ŝ0,0/τ -Mod♡

such that each Yα is harmonic, then the colimit of {Yα} in Ŝ0,0/τ -Mod♡ is also harmonic.
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Proof of Lemma 4.2. Consider the absolute Adams–Novikov spectral sequence of

Theorem 5.6,

Exts,t,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ Ŝ0,0/τ,MUmot
∗,∗ Y )

=⇒ [Σt−s,wŜ0,0/τ, Y ∧
MUmot ]Ŝ0,0/τ

∼=πt−s,wY
∧
MUmot ,

in the case that X=Ŝ0,0/τ and Y =colim Yα. As both Ŝ0,0/τ and Y are in Ŝ0,0/τ -Mod♡,

the E2-page is concentrated in degrees t=2w. Since all differentials preserve the motivic

weights w, this spectral sequence collapses at the E2-page. There are no hidden exten-

sions, due to degree reasons. Therefore, we have the isomorphism

πt,wY
∧
MUmot

∼= [Σt,wŜ0,0/τ, Y ∧
MUmot ]Ŝ0,0/τ

∼=Ext2w−t,2w,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ Ŝ0,0/τ,MUmot
∗,∗ Y ).

Since MUmot
∗,∗ Ŝ0,0/τ∼=MUmot

∗,∗ /τ is free over MUmot
∗,∗ /τ , one can use the canonical cobar

resolution for MUmot
∗,∗ Y . Since it is functorial and commutes with filtered colimits, the

isomorphism

colimMUmot
∗,∗ Yα

∼=MUmot
∗,∗ (Y )

induces an isomorphism

colimExt∗,∗,∗
MUmot

∗,∗ MUmot/τ

(
MUmot

∗,∗ /τ,MUmot
∗,∗ Yα

)∼=Ext∗,∗,∗
MUmot

∗,∗ MUmot/τ

(
MUmot

∗,∗ /τ,MUmot
∗,∗ Y

)
.

Therefore, we have the following isomorphisms

πt,wY ∼=πt,w(colimYα)

∼=colimπt,wYα

∼=colim [Σt,wŜ0,0/τ, Yα]Ŝ0,0/τ

∼=colimExt2w−t,2w,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ /τ,MUmot
∗,∗ Yα)

∼=Ext2w−t,2w,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ /τ,MUmot
∗,∗ Y )

∼= [Σt,wŜ0,0/τ, Y ∧
MUmot ]Ŝ0,0/τ

∼=πt,wY
∧
MUmot ,

where the fourth isomorphism is given by Corollary 4.8, since each Yα is harmonic.

The composite is induced by the completion map Y!Y ∧
MUmot . This shows that Y is

harmonic.

Remark 5.9. Lemma 4.2 can be generalized to the case when there is a uniform

bound on the Chow–Novikov degrees of MUmot
∗,∗ Yα for all α. Example 4.1 (3) shows that

Lemma 4.2 cannot hold without any bound on Chow–Novikov degrees.
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6. Further questions

The category of cellular modules over Ŝ0,0/τ measures the difference between cellular

modules over the HFmot
p -completed motivic sphere spectrum Ŝ0,0 and cellular modules

over the classical p-completed sphere spectrum Ŝ0.

Definition 6.1. Let Ŝ0,0-Modfin be the category of finite cellular modules over

Ŝ0,0, and Ŝ0-Modfin be the category of classical finite cellular modules over Ŝ0. Let

Ŝ0,0-Modτ -tor
fin be the full subcategory of Ŝ0,0-Modfin that is generated by Ŝ0,0/τ -Modfin

under cofibers, i.e. the smallest full subcategory containing objects of Ŝ0,0/τ -Modfin and

closed under taking cofibers.

The following Proposition 6.2 can be proved from Dugger–Isaksen [14, §3.2 and §3.4]

and Isaksen [29, Proposition 3.0.2].

Proposition 6.2. The sequence

Ŝ0,0-Modτ -tor
fin −! Ŝ0,0-Modfin

R̂e−−−! Ŝ0-Modfin

is an exact sequence of stable ∞-categories in the sense of Blumberg–Gepner–Tabuada

[5, §5], where R̂e is the p-completed version of the Betti realization functor ([12, Theo-

rem 1.4]) explained below.

Let Re be the Betti realization functor constructed in Dugger–Isaksen [12, Theo-

rem 1.4]. It is symmetric monoidal and preserves colimits. It was shown by Dugger–

Isaksen [14] that Re sends the motivic Adams tower for S0,0 to the classical Adams tower

for S0. Taking the limit, we get a map of E∞ spectra

Re(Ŝ0,0)−! Ŝ0.

