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1. Introduction

Given a bounded domain QCR™ and f:R—R, we consider u: 2—R a solution to the
semilinear equation

—Au=f(u) in QCR™ (1.1)

If we define F'(t):= fot f(s)ds, then (1.1) corresponds to the Euler-Lagrange equation for

€[] ::/Q(W;'Q—F(u)) da.

In other words, u is a critical point of £, namely

the energy functional

Elu+e€] =0 for all £€C®(Q)
e=0

d
de
(the space of C'™ functions with compact support in §2). Consider the second variation
of &€, that when f€C! is given by

d2

de?

et /Q (V€ — ' (u)€?) de.

Then, one says that u is a stable solution of equation (1.1) in Q if the second variation

is non-negative, namely

/f’(u)§2da;</ |VEPPdr for all £€C(R).
Q Q

Note that stability of u is considered within the class of functions agreeing with u near
the boundary of €.
Our interest is in non-negative non-linearities f that grow at +oo faster than linearly.

In this case it is well known that, independently of the Dirichlet boundary conditions
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that one imposes on (1.1), the energy & admits no absolute minimizer.(') However,
we will see that in many instances there exist non-constant stable solutions, such as
local minimizers. The regularity of stable solutions to semilinear elliptic equations is a
very classical topic in elliptic equations, initiated in the seminal paper of Crandall and
Rabinowitz [19], which has given rise to a huge literature on the topic; see the monograph
[20] for an extensive list of results and references.

Note that this question is a PDE analogue of another fundamental problem in math-
ematics, namely the regularity of stable minimal surfaces. As it is well known, stable
minimal surfaces in R” may not be smooth in dimension n larger than 7 [35], [3], and it
is a fundamental open problem whether they are smooth in dimension n<7. Up to now,
this question has been solved only in dimension n=3 by Fischer-Colbrie and Schoen [23]
and Do Carmo and Peng [17].

Note that, also in our PDE problem, the dimension plays a key role. Indeed, when

1
n > 10, uzlogW, and  f(u)=2(n—2)e", (1.2)

we are in the presence of a singular W, '*(B;) stable solution of (1.1) in Q=B as easily
shown using Hardy’s inequality. On the other hand,
o if f(t)=e' or f(t)=(1+t)? with p>1,
e or more in general if f€C? is positive, increasing, convex, and the following limit
exists:(?)
1
b 10170
A TP
then it is well known since the 1970s that W, *(Q) stable solutions are bounded (and
therefore smooth, by classical elliptic regularity theory [25]) when n<9; see [19]. Notice

that, among general solutions (not necessarily stable), an L* bound only holds for

(1) To see this, take v€CL () with v>0 and v#0, and given M >0 consider
1
Elu+Mv] = 5 / |V (u4 Mv)|? daz—/ F(u+Mv) dx.
Q Q

Since f grows superlinearly at +oo, it follows that F(t)>>t2 for ¢ large. This leads to &[u+Muv]— —oo
as M — +o00, which shows that the infimum of the energy among all functions with the same boundary
data as u is —oo.
(?) The existence of the limit
t)f(t
c:= lim M >0
t—o00 f’ (t)2

is a rather strong assumption. Indeed, as noticed in [19], if it exists, then necessarily ¢<1 (otherwise f
blows up in finite time). Now, when ¢=1, the result follows by [19, Theorem 1.26], while ¢<1 implies
that f(t)<C(1+4t)P for some p, and then the result follows by [19, Lemma 1.17].
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subcritical and critical non-linearities. (%)

All these results motivated the following long-standing conjecture. (%)

Congecture. Let ue W, () be a stable solution to (1.1). Assume that f is positive,
non-decreasing, convex, and superlinear at +oco, and let n<<9. Then u is bounded.

In the last twenty-five years, several attempts have been made in order to prove this
result. In particular, partial positive answers to the conjecture above have been given
(chronologically):

e by Nedev, when n<3 [29];

e by Cabré and Capella when Q=B; and n<9 [10];

e by Cabré when n=4 and  is convex [7] (see [9] for an alternative proof);
by Villegas when n=4 [38];

e by Cabré and Ros-Oton when n<7 and 2 is a convex domain “of double revolu-
tion” [13];

e by Cabré, Sanchén, and Spruck when n=5 and

0
NP R

< +00

for every >0 [14].

The aim of this paper is to give a full proof of the conjecture stated above. Actually,
as we shall see below, the interior boundedness of solutions requires no convexity or
monotonicity of f. This fact was only known in dimension n<4, by a result of the first
author [7].(°) In addition, even more surprisingly, both in the interior and in the global
settings, we can prove that W12 stable solutions are universally bounded for n<9, namely
they are bounded in terms only of their L' norm, with a constant that is independent of

the non-linearity f.

1.1. Main results

In order to prove our result on the regularity of stable solutions up to the boundary

we will be forced to work with non-linearities f that are only locally Lipschitz (and not

(3) We recall that a non-linearity f is called subcritical (resp. critical, supercritical) if
[fOI<SCA+[E)P

for some p<(n+2)/(n—2) (resp. p=(n+2)/(n—2), p>(n+2)/(n—2)). While solutions to subcritical and
critical equations are known to be bounded, in the supercritical case one can easily construct radially
decreasing unbounded W12 solutions.

(%) As we shall explain in §1.2, this conjecture is strongly related to an open problem stated by
Brezis in the context of “extremal solutions” in [4].

() In fact, for n<4, or for n<9 in the radial case, the interior boundedness results cited above (as
well as the global boundedness in convex domains) do not require the non-negativeness of f.
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necessarily C1). Hence, it is important for us to extend the definition of stability to this

class of non-linearities. For this, we need to choose a precise representative for f.

Definition 1.1. Let f:R—R be a locally Lipschitz function, and let u€ W2(2) be
a weak solution to (1.1), in the sense that f(u)eLi (Q) and

/Vu-Vgodx:/f(u)godx for all p€C(Q). (1.3)
Q Q

Then, we say that u is a stable solution in Q if f’ (u)€Ll () and

loc
/ fl(u)€? dxg/ |VEPde for all £€C(9), (1.4)
Q Q
where f’ is defined as

! 1 .
fo) = hanﬁl(?f

f(t+h)—f(E)
— for teR. (1.5)

As we shall see later, in our proofs we only use (1.4) with test functions £ that vanish
in the set {|Vu|=0}. Hence, as a consequence of Lemma A.3 (i), in this situation the
notion of stability is independent of the particular representative chosen for f’.

Our first main result provides a universal interior a-priori bound on the C'* norm of
solutions when n<9. Actually, in every dimension we can prove also a higher integrability
result for the gradient (with respect to the natural energy space W12). Since the result
is local, we state it in the unit ball. Also, because stable solutions u can be approximated
by smooth ones (at least when ueWol’Q(Q) and f is convex; see [20, §3.2.2]), we shall

state the result as an a-priori bound assuming that « is smooth.

THEOREM 1.2. Let By denote the unit ball of R"™. Assume that u€C?(By) is a
stable solution of
—Au=f(u) in By,

with f:R—R locally Lipschitz and non-negative.
Then,

[Vullpz++ (B, ) < Cllullr(s,), (1.6)

where v>0 and C' are dimensional constants. In addition, if n<9 then
lullga(B, ) < Cllullzr(sy), (1.7)

where a>0 and C are dimensional constants.



192 X. CABRE, X. ROS-OTON, A. FIGALLI AND J. SERRA

Remark 1.3. As mentioned before, it is remarkable that the interior estimates hold
with bounds that are independent of the non-linearity f. Note that, also in the global

regularity result Theorem 1.5, we can prove a bound independent of f.

Combining the previous interior bound with the moving planes method, we obtain

a universal bound on v when 2 is convex.

COROLLARY 1.4. Let n<9 and let QCR™ be any bounded convex C' domain. As-
sume that f:R—R is locally Lipschitz and non-negative. Let u€C°(Q)NC?() be a
stable solution of

—Au=f(u) in Q,
{ u=0 on 0.

Then, there exists a constant C, depending only on 2, such that
[l Lo (o) < CllullL1(0)- (1.8)

We now state our second main result, which concerns the global regularity of stable
solutions in general C® domains when the non-linearity is convex and non-decreasing.
As we shall explain in the next section, this result completely solves two open problems
posed by Brezis and Brezis—Vazquez in [4], [6]. Again, we work with classical solutions
and prove an a-priori estimate. In this case, it is crucial for us to assume f to be convex
and non-decreasing. Indeed, the proof of regularity up to the boundary will rely on a very
general closedness result for stable solutions with convex non-decreasing non-linearities,

that we prove in §4.

THEOREM 1.5. Let QCR" be a bounded domain of class C3. Assume that f:R—R
is mon-negative, non-decreasing, and convex. Let ucC°(Q)NC2(Q) be a stable solution
of

—Au=f(u) in Q,
{ u=0 on 0N).

Then,

[Vull L2+ @) < Cllull L), (1.9)

where v>0 is a dimensional constant and C depends only on Q. In addition, if n<9,
then
[ullco@) < CllullL @), (1.10)

where a>0 is a dimensional constant and C depends only on Q.

As an immediate consequence of such a-priori estimates, we will prove the long-

standing conjecture stated above.
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COROLLARY 1.6. Let QCR"™ be any bounded domain of class C3. Assume that

f:R—R is non-negative, non-decreasing, convex, and satisfies

t
%)206)——)—1—00 as t— 400
for some function o:R—R. Let ueW,*(Q) be any stable weak solution of (1.1) and
assume that n<9. Then,

[ull Lo () <C,
where C' is a constant depending only on o and €.

The key point here is to prove the bounds for classical solutions (Theorem 1.5).
Once this is done, a well-known approximation argument (see [20, Theorem 3.2.1 and
Corollary 3.2.1]) shows that the same bounds (1.9) and (1.10) hold for every W2(Q)

stable weak solution u. Finally, to control [ul|1(q) in (1.9), we use Proposition B.1.

1.2. Application: Wol’2 and L°° regularity of extremal solutions

Let f:]0,+00)—R satisfy f(0)>0 and be non-decreasing, convex, and superlinear at

400, in the sense that

Given a constant A>0, consider the non-linear elliptic problem

—Au=Af(u) in Q,
u>0 in €, (1.11)
u=0 on 0,

where QCR” is a smooth bounded domain. We say that u is a classical solution if
ueCo(Q)NC?(9Q).

In the literature, this problem is usually referred to as the “Gelfand problem”, or
a “Gelfand-type problem”. It was first presented by Barenblatt in a volume edited by
Gelfand [24], and was motivated by problems occurring in combustion.(°) Later, it was
studied by a series of authors; see for instance [4], [6], [20], [8] for a complete account on
this topic.

The basic results concerning (1.11) can be summarized as follows (see for instance
[4, Theorem 1 and Remark 1] or the book [20] by Dupaigne).

(6) Originally, Barenblatt introduced problem (1.11) for the exponential non-linearity f(u)=e"
(arising as an approximation of a certain empirical law). Nowadays, the terminology of Gelfand or
Gelfand-type problem applies to all f satisfying the assumptions above.
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THEOREM 1.7. (see [4], [6], [20]) There exists a constant A\*€(0,+00) such that the
following statements hold:

(i) For every Ae(0,\*) there is a unique Wy > () stable solution uy of (1.11). Also,
uy 15 a classical solution and uy<uy: for A<N.

(ii) For every A>M\* there is no classical solution.

(iii) For A=M\* there exists a unique L'-weak solution u*, in the following sense:
u* € LY (), f(u*)dist(-,00)eLY(Q), and

7/ u*ACd:U:)\*/ fw*)¢dx  for all ¢ € C*(Q) with Cloa =0.
Q Q

This solution is called the extremal solution of (1.11) and satisfies uxtu* as ATA*.

The uniqueness of weak solution for A=M\* is a delicate result that was proved by
Martel [28].
In [4, Open problem 1], Brezis asked the following.

Open problem 1. Is there something “sacred” about dimension 10?7 More precisely, is
it possible in “low” dimensions to construct some f (and some 2) for which the extremal
solution u* is unbounded? Alternatively, can one prove in “low” dimension that u* is

smooth for every f and every 27

To connect this to the conjecture stated before, note that Brezis’ problem can be
thought as an a-priori bound for the stable solutions {uy}a<r+. Hence, understanding
the regularity of extremal solutions is equivalent to understanding a-priori estimates for
stable classical solutions.

Note that, a priori, extremal solutions are merely in L'(Q). It is then natural to
ask whether extremal solutions do belong to the natural energy space VVO1 2(Q) This

important question was posed by Brezis and Vézquez in [6, Open problem 1].

Open problem 2. Does there exist some f and €) for which the extremal solution is
a wealk(”) solution not in W,*(Q)?

Concerning this problem, it has been proved that u* belong to the energy space
W, 2(2) when n<5 by Nedev [29], for every n when  is convex also by Nedev [30], and
finally when n=6 by Villegas [38]. Here, we prove that u*€W,*(Q2) for every n and
for every smooth domain €2, thus giving a conclusive answer also to this second open
problem.

Note that, due to the superlinearity of f, it follows by Proposition B.1 that the
LY (Q) norms of the functions {uy}r<x~ are uniformly bounded by a constant depending

(") In the sense of Theorem 1.7 (iii).
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only on f and Q. Hence, by applying Theorem 1.5 to the functions {uy }ax<x+ and letting
ATA*, we immediately deduce that extremal solutions are always W12 (actually even
W12+7) in every dimension, and that they are universally bounded (and hence smooth)

in dimension n<9. We summarize this in the following.

COROLLARY 1.8. Let QCR" be a bounded domain of class C3. Let us assume that
f:10,+00)— (0, +00) is non-decreasing, convez, and superlinear at +00, and let u* denote
the extremal solution of (1.11).

Then u*EWOLQ'M(Q) for some dimensional exponent v>0. In addition, if n<9,

then u* is bounded, and it is therefore a classical solution.

1.3. The case n>10

In view of the results described in the previous sections, it is natural to ask what can
one say about stable solutions in dimension n>10. Our strategy of proof can be used to
provide optimal (or perhaps almost optimal) integrability estimates in Morrey spaces in
every dimension, as stated next (see §7 for more details and for Morrey estimates for the
gradient of stable solutions).

Recall that Morrey norms are defined as

[l ey =500 7" [ Julrda,
yeN QN B, (y)
r>0

for p>1 and B€(0,n).

