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1. Introduction

Given a bounded domain Ω⊂Rn and f :R!R, we consider u: Ω!R a solution to the

semilinear equation

−∆u= f(u) in Ω⊂Rn. (1.1)

If we define F (t):=
´ t

0
f(s) ds, then (1.1) corresponds to the Euler–Lagrange equation for

the energy functional

E [u] :=

ˆ
Ω

(
|∇u|2

2
−F (u)

)
dx.

In other words, u is a critical point of E , namely

d

dε

∣∣∣∣
ε=0

E [u+εξ] = 0 for all ξ ∈C∞c (Ω)

(the space of C∞ functions with compact support in Ω). Consider the second variation

of E , that when f∈C1 is given by

d2

dε2

∣∣∣∣
ε=0

E [u+εξ] =

ˆ
Ω

(|∇ξ|2−f ′(u)ξ2) dx.

Then, one says that u is a stable solution of equation (1.1) in Ω if the second variation

is non-negative, namely

ˆ
Ω

f ′(u)ξ2 dx6
ˆ

Ω

|∇ξ|2 dx for all ξ ∈C∞c (Ω).

Note that stability of u is considered within the class of functions agreeing with u near

the boundary of Ω.

Our interest is in non-negative non-linearities f that grow at +∞ faster than linearly.

In this case it is well known that, independently of the Dirichlet boundary conditions
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that one imposes on (1.1), the energy E admits no absolute minimizer.(1) However,

we will see that in many instances there exist non-constant stable solutions, such as

local minimizers. The regularity of stable solutions to semilinear elliptic equations is a

very classical topic in elliptic equations, initiated in the seminal paper of Crandall and

Rabinowitz [19], which has given rise to a huge literature on the topic; see the monograph

[20] for an extensive list of results and references.

Note that this question is a PDE analogue of another fundamental problem in math-

ematics, namely the regularity of stable minimal surfaces. As it is well known, stable

minimal surfaces in Rn may not be smooth in dimension n larger than 7 [35], [3], and it

is a fundamental open problem whether they are smooth in dimension n67. Up to now,

this question has been solved only in dimension n=3 by Fischer-Colbrie and Schoen [23]

and Do Carmo and Peng [17].

Note that, also in our PDE problem, the dimension plays a key role. Indeed, when

n> 10, u= log
1

|x|2
, and f(u) = 2(n−2)eu, (1.2)

we are in the presence of a singular W 1,2
0 (B1) stable solution of (1.1) in Ω=B1, as easily

shown using Hardy’s inequality. On the other hand,

• if f(t)=et or f(t)=(1+t)p with p>1,

• or more in general if f∈C2 is positive, increasing, convex, and the following limit

exists:(2)

lim
t!+∞

f(t)f ′′(t)

f ′(t)2
,

then it is well known since the 1970s that W 1,2
0 (Ω) stable solutions are bounded (and

therefore smooth, by classical elliptic regularity theory [25]) when n69; see [19]. Notice

that, among general solutions (not necessarily stable), an L∞ bound only holds for

(1) To see this, take v∈C1
c (Ω) with v>0 and v 6≡0, and given M>0 consider

E[u+Mv] =
1

2

ˆ
Ω
|∇(u+Mv)|2 dx−

ˆ
Ω
F (u+Mv) dx.

Since f grows superlinearly at +∞, it follows that F (t)�t2 for t large. This leads to E[u+Mv]!−∞
as M!+∞, which shows that the infimum of the energy among all functions with the same boundary

data as u is −∞.
(2) The existence of the limit

c := lim
t!+∞

f(t)f ′′(t)

f ′(t)2
> 0

is a rather strong assumption. Indeed, as noticed in [19], if it exists, then necessarily c61 (otherwise f

blows up in finite time). Now, when c=1, the result follows by [19, Theorem 1.26], while c<1 implies
that f(t)6C(1+t)p for some p, and then the result follows by [19, Lemma 1.17].
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subcritical and critical non-linearities.(3)

All these results motivated the following long-standing conjecture.(4)

Conjecture. Let u∈W 1,2
0 (Ω) be a stable solution to (1.1). Assume that f is positive,

non-decreasing, convex, and superlinear at +∞, and let n69. Then u is bounded.

In the last twenty-five years, several attempts have been made in order to prove this

result. In particular, partial positive answers to the conjecture above have been given

(chronologically):

• by Nedev, when n63 [29];

• by Cabré and Capella when Ω=B1 and n69 [10];

• by Cabré when n=4 and Ω is convex [7] (see [9] for an alternative proof);

• by Villegas when n=4 [38];

• by Cabré and Ros-Oton when n67 and Ω is a convex domain “of double revolu-

tion” [13];

• by Cabré, Sanchón, and Spruck when n=5 and

lim sup
t!+∞

f ′(t)

f(t)1+ε
<+∞

for every ε>0 [14].

The aim of this paper is to give a full proof of the conjecture stated above. Actually,

as we shall see below, the interior boundedness of solutions requires no convexity or

monotonicity of f . This fact was only known in dimension n64, by a result of the first

author [7].(5) In addition, even more surprisingly, both in the interior and in the global

settings, we can prove that W 1,2 stable solutions are universally bounded for n69, namely

they are bounded in terms only of their L1 norm, with a constant that is independent of

the non-linearity f .

1.1. Main results

In order to prove our result on the regularity of stable solutions up to the boundary

we will be forced to work with non-linearities f that are only locally Lipschitz (and not

(3) We recall that a non-linearity f is called subcritical (resp. critical, supercritical) if

|f(t)|6C(1+|t|)p

for some p<(n+2)/(n−2) (resp. p=(n+2)/(n−2), p>(n+2)/(n−2)). While solutions to subcritical and

critical equations are known to be bounded, in the supercritical case one can easily construct radially

decreasing unbounded W 1,2 solutions.
(4) As we shall explain in §1.2, this conjecture is strongly related to an open problem stated by

Brezis in the context of “extremal solutions” in [4].
(5) In fact, for n64, or for n69 in the radial case, the interior boundedness results cited above (as

well as the global boundedness in convex domains) do not require the non-negativeness of f .
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necessarily C1). Hence, it is important for us to extend the definition of stability to this

class of non-linearities. For this, we need to choose a precise representative for f ′.

Definition 1.1. Let f :R!R be a locally Lipschitz function, and let u∈W 1,2(Ω) be

a weak solution to (1.1), in the sense that f(u)∈L1
loc(Ω) and

ˆ
Ω

∇u·∇ϕdx=

ˆ
Ω

f(u)ϕdx for all ϕ∈C∞c (Ω). (1.3)

Then, we say that u is a stable solution in Ω if f ′−(u)∈L1
loc(Ω) and

ˆ
Ω

f ′−(u)ξ2 dx6
ˆ

Ω

|∇ξ|2 dx for all ξ ∈C∞c (Ω), (1.4)

where f ′− is defined as

f ′−(t) := lim inf
h!0

f(t+h)−f(t)

h
for t∈R. (1.5)

As we shall see later, in our proofs we only use (1.4) with test functions ξ that vanish

in the set {|∇u|=0}. Hence, as a consequence of Lemma A.3 (i), in this situation the

notion of stability is independent of the particular representative chosen for f ′.

Our first main result provides a universal interior a-priori bound on the Cα norm of

solutions when n69. Actually, in every dimension we can prove also a higher integrability

result for the gradient (with respect to the natural energy space W 1,2). Since the result

is local, we state it in the unit ball. Also, because stable solutions u can be approximated

by smooth ones (at least when u∈W 1,2
0 (Ω) and f is convex; see [20, §3.2.2]), we shall

state the result as an a-priori bound assuming that u is smooth.

Theorem 1.2. Let B1 denote the unit ball of Rn. Assume that u∈C2(B1) is a

stable solution of

−∆u= f(u) in B1,

with f :R!R locally Lipschitz and non-negative.

Then,

‖∇u‖L2+γ(B1/2) 6C‖u‖L1(B1), (1.6)

where γ>0 and C are dimensional constants. In addition, if n69 then

‖u‖Cα(
B1/2) 6C‖u‖L1(B1), (1.7)

where α>0 and C are dimensional constants.
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Remark 1.3. As mentioned before, it is remarkable that the interior estimates hold

with bounds that are independent of the non-linearity f . Note that, also in the global

regularity result Theorem 1.5, we can prove a bound independent of f .

Combining the previous interior bound with the moving planes method, we obtain

a universal bound on u when Ω is convex.

Corollary 1.4. Let n69 and let Ω⊂Rn be any bounded convex C1 domain. As-

sume that f :R!R is locally Lipschitz and non-negative. Let u∈C0(	Ω)∩C2(Ω) be a

stable solution of {
−∆u= f(u) in Ω,

u= 0 on ∂Ω.

Then, there exists a constant C, depending only on Ω, such that

‖u‖L∞(Ω) 6C‖u‖L1(Ω). (1.8)

We now state our second main result, which concerns the global regularity of stable

solutions in general C3 domains when the non-linearity is convex and non-decreasing.

As we shall explain in the next section, this result completely solves two open problems

posed by Brezis and Brezis–Vázquez in [4], [6]. Again, we work with classical solutions

and prove an a-priori estimate. In this case, it is crucial for us to assume f to be convex

and non-decreasing. Indeed, the proof of regularity up to the boundary will rely on a very

general closedness result for stable solutions with convex non-decreasing non-linearities,

that we prove in §4.

Theorem 1.5. Let Ω⊂Rn be a bounded domain of class C3. Assume that f :R!R
is non-negative, non-decreasing, and convex. Let u∈C0(	Ω)∩C2(Ω) be a stable solution

of {
−∆u= f(u) in Ω,

u= 0 on ∂Ω.

Then,

‖∇u‖L2+γ(Ω) 6C‖u‖L1(Ω), (1.9)

where γ>0 is a dimensional constant and C depends only on Ω. In addition, if n69,

then

‖u‖Cα(	Ω) 6C‖u‖L1(Ω), (1.10)

where α>0 is a dimensional constant and C depends only on Ω.

As an immediate consequence of such a-priori estimates, we will prove the long-

standing conjecture stated above.
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Corollary 1.6. Let Ω⊂Rn be any bounded domain of class C3. Assume that

f :R!R is non-negative, non-decreasing, convex, and satisfies

f(t)

t
>σ(t)−!+∞ as t!+∞

for some function σ:R!R. Let u∈W 1,2
0 (Ω) be any stable weak solution of (1.1) and

assume that n69. Then,

‖u‖L∞(Ω) 6C,

where C is a constant depending only on σ and Ω.

The key point here is to prove the bounds for classical solutions (Theorem 1.5).

Once this is done, a well-known approximation argument (see [20, Theorem 3.2.1 and

Corollary 3.2.1]) shows that the same bounds (1.9) and (1.10) hold for every W 1,2
0 (Ω)

stable weak solution u. Finally, to control ‖u‖L1(Ω) in (1.9), we use Proposition B.1.

1.2. Application: W 1,2
0 and L∞ regularity of extremal solutions

Let f : [0,+∞)!R satisfy f(0)>0 and be non-decreasing, convex, and superlinear at

+∞, in the sense that

lim
t!+∞

f(t)

t
= +∞.

Given a constant λ>0, consider the non-linear elliptic problem
−∆u=λf(u) in Ω,

u> 0 in Ω,

u= 0 on ∂Ω,

(1.11)

where Ω⊂Rn is a smooth bounded domain. We say that u is a classical solution if

u∈C0(	Ω)∩C2(Ω).

In the literature, this problem is usually referred to as the “Gelfand problem”, or

a “Gelfand-type problem”. It was first presented by Barenblatt in a volume edited by

Gelfand [24], and was motivated by problems occurring in combustion.(6) Later, it was

studied by a series of authors; see for instance [4], [6], [20], [8] for a complete account on

this topic.

The basic results concerning (1.11) can be summarized as follows (see for instance

[4, Theorem 1 and Remark 1] or the book [20] by Dupaigne).

(6) Originally, Barenblatt introduced problem (1.11) for the exponential non-linearity f(u)=eu

(arising as an approximation of a certain empirical law). Nowadays, the terminology of Gelfand or
Gelfand-type problem applies to all f satisfying the assumptions above.
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Theorem 1.7. (see [4], [6], [20]) There exists a constant λ?∈(0,+∞) such that the

following statements hold :

(i) For every λ∈(0, λ?) there is a unique W 1,2
0 (Ω) stable solution uλ of (1.11). Also,

uλ is a classical solution and uλ<uλ′ for λ<λ′.

(ii) For every λ>λ? there is no classical solution.

(iii) For λ=λ? there exists a unique L1-weak solution u?, in the following sense:

u?∈L1(Ω), f(u?) dist( · , ∂Ω)∈L1(Ω), and

−
ˆ

Ω

u?∆ζ dx=λ?
ˆ

Ω

f(u?)ζ dx for all ζ ∈C2(	Ω) with ζ|∂Ω = 0.

This solution is called the extremal solution of (1.11) and satisfies uλ"u
? as λ"λ?.

The uniqueness of weak solution for λ=λ? is a delicate result that was proved by

Martel [28].

In [4, Open problem 1], Brezis asked the following.

Open problem 1. Is there something “sacred” about dimension 10? More precisely, is

it possible in “low” dimensions to construct some f (and some Ω) for which the extremal

solution u? is unbounded? Alternatively, can one prove in “low” dimension that u? is

smooth for every f and every Ω?