For any Ŝ0,0-module X, we define the p-completed Betti realization functor to be

R̂e(X) :=Re(X)∧
Re(Ŝ0,0)

Ŝ0.

The p-completed Betti realization functor R̂e sends Ŝ0,0 to Ŝ0. It is symmetric monoidal,

and preserves colimits.

In the sense of Proposition 6.2, our Theorem 1.1 gives a decomposition of the cellular

stable motivic category into more classical categories.

In particular, we can apply the non-connective algebraic K-theory functor K con-

structed in Blumberg–Gepner–Tabuada [5, §9], and get a cofiber sequence of non-con-

nective algebraic K-theory spectra, since the functor K sends exact sequences of stable

∞-categories into cofiber sequences:

K(Ŝ0,0-Modτ -tor
fin )−!K(Ŝ0,0-Modfin)

R̂e−−−!K(Ŝ0-Modfin).
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Since the Betti realization functor admits a section, the above cofiber sequence actually

splits:

K(Ŝ0,0-Modfin)≃K(Ŝ0-Modfin)∨K(Ŝ0,0-Modτ -tor
fin ).

The spectrum

K(Ŝ0-Modfin)

for the p-completed sphere spectrum is described by Bökstedt–Hsiang–Madsen [7].

To understand the spectrum

K(Ŝ0,0-Modτ -tor
fin ),

we consider the inclusion functor

Ŝ0,0/τ -Modfin −! Ŝ0,0-Modτ -tor
fin . (6.1)

We propose the following question.

Question 6.3. Does the inclusion functor (6.1) induce an equivalence on non-con-

nective algebraic K-theory spectra?

Our Question 6.3 is an example of the dévissage question for algebraic K-theories.

It is known to be false in some situations (see Antieau–Barthel–Gepner [2]).

Let

BP∗BP-Comodev
fin

be the subcategory of BP∗BP-Comodev on those comodules whose underlying BP∗-

module is finitely presented. If the answer to Question 6.3 is yes, then, by the theorem of

the heart due to Barwick [4] and Theorem 1.1, we have the following isomorphism for all

i⩾0 (we require this condition, since Barwick’s theorem only applies to the connective

K-theories):

Ki(Ŝ0,0-Modfin)∼=Ki(Ŝ0-Modfin)⊕Ki(BP∗BP-Comodev
fin).

If we further regard the category BP∗BP-Comodev
fin as the category Coh(MFG) of

coherent sheaves over the moduli stack MFG of formal groups [20], and the answer to

Question 6.3 is yes, then for all i there is an isomorphism

Ki(Ŝ0,0)∼=Ki(Ŝ0)⊕Ki(Coh(MFG)).
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7. HFmot
p -completion

Let R be an E∞-algebra in a symmetric monoidal stable ∞-category C with the unit

object S.

Definition 7.1. For any object Z in C, we define its R-completion, denoted by Z∧
R,

as the totalization of the co-simplicial object

Z⊗R⊗�,

where the co-face maps are induced by the unit map S!R.

The R-completion Z∧
R in C has the following properties:

(1) It commutes with finite limits and finite colimits.

(2) It commutes with suspensions and desuspensions.

(3) If Z is an E∞-algebra in C, then Z∧
R is also an E∞-algebra in C. Moreover, if Y

is an Z-module, then Y ∧
R is an Z∧

R-module. These are special cases of Corollary 3.2.2.5

in Higher Algebra [41].

We now consider the category C-mot-Spectra and the HFmot
p -completion of the

sphere spectrum S0,0:

Ŝ0,0 =S0,0∧
HFmot

p
.

Both the sphere spectrum S0,0 and the Eilenberg–Mac Lane spectrum HFmot
p are E∞-

algebras in C-mot-Spectra. Therefore, the HFmot
p -completed sphere spectrum Ŝ0,0 is

an E∞-algebra.

It is a theorem of Hu–Kriz–Ormsby [27], [28] that, over any algebraic closed field

of characteristic zero, the HFmot
p -completion of the sphere spectrum and the usual p-

completion of the motivic sphere spectrum have isomorphic motivic homotopy groups.

For the effect of the HFmot
p -completion of the sphere spectrum on homotopy groups,

Hu–Kriz–Ormsby [27], [28] pointed out that there is a short exact sequence on homo-

topy groups of the uncompleted sphere spectrum S0,0 and the HFmot
p -completed sphere

spectrum Ŝ0,0:

0−!Ext1Z(Z/p∞, πs,wS
0,0)−!πs,wŜ0,0 −!HomZ(Z/p∞, πs−1,wS

0,0)−! 0.