THEOREM 1.9. Let u€C?(By) be a stable solution of
—Au=f(u) in By CR"™,

with f:R—R locally Lipschitz. Assume that n>10 and define

0, if n=10,
n = 2 — P 1.12
p (n—2vn—1 2)7 — (1.12)
n—2vyn—1—-4
Then,
lull arpztar@0-2(B, ) S Cllullpasy)  for every p<pn, (1.13)

where C depends only on n and p.
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In addition, if f is non-negative and non-decreasing, QCR"™ is a bounded domain

of class C3, and ueC®(Q)NC2(Q) is a stable solution of

{ —Au=f(u) in Q,
u=0 on 08,

then
Hu||Mp,z+4/(p72>(Q) <Cllullpr)  for every p<pn, (1.14)

for some constant C depending only on p and €.

It is interesting to observe that the above result is essentially optimal. To see
this, we recall that, in dimension n=10, the function u=log(1/|z|?) is an unbounded
W,(B,) stable solution in B; (see (1.2), and recall that it can be approximated by
stable classical solutions by [20, §3.2.2]). Also, as shown in [6], for n>11 the function

u(z)=|z|~?/(@ =Y —1 is the extremal solution of

—Au=A*(14u)? in By,

u>0 in By, (1.15)
u:o on 8317
with
N 2 2 n—2y/n—1
A= n—2— and ¢, =——F———.
Gn—1 Gn—1 n—2vyn—1—4

In particular, it is easy to see that u€ MP**4/(*=2)(B, ) if and only if p<p,. It is an

open question whether (1.13) holds with p=p,, for a general stable solution w.

1.4. Idea of the proofs

The starting point is the stability inequality for u, i.e.,
f(u)&* dx </ |VEPPdx for all €€ C2(By). (1.16)
Bl Bl

In order to get a strong information on u, one has to choose an appropriate test
function £ in (1.16). Most of the papers on this topic (including those of Crandall-
Rabinowitz [19] and Nedev [29]) have considered £=h(u) for some appropriate function
h depending on the non-linearity f. The main idea in the L™ estimate of [7] for n<4
was to take, instead, £=|Vu|p(u), and choose then a certain ¢ depending on the solution
u itself.
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Here, a first key idea in our proofs is to take a test function of the form
€= (2 Vu)|z|*7/2¢,

with 0<(<1 being a smooth cut-off function equal to 1 in B, and vanishing outside
B3, /2. Due to this, we can prove the following inequality (see Lemma 2.1): there exists

a dimensional constant C such that

(n—2)(10—n)/ |w\_"|a:-Vu|2da?<CQZ_”/ |Vul>dz  for all 0< o< 2.
B, Bsp/2\Bo
(1.17)

From this inequality we see immediately that, for 3<n <9, we get a highly non-trivial
information. While of course one can always assume that n>3 (if n<2 it suffices to add
some superfluous variables to reduce to the case n=3), here we see that the assumption
n<9 is crucial.

Thus, when n<9, the above inequality tells us that the radial derivative of u in a
ball is controlled by the total gradient in an annulus. Still, it is important to notice that
(1.17) does not lead to an L* bound for general solutions v to —Au= f(u) in dimension
n<9.(8) Thus, we still need to use stability again in a crucial way.

If we could prove that for stable solutions the radial derivative x-Vu and the total
derivative Vu have comparable size in L? at every scale, then we could control the right-
hand side of (1.17) with

2| "2 Vul? d.

BSQ/2\BQ
This would imply that
/ |z| ="z Vu|* de < C lz| "2 Vul|? d,
B,Q 339/2\39

and, by a suitable iteration and covering argument, we could conclude that u€C®. This
is indeed the core of our interior argument: we show that the radial derivative and the
total derivative have comparable size in L? (at least whenever the integral of |[Vu|? on
balls enjoys a doubling property; see Lemma 3.1). This is based on a delicate compactness
argument, which relies on a series of a-priori estimates:

(1) curvature-type estimates for the level sets of u, which follow by taking £=|Vu|n
as a test function in the stability inequality; see Lemma 2.3;

(2) the higher L?*7 integrability of the gradient, which follows from (1) and a suit-

able Dirichlet energy estimate, (2.13), on each level set of u; see Proposition 2.4;

(®) This can be seen by taking functions u in R? depending only on two variables; see Remark 2.2.
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(3) a general compactness argument for superharmonic functions; see Lemma A.1;

(4) the non-existence of non-trivial zero-homogeneous superharmonic functions; see
the proof of Lemma 3.1.

Combining all these ingredients, we prove Theorem 1.2.

For the boundary estimate, we would like to repeat the interior argument described
above near a boundary point. We note that, whenever the boundary is completely flat
and contains the origin, since x-Vu vanishes on the flat boundary then one can still
use the test function &= (z-Vu)|z|(2~)/2¢ to deduce the analogue of (1.17). Actually, a
suitable variant of this test function allows us to obtain a similar estimate even when the
boundary is C3-close to a hyperplane (see Lemma 6.2). In addition, when the boundary
is C3-close to a hyperplane, we are able to prove the higher L?>17 integrability of the
gradient near the boundary (see Proposition 5.2), and from there we can conclude that
the W2 norm near the boundary can be controlled only in terms of the L' norm (see
Proposition 5.5).

Unfortunately, even if the boundary is completely flat, one cannot repeat the argu-
ment used in the interior case to deduce that the radial derivative controls the total gradi-
ent near a boundary point—which was a crucial point in the interior case. Indeed, while
in the interior case the proof relied on the non-existence of non-trivial zero-homogeneous
superharmonic functions in a neighborhood of the origin (see the proof of Lemma 3.1),
in the boundary case such superharmonic functions may exist! Hence, in this case we
need to exploit in a stronger way the fact that u solves a semilinear equation (and not
simply that u is superharmonic, since f>0). However, since our arguments are based on
a compactness technique, we need bounds that are independent of the non-linearity f.

A new key ingredient here is presented in §4: we are able to prove that, whenever
the non-linearity is convex and non-decreasing—but possibly taking the value 400 in
an interval [M, oco)—the class of stable solutions is closed under L] . convergence (see
Theorem 4.1). Note that this is particularly striking, since no compactness assumptions
are made on the non-linearities!

With this powerful compactness theorem at hand, we are able to reduce ourself to
a flat-boundary configuration, control the gradient by its radial component, and prove
Theorem 1.5.

Finally, the case n>11 is obtained by choosing the test function

&= (w-Vu)lz| "%,
where a=ay, €(0,n—2) are suitable exponents, while in the case n=10 we choose

¢ = (a-Vu)|z|*|log ||| "¢, with §>0.
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The techniques and ideas introduced in this paper are robust enough to be used for
proving analogues of our results in other non-linear problems. This is done in a series of
forthcoming works by Miraglio, Sanchdn, and the first author [12] for the p-Laplacian,
and by Sanz-Perela and the first author [15] for the fractional Laplacian.

1.5. Structure of the paper

In §2 we exploit the stability of v and choose a series of different test functions to deduce
inequality (1.17), as well as a universal W2%7 bound in terms only of the L' norm of
the solution. This is used in §3 to prove our interior estimate of Theorem 1.2.

In §4 we prove that the class of stable solutions with convex non-decreasing non-
linearities is closed in Llloc, while in §5 we obtain a W2*7 bound near the boundary in
terms of the L' norm when 09 is a small C*-deformation of a hyperplane. These results
are used in §6 to prove Theorem 1.5 via a blow-up and covering argument.

Finally, in §7 we deal with the case n>>10 and prove Theorem 1.9.

In the appendices we collect a series of technical lemmata, and we show a classical

a-priori estimate on the L' norm of solutions to Gelfand problems.

2. Interior W1:2+7 estimate

In this section we begin by proving a series of interior estimates that follow by choosing
suitable test functions in the stability inequality. Then, we show a universal W12+7
bound in terms only of the L' norm of the solution. This is done by first controlling
|Vull 2+ by [Vullgs, and then |[Val|gs by [[u]lp:.

Here and in the sequel, we shall use subscripts to denote partial derivatives (i.e.,
u;=0;u, u;;=0;ju, etc.).

As mentioned in the introduction, our first key estimate for stable solutions comes
from considering the test function &= (x-Vu)n, and then take n=|xz|>~™/2( for some
cut-off function (. We split the computations in two steps, since this will be useful in
the sequel.

We denote by C21(Bj) the space of Lipschitz functions with compact support in Bj.

LEMMA 2.1. Let u€C?(By) be a stable solution of —Au=f(u) in By CR"™, with f
locally Lipschitz. Then, for all neC%*(By), we have

/B ((n—2)n+2x-Vn)n|Vu|? —2(z-Vu)Vu-V(n?) —|z-Vu|?|Vn|?) dz <0. (2.1)
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As a consequence, for all (€C%(By), we have

—2)(10—
(n=210=n) /B 2] =" - Vul’¢ de
< (—2)|x|2_"|Vu|2§(x-V§)dx+/ 42" (- V)¢ V-V da (2.2)
Bl Bl

+/ (2—n)|x|_”|x-Vu|2C(m~VC)dx—l—/ 2"z Vul|VC]? da.
B1 Bl

In particular, if 3<n<9, then for all Q<% we have

/ ||~ \$~Vu|2dx§CQ2*"/ |Vu|? da, (2.3)
B, B3Q/2\BQ

where C is a dimensional constant.

Proof. We split the proof in three steps.

Step 1. Proof of (2.1).

We note that, by approximation, (1.4) holds for all £€C%!(B;). Hence, we can
consider as test function in (1.4) a function of the form £=cn, where c€ W (B;) for

some p>n, and n€CY*(By). Then, a simple integration by parts gives that

/(AC—Ff’_(u)c)chda:S/ c?|Vn|? dx. (2.4)
B

B

We now choose ¢(z):=z-Vu(z) (this function belongs to WP (By) for every p<oo by

loc

Lemma A.3(ii)). Then, by a direct computation and using Lemma A.3 (ii) again, we
deduce that

Ac=z-VAu+2 Z wii =—f" (u)c+2Au

=1

a.e. in By. Hence, substituting this identity in (2.4), we get

/ |z'Vu\2\Vn|2dx>/ (Ac+f' (u)c)en? dx
Bl Bl
:2/ (z-Vu)Aun? dx
B,
:/ (div(2(z- Vu) Vu— |Vul*z) + (n—2)|Vul*)n* dz
B
:/ (—2(x-Vu)Vu-V(n?)+|Vul|?z-V(n?)+ (n—2)|Vu|*n?) dz,
B

and (2.1) follows.
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Step 2. Proof of (2.2).

Given a<n, we would like to take the function 7:=|z|~%/2¢ with (€C%(B;) as a
test function in (2.1). Since 7 is not Lipschitz for a>0, we approximate it by the C%1(B)
function
Ne ::1rnin{|a:|7‘l/27 g*a/2}g

for £€(0,1), which agrees with 7 in By \ B.. We have that 7. —n and Vn.—Vn a.e. in By
as €0. At the same time, every term in (2.1) with 7 replaced by 7. is bounded in abso-
lute value by Clz|~* \Vu\2<6|w\_a€Llloc(B1) (since ue C?(By)). Hence, the dominated

convergence theorem gives that (2.1) also holds with 7:=|z|~%/2¢.

Now, noticing that
eV =—gale| "2+ a7 e VE V0P) = —ala 7T 4202 7CVE (25)
and
Vil? = |~ Salz| /2 2Ca+|z|~2/2v¢ |
= 10%|2| 7 72+ [VC]? —ala| 7T (2 V),
we have that (2.2) follows from (2.1) by choosing a=n—2.
Step 3. Proof of (2.3).

Given p€e (O, %), we consider a Lipschitz function ¢, with 0<¢<1, such that {|p,=1,
(r\Bs,,, =0, and [V(|<C/p. Using this function in (2.2) and noticing that |z| is com-
parable to g inside supp(VC)ngg/g\BQ, the result follows easily. O

Remark 2.2. To deduce our L™ estimate from (2.3), we will need to use again the
stability of u. In fact, there exist W12 weak solutions of semilinear equations (with
f>0) which satisfy (2.3) (in balls B,=B,(y) centered at any point y€B;(0)) and are
unbounded.

For instance, with n=3 take u(x1,x2,x3)=u(x1,22), where @ is unbounded but
belongs to Wé’f(R%. One can then verify that (2.3) holds inside every ball B,=B,(y).
At the same time, by taking @ to be radially decreasing in R?, we can guarantee that
@ solves a semilinear equation (and hence also u) for some non-linearity f. An example
is a(0)=log |log ¢| in a small neighborhood of the origin, which leads to a smooth non-

linearity f>0.

The key point to deduce boundedness from (2.3) will be a higher L2 integrability
result for the gradient of the solution, that we establish in the remaining of this section.
Towards this, we exploit again the stability of u by choosing now, as another test
function, £=|Vu|n, with  begin a cut-off function. In the case when u€C? this choice
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of test function and the following lemma are due to Sternberg and Zumbrun [36]. We

verify next that the result holds also when f is locally Lipschitz.

LEMMA 2.3. Let u€C?(By) be a stable solution of —Au=f(u) in B CR"™, with f
locally Lipschitz. Then, for all ne C%*(By), we have

A2772dx</B \Vu\Q\Vanm,
1

where(?)

N21\1/2
e (S (Ewgg)) v

0, if Vu=0.

When u€C? (and f€C?), this follows from the stability inequality (1.16), plus the
fact that

[Vul(AIVu|+ f(u)|[Vul) = A*  in {Vu#0};

see [7] for a proof. We give here an alternative proof that does not require to com-
pute A|Vul.

Proof of Lemma 2.3. We begin from the identity
—Au; = f' (u)u; fori=1,...,n;
see Lemma A.3(ii). Multiplying this identity by u;n? and integrating by parts, we obtain

/(IV(um)Iz—(ui)2IV77l2)dx: Vui V(un?) de= [ f (uyuin® de,
Bl Bl

B,

so that, summing over i, we get
/ (Z |V (i) ? | Vul? |V77|2> dw:/ L () [ Vul?y? da. (2.8)
Bi\7 B

On the other hand, testing the stability inequality (1.4) with the Lipschitz function |Vu|n,

we obtain

[ vQvuf ez [ vup? s 29)
B1 B,

(9) Even though we will not use it here, it is worth noticing that the quantity .A controls the
second fundamental form of the level sets of u. This was crucially used in [7], in combination with
the Sobolev-type inequality of Michael-Simons and Allard, to prove regularity of stable solutions up to
dimension n<4.
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Hence, combining (2.8) with (2.9) gives

/31 |Vu|2|V772d:U>/B1 (Z|V(um)|2—‘v(|vu”)|2> da.