To connect this to the conjecture stated before, note that Brezis’ problem can be

thought as an a-priori bound for the stable solutions {uλ}λ<λ? . Hence, understanding

the regularity of extremal solutions is equivalent to understanding a-priori estimates for

stable classical solutions.

Note that, a priori, extremal solutions are merely in L1(Ω). It is then natural to

ask whether extremal solutions do belong to the natural energy space W 1,2
0 (Ω). This

important question was posed by Brezis and Vázquez in [6, Open problem 1].

Open problem 2. Does there exist some f and Ω for which the extremal solution is

a weak(7) solution not in W 1,2
0 (Ω)?

Concerning this problem, it has been proved that u? belong to the energy space

W 1,2
0 (Ω) when n65 by Nedev [29], for every n when Ω is convex also by Nedev [30], and

finally when n=6 by Villegas [38]. Here, we prove that u?∈W 1,2
0 (Ω) for every n and

for every smooth domain Ω, thus giving a conclusive answer also to this second open

problem.

Note that, due to the superlinearity of f , it follows by Proposition B.1 that the

L1(Ω) norms of the functions {uλ}λ<λ? are uniformly bounded by a constant depending

(7) In the sense of Theorem 1.7 (iii).
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only on f and Ω. Hence, by applying Theorem 1.5 to the functions {uλ}λ<λ? and letting

λ"λ?, we immediately deduce that extremal solutions are always W 1,2 (actually even

W 1,2+γ) in every dimension, and that they are universally bounded (and hence smooth)

in dimension n69. We summarize this in the following.

Corollary 1.8. Let Ω⊂Rn be a bounded domain of class C3. Let us assume that

f : [0,+∞)!(0,+∞) is non-decreasing, convex, and superlinear at +∞, and let u? denote

the extremal solution of (1.11).

Then u?∈W 1,2+γ
0 (Ω) for some dimensional exponent γ>0. In addition, if n69,

then u? is bounded, and it is therefore a classical solution.

1.3. The case n>10

In view of the results described in the previous sections, it is natural to ask what can

one say about stable solutions in dimension n>10. Our strategy of proof can be used to

provide optimal (or perhaps almost optimal) integrability estimates in Morrey spaces in

every dimension, as stated next (see §7 for more details and for Morrey estimates for the

gradient of stable solutions).

Recall that Morrey norms are defined as

‖w‖p
Mp,β(Ω)

:= sup
y∈	Ω
r>0

rβ−n
ˆ

Ω∩Br(y)

|w|p dx,

for p>1 and β∈(0, n).

Theorem 1.9. Let u∈C2(B1) be a stable solution of

−∆u= f(u) in B1⊂Rn,

with f :R!R locally Lipschitz. Assume that n>10 and define

pn :=


∞, if n= 10,

2(n−2
√
n−1−2)

n−2
√
n−1−4

, if n> 1.
(1.12)

Then,

‖u‖Mp,2+4/(p−2)(B1/2) 6C‖u‖L1(B1) for every p<pn, (1.13)

where C depends only on n and p.
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In addition, if f is non-negative and non-decreasing, Ω⊂Rn is a bounded domain

of class C3, and u∈C0(	Ω)∩C2(Ω) is a stable solution of

{
−∆u= f(u) in Ω,

u= 0 on ∂Ω,

then

‖u‖Mp,2+4/(p−2)(Ω) 6C‖u‖L1(Ω) for every p<pn, (1.14)

for some constant C depending only on p and Ω.

It is interesting to observe that the above result is essentially optimal. To see

this, we recall that, in dimension n=10, the function u=log(1/|x|2) is an unbounded

W 1,2
0 (B1) stable solution in B1 (see (1.2), and recall that it can be approximated by

stable classical solutions by [20, §3.2.2]). Also, as shown in [6], for n>11 the function

u(x)=|x|−2/(qn−1)−1 is the extremal solution of
−∆u=λ?(1+u)qn in B1,

u> 0 in B1,

u= 0 on ∂B1,

(1.15)

with

λ? =
2

qn−1

(
n−2− 2

qn−1

)
and qn :=

n−2
√
n−1

n−2
√
n−1−4

.

In particular, it is easy to see that u∈Mp,2+4/(p−2)(B1/2) if and only if p6pn. It is an

open question whether (1.13) holds with p=pn for a general stable solution u.

1.4. Idea of the proofs

The starting point is the stability inequality for u, i.e.,

ˆ
B1

f ′(u)ξ2 dx6
ˆ
B1

|∇ξ|2 dx for all ξ ∈C∞c (B1). (1.16)

In order to get a strong information on u, one has to choose an appropriate test

function ξ in (1.16). Most of the papers on this topic (including those of Crandall–

Rabinowitz [19] and Nedev [29]) have considered ξ=h(u) for some appropriate function

h depending on the non-linearity f . The main idea in the L∞ estimate of [7] for n64

was to take, instead, ξ=|∇u|ϕ(u), and choose then a certain ϕ depending on the solution

u itself.
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Here, a first key idea in our proofs is to take a test function of the form

ξ= (x·∇u)|x|(2−n)/2ζ,

with 06ζ61 being a smooth cut-off function equal to 1 in B% and vanishing outside

B3%/2. Due to this, we can prove the following inequality (see Lemma 2.1): there exists

a dimensional constant C such that

(n−2)(10−n)

ˆ
B%

|x|−n|x·∇u|2 dx6C%2−n
ˆ
B3%/2\B%

|∇u|2 dx for all 0<%< 2
3 .

(1.17)

From this inequality we see immediately that, for 36n69, we get a highly non-trivial

information. While of course one can always assume that n>3 (if n62 it suffices to add

some superfluous variables to reduce to the case n=3), here we see that the assumption

n69 is crucial.

Thus, when n69, the above inequality tells us that the radial derivative of u in a

ball is controlled by the total gradient in an annulus. Still, it is important to notice that

(1.17) does not lead to an L∞ bound for general solutions u to −∆u=f(u) in dimension

n69.(8) Thus, we still need to use stability again in a crucial way.

If we could prove that for stable solutions the radial derivative x·∇u and the total

derivative ∇u have comparable size in L2 at every scale, then we could control the right-

hand side of (1.17) with ˆ
B3%/2\B%

|x|−n|x·∇u|2 dx.

This would imply that

ˆ
B%

|x|−n|x·∇u|2 dx6C

ˆ
B3%/2\B%

|x|−n|x·∇u|2 dx,

and, by a suitable iteration and covering argument, we could conclude that u∈Cα. This

is indeed the core of our interior argument: we show that the radial derivative and the

total derivative have comparable size in L2 (at least whenever the integral of |∇u|2 on

balls enjoys a doubling property; see Lemma 3.1). This is based on a delicate compactness

argument, which relies on a series of a-priori estimates:

(1) curvature-type estimates for the level sets of u, which follow by taking ξ=|∇u|η
as a test function in the stability inequality; see Lemma 2.3;

(2) the higher L2+γ integrability of the gradient, which follows from (1) and a suit-

able Dirichlet energy estimate, (2.13), on each level set of u; see Proposition 2.4;

(8) This can be seen by taking functions u in R3 depending only on two variables; see Remark 2.2.
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(3) a general compactness argument for superharmonic functions; see Lemma A.1;

(4) the non-existence of non-trivial zero-homogeneous superharmonic functions; see

the proof of Lemma 3.1.

Combining all these ingredients, we prove Theorem 1.2.

For the boundary estimate, we would like to repeat the interior argument described

above near a boundary point. We note that, whenever the boundary is completely flat

and contains the origin, since x·∇u vanishes on the flat boundary then one can still

use the test function ξ=(x·∇u)|x|(2−n)/2ζ to deduce the analogue of (1.17). Actually, a

suitable variant of this test function allows us to obtain a similar estimate even when the

boundary is C3-close to a hyperplane (see Lemma 6.2). In addition, when the boundary

is C3-close to a hyperplane, we are able to prove the higher L2+γ integrability of the

gradient near the boundary (see Proposition 5.2), and from there we can conclude that

the W 1,2 norm near the boundary can be controlled only in terms of the L1 norm (see

Proposition 5.5).

Unfortunately, even if the boundary is completely flat, one cannot repeat the argu-

ment used in the interior case to deduce that the radial derivative controls the total gradi-

ent near a boundary point—which was a crucial point in the interior case. Indeed, while

in the interior case the proof relied on the non-existence of non-trivial zero-homogeneous

superharmonic functions in a neighborhood of the origin (see the proof of Lemma 3.1),

in the boundary case such superharmonic functions may exist! Hence, in this case we

need to exploit in a stronger way the fact that u solves a semilinear equation (and not

simply that u is superharmonic, since f>0). However, since our arguments are based on

a compactness technique, we need bounds that are independent of the non-linearity f .

A new key ingredient here is presented in §4: we are able to prove that, whenever

the non-linearity is convex and non-decreasing—but possibly taking the value +∞ in

an interval [M,∞)—the class of stable solutions is closed under L1
loc convergence (see

Theorem 4.1). Note that this is particularly striking, since no compactness assumptions

are made on the non-linearities!

With this powerful compactness theorem at hand, we are able to reduce ourself to

a flat-boundary configuration, control the gradient by its radial component, and prove

Theorem 1.5.

Finally, the case n>11 is obtained by choosing the test function

ξ= (x·∇u)|x|−a/2ζ,

where a=an∈(0, n−2) are suitable exponents, while in the case n=10 we choose

ξ= (x·∇u)|x|−4
∣∣log |x|

∣∣−δ/2ζ, with δ > 0.
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The techniques and ideas introduced in this paper are robust enough to be used for

proving analogues of our results in other non-linear problems. This is done in a series of

forthcoming works by Miraglio, Sanchón, and the first author [12] for the p-Laplacian,

and by Sanz-Perela and the first author [15] for the fractional Laplacian.

1.5. Structure of the paper

In §2 we exploit the stability of u and choose a series of different test functions to deduce

inequality (1.17), as well as a universal W 1,2+γ bound in terms only of the L1 norm of

the solution. This is used in §3 to prove our interior estimate of Theorem 1.2.

In §4 we prove that the class of stable solutions with convex non-decreasing non-

linearities is closed in L1
loc, while in §5 we obtain a W 1,2+γ bound near the boundary in

terms of the L1 norm when ∂Ω is a small C3-deformation of a hyperplane. These results

are used in §6 to prove Theorem 1.5 via a blow-up and covering argument.

Finally, in §7 we deal with the case n>10 and prove Theorem 1.9.

In the appendices we collect a series of technical lemmata, and we show a classical

a-priori estimate on the L1 norm of solutions to Gelfand problems.

2. Interior W 1,2+γ estimate

In this section we begin by proving a series of interior estimates that follow by choosing

suitable test functions in the stability inequality. Then, we show a universal W 1,2+γ

bound in terms only of the L1 norm of the solution. This is done by first controlling

‖∇u‖L2+γ by ‖∇u‖L2 , and then ‖∇u‖L2 by ‖u‖L1 .

Here and in the sequel, we shall use subscripts to denote partial derivatives (i.e.,

ui=∂iu, uij=∂iju, etc.).

As mentioned in the introduction, our first key estimate for stable solutions comes

from considering the test function ξ=(x·∇u)η, and then take η=|x|(2−n)/2ζ for some

cut-off function ζ. We split the computations in two steps, since this will be useful in

the sequel.

We denote by C0,1
c (B1) the space of Lipschitz functions with compact support in B1.

Lemma 2.1. Let u∈C2(B1) be a stable solution of −∆u=f(u) in B1⊂Rn, with f

locally Lipschitz. Then, for all η∈C0,1
c (B1), we have

ˆ
B1

(((n−2)η+2x·∇η)η|∇u|2−2(x·∇u)∇u·∇(η2)−|x·∇u|2|∇η|2) dx6 0. (2.1)
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As a consequence, for all ζ∈C0,1
c (B1), we have

(n−2)(10−n)

4

ˆ
B1

|x|−n |x·∇u|2ζ2 dx

6
ˆ
B1

(−2)|x|2−n |∇u|2ζ(x·∇ζ) dx+

ˆ
B1

4|x|2−n(x·∇u)ζ∇u·∇ζ dx

+

ˆ
B1

(2−n)|x|−n|x·∇u|2ζ(x·∇ζ) dx+

ˆ
B1

|x|2−n|x·∇u|2|∇ζ|2 dx.

(2.2)

In particular, if 36n69, then for all %< 2
3 we have

ˆ
B%

|x|−n |x·∇u|2 dx6C%2−n
ˆ
B3%/2\B%

|∇u|2 dx, (2.3)

where C is a dimensional constant.

Proof. We split the proof in three steps.

Step 1. Proof of (2.1).

We note that, by approximation, (1.4) holds for all ξ∈C0,1
c (B1). Hence, we can

consider as test function in (1.4) a function of the form ξ=cη, where c∈W 2,p
loc (B1) for

some p>n, and η∈C0,1
c (B1). Then, a simple integration by parts gives that

ˆ
B1

(∆c+f ′−(u)c)cη2 dx6
ˆ
B1

c2|∇η|2 dx. (2.4)

We now choose c(x):=x·∇u(x) (this function belongs to W 2,p
loc (B1) for every p<∞ by

Lemma A.3 (ii)). Then, by a direct computation and using Lemma A.3 (ii) again, we

deduce that

∆c=x·∇∆u+2

n∑
i=1

uii =−f ′−(u)c+2∆u

a.e. in B1. Hence, substituting this identity in (2.4), we get

ˆ
B1

|x·∇u|2 |∇η|2 dx>
ˆ
B1

(∆c+f ′−(u)c)c η2 dx

= 2

ˆ
B1

(x·∇u)∆u η2 dx

=

ˆ
B1

(div
(
2(x·∇u)∇u−|∇u|2x

)
+(n−2)|∇u|2)η2 dx

=

ˆ
B1

(−2(x·∇u)∇u·∇(η2)+|∇u|2x·∇(η2)+(n−2)|∇u|2η2) dx,

and (2.1) follows.
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Step 2. Proof of (2.2).