See [27] for a general discussion regarding the effect of homotopy groups with respect to

the HFmot
p -completion.

Now we consider the cellular motivic spectrum MGL. Recall from [69] that

MGL= colim
n,k!∞

Σ−2n,−nThom(V (k, n)).
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Here, V (k, n) is the tautological bundle over the Grassmannian Gr(k, n) for k⩾n, which

is the smooth scheme of complex n-planes in Ck, and Thom(V (k, n)) is its associated

motivic Thom spectrum.

Recall that we have defined in §1.1 that

MUmot =MGL∧S0,0 Ŝ0,0.

By adjunction, for any Ŝ0,0-module X, its MGL-completion in the category

C-mot-Spectra

can be identified as its MUmot-completion in the category Ŝ0,0-Mod.

The following proposition states that MUmot has the same homotopy groups as the

HFmot
p -completion of MGL.

Proposition 7.2. The natural map

MUmot =MGL∧S0,0 Ŝ0,0 −!MGL∧
HFmot

p

induces an isomorphism on π∗,∗.

We prove Proposition 7.2 by using [28, Lemma 11]. Recall from [28] that a motivic

cellular spectrum X is k-connective, if πs,wX=0 for all s and w such that s−w<k. A

cellular map f :X!Y between cellular motivic spectra is a k-equivalence, if its cofiber

is (k+1)-connective. Lemma 11 of [28] states that, if X is k-connective, then X∧
HFmot

p
is

also k-connective.

For MGL, recall from Schubert calculus (see Griffiths–Harris [22, §1.5] in the classical

setting and Wendt [76, Proposition 2.2] for adaption to the motivic setting) that the map

Σ−2n,−nThom(V (k, n))−!MGL

is m-connective, where m=min{n−1, k−n−1}.
For any finite cellular motivic spectrum X, we have

X∧S0,0 Ŝ0,0 ≃X∧
HFmot

p
,

since both sides commute with finite colimits.

Because Thom(V (k, n)) is a finite motivic spectrum for all n and k, Proposition 7.2

follows from the following Lemma 7.3.
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Lemma 7.3. Suppose that X is the colimit of motivic cellular spectra

X1 −!X2 −! ... .

Suppose further that there exists an increasing sequence mn of natural numbers

lim
n!∞

mn =∞

such that the map Xn!X is an mn-equivalence for all n. Then, the map

colim((Xn)
∧
HFmot

p
)−!X∧

HFmot
p

induces an isomorphism on π∗,∗.

Proof. By assumption, the map Xn!X is an mn-equivalence. By [28, Lemma 11]

and the above discussion, the map

(Xn)
∧
HFmot

p
−!X∧

HFmot
p

is also an mn-equivalence.

Taking the colimit, we have that

π∗,∗ colim((Xn)
∧
HFmot

p
)∼=colimπ∗,∗(Xn)

∧
HFmot

p

∼=π∗,∗X
∧
HFmot

p
.

Part 2. Equivalence of spectral sequences

8. Main theorem of Part 2

The algebraic Novikov spectral sequence is introduced by Novikov [56] and Miller [46].

Ravenel’s green book [62] and Andrews–Miller’s paper [1] are also good references for

this material.

Theorem 8.1. (Novikov [56], Miller [46]) There exists a tri-graded spectral sequence

with

Es,i,t
1 =Exts,tBP∗BP/I(BP∗/I, I

i/Ii+1),

dr:E
s,i,t
r −!Es+1,i+r,t

r ,

converging to

Exts,tBP∗BP(BP∗,BP∗).

Here, I=(p, v1, v2, ... ) is the augmentation ideal of BP∗.
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To compare it with the motivic Adams spectral spectral, which is studied by Morel,

Dugger–Isaksen and Hu–Kriz–Ormsby [14], [28], [52], we regrade the algebraic Novikov

spectral sequence.

Definition 8.2. The a-filtration of the algebraic Novikov spectral sequence is

a= i+s.

The goal of Part 2 of this paper is to prove the following Theorem 8.3.

Theorem 8.3. At each prime p, there is an isomorphism of tri-graded spectral se-

quences between the motivic Adams spectral sequence for Ŝ0,0/τ , which converges to the

motivic homotopy groups of Ŝ0,0/τ , and the regraded algebraic Novikov spectral sequence,

which converges to the Adams–Novikov E2-page for the sphere spectrum.

The indexes are indicated in the following diagram:

Exts,2wBP∗BP/I(BP∗/I, I
a−s/Ia−s+1)

Algebraic Novikov SS

��

∼= // Exta,2w−s+a,w
Amot

∗,∗
(Fp[τ ],Fp)

Motivic Adams SS

��

Exts,2wBP∗BP(BP∗,BP∗)
∼= // π2w−s,w(Ŝ0,0/τ).