Then, a direct computation shows that, inside the set {Vu#£0},

S IV )| ¥(uln) = (;u?j—z(z at ))n _

( J

On the other hand, since Vu is Lipschitz, then D?u=0 a.e. in {Vu=0} (see, e.g., [37,
Theorem 1.56]). Therefore,

> IV ()P~ [V (| Vul)[* =0

a.e. inside {Vu=0}, concluding the proof. O

Next, we prove a general result that gives, in every dimension, a higher integrability

result for the gradient of stable solutions.

PROPOSITION 2.4. Let u€C?(By) be a stable solution of —Au=f(u) in B;CR",
with f locally Lipschitz and non-negative. Then,

[Vull L2+ (B,,4) < ClIVul 2 (B,),

where v>0 and C' are dimensional constants.

Proof. Without loss of generality, we may assume that ||Vul[z2(g,)=1 (this normal-
ization will be particularly convenient in Step 3). Let neC2°(Bp) be a non-negative

cut-off function with n=1in Bg/y.

Step 1. We show that

/B |div(|Vu|Vu)|n® dz < C. (2.10)

Set v:=—Vu/|Vu| in the set {|Vu|#0}, and v=0 in {|Vu|=0}. We begin from the

pointwise identity

div(|Vu|Vu) = |V ( %;'ZJ +Au>
i (2.11)

= —|Vul tr(D*u—(D*uly, v])v@v) +2|Vu|Au,
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in the set {|Vu|#0}. Also, we note that A% (as defined in Lemma 2.3) is larger or equal
than half the squared Hilbert-Schmidt norm of the matrix D?u—(D?ulv,v]) v@v,(1?)

and hence there exists a dimensional constant C such that
| tr(D?*u— (D?ulv, v])vev)| < CA. (2.12)

Furthermore, due to Lemma 2.3, we obtain (note that, in the next integrals, we can
indistinctly integrate in By or in BiN{|Vu|#0})

—/ 2|Vu|(Au)n? d
B,

:—/ |Vu|tr(DQu—(Dzu[z/,1/])1/®1/)772dx—/ div(|Vu|Vu)n?® de

B1 Bl

1/2 1/2
< C’</ |Vu|?n? dx) </ Ap? dz) +/ |Vu|(Vu)-V(n?) de
B B B,

<C.

Hence, combining this bound with (2.11) and (2.12), and using again Lemma 2.3 together
with the fact that Au<0, we get

/|div(|Vu|Vu)’n2dx</ —2|Vul|(Au)n? dz+C | |Vu|An? dx
B B B

1/2 1/2
<C’+C</ |Vu|*n? dx> (/ A?n? dx)
Bl Bl

<G,
as desired.

Step 2. We show that, for a.e. t€R,

/ |Vu?dH" ! < C. (2.13)
{u=t}NBs,4

We claim that, for a.e. t€R, we have

/ |Vu|? dH™ 1 g/ |Vu|*n? dH"*
{u=t}NBz,4 {u=t}NB;

(2.14)
=— / div(|Vu|(Vu)n?) da.
{u>t}nBy

(10) This is easily seen by writing D?u(z) in the orthonormal basis given by v(z) and the principal
directions of the level set of u at x.
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Note that this bound, combined with (2.10), implies (2.13). So, we only need to prove
the validity of (2.14).

To show (2.14), some care is needed to deal with the divergence, since we cannot
use Sard’s theorem here (u is only C?). Thus, to prove it, we consider a smooth approxi-
mation s— H,(s) of the indicator function of R, , so that H.(s)—*dy as e—0. Then, for
any given t€R, we can apply Lemma A.2 with g=H/(u—t)|Vu|*n? to get

-/, H_(u—t)div(|Vu|(Vu)n?) doe = : H!(u—t) Vu-(|Vu|(Vu)n?) dz

=/ H! (u—1)|Vul*n? dz
By

:/H;(Tft) (/ [Vul*n? dH”1> dr.
R {u=7}NB;

In particular, whenever ¢ is a Lebesgue point for the L' function

T \Vul*n? dH" 1,
{u=7}NB1

letting e—0 we deduce (2.14), as claimed.
Step 3. Conclusion.

First note that, by the standard Sobolev-Poincaré inequality, for some dimensional

1/p 1/2
(/ uﬂpda:) gc(/ vu2dz> =C, (2.15)
Bl Bl

where u:= fBl u. Thus, using (2.15) and Lemma A.2 with

p>2 we have

lu—alP
9= Wl{wu#o}»

we obtain

/dt/ |t—ﬂ|”|Vu|’1 d?‘[nilz/ |u—alP 1{|Vu|7£0} de <C. (2.16)
R J{u=t}nBin{|Vu|£0} B,

Also, since p>2, we may choose dimensional constants ¢>1 and 96(0, %) such that
p/q=(1—0)/6. Thus, defining

h(t) :=max{l,|t—ul}
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and then using the coarea formula (see Lemma A.2) and Holder inequality (note that
pd—q(1—0)=0), we obtain

/ (Vul*% da = / dt / h(t)Po= 0= |7y ~0+20=0) ggynt
Bs/y R {u=t}NBs,4N{|Vu|#£0}

6
< (/ dt/ h(t)qu|1d7-l”1)
R {u=t}NB1N{|Vu|#£0}

1-6
X (/ dt/ h(t)_un|2d7-l”_1> .
R {u=t}NBs/4

Observe now that, due to (2.16) and the definition of h(t), we have

/ dt/ R(t)P|Vu|~tdH™ !
R {u=t}NB1N{|Vu|#£0}

a+1
</ dt/ |Vu| =t dH" +C
u—1 {u=t}NB1N{|Vu|#£0}

<|Bi|+C

<C.

Also, since ¢>1, it follows that

/ h(t)~ dt
R
is finite, and thus (2.13) implies that

/h(t)—q dt/ |Vu|2cm"—1<c/h(t)—q dt<C.
R {u=t}NB3 4 R

Therefore, we have proved that
/ |Vu|>2 da < C
B34

for some dimensional constants 0¢€ (0, %) and C, as desired. O
We conclude this section with the following useful result.

PROPOSITION 2.5. Let u€C?(By) be a stable solution of —Au=f(u) in B;CR",
with f locally Lipschitz and non-negative. Then,

[Vull2(B, ) < CllullLi(s,),

where C is a dimensional constant.
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Proof. Since —Au>0, we can apply Lemma A.1 (i) to the constant sequence vy=u
to get

IVullLi(s,,0) < Cllull sy

Also, it follows from Proposition 2.4 that
[Vull L2+ (B, ) < ClIVullL2(By).-

Therefore, by Holder and Young inequalities, for every e>0 we have

1+ 2+ 1+
IVulZes, ) < IVul 4G IVl 500

1+ 2 1
<C|| ”z{(Bl’)Y)”v ”( +v /( +7)
C
<5||VU||2L2(BI)+;HU||2L1(BI)~
Applying this estimate to the functions u,(z):=u(y+rz), where B,(y)CB; (note

that w,, is a stable solution to the semilinear equation —Au, ,=f,(u,,) in By with

fr(t)=r?f(t), so all the previous results apply to u,, as well), we conclude that

c 2
T"+2/ |Vu\2dx<€r”+2/ Vu|2da;+</ u|dx)
B../2(y) B, (y) € \JB.(y)

c 2
gw””/ Vu|2dz+</ |udx)
Br(y) £ B,

for every e>0. By Lemma A .4 applied with J(B)::||Vu||2L2(B), the result follows. [

3. Interior C* estimate for n<9 and global estimate in convex domains:
Proofs of Theorem 1.2 and Corollary 1.4

We begin this section by proving that, under a doubling assumption on |Vu|? dz, the

radial derivative of a stable solution controls its full derivative.

LEMMA 3.1. Let u€C?(By) be a stable solution of —Au=f(u) in BaCR"™, with f

locally Lipschitz and non-negative. Assume that
/ |Vu|? dz > 6 \Vu|? dx
B1 B>

for some §>0. Then, there exists a constant Cy, depending only on n and 9§, such that

/ |Vul|? dm<C5/ |z-Vul? de.
Bs/2 Bs/2\B1
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Proof. Assume the result to be false. Then, there exists a sequence of stable solutions

ug, (with fx >0 varying) such that

/ |Vuk|2dx>5/ Vg |* de, / |Vug|*dr =1, and / |2-Vug|? dz — 0.
B1 Bo Bg/g B3/2\Bl
(3.1)

Now, due to (3.1),

1 1
/ |Vu;c\2da:<g/ |Vuk|2dx<g
BQ Bl

Therefore, using Proposition 2.4 (rescaled from B; to Bs), we obtain

1
|Vug|? de =~ < C. (3.2)
B3,z g

/ |Vug |27 de < C.
Bs/»

Hence, the sequence of superharmonic functions
Vi = U — ][ Uk
Ba

vkllL1(By) < CllvgllL2 (s, <C

satisfies

(due to Holder and Poincaré inequalities, and by (3.2)), as well as

IVukllLz(B,,0) =1 [lvellwrz+v(s,,,) <C,  and |z-Vog|* dz — 0.
Bs/3\B1
Thus, it follows from Lemma A.1 applied with T:%<2:R that, up to a subsequence,

vk —v strongly in Wl’z(Bg/Q), where v is a superharmonic function in Bg/s satisfying
[Volrz(s,,,) =1 and 2-Vv=0 ae.in Bs;\Bi.

From the fact that v is zero-homogeneous and superharmonic in the annulus Bs;\ By,
it follows that v=cy inside Bsj /2\31 for some constant co€R. Indeed, by the mean-
value property (or by [25, Theorem 8.17], since uEWfl})’CICL;;é("_l) by Lemma A.1), v is

bounded from below in B35\ Bi. As a consequence, by zero-homogeneity,

inf v= inf w
B33\ B1 By /a(0)

for some point xo€0Bs /4. Hence, by the strong maximum principle ([25, Theorem 8.19]),
v is constant in Bs/\ By, as desired.
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In particular, we have proved that v|sp, =cg, and thus, by the maximum principle
for superharmonic functions, we get v>cq inside Bj.

Combining all this together, we get that
v=co in Bgjy and v=co in Byso\ B,
and by the strong maximum principle for superharmonic functions we get v=cg in B3/,

a contradiction with |[Vv|z2(p,,,)=1. 0

The following lemma will be used a couple of times in the paper to prove geometric

decay of certain integral quantities satisfying appropriate recurrence relations.
LEMMA 3.2. Let {a;};>0 and {b;j};j>0 be two sequences of non-negative numbers
satisfying ag <M, bog< M,
bj < bj—l and aj+bj < Laj_l fOT all ] 2 17
and
Zf a; 2 %aj_l then bj < L(bj_lfbj) fOT’ all ] 2 1, (33)

for some positive constants M and L. Then, there exist 6€(0,1) and C>0, depending
only on L, such that
b <CM@  for all j>0.

Proof. Define, for £>0 to be chosen,

. E].
c;j .fajb].

We consider two cases, depending whether a; < %aj_l or not.

Case 1. If aj<%aj_1, then since b; <bj_1 we get

€L —€ € . — 9~ €..
cj=a5b; <27%a5_1bj1=2""cj_1.

Case 2. If ajEéaj_l, we may apply (3.3), and we have b; <L(b;_1—b;) or, equiva-
lently,

L
bi < ——b: ;.
J 1+LJ 1

Therefore, using that a; <La;_1, we have

L
¢j=ajbj < Loaj_, A 01 F e,
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where we choose first >0 such that 27¢=L'*¢/(1+L) (this can be done, since we may

assume from the beginning that L>%), and then we define

_ L
0:=(27) 070 = A+ D)/

Hence, we have proven that in both cases ¢; <0'*¢c;_; for some 0€(0,1). By iter-
ating this estimate, we conclude that cj<9(1+5)jco.
Finally, recalling that b; <La;_1, b;<bj_1, ap <M, and by <M, recalling the defini-

tion of ¢;_; and cg, we obtain
LE . .
b;JrE < Leajflbj,lz LECj,1 < 01? 9(1+6)j00 < 09(1+E)3M1+E,

and the lemma follows. O
We can now prove Theorem 1.2.
Proof of Theorem 1.2. We first notice that, combining Propositions 2.4 and 2.5, we
immediately get the bound

IVull L2+ (B, ) < Cllull 1 (8,)-

Hence, (1.6) follows by a classical scaling and covering argument.

We are left with proving (1.7). For this, we may assume that 3<n<9. (Indeed,
recall that in case n<2 one can easily reduce to the case n=3, by adding extra artificial
variables. Note that the stability condition is preserved under this procedure). Given

0€(0,1), we define the quantities

D(g):zg2_”/ |Vu|? dz  and R(g)::/ 2| ™"z Vul|? da.
B B

e e
We split the proof of (1.7) into three steps.

Step 1. We prove that there exists a dimensional exponent a.>0 such that
R(o) < CQQQHVUH%%BUZ)
for all o€ (0, §).

Recall that, by (2.3), for every o€ (O, i) we have

R(o) <CQ2_"/ |Vu|? d. (3.4)
B3g/2\BQ
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Hence, if D(p) > %D(Qg), then we can apply Lemma 3.1 with 5:% to the function u(o-),
and we deduce that

QQJL/ IVuIQdeCé’*"/ |- Vul? dz < C(R(50) —R(e))
BSQ/2 BBQ/Z\BE'

for some dimensional constant C'. Combining this bound with (3.4) and using that R is
non-decreasing, we deduce that

R(0) <C(R(20)—R(e)) provided D(¢) > 3D(20). (3.5)

Thus, if we define a;:=D(27772) and b;:=R(277~?) we have, for some dimensional con-
stant L >0,

o b;<bj_ forall j>1 (since R is non-decreasing);

e a;j+b;<La;_; for all j>1 (by (3.4));

e if aj>2a;_y then b;<L(bj_1—b;) for all j=>1 (by (3.5)).

Therefore, by Lemma 3.2, we deduce that

by <CM7,
where #€(0,1) and
M :=ag+by < C||Vu||2L2(Bl/2)

(here we used again (3.4) in order to bound by).
Choosing a>0 such that 2729=0, Step 1 follows easily.

Step 2. We show that

[ulca (B, ) SCIVullL2(Bs,4) (3.6)

where o and C' are positive dimensional constants.