Given a<n, we would like to take the function η :=|x|−a/2ζ with ζ∈C0,1
c (B1) as a

test function in (2.1). Since η is not Lipschitz for a>0, we approximate it by the C0,1
c (B1)

function

ηε := min{|x|−a/2, ε−a/2}ζ

for ε∈(0, 1), which agrees with η in B1\Bε. We have that ηε!η and ∇ηε!∇η a.e. in B1

as ε#0. At the same time, every term in (2.1) with η replaced by ηε is bounded in abso-

lute value by C|x|−a |∇u|26C̃|x|−a∈L1
loc(B1) (since u∈C2(B1)). Hence, the dominated

convergence theorem gives that (2.1) also holds with η :=|x|−a/2ζ.

Now, noticing that

x·∇η=− 1
2a|x|

−a/2ζ+|x|−a/2x·∇ζ, ∇(η2) =−a|x|−a−2ζ2x+2|x|−aζ∇ζ, (2.5)

and

|∇η|2 =
∣∣− 1

2a|x|
−a/2−2ζx+|x|−a/2∇ζ

∣∣2
= 1

4a
2|x|−a−2ζ2+|x|−a |∇ζ|2−a|x|−a−2ζ(x·∇ζ),

(2.6)

we have that (2.2) follows from (2.1) by choosing a=n−2.

Step 3. Proof of (2.3).

Given %∈
(
0, 2

3

)
, we consider a Lipschitz function ζ, with 06ζ61, such that ζ|B%=1,

ζ|Rn\B3%/2
=0, and |∇ζ|6C/%. Using this function in (2.2) and noticing that |x| is com-

parable to % inside supp(∇ζ)⊂
B3%/2\B%, the result follows easily.

Remark 2.2. To deduce our L∞ estimate from (2.3), we will need to use again the

stability of u. In fact, there exist W 1,2 weak solutions of semilinear equations (with

f>0) which satisfy (2.3) (in balls B%=B%(y) centered at any point y∈B1(0)) and are

unbounded.

For instance, with n=3 take u(x1, x2, x3)=ũ(x1, x2), where ũ is unbounded but

belongs to W 1,2
loc (R2). One can then verify that (2.3) holds inside every ball B%=B%(y).

At the same time, by taking ũ to be radially decreasing in R2, we can guarantee that

ũ solves a semilinear equation (and hence also u) for some non-linearity f . An example

is ũ(%)=log |log %| in a small neighborhood of the origin, which leads to a smooth non-

linearity f>0.

The key point to deduce boundedness from (2.3) will be a higher L2+γ integrability

result for the gradient of the solution, that we establish in the remaining of this section.

Towards this, we exploit again the stability of u by choosing now, as another test

function, ξ=|∇u|η, with η begin a cut-off function. In the case when u∈C3 this choice
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of test function and the following lemma are due to Sternberg and Zumbrun [36]. We

verify next that the result holds also when f is locally Lipschitz.

Lemma 2.3. Let u∈C2(B1) be a stable solution of −∆u=f(u) in B1⊂Rn, with f

locally Lipschitz. Then, for all η∈C0,1
c (B1), we have

ˆ
B1

A2η2dx6
ˆ
B1

|∇u|2 |∇η|2dx,

where(9)

A :=


(∑
i,j

u2
ij−

∑
i

(∑
j

uij
uj
|∇u|

)2)1/2
, if ∇u 6= 0,

0, if ∇u= 0.

(2.7)

When u∈C3 (and f∈C1), this follows from the stability inequality (1.16), plus the

fact that

|∇u|
(
∆|∇u|+f ′(u)|∇u|

)
=A2 in {∇u 6= 0};

see [7] for a proof. We give here an alternative proof that does not require to com-

pute ∆|∇u|.

Proof of Lemma 2.3. We begin from the identity

−∆ui = f ′−(u)ui for i= 1, ..., n;

see Lemma A.3(ii). Multiplying this identity by uiη
2 and integrating by parts, we obtain

ˆ
B1

(|∇(uiη)|2−(ui)
2|∇η|2) dx=

ˆ
B1

∇ui ·∇(uiη
2) dx=

ˆ
B1

f ′−(u)u2
i η

2 dx,

so that, summing over i, we get

ˆ
B1

(∑
i

|∇(uiη)|2−|∇u|2 |∇η|2
)
dx=

ˆ
B1

f ′−(u)|∇u|2η2 dx. (2.8)

On the other hand, testing the stability inequality (1.4) with the Lipschitz function |∇u|η,

we obtain ˆ
B1

∣∣∇(|∇u|η)
∣∣2 dx>ˆ

B1

f ′−(u)|∇u|2η2 dx. (2.9)

(9) Even though we will not use it here, it is worth noticing that the quantity A controls the
second fundamental form of the level sets of u. This was crucially used in [7], in combination with

the Sobolev-type inequality of Michael–Simons and Allard, to prove regularity of stable solutions up to
dimension n64.
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Hence, combining (2.8) with (2.9) gives

ˆ
B1

|∇u|2 |∇η|2 dx>
ˆ
B1

(∑
i

|∇(uiη)|2−
∣∣∇(|∇u|η)

∣∣2) dx.
Then, a direct computation shows that, inside the set {∇u 6=0},

∑
i

|∇(uiη)|2−
∣∣∇(|∇u|η)|2 =

(∑
i,j

u2
ij−

∑
i

(∑
j

uijuj
|∇u|

)2)
η2 =A2η2.

On the other hand, since ∇u is Lipschitz, then D2u=0 a.e. in {∇u=0} (see, e.g., [37,

Theorem 1.56]). Therefore, ∑
i

|∇(uiη)|2−
∣∣∇(|∇u|η)

∣∣2 = 0

a.e. inside {∇u=0}, concluding the proof.

Next, we prove a general result that gives, in every dimension, a higher integrability

result for the gradient of stable solutions.

Proposition 2.4. Let u∈C2(B1) be a stable solution of −∆u=f(u) in B1⊂Rn,

with f locally Lipschitz and non-negative. Then,

‖∇u‖L2+γ(B3/4) 6C‖∇u‖L2(B1),

where γ>0 and C are dimensional constants.

Proof. Without loss of generality, we may assume that ‖∇u‖L2(B1)=1 (this normal-

ization will be particularly convenient in Step 3). Let η∈C∞c (B1) be a non-negative

cut-off function with η≡1 in B3/4.

Step 1. We show that

ˆ
B1

∣∣div(|∇u|∇u)
∣∣η2 dx6C. (2.10)

Set ν :=−∇u/|∇u| in the set {|∇u| 6=0}, and ν=0 in {|∇u|=0}. We begin from the

pointwise identity

div(|∇u|∇u) = |∇u|
(∑
i,j

uijuiuj
|∇u|2

+∆u

)
=−|∇u| tr(D2u−(D2u[ν, ν])ν⊗ν)+2|∇u|∆u,

(2.11)
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in the set {|∇u| 6=0}. Also, we note that A2 (as defined in Lemma 2.3) is larger or equal

than half the squared Hilbert–Schmidt norm of the matrix D2u−(D2u[ν, ν]) ν⊗ν,(10)

and hence there exists a dimensional constant C such that

| tr(D2u−(D2u[ν, ν])ν⊗ν)|6CA. (2.12)

Furthermore, due to Lemma 2.3, we obtain (note that, in the next integrals, we can

indistinctly integrate in B1 or in B1∩{|∇u| 6=0})

−
ˆ
B1

2|∇u|(∆u)η2 dx

=−
ˆ
B1

|∇u| tr(D2u−(D2u[ν, ν])ν⊗ν)η2 dx−
ˆ
B1

div(|∇u|∇u)η2 dx

6C

(ˆ
B1

|∇u|2η2 dx

)1/2(ˆ
B1

A2η2 dx

)1/2
+

ˆ
B1

|∇u|(∇u)·∇(η2) dx

6C.

Hence, combining this bound with (2.11) and (2.12), and using again Lemma 2.3 together

with the fact that ∆u60, we get

ˆ
B1

∣∣div(|∇u|∇u)
∣∣η2 dx6

ˆ
B1

−2|∇u|(∆u)η2 dx+C

ˆ
B1

|∇u|Aη2 dx

6C+C

(ˆ
B1

|∇u|2η2 dx

)1/2(ˆ
B1

A2η2 dx

)1/2
6C,

as desired.

Step 2. We show that, for a.e. t∈R,

ˆ
{u=t}∩B3/4

|∇u|2 dHn−1 6C. (2.13)

We claim that, for a.e. t∈R, we have

ˆ
{u=t}∩B3/4

|∇u|2 dHn−1 6
ˆ
{u=t}∩B1

|∇u|2η2 dHn−1

=−
ˆ
{u>t}∩B1

div(|∇u|(∇u)η2) dx.

(2.14)

(10) This is easily seen by writing D2u(x) in the orthonormal basis given by ν(x) and the principal
directions of the level set of u at x.
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Note that this bound, combined with (2.10), implies (2.13). So, we only need to prove

the validity of (2.14).

To show (2.14), some care is needed to deal with the divergence, since we cannot

use Sard’s theorem here (u is only C2). Thus, to prove it, we consider a smooth approxi-

mation s 7!Hε(s) of the indicator function of R+, so that H ′ε(s)⇀
∗δ0 as ε!0. Then, for

any given t∈R, we can apply Lemma A.2 with g=H ′ε(u−t)|∇u|2η2 to get

−
ˆ
B1

Hε(u−t)div(|∇u|(∇u)η2) dx=

ˆ
B1

H ′ε(u−t)∇u·(|∇u|(∇u)η2) dx

=

ˆ
B1

H ′ε(u−t)|∇u|3η2 dx

=

ˆ
R
H ′ε(τ−t)

(ˆ
{u=τ}∩B1

|∇u|2η2 dHn−1

)
dτ.

In particular, whenever t is a Lebesgue point for the L1 function

τ 7−!
ˆ
{u=τ}∩B1

|∇u|2η2 dHn−1,

letting ε!0 we deduce (2.14), as claimed.

Step 3. Conclusion.

First note that, by the standard Sobolev–Poincaré inequality, for some dimensional

p>2 we have (ˆ
B1

|u−ū|p dx
)1/p

6C

(ˆ
B1

|∇u|2 dx
)1/2

=C, (2.15)

where ū:=
´
B1
u. Thus, using (2.15) and Lemma A.2 with

g=
|u−ū|p

|∇u|
1{|∇u|6=0},

we obtain

ˆ
R
dt

ˆ
{u=t}∩B1∩{|∇u|6=0}

|t−ū|p |∇u|−1 dHn−1 =

ˆ
B1

|u−ū|p 1{|∇u|6=0} dx6C. (2.16)

Also, since p>2, we may choose dimensional constants q>1 and θ∈
(
0, 1

3

)
such that

p/q=(1−θ)/θ. Thus, defining

h(t) := max{1, |t−ū|}
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and then using the coarea formula (see Lemma A.2) and Hölder inequality (note that

pθ−q(1−θ)=0), we obtain

ˆ
B3/4

|∇u|3−3θ dx=

ˆ
R
dt

ˆ
{u=t}∩B3/4∩{|∇u|6=0}

h(t)pθ−q(1−θ)|∇u|−θ+2(1−θ) dHn−1

6

(ˆ
R
dt

ˆ
{u=t}∩B1∩{|∇u|6=0}

h(t)p|∇u|−1 dHn−1

)θ
×
(ˆ

R
dt

ˆ
{u=t}∩B3/4

h(t)−q|∇u|2 dHn−1

)1−θ
.

Observe now that, due to (2.16) and the definition of h(t), we have

ˆ
R
dt

ˆ
{u=t}∩B1∩{|∇u|6=0}

h(t)p|∇u|−1 dHn−1

6
ˆ ū+1

ū−1

dt

ˆ
{u=t}∩B1∩{|∇u|6=0}

|∇u|−1 dHn−1+C

6 |B1|+C

6C.

Also, since q>1, it follows that ˆ
R
h(t)−q dt

is finite, and thus (2.13) implies that

ˆ
R
h(t)−q dt

ˆ
{u=t}∩B3/4

|∇u|2 dHn−1 6C

ˆ
R
h(t)−q dt6C.

Therefore, we have proved that

ˆ
B3/4

|∇u|3−3θ dx6C

for some dimensional constants θ∈
(
0, 1

3

)
and C, as desired.

We conclude this section with the following useful result.

Proposition 2.5. Let u∈C2(B1) be a stable solution of −∆u=f(u) in B1⊂Rn,

with f locally Lipschitz and non-negative. Then,

‖∇u‖L2(B1/2) 6C‖u‖L1(B1),

where C is a dimensional constant.
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Proof. Since −∆u>0, we can apply Lemma A.1 (i) to the constant sequence vk=u

to get

‖∇u‖L1(B1/2) 6C‖u‖L1(B1).