Here, Amot
∗,∗ is the motivic mod-p dual Steenrod algebra.

9. The equivalence to the motivic Adams spectral sequence

9.1. The algebraic Novikov tower

In this subsection, we write down the algebraic Novikov tower using the newly defined

a-filtration explicitly.

Recall from [62, Definition A.1.2.7] that a BP∗BP-comodule is relative injective if it

is a direct summand of a BP∗BP-comodule of the form BP∗BP⊗BP∗M for some BP∗-

module M . Recall from [62, Definition A.1.2.10] that, for the BP∗BP-comodule BP∗, its

relative injective resolution

BP∗ −!C0
0 −!C1

0 −! ... (9.1)

is a long exact sequence in the abelian category of BP∗BP-comodules, that satisfies the

following two conditions:

(1) the long exact sequence (9.1) is split exact as BP∗-modules;

(2) each comodule Cs
0 is relative injective.
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For now on, we fix such a relative injective resolution C∗
0 of BP∗ that is concentrated

in even internal degrees. Such a relative injective resolution exists (for example the cobar

complex).

For a⩾1, let C∗
a be the sub cochain complex of C∗

0 defined by

Cs
a = Ia−sCs

0 .

Since I is an invariant ideal of BP∗, each Cs
a is a sub BP∗BP-comodule of Cs

0 . It is

understood that Ir=BP∗ for r⩽0. Therefore, for s⩾a, we have Cs
a=Cs

0 .

For a⩾0, let Q∗
a be the quotient cochain complex of the inclusion map

C∗
a+1

ia−−!C∗
a .

Therefore, we have a tower of cochain complexes, which induces the following tower in

the derived category of BP∗BP-comodules:

BP∗
≃ // C∗

0

q0

��

C∗
1

q1

��

i0oo C∗
2

q2

��

i1oo ...
i2oo

Q∗
0 Q∗

1 Q∗
2.

For s⩾a+1,

Qs
a = Ia−sCs

0/I
a−s+1Cs

0 =0.

So, in particular, the cochain complex Q∗
a is bounded. This implies that each cochain

complex C∗
a has bounded cohomology. Therefore, although the cochain complexes C∗

a

are unbounded, they live in the category Db(BP∗BP-Comodev).

Applying the functor

R∗,∗ HomBP∗BP(BP∗,−),

where R∗,∗ HomBP∗BP(−,−) is the derived homomorphisms in the category

Db(BP∗BP-Comodev),

we get a spectral sequence with the E1-page

R∗,∗ HomBP∗BP(BP∗, Q
∗
a),

converging to

R∗,∗ HomBP∗BP(BP∗,BP∗)=Ext∗,∗BP∗BP(BP∗,BP∗).

This is the regraded algebraic Novikov spectral sequence.
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9.2. Characterization of Adams towers

Recall that we denote by HFmot
p the motivic mod-p Eilenberg–Mac Lane spectrum. It is

shown by Hu–Kriz–Ormsby [28] and Hoyois [25] that HFmot
p is cellular. We set

HFmot
p /τ := Ŝ0,0/τ∧

Ŝ0,0HFmot
p .

Definition 9.1. A tower

Ŝ0,0/τ
≃ // X0

f0

��

X1

f1

��

g0oo X2

f2

��

g1oo ...
g2oo

K0 K1 K2

in Ŝ0,0/τ -Modb
harm is a motivic Adams tower if the following conditions hold:

(1) each motivic spectrum Km is a retract of a wedge of suspensions of HFmot
p /τ ;

(2) each map fm:Xm!Km induces an epimorphism on the HFmot
p -cohomology. Or

equivalently, each map gm:Xm+1!Xm induces the zero map on the HFmot
p -cohomology.

By the adjunction between modules over Ŝ0,0 and Ŝ0,0/τ , and the fact that Ŝ0,0/τ

is Spanier–Whitehead dual to itself up to a bi-degree shift (see [18, Proposition 4.3] for a

proof, for example), it is equivalent to check that each map gm induces the zero map on

[−,HFmot
p /τ ]

Ŝ0,0/τ

in condition (2).

From the general discussions (see [10], [16], [47], [48], for example), all such towers are

equivalent to each other in the sense that there exist towers maps that induce canonical

isomorphisms on the E2-pages.

Dugger–Isaksen [14] use the cobar construction to define the motivic Adams spectral

sequence for Ŝ0,0/τ , which satisfies the two conditions in Definition 9.1. Therefore,

the motivic Adams spectral sequence for Ŝ0,0/τ by Dugger–Isaksen [14] is canonically

isomorphic to the motivic Adams spectral sequence defined by any motivic Adams tower

satisfying the two conditions in Definition 9.1.