Applying Step 1 to the function u,(z):=u(x+y) with y€ By 4, since By 5(y) C B34
we get

/ lz—y| ™™ |(x—y)-Vu|? dz < CQQQ/ [Vul?dz  for all p< 3.
By (y) B3y

In particular,

QQ—n/
By (v)

T—y
|z —y|

2
-Vu deCQQQ/ |Vul>dz  for all y € By /4 and o< 3.

B3,y




212 X. CABRE, X. ROS-OTON, A. FIGALLI AND J. SERRA

Then, given z€ B} /5, we can average the above inequality with respect to y€B,/4(2) to

get

92_”/ |Vul? dxg(jgm/ |Vul>dz for all o< 3.
By/s(2) 3/4

Since z€ By g is arbitrary, by classical estimates on Morrey spaces (see for instance [25,
Theorem 7.19]), we deduce (3.6).

Step 3. Proof of (1.7).

Note that, using Proposition 2.5 and a standard scaling and covering argument, we

have

Vullr2(s,,.) < CllullLis,)-
Hence, it follows by Step 2 that
[Wlce(B, 0 < CllullLr(py)-

Also, by classical interpolation estimates, we have the bound

[ulloe (B, 6) < C[ul o (B, 0) FllullLi(By 0))-

Combining these estimates, we conclude that

lullga (B, ,5) < CllullL(sy)-

Finally, (1.7) follows by a classical scaling and covering argument. O

We conclude the section by proving global regularity in convex domains.

Proof of Corollary 1.4. First of all, since f>0, we have that w is superharmonic, so,
by the maximum principle, ©>0 in .
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Since Q is a bounded convex domain of class C!, by the classical moving planes

method, there exists gg>0, depending only on €2, such that
u(z) <maxr, u for all € Ny, (3.7

where Ny:={yeQ:dist(y, Q) <oo} and T'g:={y€Q:dist(y, 9Q)=00}.('1)
Hence, it follows by Theorem 1.2 that u<C'|ul|1(q) inside 2\ Ny, where C' depends
only on 2 and gg. Thus, recalling (3.7), we conclude that 0<u<Cl|ul|11(q) inside Q. [

4. A general closedness result for stable solutions with convex

non-decreasing non-linearities

The goal of this section is to establish a very strong closedness property for stable so-
lutions to equations with convex, non-decreasing, and non-negative non-linearities. As
mentioned in the introduction, in addition to its own interest, this result will play a
crucial role in the proof of the global regularity result of Theorem 1.5.

Define

C:={f:R—[0,+00]: f is lower semicontinuous, non-decreasing, and convex}.

Note that functions f€C are non-negative, but are allowed to take the value +o0o. This
fact is important, since limits of non-decreasing convex non-linearities f;:R—R could
become 400 in an interval [M,o0); this is why, in C, we must allow f to take the
value +o0.

For feC and teR such that f(t)<4o0, the following is the definition and a property
for f (¢):

SO —f(t=h) _ f(t2)—f(t2)

") = = <t .
fL(%) 1]"1%1 . P— for all t; <ta <t (4.1)
If f(t)=4o0 for some t€R, then we simply set f’ (¢t)=+oc.

Given an open set U CR", we define

S(U) = {u c Wﬁ)CZ(U)  wu is a stable weak solution of } (4.2)

"—Au= f(u) in U, for some f€C

(1) Here we are using that, as pointed out within the proof of [22, Theorem 1.1], (3.7) holds in
any convex C! domain. This follows easily from the classical moving planes method when all principal
curvatures of 9 are positive (as mentioned in [22]), and also when the domain is C! and strictly
convex. Since [22] contains no proof for merely convex domains, we sketch it here. If Q is convex, then
the boundary may contain a piece of a hyperplane. Still, by a simple contradiction argument, one can
show that, given any boundary point, there exist hyperplanes that separate a small cap around this
point from their reflected points, and such that the reflected points are contained inside 2. This suffices
to use the moving planes method in a neighborhood of any boundary point.
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The meaning of weak solution is that of Definition 1.1. In particular, as f(u)€ Ly _(U)

loc
then f(u) is finite a.e., and as f is non-decreasing we deduce that f <+oo on (—oo, supy u).
Note also that, similarly, as f* >0 and f is convex, we have that f’ <400 in (—oo, supy u).
The following theorem states that, given an open set U CR™, the set S(U) is closed
in Lt

1oe(U). This is particularly surprising, as no bound is required on the non-linearities.

THEOREM 4.1. Let UCR™ be an open set. Let uy€S(U), and assume that ur—u
in L _(U) for some ue Ll (U).

loc loc

Then, weS(U) and the convergence ux—u holds in W1’2(U). If, in addition, n<9,

loc
then the convergence also holds in C°(U).

For the proof of this result, we shall use the interior estimates of Theorem 1.2.

However, we proved these interior estimates for C solutions, while solutions in the class

S(U) are in general only in W2—mnotice that it may happen that

f(u(zo)) = f(supy u) = +00

for some xg€U. Thus, we will need to prove first that the interior estimates of Theo-
rem 1.2 extend to all weak solutions in the class S(B;) (see Corollary 4.3 below). For

this, we need the following useful approximation result.

PROPOSITION 4.2. Let f€C and assume that ue W42?(By) is a stable weak solution
of —Au=f(u) in By, with f(u)eL'(By).

Then, one of the following holds:

(i) weC?*(B1) and f is real valued and Lipschitz on (—oco,supg, u).(*?)

(ii) There exist a family of non-linearities { fe}zc(0,11CC and a family of stable so-
lutions {ue}.e0,1]CC*(B1)NW12(By) of

{ _Auezfs(ue) in By,

Ue =1U on 0By,

such that fe<f, us<u, and both f.1f (pointwise in R) and u:.Tu (a.e. and weakly in
W2(By)) as €l0. Furthermore, f. is real-valued and Lipschitz on (—oo,supp uc| for

every r<l1.

(12) Throughout the paper, whenever we say that a function g is Lipschitz on some set A, we mean
uniformly Lipschitz (even if the set A is open), namely

sup lg(x) —g(y)l

z,y€EA lz—yl
z#y

< 400

This is in contrast with the terminology “g is locally Lipschitz”, which means that g is Lipschitz on any
compact subset of its domain of definition.
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Proof. If f! (supp, u)<-+00,(*?) then f is real valued and Lipschitz on (—oo,supp, u)

(here we use that f is non-negative, non-decreasing, and convex). Thus,
|f(W)] < C(A+]ul),

and, by classical elliptic regularity [25], u is of class C? inside B;. Thus, in this case, (i)
in the statement holds.

As a consequence, in order to establish (ii), we may assume that

J! (supp, u) =+oo0. (4.3)

Step 1. Construction of f. and wu..

Given €€(0, 1], if supp, u<+4o0, we define f. by f.(t):=(1—¢)f(t). Instead, when
supp, u=+00, we set
(1—¢)f(1), for t <e 1,
(1—=e)(f(e )+ f (e (t—et)), fort=e L

Note that, in both cases, f-€C, f-<f, and f.Tf pointwise as £ 0.

We now construct the functions u.. We first define the function ugo) to be the

r0:={

harmonic extension of u. Indeed, since u€W?2(By), the Dirichlet energy fBl |Vol?

. . . . 0) .
admits a minimizer ug ) in the convex set

{veWbY2(B)):v—uecWy?(B)}.

Note that uéo) <u, since u is weakly superharmonic.
To construct u. for e€(0,1), we start a monotone iteration by defining, for j>1, the

function ugj ) as the solution to the linear problem

) (4.4)

{ —Augj):fg(ugj_l)) in By,
ug’ =u on 0B;.

Note that we can start the iteration, since

0< fo(ul) < fo(u) < f(u) € LY(By).

All the other problems also make sense, since we have that ugj ) <u for all 7>0. Indeed,

~Alu—ul)) = fu) = fo(uf ™)

= (f(w) = fe(w) +(fe(u) = fo (D))
> fo(u) = fe(ud™)

(13) If sup g, u=+o00, we define f’ (supp, u):=lim¢ oo f (t).
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for all j>1, and since f. is non-decreasing, it follows by induction that ugj ) <u.

To prove that the sequence is monotone, note that, since f.>0, it follows by the

maximum principle that uél) >u£0). Also, since f. is non-decreasing, the inequality

~AW) —uf V) = (@ D) = fo(ul ), forall j>2,
proves, by induction on j, that ugj) >u§j—1).
Analogously, since f.< f.r for &/ <e, using that uéo):ui?) and that

_A(“g)_ugj)) =fs/(ug_1))—fs(u§j*1>) for all j>1,
again by induction we get

u <u? forall >0 and &' <e. (4.5)

6/
CrAamM 1. The functions uéj) belong to W2(By), and their W12-norms are uni-
formly bounded in j and e.

Indeed, since

Vuld)-V(u—u?)de= [ f.(@I™V)(u—ul?)dz >0,
By B,

we have

| WP o< [ Vvl do <[ Vullaga 19 @),
B1 Bl

and therefore
||Vu§j)\|L2(Bl) < ||V(U*U§j))||L2(Bl)+||VU||L2(Bl) <2 VullL2(my)- (4.6)
Since ug ) —u vanishes on 0By, the claim follows by Poincaré inequality.

Due to Claim 1, we can define

Uug := lim ug) <u,
j—o0

where u. is both a pointwise limit (since the sequence is non-decreasing in j) and a weak
Wh2(By) limit. Then, we have that u. € W?(B;) is a weak solution of

{ _Auszfs(us) in By,

Ue =U on 0Bj.

We now want to show that u. is of class C. For this, we prove the following.



REGULARITY OF STABLE SOLUTIONS UP TO DIMENSION 9 217

CrAM 2. The functions ugj) belong to CIZO’CB(Bl), for every B€(0,1), and their
norms in this space are uniformly bounded with respect to j. In addition, f. is real

valued and Lipschitz on (—oo,supg_u.], for every r<1.

To prove this result, we distinguish two cases, depending on whether supg, u is finite

or not.
Case (i). supp, u<+oo.

Note that, since in this case f.=(1—¢)f, we have
—A(u—ug) Zef(u) =0.

Also, f(u) cannot be identically zero, since f’ (supp, u)=+00 by (4.3). Thus, it follows
by the Harnack inequality that, for all r€(0, 1) and €>0, there exists a constant . >0
such that u. <u—d; , in B;.

In addition, as already observed after (4.2), the fact that —Au=f(u) with feC
leads to f<+o00 on (—oo,supp, u). Hence, using again that feC (thus f>0 is convex

and non-decreasing), we obtain that

[lfllcor (oo SC(f,t) <oo for all t <supp, u.
Therefore, since ugj )guegsupB1 u—0. in By, by standard elliptic regularity (see for
instance [25, Chapter 6]), we obtain that ul?) 60120’5 (By) for all 5€(0,1), uniformly in j,
as desired. Furthermore, since u.<u—06., in B,, f. is real valued and Lipschitz on
(—o0,supp uc].
Case (ii). supp, u=+o0.

In this case we note that, by construction, f. is globally Lipschitz on the whole R,
and
| fe (O] < Ce(1+[t]).

Hence, due to the uniform W2 bound on u’ (see (4.6)), using (4.4) and standard
elliptic regularity (see, for instance, [25, Chapter 6]), it follows, by induction on j, that
uéj)EClzo’f(Bl) for all €(0, 1), uniformly with respect to j.

Due to Claim 2, we have that u. is the limit of a sequence of functions uniformly
bounded in C2?(By), and hence u.€C2(B;).

loc
Step 2. The solutions u, are stable.
Since u. <wu, it follows by the definition of f. that f’ (u)>(f:)" (us) in B;. Hence,
the stability of u gives that

/31 |V£2d:c>/31 £ () €2 dw/Bl(fs)L(us)s? dz
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for all £eC2°(By). Thus, u. is stable.
Step 3. usTu as 0.

Recall that u. <u. <u for ¢’<e, and that the functions u. are uniformly bounded
in W12 (see (4.5) and (4.6)). Assume by contradiction that u.tu*<u as £/0 and u* #u.
Then, by the convergence of f. to f, u* solves

—Au* = f(u*) in By, ufu*GVVol’Q(Bl), u—u* >0, u—u*#£0,

and thus, by the Harnack inequality applied to the superharmonic function u—u*, for
any r<1 there exists a positive constant §, such that u—u*>6,>0 inside B,. On the

other hand, testing the stability inequality for v with u—u*, we obtain
| G- fapu-uydo= [ [Fu-w)Pdez [ @) ds
B B, B
Recalling (4.1) and that u>wu*, this leads to

FL(u)(u—u")? = (f (w) = f(u")) (u—u")

a.e. in By and (since f is convex) we deduce that f is linear in the interval [u*(z), u(x)]
for a.e. z€B;.

Let r<1 and note that the intervals [u*(z),u(x)] have length at least 4, for a.e.
r€B,. Hence, since u and u* belong to W2(B,.), the union of these intervals as z
varies a.e. in B, covers all the interval (infp, u*,supp u).('*) This leads to f being
linear on the whole interval (infp, u*,supp w). Letting r—1, this gives that f is linear
on (infp, u*,supp, u), contradicting f’ (supp, u)=-+00 (recall (4.3)) and concluding the
proof. O

As a consequence, we find the following.

COROLLARY 4.3. The interior estimates of Theorem 1.2 extend to all weak solutions
in the class S(By).

Proof. In case (i) of Proposition 4.2, when supp, u<-+00, we have that the limits of
f(t) and f’(t) as tTsupp, u, exist and are finite. This follows from f being convex and

Lipschitz in (—oo,supp, u), as stated in case (i). Thus, we can extend f on [supp, u, +00)

(**) Here it is crucial that the union of these intervals covers the full interval (infp, u*,supp _u),
and not just a.e. A way to see this is to note that, since the intervals [u*(x), u(z)] have length at least é,,
if this was not true, then the essential image of u (resp. u*) would miss an interval of length ¢, inside its
image. However, W12 functions cannot jump between two different values, as can be seen by using the
classical De Giorgi’s intermediate value lemma (see for instance [16, Lemma 1.4], or [21, Lemma 3.13]
for an even simpler proof).
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to a globally Lipschitz, non-decreasing, convex function in all of R, and then apply
Theorem 1.2. Obviously, there is no need to make the extension if supg, u=-+o00.

In case (ii) of Proposition 4.2, take r<1. Since f. is Lipschitz on (—oo,supp uc|, we
can extend f; on [supp e, +00) to a globally Lipschitz, non-decreasing, convex function
in all of R, and then apply Theorem 1.2 (rescaled from B; to B,) to u.. Letting .0,
this proves the validity of the interior estimates of Theorem 1.2 inside B, 3, and letting
r—1 yields the result. O

We can now prove Theorem 4.1.