Also, it follows from Proposition 2.4 that

‖∇u‖L2+γ(B1/2) 6C‖∇u‖L2(B1).

Therefore, by Hölder and Young inequalities, for every ε>0 we have

‖∇u‖2L2(B1/2) 6 ‖∇u‖
γ/(1+γ)
L1(B1/2)‖∇u‖

(2+γ)/(1+γ)
L2+γ(B1/2)

6C‖u‖γ/(1+γ)
L1(B1) ‖∇u‖

(2+γ)/(1+γ)
L2(B1)

6 ε‖∇u‖2L2(B1)+
C

ε
‖u‖2L1(B1).

Applying this estimate to the functions ur,y(x):=u(y+rx), where Br(y)⊂B1 (note

that ur,y is a stable solution to the semilinear equation −∆ur,y=fr(ur,y) in B1 with

fr(t)=r2f(t), so all the previous results apply to ur,y as well), we conclude that

rn+2

ˆ
Br/2(y)

|∇u|2 dx6 εrn+2

ˆ
Br(y)

|∇u|2 dx+
C

ε

(ˆ
Br(y)

|u| dx
)2

6 εrn+2

ˆ
Br(y)

|∇u|2 dx+
C

ε

(ˆ
B1

|u| dx
)2

for every ε>0. By Lemma A.4 applied with σ(B):=‖∇u‖2L2(B), the result follows.

3. Interior Cα estimate for n69 and global estimate in convex domains:

Proofs of Theorem 1.2 and Corollary 1.4

We begin this section by proving that, under a doubling assumption on |∇u|2 dx, the

radial derivative of a stable solution controls its full derivative.

Lemma 3.1. Let u∈C2(B2) be a stable solution of −∆u=f(u) in B2⊂Rn, with f

locally Lipschitz and non-negative. Assume that

ˆ
B1

|∇u|2 dx> δ

ˆ
B2

|∇u|2 dx

for some δ>0. Then, there exists a constant Cδ, depending only on n and δ, such that

ˆ
B3/2

|∇u|2 dx6Cδ

ˆ
B3/2\B1

|x·∇u|2 dx.
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Proof. Assume the result to be false. Then, there exists a sequence of stable solutions

uk (with fk>0 varying) such that

ˆ
B1

|∇uk|2 dx> δ

ˆ
B2

|∇uk|2 dx,
ˆ
B3/2

|∇uk|2 dx= 1, and

ˆ
B3/2\B1

|x·∇uk|2 dx! 0.

(3.1)

Now, due to (3.1),

ˆ
B2

|∇uk|2 dx6
1

δ

ˆ
B1

|∇uk|2 dx6
1

δ

ˆ
B3/2

|∇uk|2 dx=
1

δ
6C. (3.2)

Therefore, using Proposition 2.4 (rescaled from B1 to B2), we obtain

ˆ
B3/2

|∇uk|2+γ dx6C.

Hence, the sequence of superharmonic functions

vk :=uk−
ˆ
B2

uk

satisfies

‖vk‖L1(B2) 6C‖vk‖L2(B2) 6C

(due to Hölder and Poincaré inequalities, and by (3.2)), as well as

‖∇vk‖L2(B3/2) = 1, ‖vk‖W 1,2+γ(B3/2) 6C, and

ˆ
B3/2\B1

|x·∇vk|2 dx! 0.

Thus, it follows from Lemma A.1 applied with r= 3
2<2=R that, up to a subsequence,

vk!v strongly in W 1,2(B3/2), where v is a superharmonic function in B3/2 satisfying

‖∇v‖L2(B3/2) = 1 and x·∇v≡ 0 a.e. in B3/2\B1.

From the fact that v is zero-homogeneous and superharmonic in the annulus B3/2\B1,

it follows that v=c0 inside B3/2\B1 for some constant c0∈R. Indeed, by the mean-

value property (or by [25, Theorem 8.17], since u∈W 1,1
loc ⊂L

n/(n−1)
loc by Lemma A.1), v is

bounded from below in B3/2\B1. As a consequence, by zero-homogeneity,

inf
B3/2\B1

v= inf
B1/4(x0)

v

for some point x0∈∂B5/4. Hence, by the strong maximum principle ([25, Theorem 8.19]),

v is constant in B3/2\B1, as desired.
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In particular, we have proved that v|∂B1
=c0, and thus, by the maximum principle

for superharmonic functions, we get v>c0 inside B1.

Combining all this together, we get that

v> c0 in B3/2 and v≡ c0 in B3/2\B1,

and by the strong maximum principle for superharmonic functions we get v≡c0 in B3/2,

a contradiction with ‖∇v‖L2(B3/2)=1.

The following lemma will be used a couple of times in the paper to prove geometric

decay of certain integral quantities satisfying appropriate recurrence relations.

Lemma 3.2. Let {aj}j>0 and {bj}j>0 be two sequences of non-negative numbers

satisfying a06M , b06M ,

bj 6 bj−1 and aj+bj 6Laj−1 for all j> 1,

and

if aj > 1
2aj−1 then bj 6L(bj−1−bj) for all j> 1, (3.3)

for some positive constants M and L. Then, there exist θ∈(0, 1) and C>0, depending

only on L, such that

bj 6CMθj for all j> 0.

Proof. Define, for ε>0 to be chosen,

cj := aεjbj .

We consider two cases, depending whether aj<
1
2aj−1 or not.

Case 1. If aj<
1
2aj−1, then since bj6bj−1 we get

cj = aεjbj 6 2−εaεj−1bj−1 = 2−εcj−1.

Case 2. If aj> 1
2aj−1, we may apply (3.3), and we have bj6L(bj−1−bj) or, equiva-

lently,

bj 6
L

1+L
bj−1.

Therefore, using that aj6Laj−1, we have

cj = aεjbj 6Lεaεj−1

L

1+L
bj−1 = θ1+εcj−1,
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where we choose first ε>0 such that 2−ε=L1+ε/(1+L) (this can be done, since we may

assume from the beginning that L> 1
2 ), and then we define

θ := (2−ε)1/(1+ε) =
L

(1+L)1/(1+ε)
.

Hence, we have proven that in both cases cj6θ1+εcj−1 for some θ∈(0, 1). By iter-

ating this estimate, we conclude that cj6θ(1+ε)jc0.

Finally, recalling that bj6Laj−1, bj6bj−1, a06M , and b06M , recalling the defini-

tion of cj−1 and c0, we obtain

b1+ε
j 6Lεaεj−1bj−1=Lεcj−1 6

Lε

θ1+ε
θ(1+ε)jc0 6Cθ(1+ε)jM1+ε,

and the lemma follows.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. We first notice that, combining Propositions 2.4 and 2.5, we

immediately get the bound

‖∇u‖L2+γ(B3/8) 6C‖u‖L1(B1).

Hence, (1.6) follows by a classical scaling and covering argument.

We are left with proving (1.7). For this, we may assume that 36n69. (Indeed,

recall that in case n62 one can easily reduce to the case n=3, by adding extra artificial

variables. Note that the stability condition is preserved under this procedure). Given

%∈(0, 1), we define the quantities

D(%) := %2−n
ˆ
B%

|∇u|2 dx and R(%) :=

ˆ
B%

|x|−n|x·∇u|2 dx.

We split the proof of (1.7) into three steps.

Step 1. We prove that there exists a dimensional exponent α>0 such that

R(%)6C%2α‖∇u‖2L2(B1/2)

for all %∈
(
0, 1

4

)
.

Recall that, by (2.3), for every %∈
(
0, 1

4

)
we have

R(%)6C%2−n
ˆ
B3%/2\B%

|∇u|2 dx. (3.4)
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Hence, if D(%)> 1
2D(2%), then we can apply Lemma 3.1 with δ= 1

2 to the function u(% ·),
and we deduce that

%2−n
ˆ
B3%/2

|∇u|2 dx6C%−n
ˆ
B3%/2\B%

|x·∇u|2 dx6C
(
R
(

3
2%
)
−R(%)

)
for some dimensional constant C. Combining this bound with (3.4) and using that R is

non-decreasing, we deduce that

R(%)6C(R(2%)−R(%)) provided D(%)> 1
2D(2%). (3.5)

Thus, if we define aj :=D(2−j−2) and bj :=R(2−j−2) we have, for some dimensional con-

stant L>0,

• bj6bj−1 for all j>1 (since R is non-decreasing);

• aj+bj6Laj−1 for all j>1 (by (3.4));

• if aj> 1
2aj−1 then bj6L(bj−1−bj) for all j>1 (by (3.5)).

Therefore, by Lemma 3.2, we deduce that

bj 6CMθj ,

where θ∈(0, 1) and

M := a0+b0 6C‖∇u‖2L2(B1/2)

(here we used again (3.4) in order to bound b0).

Choosing α>0 such that 2−2α=θ, Step 1 follows easily.

Step 2. We show that

[u]Cα(
B1/8) 6C‖∇u‖L2(B3/4), (3.6)

where α and C are positive dimensional constants.

Applying Step 1 to the function uy(x):=u(x+y) with y∈B1/4, since B1/2(y)⊂B3/4

we get

ˆ
B%(y)

|x−y|−n |(x−y)·∇u|2 dx6C%2α

ˆ
B3/4

|∇u|2 dx for all %6 1
2 .

In particular,

%2−n
ˆ
B%(y)

∣∣∣∣ x−y|x−y|
·∇u

∣∣∣∣2 dx6C%2α

ˆ
B3/4

|∇u|2 dx for all y ∈B1/4 and %6 1
2 .



212 x. cabré, x. ros-oton, a. figalli and j. serra

Then, given z∈B1/8, we can average the above inequality with respect to y∈B%/4(z) to

get

%2−n
ˆ
B%/8(z)

|∇u|2 dx6C%2α

ˆ
B3/4

|∇u|2 dx for all %6 1
2 .

Since z∈B1/8 is arbitrary, by classical estimates on Morrey spaces (see for instance [25,

Theorem 7.19]), we deduce (3.6).

Step 3. Proof of (1.7).

Note that, using Proposition 2.5 and a standard scaling and covering argument, we

have

‖∇u‖L2(B3/4) 6C‖u‖L1(B1).

Hence, it follows by Step 2 that

[u]Cα(
B1/8) 6C‖u‖L1(B1).

Also, by classical interpolation estimates, we have the bound

‖u‖L∞(B1/8) 6C([u]Cα(
B1/8)+‖u‖L1(B1/8)).

Combining these estimates, we conclude that

‖u‖Cα(
B1/8) 6C‖u‖L1(B1).

Finally, (1.7) follows by a classical scaling and covering argument.

We conclude the section by proving global regularity in convex domains.

Proof of Corollary 1.4. First of all, since f>0, we have that u is superharmonic, so,

by the maximum principle, u>0 in Ω.
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Since Ω is a bounded convex domain of class C1, by the classical moving planes

method, there exists %0>0, depending only on Ω, such that

u(x)6maxΓ0
u for all x∈N0, (3.7)

where N0 :={y∈Ω:dist(y, ∂Ω)<%0} and Γ0 :={y∈Ω:dist(y, ∂Ω)=%0}.(11)

Hence, it follows by Theorem 1.2 that u6C‖u‖L1(Ω) inside Ω\N0, where C depends

only on Ω and %0. Thus, recalling (3.7), we conclude that 06u6C‖u‖L1(Ω) inside Ω.

4. A general closedness result for stable solutions with convex

non-decreasing non-linearities

The goal of this section is to establish a very strong closedness property for stable so-

lutions to equations with convex, non-decreasing, and non-negative non-linearities. As

mentioned in the introduction, in addition to its own interest, this result will play a

crucial role in the proof of the global regularity result of Theorem 1.5.

Define

C := {f :R! [0,+∞] : f is lower semicontinuous, non-decreasing, and convex}.

Note that functions f∈C are non-negative, but are allowed to take the value +∞. This

fact is important, since limits of non-decreasing convex non-linearities fk :R!R could

become +∞ in an interval [M,∞); this is why, in C, we must allow f to take the

value +∞.

For f∈C and t∈R such that f(t)<+∞, the following is the definition and a property

for f ′−(t):

f ′−(t) := lim
h#0

f(t)−f(t−h)

h
>
f(t2)−f(t1)

t2−t1
for all t1<t2 6 t. (4.1)

If f(t)=+∞ for some t∈R, then we simply set f ′−(t)=+∞.

Given an open set U⊂Rn, we define

S(U) :=

{
u∈W 1,2

loc (U) :
u is a stable weak solution of

−∆u= f(u) in U , for some f ∈C

}
. (4.2)

(11) Here we are using that, as pointed out within the proof of [22, Theorem 1.1], (3.7) holds in

any convex C1 domain. This follows easily from the classical moving planes method when all principal
curvatures of ∂Ω are positive (as mentioned in [22]), and also when the domain is C1 and strictly

convex. Since [22] contains no proof for merely convex domains, we sketch it here. If Ω is convex, then

the boundary may contain a piece of a hyperplane. Still, by a simple contradiction argument, one can
show that, given any boundary point, there exist hyperplanes that separate a small cap around this

point from their reflected points, and such that the reflected points are contained inside Ω. This suffices
to use the moving planes method in a neighborhood of any boundary point.
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The meaning of weak solution is that of Definition 1.1. In particular, as f(u)∈L1
loc(U)

then f(u) is finite a.e., and as f is non-decreasing we deduce that f<+∞ on (−∞, supU u).