Having the regraded algebraic Novikov tower in the category Db(BP∗BP-Comodev),

we use the equivalence of stable ∞-categories in Theorem 4.13 and Proposition 1.10 in

Part 1,

Db(BP∗BP-Comodev)
≃−−!Db(MU∗MU-Comodev)

≃−−! Ŝ0,0/τ -Modb
harm,
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to get a tower in the category Ŝ0,0/τ -Modb
harm:

Ŝ0,0/τ
≃ // Y0

��

Y1

��

oo Y2

��

oo ...oo

L0 L1 L2

Proposition 9.2. The above tower is a motivic Adams tower in the sense of Defi-

nition 9.1, if the following two conditions are satisfied for the regraded algebraic Novikov

tower in the category Db(BP∗BP-Comodev):

(1) each Q∗
a is quasi-isomorphic to a retract of a direct sum of shifts of BP∗BP/I;

(2) each map qa:C
∗
a!Q∗

a induces an epimorphism on R∗,∗ HomBP∗(−,Fp). Or,

equivalently, each map ia:C
∗
a+1!C∗

a induces the zero map on R∗,∗ HomBP∗(−,Fp).

Proof. By the following Lemmas 9.3 and 9.4, the two conditions in this proposition

correspond to the two conditions in Definition 9.1.

For the first condition in Proposition 9.2, we identify the BP∗BP-comodule that

corresponds to HFmot
p /τ with BP∗BP/I under the equivalences of the hearts in Proposi-

tions 4.11 and 1.10:

Ŝ0,0/τ -Mod♡
harm

MUmot
∗,∗−−−−−−!

≃
MU∗MU-Comodev BP∗⊗MU∗−−−−−−−−−−!

≃
BP∗BP-Comodev.

Lemma 9.3. Under the equivalences of the hearts, HFmot
p /τ corresponds to BP∗BP/I.

Proof. We have that HFmot
p is an MUmot-module, both MUmot and HFmot

p are cel-

lular, and MUmot
∗,∗ MUmot/τ is free over MUmot

∗,∗ /τ . Then, by Dugger–Isaksen’s universal

coefficient spectral sequence [13, Proposition 7.7] in the category MUmot/τ -Modcell, we

have

MUmot
∗,∗ HFmot

p /τ ∼=MUmot
∗,∗ MUmot/τ⊗MUmot

∗,∗ /τ Fp,

which is isomorphic to MU∗MU⊗MU∗Fp forgetting the motivic weight.

Therefore, under the equivalences in Propositions 4.11 and 1.10, the Ŝ0,0/τ -module

HFmot
p /τ corresponds to

BP∗⊗MU∗MU∗MU⊗MU∗Fp
∼=BP∗MU⊗MU∗Fp

∼=BP∗MU⊗MU∗BP∗⊗BP∗Fp

∼=BP∗BP⊗BP∗Fp

∼=BP∗BP/I.

The first and third isomorphisms follow from the Landweber exactness of BP∗. This

completes the proof.
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For the second condition in Proposition 9.2, we have the following lemma.

Lemma 9.4. Suppose that X is in the category Ŝ0,0/τ -Modb
harm and that C∗(X)

is the cochain complex of BP∗BP-comodules representing the image of X under the

equivalence in Theorem 4.13 in Part 1.

Then, we have

[Σ∗,∗X,HFmot
p /τ ]

Ŝ0,0/τ
∼=R∗,∗ HomBP∗(C

∗(X),Fp),

where R∗,∗ HomBP∗(−,−) is the derived homomorphism in the derived category of BP∗-

modules.

Proof. We have

[Σ∗,∗X, HFmot
p /τ ]

Ŝ0,0/τ
∼=R∗,∗ HomBP∗BP(C

∗(X), BP∗BP⊗BP∗Fp)

∼=R∗,∗ HomBP∗(C
∗(X), Fp).

The first isomorphism follows from Theorem 4.13 and Lemma 9.3, and the second one

follows from the adjunction of the derived functor of BP∗BP⊗BP∗− and the forgetful

functor between the derived categories of BP∗-modules and BP∗BP-comodules.

In the rest of this section, we check that the two conditions in Proposition 9.2 are

satisfied by the regraded algebraic Novikov tower in the category Db(BP∗BP-Comodev).

9.3. Proof of the first condition

Lemma 9.5. Suppose that N is a relative injective BP∗BP-comodule that is con-

centrated in even degrees. Then, for any a, IaN/Ia+1N is isomorphic to a retract of a

direct sum of shifts of BP∗BP/I.