Proof of Theorem 4.1. By assumption, we have a sequence ux €S(U) of weak solu-
tions of —Awug=fr(ux), with fr€C and U being an open set of R™ such that ux—wu in
Ll

loc

(U). Then, by Corollary 4.3 and Lemma A.1, the previous convergence also holds in
VV&DCQ(U) Also, up to a subsequence, we may assume that uyp—u a.e. If n<9, the same
results give that ug—u locally uniformly in U. However, since in order to prove u€S(U)

we are not assuming n<9, we cannot use this information.
Step 1. A compactness estimate on f.
Let M:=supy u€(—o00, +o0], and let m< M. We claim that

lim sup fx(m) < co. (4.7)

k—o0

Indeed, let z9€U be a Lebesgue point for u such that(1?)
m<u(xg) <M,

and set §:=u(xg)—m>0. Since xy is a Lebesgue point, there exists £o>0 such that
Ba., (z0)CU and

N

][ lu(z) —u(zo)| dx < for all € € (0, 2¢].
B. (170)
In particular, for k sufficiently large, we have

m < ][ up dr < ][ lug| do < |u(xo)|+d  for all € € (0, 2g0)].
B (o) B (o)

Therefore, since f; is non-decreasing and convex, we get, applying Jensen’s inequality
and Lemma A.1 (a),

fre(m) < fx <][ g dx) < ][ fr(ug) de= ][ (—Aug) dx
B (%0) Bey (o) B, (z0)

<Ce? ][ Jur| da < Ceg® (Ju(wo)|+9)
Bac (z0)

(15) The existence of such a point is guaranteed again by the fact that W12 functions cannot jump,
as noted in Step 3 of the proof of Proposition 4.2.
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for a dimensional constant C' and all k sufficiently large, proving (4.7).

Notice now that, since

/ Je(m+0)—fr.(m) _ fr(m+6)
(fe)Z(m) < 5 < 5

and m+d=u(xg)<M, (4.7) applied with m replaced by m+¢ implies that the functions
fx are uniformly Lipschitz on (—oo, m]. Hence, by Ascoli-Arzela theorem and a diagonal
argument, we deduce the existence of a function f:(—oo, M)—R such that that fr— f
uniformly on (—oo, m] for every m<M. Also, since fj, are non-negative, non-decreasing,
and convex, extending f to all R by defining f(M):=limy f(t) and f(t):=+oc for
t>DM, it is easy to check that feC.

Step 2. —Au=f(u) in U.

For every £€C2°(U) we have

/ Vu-Védx = —/ uA¢ dr=— lim up A€ dx

U U k—oo Jir (48)

= lim / Vug-VEdr = lim / Jre(uk) € dx.
U k—oo Jir

k—o0
Note that, since fy— f locally uniformly on (—oo, M) and ux—u a.e., it follows that
fr(ug) — f(u) ae. inside {u < M}. (4.9)
In the following, n€C°(U) denotes a non-negative cut-off function such that n=1 on
the support of &.
Case 1. M=+o0.
We have

/ Fi(u)up da < / Fi ()l dz = / (= Aoy g
supp(&) U U

=/ Vug-V(|ug|n)de < C
U

for some constant C' independent of k, where the last bound follows from the Wlif
boundedness of ug. In particular, given a continuous function ¢:R— [0, 1] such that ¢=0

on (—o0,0] and =1 on [1,400), we deduce that

Ty o) d
supp(§) supp(§)N{ur>s} (4 10)

1
gf/ fk(uk)ukdxgg_ for all 7 > 1.
J Jsupp ()N {ur>j} J
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Therefore, by Fatou’s Lemma (since up—u a.e. and fi(up)— f(u) a.e. by (4.9) and

M=+00), we also have

¢

/ fw)e(u—j)de< = forall j>1. (4.11)
supp(§)

J
Furthermore, using again that uy—u a.e. and fi(ug)— f(u) a.e., by dominated conver-

gence, we get

felur) 1= (ur—5)] = f(w)[1=p(u=7)] in L' (supp(§)).

This, combined with (4.10) and (4.11), gives that

hmsup/ | fr(ur) — f(u)] dv
supp(§)

k—o00

. . . 20
<limsup / Fo(ur) o(un—g) o+ / Fw) pu—g) da < 22
supp(&) supp(&)

k—o0 J

By the arbitrariness of j, this proves that

fe(ur) = f(u) in L' (supp(s)).
Recalling (4.8), this concludes the proof of Step 2 in the case M =+o0.
Case 2. M <+o0.
Let 6>0. As (up—M —¢)4 >0 inside {ur>M+2} and —Aug= fi(uy) >0, we have

g fk (uk) 5 dx
supp(€)N{ug>M-+28}

=9 —Auy, dx
supp(§)N{ur>M+25}

g/ —Auy, (up—M—=9), dx
supp(§)N{ur>M+25}

</ —Auy, (ug—M —6)ndx
U

:/ |Vuk\2nd;v+/ V-V (up—M—06); dx.

Un{up>M+6} U

Note that, due to the higher integrability estimate (1.6) applied to u (recall Corol-
lary 4.3), the functions uj are uniformly bounded in W12 (supp(n)). Thus, since
Liup>nm4oy—0 and (up—M—0), =0 a.e., we deduce from Hélder’s inequality that the

last two integrals tend to zero as k— oo, and therefore

lim fr(ug) de=0. (4.12)
k=00 Jsupp(&)n{us>M+25}
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On the other hand, we note that
fr(ue=30) < fu(M—6) < Cs
inside
supp (&) N{u < M +26},

for some constant Cs depending on ¢, but not on k. Hence, due to (4.12) and the uniform

convergence of fi to f on (—oo, M —§], we get (recall that u< M a.e.)

k—o0

lim /U Felu) € da

= lim Ji(ug) € d
k=00 JUunfup<M+25}

i ([ fulun-30)¢da+ [ ()~ f(u=38)) o
0 UN{ur<M+25} UNn{ur<M+25}

= [ su=30) do i (i)~ f (e ~35))€

—0 JUN{ur<M+25}

Now, by (4.1), the definition of f’, and the stability of uy, we have (recall that n=1 on
the support of &)

/ (fu(our) — (g — 38))€ | < 36 / (fi) (k) €] dr < 38 1o / (o) () de < C5,
U U U

and therefore, letting 6 —0, by monotone convergence we find

Jim /U fulu) € da = /U F(u) € de.

Recalling (4.8), this proves that —Au=f(u) inside U in the case M <+oc.
Step 3. w is stable.

Due to the convexity of f, it follows from (4.1) and the stability inequality for ug
that, for any §>0,

/ fk(uk—25) —fk(uk—?)(;)
U 5

§2dz</ |VEPPde for all €€ C2(U).
U

Hence, since up—wu a.e. in U and f;— f locally uniformly in (—oo, m] for all m<M, and

since fj is non-decreasing, it follows by Fatou’s lemma applied to the sequence

Lup<mingjmry+530 " (fr(ue—26) — fr(up —36))
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that, for any j>1,

UNn{u<min{j,M}} 4]
ghminf/ Tulur=20) = fi(uk =39) o2 ;.
k=00 UNn{ur<min{j,M}+5} d
<lim inf/ T (1 =20) — fio(ur = 39) £ dx
k—oo  Jur 1)
< [ ve s
U

for all £eC°(U). Since

f(t—20)—f(t—39)
0

tfL(t) asd—0, forall t<min{j, M},

the result follows by the monotone convergence theorem, letting first 6 —0 and then
Jj—r+o0. [

5. Boundary W1217 estimate

In this section we prove a uniform W1 2+7 bound near the boundary, in terms only of the
L' norm of the solution. As in the interior case (see §2), this is done by first controlling
|Vu| g2+~ with ||[Vu| 2, and then ||[Vul|pz with ||ul 1.

We begin by introducing the notion of a small deformation of a half-ball. It will be
useful in several proofs, particularly in that of Lemma 6.2. Given ¢>0, we denote by B,
the upper half-ball in the e,, direction, namely

B} := B,N{z, >0}.
Definition 5.1. Given 90, we say that QCR" is a ¥-deformation of By if
Q=o(BaN{z, >0})
for some ®€C?(By; R™) satisfying ®(0)=0, D®(0)=Id, and
|D?®| L (B,) + | D* || 1< (5,) < V-

Here, the norms of D?® and D3® are computed with respect to the operator norm.

Note that, given a bounded C® domain, one can cover its boundary with finitely
many small balls so that, after rescaling these balls, the boundary of the domain is given
by a finite union of ¥-deformations of B; (up to isometries) with ¢ arbitrarily small.
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PROPOSITION 5.2. Let QCR™ be a U-deformation of B3 for ¥ [O, ﬁ]. Let ue

C?(QNBy) be a non-negative stable solution of —Au=f(u) in QNBy, with u=0 on

0N By. Assume that f is locally Lipschitz, non-negative, and non-decreasing. Then,
IVull L2+ (0nB,,4) < ClIVUllL2(nBy)
where v>0 and C' are dimensional constants.

The proof will make us of the following lemma, which is based on a Pohozaev-type

identity.
LEMMA 5.3. Under the assumptions of Proposition 5.2, we have
w2008, ) < ClIVulL2(0nB,), (5.1)
where u,, is the normal derivative of u at 0 and C is a dimensional constant.

Proof. Take a cut-off function n€C?(B;) such that n=1 in Bz /g, and consider the
vector-field X(z):=x+e,. Multiplying the identity

div(|Vu?X —2(X-Vu)Vu) = (n—2)|Vu|> = 2(X-Vu)Au

by 72, and integrating in QN By, since u=0 on I and v>0 in QNB; (and hence the

exterior unit normal v is given by —Vu/|Vu|), we obtain
—/ (X-v)|Vul*n? d?—["_l—/ (|Vu?X —2(X-Vu)Vu)-Vn? dz
80N B, QNB,
:/ (n—2)|Vu|> —2(X-Vu)Au)n? dx.
QB

Note that, since € is a small deformation of BJ, we have —X-y}% on 92N B;. Hence,
since F(t)::fot f(s) ds satisfies

X-V(F(u))=f(u)X-Vu=—-AuX-Vu,

we obtain
1
s [ wPrawe <o [ [uPdoer [ XS(E@)E
2 Joans, QNB, QNB,
=C |Vu|*n?* do—2 / F(u) div(n*X) d.
QNB; QNB;

We now observe that, since f is non-decreasing, 0 F(¢)< f(¢)t for all t>0. Hence,
noticing that the function g:=|div(n?X)] is Lipschitz, we can bound
—/ F(u)div(n2X)dx</ uf(u)gdac:—/ uAugdx
QnB, QN By

QNBy

:/ (VulgtuVu-Ve)de<C [ (u2+|Vul?)da,
QNB;y QNB;y

and we conclude using Poincaré inequality (since u vanishes on 9QNBy). O
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We next give the following proof.

Proof of Proposition 5.2. The key idea is to use a variant of

§=(IVu[=un)n

as test function in the stability inequality (notice that this function vanishes on the
boundary if 9QNBy C{x,=0} is flat).

Step 1. We prove that, whenever B,(z)C By /s, we have
/ o' A?dx<C (0°|D?u| |Vul+0*|Vul?) dz, (5.2)
QNB,,2(2) QNB,(z)

where A is as in Lemma 2.3.

By scaling and a covering argument, it is enough to prove the result for z=0 and
0=1.(15) Observe that, due to Lemma A.3 (iii),

Vue (W*PNC)(QNBys) for all pe (1,00).

Since 2 is a ¥-deformation of By with ﬂgﬁ, ® is a diffeomorphism. Let

Y :=V(e, ) =V((®) )"

be the gradient of the pushforward of the n-coordinate x,,: Bf =R through ®. Note that
Y is orthogonal to 952. We define N=Y/|Y|, and note that N belongs to C?(Q) and
that N=—v on 0.

Consider the following convex C'! regularization of the absolute value: for >0

SmalL we Sel
(b zZ): z 1{‘Z|>T’} "‘ + {‘ ‘<T}. 5.:;

Then

)

¢r(Vu) € (WPNCH)(QNBy/s)  for all p<oo.

Moreover, since u is non-negative and superharmonic, unless u=0 (in which case there is
nothing to prove), then it follows by the Hopf lemma that |[Vu|>c>0 on 92N By s, for
some constant c¢. Hence, since Vu is C'' up to the boundary, for »>0 small enough we
have

#r(Vu)=|Vu| in a neighborhood of JQ inside By /s. (5.4)

(1) For this, note that when B,(2) CQ we have that (5.2) follows from Lemma 2.3. Note also that
if z€0QN By /s then, within a small ball centered at z, 2 is (after a translation, rotation, and dilation)
a ¥-deformation of By .
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After choosing >0 small enough such that (5.4) holds, we set
c:=¢,(Vu)—N-Vu,
and we take neC?(Bz/s), with n=1 in By 5. Note that ¢=0 on dQN By /s, and
ce (W»PNCH)(QNBys).

Then, since ¢ vanishes on QN By/g, due to an approximation argument we are allowed
to take £=cn as a test function in the stability inequality (1.4). Thus, with this choice,
integration by parts yields

/ (Ac+f! (u)c)cn? dmg/ c?|Vn|? dx. (5.5)
QNBy

QNB;

Now note that

(Ac+fL(u)e)e= (Alpr(Vu)|+ fL (u)dr (V)b (Vu)
—(A(N-Vu)+ f' (u)N-Vu)(¢,(Vu)—N-Vu) (5.6)
— (Al (V)] + £ (1) b, (Vu)) N -Vu.

Since AVu=—f’ (u)Vu (see Lemma A.3(ii)), we have

(Lo (V04 ()6 (T0)00 (F) = (0)6(70) (8,70~ ws@500) (V) ) (5.7
+¢r(Vu) Z(afkcﬁr)(vu)uijuik- (5.8)

i3,k

Note that, inside the set {|Vu|<r}, the term (5.8) is non-negative, since ¢, is convex,

while the term (5.7) is equal to

o (5150,

and therefore it is also non-negative (all three factors are non-negative). On the other
hand, inside the set {|Vu|>r}, the term (5.7) vanishes, while the term (5.8) equals .A2.