Note also that, similarly, as f ′−>0 and f is convex, we have that f ′−<+∞ in (−∞, supU u).

The following theorem states that, given an open set U⊂Rn, the set S(U) is closed

in L1
loc(U). This is particularly surprising, as no bound is required on the non-linearities.

Theorem 4.1. Let U⊂Rn be an open set. Let uk∈S(U), and assume that uk!u

in L1
loc(U) for some u∈L1

loc(U).

Then, u∈S(U) and the convergence uk!u holds in W 1,2
loc (U). If, in addition, n69,

then the convergence also holds in C0(U).

For the proof of this result, we shall use the interior estimates of Theorem 1.2.

However, we proved these interior estimates for C2 solutions, while solutions in the class

S(U) are in general only in W 1,2—notice that it may happen that

f(u(x0)) = f(supU u) = +∞

for some x0∈U . Thus, we will need to prove first that the interior estimates of Theo-

rem 1.2 extend to all weak solutions in the class S(B1) (see Corollary 4.3 below). For

this, we need the following useful approximation result.

Proposition 4.2. Let f∈C and assume that u∈W 1,2(B1) is a stable weak solution

of −∆u=f(u) in B1, with f(u)∈L1(B1).

Then, one of the following holds:

(i) u∈C2(B1) and f is real valued and Lipschitz on (−∞, supB1
u).(12)

(ii) There exist a family of non-linearities {fε}ε∈(0,1]⊂C and a family of stable so-

lutions {uε}ε∈(0,1]⊂C2(B1)∩W 1,2(B1) of{
−∆uε= fε(uε) in B1,

uε =u on ∂B1,

such that fε6f , uε6u, and both fε"f (pointwise in R) and uε"u (a.e. and weakly in

W 1,2(B1)) as ε#0. Furthermore, fε is real-valued and Lipschitz on (−∞, supBr uε] for

every r<1.

(12) Throughout the paper, whenever we say that a function g is Lipschitz on some set A, we mean
uniformly Lipschitz (even if the set A is open), namely

sup
x,y∈A
x 6=y

|g(x)−g(y)|
|x−y|

<+∞.

This is in contrast with the terminology “g is locally Lipschitz”, which means that g is Lipschitz on any
compact subset of its domain of definition.
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Proof. If f ′−(supB1
u)<+∞,(13) then f is real valued and Lipschitz on (−∞, supB1

u)

(here we use that f is non-negative, non-decreasing, and convex). Thus,

|f(u)|6C(1+|u|),

and, by classical elliptic regularity [25], u is of class C2 inside B1. Thus, in this case, (i)

in the statement holds.

As a consequence, in order to establish (ii), we may assume that

f ′−(supB1
u) = +∞. (4.3)

Step 1. Construction of fε and uε.

Given ε∈(0, 1], if supB1
u<+∞, we define fε by fε(t):=(1−ε)f(t). Instead, when

supB1
u=+∞, we set

fε(t) :=

{
(1−ε)f(t), for t6 ε−1,

(1−ε)(f(ε−1)+f ′−(ε−1)(t−ε−1)), for t> ε−1.

Note that, in both cases, fε∈C, fε6f , and fε"f pointwise as ε#0.

We now construct the functions uε. We first define the function u
(0)
ε to be the

harmonic extension of u. Indeed, since u∈W 1,2(B1), the Dirichlet energy
´
B1
|∇v|2

admits a minimizer u
(0)
ε in the convex set

{v ∈W 1,2(B1) : v−u∈W 1,2
0 (B1)}.

Note that u
(0)
ε 6u, since u is weakly superharmonic.

To construct uε for ε∈(0, 1), we start a monotone iteration by defining, for j>1, the

function u
(j)
ε as the solution to the linear problem{

−∆u
(j)
ε = fε(u

(j−1)
ε ) in B1,

u
(j)
ε =u on ∂B1.

(4.4)

Note that we can start the iteration, since

06 fε(u
(0)
ε )6 fε(u)6 f(u)∈L1(B1).

All the other problems also make sense, since we have that u
(j)
ε 6u for all j>0. Indeed,

−∆(u−u(j)
ε ) = f(u)−fε(u(j−1)

ε )

= (f(u)−fε(u))+(fε(u)−fε(u(j−1)
ε ))

> fε(u)−fε(u(j−1)
ε )

(13) If supB1
u=+∞, we define f ′−(supB1

u):=limt!+∞ f ′−(t).
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for all j>1, and since fε is non-decreasing, it follows by induction that u
(j)
ε 6u.

To prove that the sequence is monotone, note that, since fε>0, it follows by the

maximum principle that u
(1)
ε >u(0)

ε . Also, since fε is non-decreasing, the inequality

−∆(u(j)
ε −u(j−1)

ε ) = fε(u
(j−1)
ε )−fε(u(j−2)

ε ), for all j> 2,

proves, by induction on j, that u
(j)
ε >u(j−1)

ε .

Analogously, since fε6fε′ for ε′<ε, using that u
(0)
ε =u

(0)
ε′ and that

−∆(u
(j)
ε′ −u

(j)
ε ) = fε′(u

(j−1)
ε′ )−fε(u(j−1)

ε ) for all j> 1,

again by induction we get

u(j)
ε 6u

(j)
ε′ for all j> 0 and ε′<ε. (4.5)

Claim 1. The functions u
(j)
ε belong to W 1,2(B1), and their W 1,2-norms are uni-

formly bounded in j and ε.

Indeed, since

ˆ
B1

∇u(j)
ε ·∇(u−u(j)

ε ) dx=

ˆ
B1

fε(u
(j−1)
ε )(u−u(j)

ε ) dx> 0,

we have
ˆ
B1

|∇(u−u(j)
ε )|2 dx6

ˆ
B1

∇u·∇(u−u(j)
ε ) dx6 ‖∇u‖L2(B1) ‖∇(u−u(j)

ε )‖L2(B1),

and therefore

‖∇u(j)
ε ‖L2(B1) 6 ‖∇(u−u(j)

ε )‖L2(B1)+‖∇u‖L2(B1) 6 2‖∇u‖L2(B1). (4.6)

Since u
(j)
ε −u vanishes on ∂B1, the claim follows by Poincaré inequality.

Due to Claim 1, we can define

uε := lim
j!∞

u(j)
ε 6u,

where uε is both a pointwise limit (since the sequence is non-decreasing in j) and a weak

W 1,2(B1) limit. Then, we have that uε∈W 1,2(B1) is a weak solution of{
−∆uε = fε(uε) in B1,

uε =u on ∂B1.

We now want to show that uε is of class C2. For this, we prove the following.
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Claim 2. The functions u
(j)
ε belong to C2,β

loc (B1), for every β∈(0, 1), and their

norms in this space are uniformly bounded with respect to j. In addition, fε is real

valued and Lipschitz on (−∞, supBr uε], for every r<1.

To prove this result, we distinguish two cases, depending on whether supB1
u is finite

or not.

Case (i). supB1
u<+∞.

Note that, since in this case fε=(1−ε)f , we have

−∆(u−uε)> εf(u)> 0.

Also, f(u) cannot be identically zero, since f ′−(supB1
u)=+∞ by (4.3). Thus, it follows

by the Harnack inequality that, for all r∈(0, 1) and ε>0, there exists a constant δε,r>0

such that uε6u−δε,r in Br.

In addition, as already observed after (4.2), the fact that −∆u=f(u) with f∈C
leads to f<+∞ on (−∞, supB1

u). Hence, using again that f∈C (thus f>0 is convex

and non-decreasing), we obtain that

‖f‖C0,1((−∞,t]) 6C(f, t)<∞ for all t< supB1
u.

Therefore, since u
(j)
ε 6uε6supB1

u−δε,r in Br, by standard elliptic regularity (see for

instance [25, Chapter 6]), we obtain that u
(j)
ε ∈C2,β

loc (B1) for all β∈(0, 1), uniformly in j,

as desired. Furthermore, since uε6u−δε,r in Br, fε is real valued and Lipschitz on

(−∞, supBr uε].

Case (ii). supB1
u=+∞.

In this case we note that, by construction, fε is globally Lipschitz on the whole R,

and

|fε(t)|6Cε(1+|t|).

Hence, due to the uniform W 1,2 bound on u
(j)
ε (see (4.6)), using (4.4) and standard

elliptic regularity (see, for instance, [25, Chapter 6]), it follows, by induction on j, that

u
(j)
ε ∈C2,β

loc (B1) for all β∈(0, 1), uniformly with respect to j.

Due to Claim 2, we have that uε is the limit of a sequence of functions uniformly

bounded in C2,β
loc (B1), and hence uε∈C2(B1).

Step 2. The solutions uε are stable.

Since uε6u, it follows by the definition of fε that f ′−(u)>(fε)
′
−(uε) in B1. Hence,

the stability of u gives thatˆ
B1

|∇ξ|2 dx>
ˆ
B1

f ′−(u) ξ2 dx>
ˆ
B1

(fε)
′
−(uε) ξ

2 dx
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for all ξ∈C∞c (B1). Thus, uε is stable.

Step 3. uε"u as ε#0.

Recall that uε6uε′6u for ε′<ε, and that the functions uε are uniformly bounded

in W 1,2 (see (4.5) and (4.6)). Assume by contradiction that uε"u
∗6u as ε#0 and u∗ 6≡u.

Then, by the convergence of fε to f , u∗ solves

−∆u∗= f(u∗) in B1, u−u∗ ∈W 1,2
0 (B1), u−u∗> 0, u−u∗ 6≡ 0,

and thus, by the Harnack inequality applied to the superharmonic function u−u∗, for

any r<1 there exists a positive constant δr such that u−u∗>δr>0 inside Br. On the

other hand, testing the stability inequality for u with u−u∗, we obtain

ˆ
B1

(f(u)−f(u∗))(u−u∗) dx=

ˆ
B1

|∇(u−u∗)|2 dx>
ˆ
B1

f ′−(u)(u−u∗)2 dx.

Recalling (4.1) and that u>u∗, this leads to

f ′−(u)(u−u∗)2 = (f(u)−f(u∗))(u−u∗)

a.e. in B1 and (since f is convex) we deduce that f is linear in the interval [u∗(x), u(x)]

for a.e. x∈B1.

Let r<1 and note that the intervals [u∗(x), u(x)] have length at least δr for a.e.

x∈Br. Hence, since u and u∗ belong to W 1,2(Br), the union of these intervals as x

varies a.e. in Br covers all the interval (infBr u
∗, supBr u).(14) This leads to f being

linear on the whole interval (infBr u
∗, supBr u). Letting r!1, this gives that f is linear

on (infB1
u∗, supB1

u), contradicting f ′−(supB1
u)=+∞ (recall (4.3)) and concluding the

proof.

As a consequence, we find the following.

Corollary 4.3. The interior estimates of Theorem 1.2 extend to all weak solutions

in the class S(B1).

Proof. In case (i) of Proposition 4.2, when supB1
u<+∞, we have that the limits of

f(t) and f ′−(t) as t"supB1
u, exist and are finite. This follows from f being convex and

Lipschitz in (−∞, supB1
u), as stated in case (i). Thus, we can extend f on [supB1

u,+∞)

(14) Here it is crucial that the union of these intervals covers the full interval (infBr u
∗, supBr u),

and not just a.e. A way to see this is to note that, since the intervals [u∗(x), u(x)] have length at least δr,

if this was not true, then the essential image of u (resp. u∗) would miss an interval of length δr inside its
image. However, W 1,2 functions cannot jump between two different values, as can be seen by using the

classical De Giorgi’s intermediate value lemma (see for instance [16, Lemma 1.4], or [21, Lemma 3.13]
for an even simpler proof).
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to a globally Lipschitz, non-decreasing, convex function in all of R, and then apply

Theorem 1.2. Obviously, there is no need to make the extension if supB1
u=+∞.

In case (ii) of Proposition 4.2, take r<1. Since fε is Lipschitz on (−∞, supBr uε], we

can extend fε on [supBr uε,+∞) to a globally Lipschitz, non-decreasing, convex function

in all of R, and then apply Theorem 1.2 (rescaled from B1 to Br) to uε. Letting ε#0,

this proves the validity of the interior estimates of Theorem 1.2 inside Br/2, and letting

r!1 yields the result.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. By assumption, we have a sequence uk∈S(U) of weak solu-

tions of −∆uk=fk(uk), with fk∈C and U being an open set of Rn such that uk!u in

L1
loc(U). Then, by Corollary 4.3 and Lemma A.1, the previous convergence also holds in

W 1,2
loc (U). Also, up to a subsequence, we may assume that uk!u a.e. If n69, the same

results give that uk!u locally uniformly in U . However, since in order to prove u∈S(U)

we are not assuming n69, we cannot use this information.

Step 1. A compactness estimate on fk.

Let M :=supU u∈(−∞,+∞], and let m<M . We claim that

lim sup
k!∞

fk(m)<∞. (4.7)

Indeed, let x0∈U be a Lebesgue point for u such that(15)

m<u(x0)<M,

and set δ :=u(x0)−m>0. Since x0 is a Lebesgue point, there exists ε0>0 such that

B2ε0(x0)⊂U and ˆ

Bε(x0)

|u(x)−u(x0)| dx6 δ

2
for all ε∈ (0, 2ε0].

In particular, for k sufficiently large, we have

m6
ˆ
Bε(x0)

uk dx6
ˆ
Bε(x0)

|uk| dx6 |u(x0)|+δ for all ε∈ (0, 2ε0].