Proof. Without loss of generality, we may assume that N has the form

BP∗BP⊗BP∗M.

Because I is an invariant ideal,

IaBP∗BP⊗BP∗M

Ia+1BP∗BP⊗BP∗M
∼=BP∗BP⊗BP∗ I

aM/Ia+1M.

So, it suffices to show that, for any BP∗/I-module M ′, BP∗BP⊗BP∗M
′ corresponds to

a direct sum of shifts of BP∗BP/I. This is straightforward.
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Now, we prove that the regraded algebraic Novikov tower satisfies the first condition

in Proposition 9.2.

Proposition 9.6. (1) All differentials in the cochain complex Q∗
a are zero, and

therefore Q∗
a splits as a direct sum of cochain complexes that are concentrated in one

cohomological degree.

(2) Each Qs
a is a retract of a direct sum of shifts of BP∗BP/I.

Therefore, the first condition of Proposition 9.2 is satisfied.

Proof. In Q∗
a, all differentials Q

s
a−!Qs+1

a have the form

Ia−sCs
0/I

a−s+1Cs
0 −! Ia−s−1Cs+1

0 /Ia−sCs+1
0 .

They are all zero, since they are BP∗-linear. The second claim follows from Lemma 9.5

and the definition of Qs
a.

9.4. Proof of the second condition

We will use the following Lemma 9.7 in the proof of Proposition 9.8. The proof of

Lemma 9.7 is technical. We will postpone it to the last subsection of this section.

Lemma 9.7. The homomorphisms

Ext∗,∗BP∗
(Ia,Fp)−!Ext∗,∗BP∗

(Ia+1,Fp),

that are induced by the inclusions Ia+1
!Ia, are zero for all a⩾0.

We now prove that the regrade algebraic Novikov tower satisfies the second condition

of Proposition 9.2.

Proposition 9.8. Each map ia:C
∗
a+1!C∗

a induces the zero map on

R∗,∗ HomBP∗(−,Fp).

Proof. Because we are computing derived Hom in the derived category of BP∗-

modules, we can first apply a forget functor from BP∗BP-comodules to BP∗-modules on

our complexes.

From the definition of a relative injective resolution, C∗
0 splits in the category of

BP∗-modules as a direct sum of cochain complexes:

C∗
0 =

⊕
j⩾0

D∗
0,j ,
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where D∗
0,0 is isomorphic to the cochain complex

BP∗ −! 0−! 0−! ...

and, for j⩾1, D∗
0,j is a cochain complex of the form

...−! 0−!Nj
id−−!Nj −! 0−! ...

that is concentrated in cohomological degrees j and j−1, where Nj is a BP∗-module.

The algebraic Novikov filtration only depends on the underlying BP∗-module struc-

ture. So, we have

C∗
a =

⊕
j⩾0

D∗
a,j

where, for j⩾1, D∗
a,j is the subcomplex

...−! 0−! Ia−j+1Nj −! Ia−jNj −! 0−! ... .

It follows that D∗
a,j is quasi-isomorphic to the complex

...−! 0−! Ia−jNj/I
a−j+1Nj −! 0−! ... .

Now, we consider the maps

R∗,∗ HomBP∗(D
∗
a,j ,Fp)−!R∗,∗ HomBP∗(D

∗
a+1,j ,Fp) (9.2)

that are induced by the inclusions

D∗
a+1,j −!D∗

a,j .

For j⩾1, these maps can be identified as (shifts of)

R∗,∗ HomBP∗(I
a−jNj/I

a−j+1Nj ,Fp)−!R∗,∗ HomBP∗(I
a−j+1Nj/I

a−j+2Nj ,Fp).

It is clear that the maps

Ia−j+1Nj/I
a−j+2Nj −! Ia−jNj/I

a−j+1Nj

are all zero. Therefore, the maps in (9.2) are all zero for j⩾1.

For j=0, we have that D∗
a,0 is the complex

Ia −! 0−! ...,

and the corresponding maps in (9.2) can be rewritten as

Ext∗,∗BP∗
(Im,Fp)−!Ext∗,∗BP∗

(Im+1,Fp).

By Lemma 9.7, they are all zero. Therefore, the maps

R∗,∗ HomBP∗(C
∗
m+1,Fp)−!R∗,∗ HomBP∗(C

∗
m,Fp)

are all zero, since they are zero on each direct summand.
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Combining Propositions 9.6 and 9.8, we have shown that the regraded algebraic

Novikov tower satisfies the two conditions of Proposition 9.2, and therefore corresponds

to a motivic Adams tower for Ŝ0,0/τ . This proves that there exists an isomorphism be-

tween the regraded algebraic Novikov spectral sequence and the motivic Adams spectral

sequence for Ŝ0,0/τ .