Therefore, we conclude that

where A2 is as in (2.7).
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Coming back to (5.6), we note that

A(N-Vu)+f! ()N VU—ZAN”‘%”ZN i (5.10)

,J

so it follows from the bound |¢,(Vu)|<|Vu|+r that

/QOB (A(N-Vu)+ £ (u)N -Vu) (¢, (Vu) — N -Vu)n? dz

(5.11)
<C (|Vu|+7) (| D?*ul+|Vul) de
QNBy
Also, since neC?(Byz,s), integrating by parts and recalling (5.4), we have
| bV -up do
QNBy
=/ ¢ (Vu)A(N-Vu)n? dx
anb (5.12)
[ (26,(V) VN V) V) + [Vul (N-Tu) AP da
QnB,
[ (Tl (NP = [Val (- Tu?), )
90N B,
Since N=Vu/|Vu|=—v on the boundary, it follows that, on 9QN B, we have
D Wij iU ; j Wij Uyt
|Vu\VN.Vu:—W and |Vu|(N-Vu), ZN U — |Vu\ ,
and therefore, due to Lemma 5.3,
/ (IVul, (N-Vu)n® —|Vu|(N-Vu)n?),) dH" | < C luy [* dH™ !
20N B, 89NB; 5

< C’/ |Vul?dz.  (5.13)
QNBy

Thus, combining (5.12) and (5.10), and then using (5.13), we conclude that

/ (Ao (V) f (W) (V) N-Vuur? di| < C / IVl +7)(| D] +|Vul) dz
QNBy QNBy
Combining this bound with (5.5), (5.6), (5.9), and (5.11), we finally obtain

| APlmasn de<C [ (Valer?(Vul ) (D%l (V) da
QNB;y QNB;y
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Recalling that n=1 in By, letting 7|0 this proves (5.2) for z=0 and p=1, as desired.

Step 2. We prove that

HAH%?(QmBm) < C”VUH%Z(QOBQ' (5.14)
It suffices to prove that, for every B,(z)C By7/s and £>0, we have

C
Q2||A||%2(QOBZQ/5(Z)) < 592”"4”%2(9039(2))+;HVUH%Z(QQBQ(2))’ (5.15)

where A is as in (2.7). Indeed, it follows from Lemma A.4 applied with

o(B) = | AllL2ans)

that (5.15) leads to (5.14) with QN By g replaced by QN B7/16. A covering and scaling
argument then gives (5.14) with QN By /g in the left-hand side.

To prove (5.15), we argue as at the beginning of Step 1 to note that we may assume
z=0 and p=1.

We observe that, for any given nECf(B7/8) with n=1in By/s, it follows from (2.11)
and (2.12) that

—/ div(|Vu|Vu)n? dx}/ (—2Au—CA)|Vu|n? dz. (5.16)
QNB;

QNB,

Hence, since |D?u|<|Au|+CA and Au<0, using (5.16) we get

1
/ |D2u| |Vu|n? dz < ’ / div(|Vu|Vu)n?® de
onB, 2 Jons,

+C/ AVulp?dz.  (5.17)
QNBy

On the other hand, using Lemma 5.3, we obtain

/ div(|Vu|Vu)n? dx
QNBy

‘/ |uy|2772 d’H"il—/ Vu|Vu~V(772)dx‘
a0NB, Q

< C/ |Vul|? d.
QNBy

Thus, combining (5.17) and (5.18), we get

(5.18)

/ | D?u| |Vu|n? dzéC’/ .A|Vu|172d:c+0/ \Vu|? da. (5.19)
QNB; QNB; QNB;
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Recalling that n=1 in By/s, (5.19) and (5.2) yield, for every e€(0, 1),

QmBQ/S Q

034/5
<OVl +C [ AVulda
QNB;
<€||Vu||2 +e A% dx
S L2(QnBy) ;
QNBy

which proves (5.15).

Step 3. We show that

/ |div(|Vu| Vu)| dxgc/ |Vu|? d.
QﬂB4/5 QNB;

As in the previous step, we take n€C? (B7/8) with n=1in By/s. Then, it suffices to
combine (2.11), (2.12), (5.19), and (5.14), to get

/ |div(|Vu|Vu)| da
QﬁB4/5

g/ —2|Vu| Audz+C |Vu| Adz
QOB4/5 QQB4/5

1/2 1/2
<C A?dz+C |Vu|2dx+0</ |Vu|2da:) (/ A? dm)
QﬁB7/8 QNB; QﬁB4/5 QOB4/5

<C |Vu|? da,
QNBy

as desired.
Step 4. Conclusion.

Here it is convenient to assume, after multiplying v by a constant, that
||Vu||Lz(Qm31) =1.

Due to Step 3, we can repeat the same argument as the one used in Step 2 in the
proof of Proposition 2.4 to deduce that, for a.e. t>0,

/ |Vul>dH" ' <C |Vu|?dz=C. (5.20)
QN{u=t}NBs /4 QNBy
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Also, since u vanishes on 9QN By, setting h(t)=max{1,t}, by the Sobolev embedding we
deduce that

/ dt / h($)P V| dHr
R+ QN{u=t}NB1N{|Vu|#0}

<|QﬁBlﬂ{u<1}|+/ uP dr < C,
QnB;

(5.21)

for some p>2. Hence, choosing dimensional constants ¢>1 and 96(0, %) such that

p/q=(1—0)/0, we can write

/ |Vu|? 3¢ da
QﬁBg/4
:/ dt/ h(t)pQ—q(l—G)|vu|—9+2(1—9) den—l
R+ QN{u=t}NBs,4N{|Vu|#0}
0
< (/ dt/ h(t)p|Vu|1d7-L”1) X
R+ QN{u=t}NB1N{|Vu|#£0}

1-6
x(/ dt/ h(t)‘un|2d’H”_1> :
R+ QN{u=t}NBs,4N{|Vu|#£0}

and, by (5.21) and the very same argument as the one used at the end of Step 3 in the

(5.22)

proof of Proposition 2.4 (now using (5.20)), we obtain

/ |Vaul?3% de < C,
QﬁBg/4

which concludes the proof. O

Remark 5.4. Note that, in Step 4 of the previous proof, one may also take any
exponent p>2, and then 0:% and q:%p>1. With these choices, if we normalize u
so that ||ul|z»@np,)=1 (instead of the normalization ||[Vul|z2(onp,)=1 made in Step 4
of the previous proof), setting h(t):=max{1,t}, it follows from (5.22), (5.21), and the
inequality in (5.20), that

2/3
/ VuzdmgC(/ Vqux> whenever ||lul|zrng,) =1, (5.23)
QﬂB3/4 QNB;

where we used that

h(t) "9 dt<C.
R+

In the general case, applying this estimate to u/||ul|1»onB,), We deduce that

2/3p 2/3
/ |Vul|? dxéC’(/ |ulP d:z:) </ |Vu|2dx) (5.24)
QﬁBg/4 QNBy QNBy

for every p>2.
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As a consequence of this remark, we deduce the following important a-priori esti-

mate.
PROPOSITION 5.5. Under the assumptions of Proposition 5.2, there exists a dimen-
sional constant C' such that

IVullL2@nb,,») < CllullLr @ns,)- (5.25)

Proof. By Remark 5.4, we can choose pe(2,2*) (here, 2* is the Sobolev exponent,
or any number less than infinity, if n=2) and then {€(0,1) such that p=¢(2*+(1-(), to

obtain

2/3
IVull 2 @n5a ) < Cllullhians,) IVull250ns,)
3 1 3 2/3
<Clulla (gnsyy 1l 6 IVul Paians, )
(2+¢)/3 (1-¢)/3
<Vl Gighe Il @he,

C
<5||VU||L2(QmBl)+;Hu||L1(QmBl)~

Hence, applying this estimate to the functions w, ,(z):=u(y+rz) for all balls B, (y) C B,

(as in the proof of Proposition 2.5), we can use Lemma A.4 with
o(B)=|Vul rz(anp)

to conclude. O

6. Boundary C'< estimate for n<9: Proof of Theorem 1.5

In order to prove Theorem 1.5, as observed at the beginning of §5, every bounded domain
of class C? can be covered by finitely many balls so that, after rescaling the balls to have
size 1, inside each ball the boundary is a ¥-deformation of BJ for some 9¥< 135 Top- Hence,
by applying Propositions 5.2 and 5.5, we deduce that there exists a neighborhood of 92
in which the W*2™7-norm of u is controlled by |[ul|;1(q). Combining this information
with (1.6) and a covering argument, we conclude the validity of (1.9). Hence, we are left
with proving (1.10).

By the same reasoning as the one we just did, but now using (1.7) instead of (1.6),
to show (1.10) when n<9 it suffices to obtain a uniform C* control near the boundary
when 0Q is a small ¥-deformation of By (recall Definition 5.1). Hence, to conclude the
proof of Theorem 1.5, it suffices to show the following.
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THEOREM 6.1. Let n<9, 196[0, ﬁ], and QCR"™ be a U-deformation of By. As-

sume that u€CO(QNB1)NC%(QNBy) is a non-negative stable solution of

{ —Au=f(u) in QNBy,
u=0 on 02N By,

for some non-negative, non-decreasing, convex function f:R—R. Then,

HUHCQ(QmBl/z) < C||U||L1(Qr131)7

where a>0 and C are dimensional constants.

To prove this theorem, we first need the boundary analogue of the key interior
estimate (2.1).

LEMMA 6.2. Let QCR™ be a ¥-deformation of B3 for ¥¢€ [O, ﬁ}, and let us assume
that ucC?(QNBy) is a non-negative stable solution of —Au=f(u) in QNBy, with u=0
on OQNBy. Assume that f is locally Lipschitz.

Then, there exists a dimensional constant C such that, for all ne C%'(By),
/ ((n=2)n+22-V)n|Vul® =2(z-Vu) Vu-V (0?) = |z-Vul* [Vn|?) da
QNBy

<Cl9/ IVl (0 + 2| [V () |+ |2 [* [ Vn]?) .
QNBy

Proof. The key idea is to use a variant of £=(x-Vu)n as test function in the stability
inequality (note that this function vanishes on the boundary if 0QNB;={z,=0}NB; is
flat).

We consider the vector field

X(z)=(D®)(® ()@ (z) forall z€QNBy,

with @ as in Definition 5.1. Note that X is tangential to 952 since, for xt€ QN By, &~ (x)
is tangent to the flat boundary of B;y. Hence, since u=0 on dQNB;, we deduce that
X-Vu=0 on QN B;. Also, since Q is a J-deformation of By, it is easy to check that

X —z|<CV|z]?, |VX-Id|<CY|z|, and |D*X|<CY, (6.1)

where C is a dimensional constant. The bound on D?X follows by a direct computation,
while the two first ones follow by integrating the latter and using that VX(0)=Id and
X(0)=0.
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Set ¢:=X-Vu, and take n€C?(B;). Note that ¢=0 on 92N B; and
ce (W2PnCH(QnB,)

for all p<oo (due to Lemma A.3). Hence, arguing as usual by approximation, one is
allowed to take {=cn as a test function in the stability inequality (1.4). Thus, using that
c vanishes on 02N By, integration by parts yields

/ (Ac+f" (u)c)en? dr < / c?|Vn|? dx. (6.2)
QNBy

QNBy

By a direct computation, it follows that

Ac=X -VAu+2VX: D?*u+AX-Vu
=—f"(u) X-Vu+2(VX)*: D*u+AX-Vu
=—f"(u) c+2div((VX)*Vu)+[AX —2div((VX)®)]- Vu,
where (VX)*:=2(VX+(VX)*) is the symmetrized version of VX and we used that

VX:D?u=(VX)®:D?u (since D?u is a symmetric matrix).
Hence, substituting this identity in (6.2) and using (6.1) we get

/ IX-Vul?|Vn|? dv
onb (6.3)

> 2/ (X-Vu)div((VX)*Vu) n? de—C9 |Vu|?n? dz.
QNBy QNB;

Noticing that
VX —-Id|+|(VX)®—Id | +|divX —n|+|V(VX)*| < CY
(as a consequence of (6.1)), we see that

div(2(X-Vu)[(VX)*Vu] - {[(VX)*Vu]- Vu}X)
=2(X-Vau)div((VX)*Vu)+2[VX V- [(VX)* V]
—divX{[(VX)*Vu]-Vu} —{[X-V(VX)*]-Vu}-Vu
=2(X-Vu)div((VX)*Vu)+(2—n)|Vu> +O0 | Vul?).

Hence, using this identity in (6.3), and taking into account (6.1) and that X-Vu=0 and
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X-v=0 on QN By, we get
/ |x-Vu|2|Vn\2dx+C19/ IVl 2 dac—l—(]ﬂ/ IVl |2V 2 de
QNB, QNB, QN B,
2/ (div(2(X-Vu)[(VX)*Vu] —{[(VX)*Vu]- Vu} X) +(n—2)|Vu|?)n? dz
QNBy
:/ (—2(X-Vu)[(VX)*Vu]-V(7*) +{[(VX)*Vu]- Vu}X-V(1?)) dz
QNBy
—l—/ (n—2)|Vul*n? dx
QNBy
2/ (—2(z-Vu)Vu-V(n?)+|Vul|?z-V(n?)+(n—2)|Vu|*n?) dz
B,
—-C9 |Vul? |z| |V (n?)] da.
QNBy

This proves the result for n€ C?(B;), and the general case follows by approximation. [J

To prove Theorem 6.1, we will use a blow-up argument that will rely on the fol-
lowing Liouville-type result in a half-space. In the blown-up domains, the constant ¥ in
Lemma 6.2 will tend to zero. Recall that the class S(U), for UCR", was defined in (4.2).
We use the notation

R} :=R"N{x, >0}.
PROPOSITION 6.3. When 3<n<9, there exists a dimensional constant o, >0 such

that the following statement holds. Assume that u: R? —R belongs to W&)CQ R)NCL (R?),

loc

ueS(RY), and u=0 on {z,=0} in the trace sense. Suppose in addition that, for some

a€(0,ay) and v>0, denoting ur(z):=u(Rx), we have
||VUR||L2+w(B;/2) < ClHV“R”L?(B;) <CyR®  forall R>1, (6.4)
with constants C1 and Cq independent of R, and that u satisfies

/(((n—2)77+2x~V77)n\Vu|2—2(:E-Vu)Vu-V(772)—|:L‘-Vu|2\V17|2)dm<0 (6.5)
RY
for all neCOY(R?). Then, u=0.
Proof. Let us define, for p>0,
D(o):= 92*”/ |Vu|? dz  and R(g)::/ |z| ™"z Vul|? da.
By BJ

We divide the proof in three steps. As we shall see, for the validity of Step 1, the

assumption 3<n<9 is crucial.
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Step 1. We prove that, for all p>0,

R(0) <Co*™™ / |Vu|? da (6.6)
B3,\B{

for some dimensional constant C>0.