Therefore, since fk is non-decreasing and convex, we get, applying Jensen’s inequality

and Lemma A.1 (a),

fk(m)6 fk

( ˆ
Bε0 (x0)

uk dx

)
6
ˆ
Bε0 (x0)

fk(uk) dx=

ˆ
Bε0 (x0)

(−∆uk) dx

6Cε−2
0

ˆ
B2ε0

(x0)

|uk| dx6Cε−2
0 (|u(x0)|+δ)

(15) The existence of such a point is guaranteed again by the fact that W 1,2 functions cannot jump,
as noted in Step 3 of the proof of Proposition 4.2.
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for a dimensional constant C and all k sufficiently large, proving (4.7).

Notice now that, since

(fk)′−(m)6
fk(m+δ)−fk(m)

δ
6
fk(m+δ)

δ

and m+δ=u(x0)<M , (4.7) applied with m replaced by m+δ implies that the functions

fk are uniformly Lipschitz on (−∞,m]. Hence, by Ascoli-Arzelà theorem and a diagonal

argument, we deduce the existence of a function f : (−∞,M)!R such that that fk!f

uniformly on (−∞,m] for every m<M . Also, since fk are non-negative, non-decreasing,

and convex, extending f to all R by defining f(M):=limt"M f(t) and f(t):=+∞ for

t>M , it is easy to check that f∈C.

Step 2. −∆u=f(u) in U .

For every ξ∈C∞c (U) we have
ˆ
U

∇u·∇ξ dx=−
ˆ
U

u∆ξ dx=− lim
k!∞

ˆ
U

uk∆ξ dx

= lim
k!∞

ˆ
U

∇uk ·∇ξ dx= lim
k!∞

ˆ
U

fk(uk) ξ dx.

(4.8)

Note that, since fk!f locally uniformly on (−∞,M) and uk!u a.e., it follows that

fk(uk)! f(u) a.e. inside {u<M}. (4.9)

In the following, η∈C∞c (U) denotes a non-negative cut-off function such that η=1 on

the support of ξ.

Case 1. M=+∞.

We have ˆ
supp(ξ)

fk(uk)uk dx6
ˆ
U

fk(uk)|uk|η dx=

ˆ
U

(−∆uk)|uk|η dx

=

ˆ
U

∇uk ·∇(|uk|η) dx6C

for some constant C independent of k, where the last bound follows from the W 1,2
loc

boundedness of uk. In particular, given a continuous function ϕ:R![0, 1] such that ϕ=0

on (−∞, 0] and ϕ=1 on [1,+∞), we deduce that
ˆ

supp(ξ)

fk(uk)ϕ(uk−j) dx6
ˆ

supp(ξ)∩{uk>j}
fk(uk) dx

6
1

j

ˆ
supp(ξ)∩{uk>j}

fk(uk)uk dx6
C

j
for all j > 1.

(4.10)
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Therefore, by Fatou’s Lemma (since uk!u a.e. and fk(uk)!f(u) a.e. by (4.9) and

M=+∞), we also have
ˆ

supp(ξ)

f(u)ϕ(u−j) dx6 C

j
for all j > 1. (4.11)

Furthermore, using again that uk!u a.e. and fk(uk)!f(u) a.e., by dominated conver-

gence, we get

fk(uk)[1−ϕ(uk−j)]! f(u)[1−ϕ(u−j)] in L1(supp(ξ)).

This, combined with (4.10) and (4.11), gives that

lim sup
k!∞

ˆ
supp(ξ)

|fk(uk)−f(u)| dx

6 lim sup
k!∞

ˆ
supp(ξ)

fk(uk)ϕ(uk−j) dx+

ˆ
supp(ξ)

f(u)ϕ(u−j) dx6 2C

j
.

By the arbitrariness of j, this proves that

fk(uk)! f(u) in L1(supp(ξ)).

Recalling (4.8), this concludes the proof of Step 2 in the case M=+∞.

Case 2. M<+∞.

Let δ>0. As (uk−M−δ)+>δ inside {uk>M+2δ} and −∆uk=fk(uk)>0, we have

δ

ˆ
supp(ξ)∩{uk>M+2δ}

fk(uk) , dx

= δ

ˆ
supp(ξ)∩{uk>M+2δ}

−∆uk dx

6
ˆ

supp(ξ)∩{uk>M+2δ}
−∆uk (uk−M−δ)+ dx

6
ˆ
U

−∆uk (uk−M−δ)+η dx

=

ˆ
U∩{uk>M+δ}

|∇uk|2η dx+

ˆ
U

∇uk ·∇η (uk−M−δ)+ dx.

Note that, due to the higher integrability estimate (1.6) applied to uk (recall Corol-

lary 4.3), the functions uk are uniformly bounded in W 1,2+γ(supp(η)). Thus, since

1{uk>M+δ}!0 and (uk−M−δ)+!0 a.e., we deduce from Hölder’s inequality that the

last two integrals tend to zero as k!∞, and therefore

lim
k!∞

ˆ
supp(ξ)∩{uk>M+2δ}

fk(uk) dx= 0. (4.12)
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On the other hand, we note that

fk(uk−3δ)6 fk(M−δ)6Cδ

inside

supp(ξ)∩{uk 6M+2δ},

for some constant Cδ depending on δ, but not on k. Hence, due to (4.12) and the uniform

convergence of fk to f on (−∞,M−δ], we get (recall that u6M a.e.)

lim
k!∞

ˆ
U

fk(uk) ξ dx

= lim
k!∞

ˆ
U∩{uk6M+2δ}

fk(uk) ξ dx

= lim
k!∞

(ˆ
U∩{uk6M+2δ}

fk(uk−3δ)ξ dx+

ˆ
U∩{uk6M+2δ}

(fk(uk)−f(uk−3δ)) ξ dx

)
=

ˆ
U

f(u−3δ)ξ dx+ lim
k!∞

ˆ
U∩{uk6M+2δ}

(fk(uk)−f(uk−3δ))ξ dx.

Now, by (4.1), the definition of f ′−, and the stability of uk, we have (recall that η=1 on

the support of ξ)∣∣∣∣ˆ
U

(fk(uk)−f(uk−3δ))ξ dx|6 3δ

ˆ
U

(fk)′−(uk)|ξ| dx6 3δ‖ξ‖∞
ˆ
U

(fk)′−(uk)η2 dx6Cδ,

and therefore, letting δ!0, by monotone convergence we find

lim
k!∞

ˆ
U

fk(uk) ξ dx=

ˆ
U

f(u) ξ dx.

Recalling (4.8), this proves that −∆u=f(u) inside U in the case M<+∞.

Step 3. u is stable.

Due to the convexity of fk, it follows from (4.1) and the stability inequality for uk

that, for any δ>0,

ˆ
U

fk(uk−2δ)−fk(uk−3δ)

δ
ξ2 dx6

ˆ
U

|∇ξ|2 dx for all ξ ∈C∞c (U).

Hence, since uk!u a.e. in U and fk!f locally uniformly in (−∞,m] for all m<M , and

since fk is non-decreasing, it follows by Fatou’s lemma applied to the sequence

1{uk6min{j,M}+δ}δ
−1(fk(uk−2δ)−fk(uk−3δ))
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that, for any j>1,

ˆ
U∩{u6min{j,M}}

f(u−2δ)−f(u−3δ)

δ
ξ2 dx

6 lim inf
k!∞

ˆ
U∩{uk6min{j,M}+δ}

fk(uk−2δ)−fk(uk−3δ)

δ
ξ2 dx

6 lim inf
k!∞

ˆ
U

fk(uk−2δ)−fk(uk−3δ)

δ
ξ2 dx

6
ˆ
U

|∇ξ|2 dx

for all ξ∈C∞c (U). Since

f(t−2δ)−f(t−3δ)

δ
" f ′−(t) as δ! 0, for all t6min{j,M},

the result follows by the monotone convergence theorem, letting first δ!0 and then

j!+∞.

5. Boundary W 1,2+γ estimate

In this section we prove a uniform W 1,2+γ bound near the boundary, in terms only of the

L1 norm of the solution. As in the interior case (see §2), this is done by first controlling

‖∇u‖L2+γ with ‖∇u‖L2 , and then ‖∇u‖L2 with ‖u‖L1 .

We begin by introducing the notion of a small deformation of a half-ball. It will be

useful in several proofs, particularly in that of Lemma 6.2. Given %>0, we denote by B+

%

the upper half-ball in the en direction, namely

B+

% :=B%∩{xn> 0}.

Definition 5.1. Given ϑ>0, we say that Ω⊂Rn is a ϑ-deformation of B+

2 if

Ω = Φ(B2∩{xn> 0})

for some Φ∈C3(B2;Rn) satisfying Φ(0)=0, DΦ(0)=Id, and

‖D2Φ‖L∞(B2)+‖D3Φ‖L∞(B2) 6ϑ.

Here, the norms of D2Φ and D3Φ are computed with respect to the operator norm.

Note that, given a bounded C3 domain, one can cover its boundary with finitely

many small balls so that, after rescaling these balls, the boundary of the domain is given

by a finite union of ϑ-deformations of B+

2 (up to isometries) with ϑ arbitrarily small.
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Proposition 5.2. Let Ω⊂Rn be a ϑ-deformation of B+

2 for ϑ∈
[
0, 1

100

]
. Let u∈

C2(	Ω∩B1) be a non-negative stable solution of −∆u=f(u) in Ω∩B1, with u=0 on

∂Ω∩B1. Assume that f is locally Lipschitz, non-negative, and non-decreasing. Then,

‖∇u‖L2+γ(Ω∩B3/4) 6C‖∇u‖L2(Ω∩B1),

where γ>0 and C are dimensional constants.

The proof will make us of the following lemma, which is based on a Pohozaev-type

identity.

Lemma 5.3. Under the assumptions of Proposition 5.2, we have

‖uν‖L2(∂Ω∩B7/8) 6C‖∇u‖L2(Ω∩B1), (5.1)

where uν is the normal derivative of u at ∂Ω and C is a dimensional constant.

Proof. Take a cut-off function η∈C2
c (B1) such that η=1 in B7/8, and consider the

vector-field X(x):=x+en. Multiplying the identity

div(|∇u|2X−2(X·∇u)∇u) = (n−2)|∇u|2−2(X·∇u)∆u

by η2, and integrating in Ω∩B1, since u=0 on ∂Ω and u>0 in Ω∩B1 (and hence the

exterior unit normal ν is given by −∇u/|∇u|), we obtain

−
ˆ
∂Ω∩B1

(X·ν)|∇u|2η2 dHn−1−
ˆ

Ω∩B1

(|∇u|2X−2(X·∇u)∇u)·∇η2 dx

=

ˆ
Ω∩B1

((n−2)|∇u|2−2(X·∇u)∆u)η2 dx.

Note that, since Ω is a small deformation of B+

2 , we have −X·ν> 1
2 on ∂Ω∩B1. Hence,

since F (t):=
´ t

0
f(s) ds satisfies

X·∇(F (u)) = f(u)X·∇u=−∆uX·∇u,

we obtain
1

2

ˆ
∂Ω∩B1

|∇u|2η2dHn−1 6C

ˆ
Ω∩B1

|∇u|2 dx+2

ˆ
Ω∩B1

X·∇(F (u))η2 dx

=C

ˆ
Ω∩B1

|∇u|2η2 dx−2

ˆ
Ω∩B1

F (u) div(η2X) dx.

We now observe that, since f is non-decreasing, 06F (t)6f(t)t for all t>0. Hence,

noticing that the function g :=|div(η2X)| is Lipschitz, we can bound

−
ˆ

Ω∩B1

F (u) div(η2X) dx6
ˆ

Ω∩B1

u f(u) g dx=−
ˆ

Ω∩B1

u∆u g dx

=

ˆ
Ω∩B1

(|∇u|2g+u∇u·∇g) dx6C

ˆ
Ω∩B1

(u2+|∇u|2) dx,

and we conclude using Poincaré inequality (since u vanishes on ∂Ω∩B1).
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We next give the following proof.

Proof of Proposition 5.2. The key idea is to use a variant of

ξ= (|∇u|−un)η

as test function in the stability inequality (notice that this function vanishes on the

boundary if ∂Ω∩B1⊂{xn=0} is flat).

Step 1. We prove that, whenever B%(z)⊂B7/8, we have

ˆ
Ω∩B%/2(z)

%4A2 dx6C

ˆ
Ω∩B%(z)

(%3|D2u| |∇u|+%2|∇u|2) dx, (5.2)

where A is as in Lemma 2.3.

By scaling and a covering argument, it is enough to prove the result for z=0 and

%=1.(16) Observe that, due to Lemma A.3 (iii),

∇u∈ (W 2,p∩C1)(	Ω∩B7/8) for all p∈ (1,∞).

Since Ω is a ϑ-deformation of B+

2 with ϑ6 1
100 , Φ is a diffeomorphism. Let

Y :=∇(en ·Φ−1) =∇((Φ)−1)n

be the gradient of the pushforward of the n-coordinate xn:B+

1 !R through Φ. Note that

Y is orthogonal to ∂Ω. We define N=Y/|Y|, and note that N belongs to C2(	Ω) and

that N=−ν on ∂Ω.

Consider the following convex C1,1 regularization of the absolute value: for r>0

small, we set

φr(z) := |z| 1{|z|>r}+
(
r

2
+
|z|2

2r

)
1{|z|<r}. (5.3)

Then,

φr(∇u)∈ (W 2,p∩C1)(	Ω∩B7/8) for all p<∞.