9.5. Proof of Lemma 9.7

We prove Lemma 9.7 in this subsection.

For any BP∗-module M , we have

Ext∗,∗BP∗
(M,Fp)∼=HomFp

(TorBP∗
∗,∗ (M,Fp),Fp).

Lemma 9.7 is implied by its dual statement.

Lemma 9.9. The maps

TorBP∗
∗,∗ (In+1,Fp)−!TorBP∗

∗,∗ (In,Fp)

are zero for n⩾0.

Proof. The powers of I filter BP∗ as a BP∗-module, and the BP∗-action on the

associated graded pieces factors through an Fp-action.

Therefore, we have an associated spectral sequence

Es,t,i
1 =TorBP∗

s,t (Ii/Ii+1,Fp)=⇒TorBP∗
s,t (BP∗,Fp).

The E1-page can be identified as

E(τ0, τ1, ... )⊗Fp[q0, q1, ... ],

since

TorBP∗
∗,∗ (Fp,Fp)=E(τ0, τ1, ... ),

where E(τ0, τ1, ... ) is the exterior algebra over Fp generated by the τj ’s, with the same

internal degrees as the vj ’s and homological degree 1, and

gr∗BP∗ =Fp[q0, q1, ... ],

where qj corresponds to vj .
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Using the Koszul complex, it is straightforward to see that this spectral sequence is

multiplicative and that d1τn=qn. Therefore, its E2-page is concentrated in degrees i=0,

and the following sequence is exact

0−!TorBP∗
∗,∗ (BP∗,Fp)−!E∗,∗,0

1 −!E∗,∗,1
1 −! ... .

Now, the exact couple looks like this:

0

... A2 A1 A0

... E∗,∗,1
1 E∗,∗,0

1 ,

j j

d1

k

d1

k

where Ai=TorBP∗
∗,∗ (Ii,Fp), and the bottom line is exact. All we need to show is that

all the j maps are injective. This follows from an induction using a diagram chasing

argument.

Remark 9.10. For the polynomial ring with finitely many generators Zp[x1, x2, ..., xt],

the analogue of Lemmas 9.7 and 9.9 are well known (see [66], for example).

Appendix A. Computation of some classical Adams differentials

In this appendix, we illustrate the power of the isomorphism of spectral sequences in

Theorem 8.3, by recomputing certain low filtration and historically more difficult differ-

entials in the range up to the 45-stem at the prime 2. We follow notation in Isaksen’s

stable stems [29], and Isaksen, the second and third author’s more stable stems [32], [33].

When computing non-trivial differentials in the classical Adams spectral sequence,

it is usually harder to give proofs for the ones whose sources are in low Adams filtrations.

There are at least two reasons for this. Firstly, there are more potential targets that

it could hit, so it means more possibilities to check and rule out. Secondly, on the

other hand, elements in high Adams filtrations can usually be detected by certain known

spectrum in small chromatic height—for instance, elements above the 1
3 -line can be

detected by the K(1)-local sphere, and many elements around the 1
5 -line can be detected

by the spectrum of topological modular forms. This gives ways to compare with Adams

spectral sequences of other spectra.
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Adams differential Stem of the source Filtration of the source

d2(h4)=h0h
2
3 15 1

d3(h0h4)=h0d0 15 2

d2(e0)=h2
1d0 17 4

d2(f0)=h2
0e0 18 4

d2(h5)=h0h
2
4 31 1

d3(h
3
0h5)=h0∆h2

2 31 4

d3(h2h5)=h0p=h1d1 34 2

d4(h3h5)=h0x 38 2

d3(e1)=h1t 38 4

d2(c2)=h0f1 41 3

Table 1. Some non-trivial differentials up to the 45-stem.

Up to the 45-stem, we list in Table 1 above ten non-trivial differentials, whose

sources are in low Adams filtrations. Five of them are d2-differentials, four of them are

d3-differentials, and one of them is a d4-differential.

Historically, the first four of them were proved by May in his thesis, by comparing

with Toda’s unstable computations. The next two are obtained by the Hopf invariant

one problem, and by comparing with the J-spectrum. The elements ∆h2
2 and h0∆h2

2

were historically called r and s, respectively, and there is a non-trivial extension in the

May spectral sequence that gives us a relation s=h0r. The last four, except the one on

d3(e1), were proved by Barratt–Mahowald–Tangora [3] using ad-hoc methods. In fact,

the differentials

d3(h2h5)=h0p and d2(c2)=h0f1

are both closely related to the non-trivial ν-extension from h2
4 to the element p, and the

differential

d4(h3h5)=h0x

is closely related to the non-trivial σ-extension from h2
4 to the element x. For the ele-

ment e1, Barratt–Mahowald–Tangora [3] erroneously thought it was a permanent cycle.