Let ¢»€(C2°(B2) be some radial decreasing non-negative cut-off function with ¥=1
in By, and set 9,(x):=¢(x/p). Then, as in the interior case, for a<n and €€(0, o), we

use the Lipschitz function
ne () == min{|z| /2, 672}, (2)

as a test function in (6.5). Hence, noting that Vi), has size C'/p and vanishes outside of

the annulus Bs,\ B, and throwing away the term
[ 2w,
R NB.
we obtain
/ ((n—?—a)|Vu|2—|—< “> |- Vul? |z| 2) |2 da
R’!L \B 4

<C(n,a)o a/ |Vul|? da.
B3,\B,

Choosing a:=n—2, since

for 3<n <9, we obtain
/ 2| ™" |- Vu|? 1/)3 d:rgng*"/ |Vu|? d.
R7\B. Bf,\B

Recalling that 1p2 1in B,, the claim follows by letting 0.

Step 2. We prove that there exists a dimensional constant C' such that, if for some

R>1 we have
1
/ \VuR\Qda:>f/ |Vug|? dz,
Bf 2 By

/ |Vug|? dx<C’/ |x| "|z-Vug|? de.
B

3/2

then
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The proof is by compactness. We assume by contradiction that we have a sequence

up S € S(B3)NWL2(RY),

IVerdlp sy )

with up=0 on {z, =0}, satisfying

1
/ |Vuk|2dx>f/ Vg |* de,
Bf 2 /By

/ |Vup|?de=1, and / 2| ™" |2 Vug|* do — 0. (6.7)
Bi, Bi ,\Bi

Note that, since fB; |Vug|? de<2, thanks to Lemma A.1 and our interior W12+7 es-
timate there exists a function u such that, up to a subsequence, up—u strongly in
W2(BZ). On the other hand, using the first bound in (6.4), for every §€(0,1) we have

loc

2/(2+7)
/ |Vug|? de < </ |V |2+ dx) |B§/20{xn§§}|7/(2+”
By {zn <6} BiyN{zn <8}

< oY/ 2+

This means that the mass of |Vug|? near the boundary can be made arbitrarily small,
by choosing ¢ small enough. Combining this information with the convergence of uy—u

in W,-2(By), we deduce that ug—u strongly in W1’2(B3+/2

we obtain that u€S(Bg,), and taking the limit in (6.7), we obtain

). Moreover, by Theorem 4.1,

/+ |Vul?dz=1 and 2-Vu=0 in By, \ By

3/2

Moreover, since the trace operator is continuous in W12 (B

3/2), we deduce that

u=0 on {z,=0}NBs;.

Hence, we have found a function ueS(B; /2) which is zero-homogeneous in the half-

annulus B

3/2\37; In particular, since u is a weak solution of —Au=f(u) in B§/2 with

7A7.L:f(u) € LllocmCO(B;:/2\Bizr)7

this is only possible if f=0 (this follows from the fact that Au is (—2)-homogeneous while
f(u) is zero-homogeneous). It follows that u is a zero-homogeneous harmonic function
in the half-annulus J_?:,)*/Q\BT+ vanishing on 8(B§/2\B7{r)ﬁ{xn20}. Hence, as in the proof
of Lemma 3.1, the supremum and infimum of u are attained at interior points, and thus
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u must be zero by the strong maximum principle. Furthermore, exactly as in the proof
of Lemma 3.1, the superharmonicity of u combined with the fact that w vanishes in

By, \ By gives that u vanishes in By /2~ This contradicts the fact that

/ |Vu|? de =1
B,
and concludes the proof.
Step 3. Conclusion.
Exactly as in Step 1 of the proof of Theorem 1.2, using Lemma 3.2 (combined with
Steps 1 and 2 above) we deduce that
Hx~Vu,,R||L2(B;f) < CTO‘"HVuRHLQ(B;r) for all 7€ (0,1) and R>1,
where C' and «,, >0 are dimensional constants. Hence, since by assumption
||VURHL2(B;r) <CR?
with a<a,,, given a constant M >0, we choose r=M/R and let R— o0 to find
||$'VUM||L2(31+) =0.
Since up €S(BY) and up =0 on {xn:O}ﬁBT’, as in the previous Step 2, we conclude
that up,=0. Since M >0 is arbitrary, the proof is finished. O
We can now prove Theorem 6.1.

Proof of Theorem 6.1. Notice that, as in the interior case, we may assume that
3<n<9 by adding superfluous variables and considering a “cylinder” with base 2. Also,
by Lemma A.3, ue C?(QNBy).

Recalling that  is a J-deformation of BJ with d¢€ [O, 1—30], it suffices to prove that
there exists a dimensional constant C' such that

7“2_"/Q . \Vu\zda?<CT“”||VU||2L2(QQBI) for all r€(0,1), (6.8)
NnB,

where «,, is given by Proposition 6.3. Indeed, given re (O7 %), there exists a dimensional
constant c€(0,1) such that Be,.(re,)CS, and the L estimate from (1.7) applied in this
ball, together with the inclusion Be,(re,)C Ba,, give

u(rey) gCr*”/ udachr*”/ udz.
By (ren) QNBa,
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Thus, once (6.8) is proven, it follows from this, the Sobolev inequality, and Proposi-
tion 5.5, that

1/2
u(re,) <Cr™" / udr <C <7‘2” / |Vu|? dx)
QNBa,. QNBay

< Cro 2|Vl 2ans, o) < C 1o 2||ull L ons,)
for all 7€ (0, ;). Applying this estimate to the functions
uy(2) ==u(y+2)
with y€9QN B, /2, we deduce that
u(x) < C dist(z, 89)0‘"/2Hu||L1(QmBl) for all x € QN By /5.
Combining this growth control with (1.7), it follows by a standard argument that
lullce@n, ) < CllullLr@ns,),

where f:=min{%a,,a}, with a as in (1.7). Hence, we only need to prove (6.8).

We argue by contradiction, similarly to [33], [31]. Assume that there exist a sequence
of radii 7, €(0,1) and of stable solutions wuy with non-linearities fj in domains €, with
uk, fr, and €y satisfying the hypotheses of the theorem and such that

o S T 09
QiNB.,

for all keN. Then, for r€(0,1), we define the non-increasing function

s Vug|? dx
O(r):=sup sup - meB52| |
k se(r1) S "Hv“ka(kaBl)

)

and note that © is finite, since obviously O(r)<r?="~% <o for all 7>0. By (6.9) and
since © is non-increasing, we have O(r)t+oo as r]0. Also, by the definition of ©, for
any given meN, there exists 7, €(1/m, 1) and k,, such that

F2n Vuy,, |*dx
Jow, np,, Vi, >9@<1> 9

O(Fm) = —— >— > —0(7m)- (6.10)
T I Vur, 72, Apy) 10

m
Since ©(1/m)too as mtoo, it follows that 7, 0.
Consider the sequence of functions
_ Uk,, (fm : )

Uy 1= — —
" O(Tn) HvukWL”QLQ(kaﬁBI)

Y
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and denote .
ﬁm = kam .

T'm
Then, ﬁm—ﬂRﬁ locally uniformly as m— o0, and for all R€[1,1/7,,) we have

(Rfm)2in kamﬂBRfm |vukm |2 dx

RQ‘"/ Vi, |? do = — -
QmNBR " G(Tm)HV“km”%z(kamBl)

6.11
(Rrp,)? " fQ B |Vug, |? dx (6.11)
< _ _km RTm R(xn < R()An7
(RFp,)2nO(RFy,) || Vuy,, H%Q(kamBl)
where we used that O(R7,,)<O(7,), since R>1.
On the other hand, using (6.10) we have

_ 9 9
Vi, |2 dz > —. (6.12)

ﬁm,ﬂBl 10

Now, similarly to Step 2 in the proof of Proposition 6.3, due to Proposition 5.2 and
Lemma A.1 there exists a function # such that, up to a subsequence, %, —u strongly
in VVlif (R?). In addition, since (NZm—HRﬂ, using again Proposition 5.2 we see that, for

every R>1 and 0€(0,1),

/~ |Vt |? d
Q,,lﬁBRﬁ{wn<5}

S </ ‘Vﬂm|2+7 dx
QmﬁBRﬂ{zn gé}

SC(R)(E T t0,(1)),

2/(2+7) _
> QN BrN{z, <5}/

where 0,,,(1) —0 as m—o0. Hence, as m—+o0, the mass of |Vii,,|? near the boundary can
be made arbitrarily small by choosing § small enough, and combining this information
with the convergence of @, —@ in W-?(R?), we deduce that ,, —@ strongly in W12(B},)
for all R>1.

Moreover, by Theorem 4.1, we obtain that 2€S(R?), and taking the limit in (6.11)
and (6.12), we obtain

9
/ |Va|*dr>— and \\VaRlliz(B+)=R2—"/ |Va|? de < R* for all R>1,
+ 10 1 B}

Bl
where @g:=u(R-). Moreover, since the trace operator is continuous in W'2?(B},), we have
=0 on {x,=0}. The last bound (applied with R replaced by 2R) and Proposition 5.2
give that @ satisfies the hypothesis (6.4) in Proposition 6.3 with a:%an.
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1
2
only remains to prove that (6.5) holds (with u replaced by @). This is a consequence of
Lemma 6.2: since €2, /R is a U-deformation of By, with =CR7,,, for all neC%!(B}),

we have

Therefore, to show that @ satisfies the assumptions Proposition 6.3, with a=3a,,, it

/L ((n—2)n+20-V0)0| Vit 12 —2(2- Vit 1) Vit -V (112)) da
(Qm/R)NB;

_/@ /R)NB Vit "Vl da
m nBy

< CRFp, / |t r|? dz,
(@ /R)NB:

and hence, by letting m— o0, we deduce that

/ (=220 V)9 Vap]*~2(z Vag) Vag: V() ~ |2 Vag Vi) dz <0
Bl

for all n€C%!(B;). Since this holds for all R>1, this proves that (6.5) holds for every
neC%Y(R%), with u replaced by @. Thus, it follows by Proposition 6.3 that @=0, which

is a contradiction since fBT |Vi|? doe> 2. O

As explained at the beginning of this section, Theorem 1.5 follows immediately from

Theorem 6.1. Thus, it only remains to give the following.

Proof of Corollary 1.6. Since ue Wy (), it follows from (1.3) and a standard ap-

proximation argument that
/ﬂmmwﬁmmgmwwwm
Q

Thus, due to the approximation argument in [20, Theorem 3.2.1 and Corollary 3.2.1],
u can be written as the limit of classical solutions u.€CZ(Q) of —Au.=(1—¢)f(u.) in
Q, as €/0. Thus, applying Theorem 1.5 to the functions u., using Proposition B.1, and
letting /0, the result follows. O

7. Estimates for n>10: Proof of Theorem 1.9

In this section, we show how our method also gives sharp information in higher di-
mensions. We first deal with the interior case, and we prove a strengthened version of
Theorem 1.9. Recall the definition of the Morrey space MP-#(Q) given in §1.3. Here,
p=1and B€(0,n).
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THEOREM 7.1. Let ueC?(By) be a stable solution of
—Au=f(u) in B,
with f:R—R locally Lipschitz, and assume that n>10. Then,

lullarzer@-20.8(8, ) T IIVUllarze (s, 4) < Cllulls,)  for all B (n—2vn—1-2,n),
for some constant C depending only on n and B. In particular, (1.13) holds.

Recall that, in the radially symmetric case,

if u is radial and Vu € M?*#(By ), then u€ LP(By ) for all p< % (7.1)
Indeed, this follows from [11] after cutting-off u outside B;,s to have compact support
in By4.

Thus, Theorem 7.1 together with (7.1) yield the following L? bound for radial solu-
tions:
_ 2n
||UHLP(Bl/8) <Cllullprp,y forall p<py,:= m (7.2)
Hence, in the radial case, we recover the LP estimates established by Capella and the
first author in [10], which are known to be sharp: (7.2) cannot hold for p=p,.
Unfortunately, as shown recently by Charro and the first author in [11], the embed-
ding (7.1) is false for non-radial functions,(!7) and thus it is not clear whether (7.2) holds

in the non-radial case, too. From VueM?#, the best one can say is

ue Mzﬂ/(ﬁ72)7ﬂ C L25/(572),

as stated in Theorem 7.1.
Proof of Theorem 7.1. We split the proof into two cases.
Case 1. Assume first n>11.

Then, repeating the proof of Lemma 2.1, in Step 2 we can take an exponent a
satisfying
8<a<2(l+vn—1)<n-—2. (7.3)

Then, choosing 0<(<1 such that (g, , =1, (gn\B,,,=0, and |V{|<C, we obtain

2
/ ((n—Q—a)|Vu|2+(2a—a)J:-Vu|2x|_2>|x_adng(n,a)/ |Vu|? da.
By 4 B

1/2\B1/4

(17) When B€(2,n) is an integer, this can be easily shown considering functions in R depending
only on 8 Euclidean variables; see [11]. We thus encounter here the same obstruction as in Remark 2.2.
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Since Qaf%a2<0, the left-hand side above can be bounded from below by

a2 2 —a
n—2+a—— |Vu|® |z|” de,
4 Bya

and because n—2+a—1a?>0 (due to the choice of a in (7.3)), we deduce that

/ Vul? |z]=* de < C IVul? do < Cllull2a s,
Bi/a B1/2\B1/4

where the last inequality follows from Proposition 2.5.

Applying this estimate to the functions u, (z):=u(y+2z) with y€]§1/4, it follows that
o[ vatde< [ V@) eyl de <l
Bo(y) Bia(y)

for all y€§1/4 and p€ (O7 i) This proves that VuEMQ’ﬁ(Bl/Q for every
Bi=n—a>n—2vn—1-2.

Now, after cutting-off u outside of B; /g to have compact support in By /4, we can
apply [1, Proposition 3.1 and Theorems 3.1 and 3.2] (see also the proof in [11, §4]) and,
since B€(2,n), we deduce that u€M25/(ﬁ*2)’5(Bl/g). This estimate in By /g can also
be stated in By, as in Theorem 7.1, after a scaling and covering argument. Taking
p=25/(S—2), this leads to (1.13).