Moreover, since u is non-negative and superharmonic, unless u≡0 (in which case there is

nothing to prove), then it follows by the Hopf lemma that |∇u|>c>0 on ∂Ω∩B7/8, for

some constant c. Hence, since ∇u is C1 up to the boundary, for r>0 small enough we

have

φr(∇u) = |∇u| in a neighborhood of ∂Ω inside B7/8. (5.4)

(16) For this, note that when B%(z)⊂Ω we have that (5.2) follows from Lemma 2.3. Note also that
if z∈∂Ω∩B7/8 then, within a small ball centered at z, Ω is (after a translation, rotation, and dilation)

a ϑ-deformation of B+
2 .
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After choosing r>0 small enough such that (5.4) holds, we set

c :=φr(∇u)−N ·∇u,

and we take η∈C2
c (B7/8), with η=1 in B1/2. Note that c≡0 on ∂Ω∩B7/8, and

c∈ (W 2,p∩C1)(	Ω∩B7/8).

Then, since c vanishes on ∂Ω∩B7/8, due to an approximation argument we are allowed

to take ξ=cη as a test function in the stability inequality (1.4). Thus, with this choice,

integration by parts yields

ˆ
Ω∩B1

(∆c+f ′−(u)c) c η2 dx6
ˆ

Ω∩B1

c2|∇η|2 dx. (5.5)

Now note that

(∆c+f ′−(u)c)c= (∆[φr(∇u)]+f ′−(u)φr(∇u))φr(∇u)

−(∆(N ·∇u)+f ′−(u)N ·∇u)(φr(∇u)−N ·∇u)

−(∆[φr(∇u)]+f ′−(u)φr(∇u))N ·∇u.

(5.6)

Since ∆∇u=−f ′−(u)∇u (see Lemma A.3(ii)), we have

(∆[φr(∇u)]+f ′−(u)φr(∇u))φr(∇u) = f ′−(u)φr(∇u)

(
φr(∇u)−

∑
j

uj(∂jφr)(∇u)

)
(5.7)

+φr(∇u)
∑
i,j,k

(∂2
jkφr)(∇u)uijuik. (5.8)

Note that, inside the set {|∇u|6r}, the term (5.8) is non-negative, since φr is convex,

while the term (5.7) is equal to

f ′−(u)φr(∇u)

(
r

2
− |∇u|

2

2r

)
,

and therefore it is also non-negative (all three factors are non-negative). On the other

hand, inside the set {|∇u|>r}, the term (5.7) vanishes, while the term (5.8) equals A2.

Therefore, we conclude that

(∆[φr(∇u)]+f ′−(u)φr(∇u))φr(∇u)>A2 1{|∇u|>r}, (5.9)

where A2 is as in (2.7).
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Coming back to (5.6), we note that

∆(N ·∇u)+f ′−(u)N ·∇u=
∑
i

∆N iui+2
∑
i,j

N i
juij , (5.10)

so it follows from the bound |φr(∇u)|6|∇u|+r that∣∣∣∣ˆ
Ω∩B1

(∆(N ·∇u)+f ′−(u)N ·∇u)(φr(∇u)−N ·∇u)η2 dx

∣∣∣∣
6C

ˆ
Ω∩B1

(|∇u|+r)(|D2u|+|∇u|) dx.
(5.11)

Also, since η∈C2
c (B7/8), integrating by parts and recalling (5.4), we have

ˆ
Ω∩B1

∆[φr(∇u)](N ·∇u)η2 dx

=

ˆ
Ω∩B1

φr(∇u)∆(N ·∇u)η2 dx

+

ˆ
Ω∩B1

(2φr(∇u)∇(N ·∇u)·∇(η2)+|∇u|(N ·∇u)∆(η2)) dx

+

ˆ
∂Ω∩B1

(|∇u|ν(N ·∇u)η2−|∇u|((N ·∇u)η2)ν)dHn−1.

(5.12)

Since N=∇u/|∇u|=−ν on the boundary, it follows that, on ∂Ω∩B1, we have

|∇u|νN ·∇u=−
∑
i,j uijujuj

|∇u|
and |∇u|(N ·∇u)ν =−

∑
i,j

N i
juiuj−

∑
i,j uijujuj

|∇u|
,

and therefore, due to Lemma 5.3,∣∣∣∣ˆ
∂Ω∩B1

(|∇u|ν(N ·∇u)η2−|∇u|((N ·∇u)η2)ν) dHn−1

∣∣∣∣6C

ˆ
∂Ω∩B7/8

|uν |2 dHn−1

6C

ˆ
Ω∩B1

|∇u|2 dx. (5.13)

Thus, combining (5.12) and (5.10), and then using (5.13), we conclude that∣∣∣∣ˆ
Ω∩B1

(∆[φr(∇u)]+f ′−(u)φr(∇u))N ·∇u η2 dx

∣∣∣∣6C

ˆ
Ω∩B1

(|∇u|+r)(|D2u|+|∇u|) dx.

Combining this bound with (5.5), (5.6), (5.9), and (5.11), we finally obtain

ˆ
Ω∩B1

A2η21{|∇u|>r} dx6C

ˆ
Ω∩B1

(|∇u|+r)2+(|∇u|+r)
(
|D2u|+|∇u|

)
dx.
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Recalling that η=1 in B1/2, letting r#0 this proves (5.2) for z=0 and %=1, as desired.

Step 2. We prove that

‖A‖2L2(Ω∩B7/8) 6C‖∇u‖2L2(Ω∩B1). (5.14)

It suffices to prove that, for every B%(z)⊂B7/8 and ε>0, we have

%2‖A‖2L2(Ω∩B2%/5(z)) 6 ε%2‖A‖2L2(Ω∩B%(z))+
C

ε
‖∇u‖2L2(Ω∩B%(z)), (5.15)

where A is as in (2.7). Indeed, it follows from Lemma A.4 applied with

σ(B) := ‖A‖2L2(Ω∩B)

that (5.15) leads to (5.14) with Ω∩B7/8 replaced by Ω∩B7/16. A covering and scaling

argument then gives (5.14) with Ω∩B7/8 in the left-hand side.

To prove (5.15), we argue as at the beginning of Step 1 to note that we may assume

z=0 and %=1.

We observe that, for any given η∈C2
c (B7/8) with η≡1 in B4/5, it follows from (2.11)

and (2.12) that

−
ˆ

Ω∩B1

div(|∇u|∇u)η2 dx>
ˆ

Ω∩B1

(−2∆u−CA)|∇u| η2 dx. (5.16)

Hence, since |D2u|6|∆u|+CA and ∆u60, using (5.16) we get

ˆ
Ω∩B1

|D2u| |∇u|η2 dx6

∣∣∣∣12
ˆ

Ω∩B1

div(|∇u|∇u)η2 dx

∣∣∣∣+C ˆ
Ω∩B1

A |∇u|η2 dx. (5.17)

On the other hand, using Lemma 5.3, we obtain∣∣∣∣ˆ
Ω∩B1

div(|∇u|∇u)η2 dx

∣∣∣∣= ∣∣∣∣−ˆ
∂Ω∩B1

|uν |2η2 dHn−1−
ˆ

Ω

|∇u|∇u·∇(η2) dx

∣∣∣∣
6C

ˆ
Ω∩B1

|∇u|2 dx.
(5.18)

Thus, combining (5.17) and (5.18), we get

ˆ
Ω∩B1

|D2u| |∇u|η2 dx6C

ˆ
Ω∩B1

A |∇u|η2 dx+C

ˆ
Ω∩B1

|∇u|2 dx. (5.19)
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Recalling that η≡1 in B4/5, (5.19) and (5.2) yield, for every ε∈(0, 1),

ˆ
Ω∩B2/5

A2 dx6C‖∇u‖2L2(Ω∩B4/5)+C

ˆ
Ω∩B4/5

|D2u| |∇u| dx

6C‖∇u‖2L2(Ω∩B1)+C

ˆ
Ω∩B1

A |∇u| dx

6
C

ε
‖∇u‖2L2(Ω∩B1)+ε

ˆ
Ω∩B1

A2 dx,

which proves (5.15).

Step 3. We show that

ˆ
Ω∩B4/5

∣∣div(|∇u| ∇u)
∣∣ dx6C

ˆ
Ω∩B1

|∇u|2 dx.

As in the previous step, we take η∈C2
c (B7/8) with η≡1 in B4/5. Then, it suffices to

combine (2.11), (2.12), (5.19), and (5.14), to get

ˆ
Ω∩B4/5

∣∣div(|∇u|∇u)
∣∣ dx

6
ˆ

Ω∩B4/5

−2|∇u|∆u dx+C

ˆ
Ω∩B4/5

|∇u| A dx

6C

ˆ
Ω∩B7/8

A2 dx+C

ˆ
Ω∩B1

|∇u|2 dx+C

(ˆ
Ω∩B4/5

|∇u|2 dx
)1/2(ˆ

Ω∩B4/5

A2 dx

)1/2
6C

ˆ
Ω∩B1

|∇u|2 dx,

as desired.

Step 4. Conclusion.

Here it is convenient to assume, after multiplying u by a constant, that

‖∇u‖L2(Ω∩B1) = 1.

Due to Step 3, we can repeat the same argument as the one used in Step 2 in the

proof of Proposition 2.4 to deduce that, for a.e. t>0,

ˆ
Ω∩{u=t}∩B3/4

|∇u|2 dHn−1 6C

ˆ
Ω∩B1

|∇u|2 dx=C. (5.20)



230 x. cabré, x. ros-oton, a. figalli and j. serra

Also, since u vanishes on ∂Ω∩B1, setting h(t)=max{1, t}, by the Sobolev embedding we

deduce that ˆ
R+

dt

ˆ
Ω∩{u=t}∩B1∩{|∇u|6=0}

h(t)p|∇u|−1 dHn−1

6 |Ω∩B1∩{u< 1}|+
ˆ

Ω∩B1

up dx6C,

(5.21)

for some p>2. Hence, choosing dimensional constants q>1 and θ∈
(
0, 1

3

)
such that

p/q=(1−θ)/θ, we can writeˆ
Ω∩B3/4

|∇u|3−3θ dx

=

ˆ
R+

dt

ˆ
Ω∩{u=t}∩B3/4∩{|∇u|6=0}

h(t)pθ−q(1−θ)|∇u|−θ+2(1−θ) dHn−1

6

(ˆ
R+

dt

ˆ
Ω∩{u=t}∩B1∩{|∇u|6=0}

h(t)p|∇u|−1dHn−1

)θ
×

×
(ˆ

R+

dt

ˆ
Ω∩{u=t}∩B3/4∩{|∇u|6=0}

h(t)−q|∇u|2 dHn−1

)1−θ
,

(5.22)

and, by (5.21) and the very same argument as the one used at the end of Step 3 in the

proof of Proposition 2.4 (now using (5.20)), we obtainˆ
Ω∩B3/4

|∇u|3−3θ dx6C,

which concludes the proof.

Remark 5.4. Note that, in Step 4 of the previous proof, one may also take any

exponent p>2, and then θ= 1
3 and q= 1

2p>1. With these choices, if we normalize u

so that ‖u‖Lp(Ω∩B1)=1 (instead of the normalization ‖∇u‖L2(Ω∩B1)=1 made in Step 4

of the previous proof), setting h(t):=max{1, t}, it follows from (5.22), (5.21), and the

inequality in (5.20), that

ˆ
Ω∩B3/4

|∇u|2 dx6C

(ˆ
Ω∩B1

|∇u|2 dx
)2/3

whenever ‖u‖Lp(Ω∩B1) = 1, (5.23)

where we used that ˆ
R+

h(t)−q dt6C.

In the general case, applying this estimate to u/‖u‖Lp(Ω∩B1), we deduce that

ˆ
Ω∩B3/4

|∇u|2 dx6C

(ˆ
Ω∩B1

|u|p dx
)2/3p(ˆ

Ω∩B1

|∇u|2 dx
)2/3

(5.24)

for every p>2.
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As a consequence of this remark, we deduce the following important a-priori esti-

mate.

Proposition 5.5. Under the assumptions of Proposition 5.2, there exists a dimen-

sional constant C such that

‖∇u‖L2(Ω∩B1/2) 6C‖u‖L1(Ω∩B1). (5.25)

Proof. By Remark 5.4, we can choose p∈(2, 2∗) (here, 2∗ is the Sobolev exponent,

or any number less than infinity, if n=2) and then ζ∈(0, 1) such that p=ζ2∗+(1−ζ), to

obtain

‖∇u‖L2(Ω∩B3/4) 6C‖u‖1/3Lp(Ω∩B1) ‖∇u‖
2/3
L2(Ω∩B1)

6C‖u‖ζ/3
L2∗ (Ω∩B1)

‖u‖(1−ζ)/3L1(Ω∩B1) ‖∇u‖
2/3
L2(Ω∩B1)

6C‖∇u‖(2+ζ)/3
L2(Ω∩B1) ‖u‖

(1−ζ)/3
L1(Ω∩B1)

6 ε‖∇u‖L2(Ω∩B1)+
C

ε
‖u‖L1(Ω∩B1).

Hence, applying this estimate to the functions ur,y(x):=u(y+rx) for all balls Br(y)⊂B1

(as in the proof of Proposition 2.5), we can use Lemma A.4 with

σ(B) = ‖∇u‖L2(Ω∩B)

to conclude.