It was later proved by Bruner [8], using power operations, that it supports a non-trivial

differential

d3(e1)=h1t.

Now, using Theorem 8.3, we compare them with the computations of the motivic

Adams spectral sequence of Ŝ0,0/τ . All five d2-differentials are present in the motivic

Adams spectral sequence of Ŝ0,0/τ . This gives immediate proofs for all of them.
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Moreover, the three out of four d3-differentials except d3(h2h5) are present in the

motivic Adams spectral sequence of Ŝ0,0/τ . To be careful, one also needs to rule out the

possibility of non-zero d2-differentials in these cases. This can be done by multiplying h0

to the proposed d2-differentials and get contradictions.

For the d3-differential

d3(h2h5)=h1d1,

one can show the following three statements are equivalent, by considering the long exact

sequence of motivic homotopy groups associated with the cofiber map of τ .

(1) There is a differential

d3(h2h5)= τh1d1

in the motivic Adams spectral sequence of Ŝ0,0.

(2) In homotopy groups, {h2h5}maps to {h1d1} under the quotient map from Ŝ0,0/τ

to its top cell S1,−1.

(3) There is an η -extension from h2h5 to 
h2
1d1 in π∗,∗(Ŝ0,0/τ), where 
h2

1d1 is the

element in the motivic Adams E2-page of Ŝ0,0/τ that corresponds to h2
1d1 in that of the

top cell Ŝ1,−1.

Statement (3) can be checked in the E∞-page of the motivic Adams spectral sequence

for Ŝ0,0/τ , which is isomorphic to the classical Adams–Novikov E2-page. This gives a

proof for the d3-differential in the motivic Adams spectral sequence for Ŝ0,0, and hence

for the classical d3-differential. Statement (2) is proved by Isaksen in Table 42 of stable

stems [29].

At last, the d4-differential d4(h3h5) is also present in the motivic Adams spectral

sequence for Ŝ0,0/τ . To pull it back and get the d4-differential in the motivic sphere, one

needs to rule out the possibilities of non-zero d2’s and d3’s. For degree reasons, there are

no possible d2’s. To rule out the only d3 possibility that d3(h3h5)=x, since h3x=h2
0g2,

this would give another d3-differential by multiplying by h3:

d3(h
2
3h5)=h2

0g2.

However, there is no such d3 in the motivic Adams spectral sequence for Ŝ0,0/τ , which

gives a contradiction.

Summarizing, we reprove all ten non-trivial low filtration differentials up to the 45-

stem without much effort. In fact, among all non-trivial differentials up to the 45-stem,

there is only one that cannot be proved by our motivic Ŝ0,0/τ -method:

d3(∆h2
2)=h1d

2
0.

This can be proved by other methods, such as the ad-hoc method by Barratt–Mahowald–

Tangora [3], the power operation method by Bruner [9], the method of detection by the

spectrum of topological modular forms, and the RP∞-technique in [78].
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In the next pages (Figures 1–8), we present Isaksen’s charts for the reader’s reference

of the differentials that are discussed in this appendix.

There are eight charts in total. The first two (Figures 1 and 2) are for the classical

Adams spectral sequences. The horizontal degree is t−s, i.e., the topological stem, and

the vertical degree is s, i.e., the Adams filtration. Each dot is a copy of F2. Vertical lines

and lines of slope 1 and 1
3 correspond to multiplication by h0, h1 and h2, respectively.

Lines of negative slope correspond to differentials. We mark all algebraic generators for

completeness.

For the rest of the six charts, we only mark certain low Adams filtration elements

and the elements that are relevant to our discussion of differentials in this section.

The second two charts (Figures 3 and 4) are the E2-pages with d2-differentials of

the motivic Adams spectral sequences for Ŝ0,0/τ . Each arrow with slope 1 indicates an

infinite h1-tower, and each arrow with slope −2 is a family of h1-periodic d2-differentials.

The third two charts (Figures 5 and 6) are the E3-pages with d3- and d4-differentials

of the motivic Adams spectral sequences for Ŝ0,0/τ .

The last two charts (Figures 7 and 8) are the E∞-pages of the motivic Adams

spectral sequences for Ŝ0,0/τ . The blue lines are non-trivial 2-, η- and ν-extensions.
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