Case 2. Assume now n=10.
Then, repeating the proof of Lemma 2.1, in Step 2 we take
_ —8/2
n=|z["*log |z[| "¢, (7.4)

with >0 small. Then, choosing 0<(<1 such that ¢z, ,=1, (gm\5,,=0, and V(< C,

we obtain
—1-6 2 .1-8
§|log ||| [Vul® |z| % dz
By
—1-6 2, |—2 52 —2-6 2,12 -8
+ 26 |log ||| |- Vul? 2| 72— —|log ||| |z-Vu|* |z| |z| =% dx
By 4

gC(n,é)/ |Vu|? d.

B1/2\B1/4

Now, using that
2§ —1-5
i52‘10g|a:|’ < 26|log ||| in By,
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we deduce that

/ llog ]| % | Va2 |x|_8dac<C(n,6)/ IVl da.

Bi/a B1/2\B1/a

Finally, since for every £>0 we have

2|55 < C(n, 6,¢)|log ]| (| in By,

we find that
|Vul|? 2|~ dz < C(n, 5,a)/ |Vu|? da
Bija Bi1/2\B1/4
for all a:=8—e<8. The rest of the proof is then analogous to the case n>11. O

We now deal with a boundary version of the same theorem. We first consider a
domain  that is a ¥-deformation of B (see Definition 5.1).

THEOREM 7.2. Let QCR"™ be a ¥-deformation of By for some ¥€ [O, ﬁ], and let
u€C?(QNB)NC?(QNBy) be a non-negative stable solution of
—Au=f(u) in QNB; and u=0 on 0QNDBy,

with f:R—R locally Lipschitz, non-negative, and non-decreasing. Assume n>10. Then,

[ullarze/8-20.8( B, o) VUl M205 @B, ) < CllullLr@nBy)
for all Be(n—2v/n—1-2,n) and for some constant C depending only on n and 3.

Proof. Assume n>11; the case n=10 can be handled similarly (as done in the proof
of Theorem 7.1). In this case, we start from Lemma 6.2 and, as in Step 1 in the proof
of Proposition 6.3, we let ¢ €CS°(B1) be some radial decreasing non-negative cut-off
function with =1 in By /5. In Lemma 6.2, we use the test function n(z):=|z|~%/%¢(z)
with a<n. Then, since the domain p~}(QNB,) is a (coY)-deformation of By (for some

dimensional constant c), we deduce that
2
/ <(n—2—a—Cg19)|Vu|2+ (Qa— a) (z-Vu)? |x|_2) |z| =% dx
QNB, 4

<C(n7a)g_a/ |Vul|? d.
QNBs,\B,

Hence, given a satisfying (7.3), we can take gy sufficiently small (depending on n and a)
so that n—2+a—ia2—0919>0 for all p<gp. This allows us to argue as in the proof of
Theorem 7.1 to get
[ el tde<e [ VuPde<Clulans,
QNBy,, QNBy /o

by Proposition 5.5. We now conclude as in Theorem 7.1. O
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We finally give the following proof.

Proof of Theorem 1.9. The estimate (1.13) follows from Theorem 7.1 by taking p=
26/(8—2), and using a covering argument. On the other hand, (1.14) follows from

Theorems 7.1 and 7.2, using again a covering argument. O

Appendix A. Technical lemmata

The next lemma is a regularity and compactness result for superharmonic functions. For
an integrable function v to be superharmonic, we mean it in the distributional sense. For
all our applications of the lemma, one could further assume that v€W?(Bg) and that
—Av>0 is meant in the usual W2 weak sense (which, in this case, is equivalent to the

distributional sense), but we do not need this additional hypothesis.

LEMMA A.1. Let v€ L'(Bg) be superharmonic in a ball BRCR", and let r€(0, R).
Then,

(a) The distribution —Av=|Av| is a non-negative measure in Bp, verf)f(BR),

c c
Av §7/ v|dx, and / Av Si/ V| dzx,
/BT <y f, sl g [ vl

where C>0 is a dimensional constant. In addition,

/|Vv|dx<C(n,r,R)/ |v| dx
B

Br

for some constant C(n,r, R) depending only on n, r, and R.

Assume now that v, € L*(Bgr), k=1,2, ..., is a sequence of superharmonic functions
with supy, ||vx|lz1(BR)<00. Then,

(b1) Up to a subsequence, vy —v strongly in W(B,.) to some superharmonic func-
tion v.

(b2) In addition, if for some v>0 we have supy, ||v||w1.2++(p,) <00, then vy—v
strongly in W12(B,.).

Proof. (a) By assumption, we know that
(—Av,§) :/ v(—=Af)dz >0 for all non-negative £ € C:°(Bpg). (A1)
Br

Let 0<r<p<R and choose a non-negative function x€C2°(Bgr) with x=1 in B,. Now,
for all neC°(B,), using (A.1) with the test functions ||7||cox£n>0 in Bg, we deduce
that

£(=Av,n) <[nllco 0]l (8r) 1AXIlco < Clinlico-
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Thus, —Aw is a non-negative measure in B,, for all p<R.

Let us now take Q:%(rJrR), and consider x as before satisfying

C C
<— D?*y|< .
|VX‘ R—T' and ‘ X| (R_T')2
Then, since —Av>0, we have
C
|Av| < — Avyx=— vAxdr < 5 vl (BR)- (A.2)
B, Br Br (R—7)

To prove that vGWli’Cl (Br), we define on R™ the measure p:=x (—Av), and we

consider the fundamental solution ®=®(x) of the Laplacian in R"—that is,

(I)(x):{clog|9:|, if n=2,

clz)?7, ifn>3.

Define the L{, (R") function :=®x*p. Since q)er})’j(]R”), it is easy to check (using

the definition of weak derivatives) that 9€ W'!(Bg) and Vo=V ®xy. Furthermore, from
(A.2) (with r replaced by p), one easily deduces that

9llw1(B,) < CllvllLi(Br), (A.3)

where the constant C' depends only on n, r, and R (recall that g:%(r+R)).
On the other hand, using (A.3), we see that w:=v—0 satisfies

w2z, < lvllz s, H ol (s,) < Cllvlli(sr)

and
Aw=0 1in B,.

By standard interior estimates for harmonic functions, this leads to
wllc2m,) < CllwlLis,) <ClvliLiBg)-
In particular, recalling (A.3), we have shown that ve Wb1(B,) and
lvllwii(s,) <CllvllLi(Bg)-

Finally, exactly as in (A.2), we have

C
/ |Av| < — AUX:/ Vou-Vxdr < ——|Vv 1By,
B, Br Br R—r
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finishing the proof of (a).

(b1) Let now vy be a bounded sequence in L'(Bg). Define ug, O, and wy, as we
did in the proof of (a), but with v replaced by v. Note that the operators pu— ®*pu and
V& are compact from the space of measures (with finite mass and support in Bg)
to L'(B,). This is proved in a very elementary way in [5, Corollary 4.28], when these
operators are considered from L!(R"™) to L'(B,), but the same exact proof works for
measures.

Thus, up to a subsequence, U converges in Wl’l(B,«). Since wy=wvy — U are har-
monic and uniformly bounded in L!(B,), up to a subsequence also wy converges in
Wh1(B,). Therefore, we deduce that a subsequence of vj, converges in W1(B,), which
proves (bl).

(b2) If, in addition, we have supy ||vg||w1.2++(p,) <00, using Hélder inequality we

obtain
2(1 2 2(1
IV (k=) | 225,y < IV (0s =) 755537 IV (0 —0) 55205 T
< Cllox 3355 =0,
which shows that vy —wv strongly in W2(B,.). O

We now discuss a result about the composition of Lipschitz functions with C? func-
tions. This result is far from being sharp in terms of the assumptions, but it suffices for
our purposes. For its proof (as well as for other results proved in this paper) we shall
need the coarea formula, which we recall here for the convenience of the reader (we refer
to [27, Theorem 18.8] for a proof).

LEMMA A.2. Let QCR™ be an open set, and let u: Q—R be a Lipschitz function.
Then, for every function g:QQ—R such that g_€ L' (), the integral of g over {u=t} is
well defined in (—oo, +00] for a.e. t€R and

/g|Vu|dx:/</ gd’H”1> dt.
Q R {u=t}

We recall that, given a locally Lipschitz function f, we defined

o fEHR) = ()
’ )
fL@):= hlglﬁltl)lf A .

LEMMA A.3. Let QCR"™ be a bounded open set and let ucC%(Q)NCY(Q) solve
—Au=f(u) in Q, where f:R—R is locally Lipschitz. Then, the following holds:

(i) Inside the region {Vu#£0}, the function f'(u) is well defined, and it coincides
a.e. with f’ (u).
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(i) ueW2P(Q) for every p<oco, and

loc
—AVu=f'(u)Vu= f"(u)Vu

in the weak sense and also a.e. in Q.
(iti) If dQNBy s of class C* and ulponp, =0, then ue (WPNC?)(QNBy) for every
p<oo.

Proof. The first point is a simple application of the coarea formula. Indeed, if we

set M :=||ul| (), given any Borel set EC{Vu#0}, we can apply Lemma A.2 with

]-E /()

= —— U
9=Vl

(in fact we apply the lemma to both g* and ¢g~, the positive and negative parts of g,
obtaining finite quantities for both [, ¢*|Vu| dz since f’ (u)eL>(£2)) to get

/ _ M / . L 1 n—
/Ef,(u) dxi/,M fL)gr(t)dt, with gg(t) /{ ——dH" . (A4)

u=t}NE |vu|

Then, since

1
/gE(t)dtg/(/ d’H"‘1> dt = |2 {Vu £ 0}| < 0,
R B \J{u=t3n{|vulz0} |Vl

it follows that the function gg belongs to L' (R). Thus, as f’ (t) belongs to L ([—M, M]),
this proves that the right-hand side in (A.4) is independent of the specific representative
chosen for f’; and therefore so is the left-hand side. Since E is arbitrary and f’ (t)=f"(t)
a.e., (i) follows.

To prove (ii), we first notice that, since f(u) is Lipschitz inside Q (because both
u and f are so0), it follows that f(u)€W?P and by interior elliptic regularity (see for
instance [25, Chapter 9]) that uEVVlzf(Q) for every p<oo. This means that Vue W?2?,
and therefore it suffices to show that the identities in (ii) hold a.e. (because then they
automatically hold in the weak sense).

Now, in the region {Vu=0}, we have
f(w)Vu=f' (v )Vu=0 and AVu=0 a.e.

(see, e.g., [37, Theorem 1.56]), so the result is true there.
On the other hand, in the region {Vu#£0}, for h>0 and 1<i<n, let

B 0
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Since —Au=f(u) in £, given ' CCQ, for h>0 sufficiently small we have
—ASPu=0"(f(u)) inside Q. (A.5)
Thus, if we define by D¢ CR the set of differentiability points of f, we see that
SMf(w)] = fu)du= f-(u)du for all 2 € Q' such that u(x) € Dy

as h—0. On the other hand, if we set N:=R\Dy, since N has measure zero (because f
is differentiable a.e., being Lipschitz) it follows from Lemma A.2 applied with

1
=—— 1oy 1no
g IVl Q'N{Vu#0} LN°U

that

1
/ 1N(u(:v))dx=/ L (t) (/ dH"—l) di—0.
Q'N{Vuz0} R {u=t}NQ’'N{Vuz£0} V|

which proves that u(z)¢€N for a.e. z€Q’'N{Vu#0}.

Hence, we have shown that 67[f(u)]— f/(u)9;u for a.e. x€Q'N{Vu##0} (and so also
in L? for any p<oo, by dominated convergence). Letting h—0 in (A.5), we deduce
that —AVu=f'(u)Vu a.e. in ', since we already checked the equality a.e. in {Vu=0}.
Recalling that ' CC is arbitrary, this proves (ii).

Finally, (iii) follows by elliptic regularity up to the boundary (see for instance [25,
Chapter 9] or [26, §9.2]). O

We conclude this section with a general abstract lemma due to Simon [34] (see also
[18, Lemma 3.1]).

LEMMA A4. Let BER and Cy>0. Let o:B—[0,400] be a non-negative function
defined on the class B of open balls BCR™ and satisfying the following subadditivity
property:

N N
if BC U B; then o(B)< Za(Bj).
j=1 j=1
Assume also that o(B)<oo.
Then, there exists §>0, depending only on n and B, such that, if

rBJ(BT/4(y)) < 67"'80(Br(y)) +Cy whenever B,.(y)C By,

then
o(By/2) <CCo,

where C depends only on n and 5.
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Appendix B. A universal bound on the L! norm

In this section we recall a classical and simple a-priori estimate on the L' norm of
solutions, when f grows at infinity faster than a linear function with slope given by the

first eigenvalue of the Laplacian.

PROPOSITION B.1. Let QCR™ be a bounded domain of class C', and let us assume
that ucC°(Q)NC2(Q) solves

{ —Au = f(u) in QCR",
u=0 on 09,

for some f:R—[0,400) satisfying
f@&)=At—B for allt >0, with A> X1 and B >0, (B.1)

where \1=X1(2)>0 is the first eigenvalue of the Laplacian in , with Dirichlet homoge-
neous boundary condition.

Then, there exists a constant C, depending only on A, B, and 2, such that
lullzr o) < C.

Proof. First of all we note that, since f>0, then u>0 inside €2, by the maximum
principle.
Let ®;>0 be the first Dirichlet eigenfunction of the Laplacian in €, so that

—A®P;=X\P; in Q2 and &;=0 on 0N

Then,
Al/u@ld;v:—/uACI)ldx:—/Au@ldm:/f(u)q)ldx. (B.2)
Q Q Q Q

Due to assumption (B.1), we have

/f(u)@ldx>A/u<I>1dsc—B/<I>1dsc,
Q Q Q

that combined with (B.2) gives

Q Q

Note that, using (B.2) again, this implies that

B
/f(u)q)ldm:)q/u(l)l da:éz\li/.@l dx.
Q Q A=A Jo
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This proves that
/ f(u)®yde<C, (B.3)
Q

for some constant C' depending only on A, B, and {2.
Consider now ¢:2—R the solution of

{ —Ap=1 1inQ,
¢=0 on IN.
We claim that
0<op<C®; inQ, (B.4)

with C depending only on (). Indeed, the non-negativity of ¢ follows from the maximum
principle, while the second inequality follows from the boundary Harnack principle in [2,
Lemma 3.12],(*®) after rescaling.

Thus, using (B.3) and (B.4), we get

/Qudx:f/Qqude:/Qf(u)gbdxéC/Qf(u)fbldng’,

as desired. 0
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