6. Boundary Cα estimate for n69: Proof of Theorem 1.5

In order to prove Theorem 1.5, as observed at the beginning of §5, every bounded domain

of class C3 can be covered by finitely many balls so that, after rescaling the balls to have

size 1, inside each ball the boundary is a ϑ-deformation of B+

2 for some ϑ6 1
100 . Hence,

by applying Propositions 5.2 and 5.5, we deduce that there exists a neighborhood of ∂Ω

in which the W 1,2+γ-norm of u is controlled by ‖u‖L1(Ω). Combining this information

with (1.6) and a covering argument, we conclude the validity of (1.9). Hence, we are left

with proving (1.10).

By the same reasoning as the one we just did, but now using (1.7) instead of (1.6),

to show (1.10) when n69 it suffices to obtain a uniform Cα control near the boundary

when ∂Ω is a small ϑ-deformation of B+

2 (recall Definition 5.1). Hence, to conclude the

proof of Theorem 1.5, it suffices to show the following.
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Theorem 6.1. Let n69, ϑ∈
[
0, 1

100

]
, and Ω⊂Rn be a ϑ-deformation of B+

2 . As-

sume that u∈C0(	Ω∩B1)∩C2(Ω∩B1) is a non-negative stable solution of

{
−∆u= f(u) in Ω∩B1,

u= 0 on ∂Ω∩B1,

for some non-negative, non-decreasing, convex function f :R!R. Then,

‖u‖Cα(	Ω∩B1/2) 6C‖u‖L1(Ω∩B1),

where α>0 and C are dimensional constants.

To prove this theorem, we first need the boundary analogue of the key interior

estimate (2.1).

Lemma 6.2. Let Ω⊂Rn be a ϑ-deformation of B+

2 for ϑ∈
[
0, 1

100

]
, and let us assume

that u∈C2(	Ω∩B1) is a non-negative stable solution of −∆u=f(u) in Ω∩B1, with u=0

on ∂Ω∩B1. Assume that f is locally Lipschitz.

Then, there exists a dimensional constant C such that, for all η∈C0,1
c (B1),

ˆ
Ω∩B1

(((n−2)η+2x·∇η)η|∇u|2−2(x·∇u)∇u·∇(η2)−|x·∇u|2 |∇η|2) dx

6Cϑ

ˆ
Ω∩B1

|∇u|2(η2+|x| |∇(η2)|+|x|2 |∇η|2) dx.

Proof. The key idea is to use a variant of ξ=(x·∇u)η as test function in the stability

inequality (note that this function vanishes on the boundary if ∂Ω∩B1={xn=0}∩B1 is

flat).

We consider the vector field

X(x) = (DΦ)(Φ−1(x))·Φ−1(x) for all x∈Ω∩B1,

with Φ as in Definition 5.1. Note that X is tangential to ∂Ω since, for x∈∂Ω∩B1, Φ−1(x)

is tangent to the flat boundary of B+

1 . Hence, since u=0 on ∂Ω∩B1, we deduce that

X·∇u=0 on ∂Ω∩B1. Also, since Ω is a ϑ-deformation of B+

2 , it is easy to check that

|X−x|6Cϑ|x|2, |∇X−Id |6Cϑ|x|, and |D2X|6Cϑ, (6.1)

where C is a dimensional constant. The bound on D2X follows by a direct computation,

while the two first ones follow by integrating the latter and using that ∇X(0)=Id and

X(0)=0.
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Set c:=X·∇u, and take η∈C2
c (B1). Note that c≡0 on ∂Ω∩B1 and

c∈ (W 2,p
loc ∩C

1)(	Ω∩B1)

for all p<∞ (due to Lemma A.3). Hence, arguing as usual by approximation, one is

allowed to take ξ=cη as a test function in the stability inequality (1.4). Thus, using that

c vanishes on ∂Ω∩B1, integration by parts yields

ˆ
Ω∩B1

(∆c+f ′−(u)c)cη2 dx6
ˆ

Ω∩B1

c2|∇η|2 dx. (6.2)

By a direct computation, it follows that

∆c=X·∇∆u+2∇X :D2u+∆X·∇u

=−f ′−(u)X·∇u+2(∇X)s :D2u+∆X·∇u

=−f ′−(u) c+2 div((∇X)s∇u)+[∆X−2div((∇X)s)]·∇u,

where (∇X)s := 1
2 (∇X+(∇X)∗) is the symmetrized version of ∇X and we used that

∇X:D2u=(∇X)s :D2u (since D2u is a symmetric matrix).

Hence, substituting this identity in (6.2) and using (6.1) we get

ˆ
Ω∩B1

|X·∇u|2|∇η|2 dx

> 2

ˆ
Ω∩B1

(X·∇u)div
(
(∇X)s∇u

)
η2 dx−Cϑ

ˆ
Ω∩B1

|∇u|2η2 dx.

(6.3)

Noticing that

|∇X−Id |+|(∇X)s−Id |+|divX−n|+|∇(∇X)s|6Cϑ

(as a consequence of (6.1)), we see that

div(2(X·∇u)[(∇X)s∇u]−{[(∇X)s∇u]·∇u}X)

= 2(X·∇u)div((∇X)s∇u)+2[∇X∇u]·[(∇X)s∇u]

−divX{[(∇X)s∇u]·∇u}−{[X·∇(∇X)s]·∇u}·∇u

= 2(X·∇u)div((∇X)s∇u)+(2−n)|∇u|2+O(ϑ|∇u|2).

Hence, using this identity in (6.3), and taking into account (6.1) and that X·∇u=0 and
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X·ν=0 on ∂Ω∩B1, we getˆ
Ω∩B1

|x·∇u|2|∇η|2 dx+Cϑ

ˆ
Ω∩B1

|∇u|2 η2 dx+Cϑ

ˆ
Ω∩B1

|∇u|2 |x|2|∇η|2 dx

>
ˆ

Ω∩B1

(div(2(X·∇u)[(∇X)s∇u]−{[(∇X)s∇u]·∇u}X)+(n−2)|∇u|2)η2 dx

=

ˆ
Ω∩B1

(−2(X·∇u)[(∇X)s∇u]·∇(η2)+{[(∇X)s∇u]·∇u}X·∇(η2)) dx

+

ˆ
Ω∩B1

(n−2)|∇u|2η2 dx

>
ˆ
B1

(−2(x·∇u)∇u·∇(η2)+|∇u|2x·∇(η2)+(n−2)|∇u|2η2) dx

−Cϑ
ˆ

Ω∩B1

|∇u|2 |x| |∇(η2)| dx.

This proves the result for η∈C2
c (B1), and the general case follows by approximation.

To prove Theorem 6.1, we will use a blow-up argument that will rely on the fol-

lowing Liouville-type result in a half-space. In the blown-up domains, the constant ϑ in

Lemma 6.2 will tend to zero. Recall that the class S(U), for U⊂Rn, was defined in (4.2).

We use the notation

Rn+ :=Rn∩{xn> 0}.

Proposition 6.3. When 36n69, there exists a dimensional constant αn>0 such

that the following statement holds. Assume that u:Rn+!R belongs to W 1,2
loc (Rn+)∩C0

loc(Rn+),

u∈S(Rn+), and u=0 on {xn=0} in the trace sense. Suppose in addition that, for some

α∈(0, αn) and γ>0, denoting uR(x):=u(Rx), we have

‖∇uR‖L2+γ(B+
3/2) 6C1‖∇uR‖L2(B+

2 ) 6C2R
α for all R> 1, (6.4)

with constants C1 and C2 independent of R, and that u satisfies
ˆ
Rn+

(((n−2)η+2x·∇η)η|∇u|2−2(x·∇u)∇u·∇(η2)−|x·∇u|2|∇η|2) dx6 0 (6.5)

for all η∈C0,1
c (Rn+). Then, u≡0.

Proof. Let us define, for %>0,

D(%) := %2−n
ˆ
B+
%

|∇u|2 dx and R(%) :=

ˆ
B+
%

|x|−n|x·∇u|2 dx.

We divide the proof in three steps. As we shall see, for the validity of Step 1, the

assumption 36n69 is crucial.
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Step 1. We prove that, for all %>0,

R(%)6C%2−n
ˆ
B+

2%\B
+
%

|∇u|2 dx (6.6)

for some dimensional constant C>0.

Let ψ∈C∞c (B2) be some radial decreasing non-negative cut-off function with ψ≡1

in B1, and set ψ%(x):=ψ(x/%). Then, as in the interior case, for a<n and ε∈(0, %), we

use the Lipschitz function

ηε(x) := min{|x|−a/2, ε−a/2}ψ%(x)

as a test function in (6.5). Hence, noting that ∇ψ% has size C/% and vanishes outside of

the annulus B2%\B%, and throwing away the term

ˆ
Rn+∩Bε

(n−2)η2
ε |∇u|2dx,

we obtain
ˆ
Rn+\Bε

(
(n−2−a)|∇u|2+

(
2a− a

2

4

)
|x·∇u|2 |x|−2

)
|x|−aψ2

% dx

6C(n, a)%−a
ˆ
B+

2%\B%
|∇u|2 dx.

Choosing a:=n−2, since

2a− 1
4a

2 = (n−2)
(
2− 1

4 (n−2)
)

= 1
4 (n−2)(10−n)> 0

for 36n69, we obtain

ˆ
Rn+\Bε

|x|−n |x·∇u|2 ψ2
% dx6C%2−n

ˆ
B+

2%\B%
|∇u|2 dx.

Recalling that ψ2
%≡1 in B%, the claim follows by letting ε#0.

Step 2. We prove that there exists a dimensional constant C such that, if for some

R>1 we have ˆ
B+

1

|∇uR|2 dx>
1

2

ˆ
B+

2

|∇uR|2 dx,

then ˆ
B+

3/2

|∇uR|2 dx6C

ˆ
B+

3/2\B
+
1

|x|−n |x·∇uR|2 dx.
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The proof is by compactness. We assume by contradiction that we have a sequence

uk :=
uRk

‖∇uRk‖L2(B+
3/2)

∈S(B+

2 )∩W 1,2
loc (Rn+),

with uk=0 on {xn=0}, satisfying

ˆ
B+

1

|∇uk|2 dx>
1

2

ˆ
B+

2

|∇uk|2 dx,

ˆ
B+

3/2

|∇uk|2 dx= 1, and

ˆ
B+

3/2\B
+
1

|x|−n|x·∇uk|2 dx! 0. (6.7)

Note that, since
´
B+

2
|∇uk|2 dx62, thanks to Lemma A.1 and our interior W 1,2+γ es-

timate there exists a function u such that, up to a subsequence, uk!u strongly in

W 1,2
loc (B+

2 ). On the other hand, using the first bound in (6.4), for every δ∈(0, 1) we have

ˆ
B+

3/2∩{xn6δ}
|∇uk|2 dx6

(ˆ
B+

3/2∩{xn6δ}
|∇uk|2+γ dx

)2/(2+γ)

|B+

3/2∩{xn6 δ}|γ/(2+γ)

6Cδγ/(2+γ).

This means that the mass of |∇uk|2 near the boundary can be made arbitrarily small,

by choosing δ small enough. Combining this information with the convergence of uk!u

in W 1,2
loc (B+

2 ), we deduce that uk!u strongly in W 1,2(B+

3/2). Moreover, by Theorem 4.1,

we obtain that u∈S(B+

3/2), and taking the limit in (6.7), we obtain

ˆ
B+

3/2

|∇u|2 dx= 1 and x·∇u≡ 0 in B+

3/2\B
+

1 .

Moreover, since the trace operator is continuous in W 1,2(B+

3/2), we deduce that

u= 0 on {xn = 0}∩B3/2.

Hence, we have found a function u∈S(B+

3/2) which is zero-homogeneous in the half-

annulus B+

3/2\B
+

1 . In particular, since u is a weak solution of −∆u=f(u) in B+

3/2 with

−∆u= f(u)∈L1
loc∩C0(B+

3/2\B
+

1 ),

this is only possible if f≡0 (this follows from the fact that ∆u is (−2)-homogeneous while

f(u) is zero-homogeneous). It follows that u is a zero-homogeneous harmonic function

in the half-annulus B+

3/2\B
+

1 vanishing on ∂(B+

3/2\B
+

1 )∩{xn=0}. Hence, as in the proof

of Lemma 3.1, the supremum and infimum of u are attained at interior points, and thus
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u must be zero by the strong maximum principle. Furthermore, exactly as in the proof

of Lemma 3.1, the superharmonicity of u combined with the fact that u vanishes in

B+

3/2\B
+

1 gives that u vanishes in B+

3/2. This contradicts the fact that

ˆ
B+

3/2

|∇u|2 dx= 1

and concludes the proof.

Step 3. Conclusion.

Exactly as in Step 1 of the proof of Theorem 1.2, using Lemma 3.2 (combined with

Steps 1 and 2 above) we deduce that

‖x·∇urR‖L2(B+
1 ) 6Crαn‖∇uR‖L2(B+

1 ) for all r∈
(
0, 1

2

)
and R> 1,

where C and αn>0 are dimensional constants. Hence, since by assumption

‖∇uR‖L2(B+
1 ) 6CRα

with α<αn, given a constant M>0, we choose r=M/R and let R!∞ to find

‖x·∇uM‖L2(B+
1 ) = 0.

Since uM∈S(B+

1 ) and uM=0 on {xn=0}∩B+

1 , as in the previous Step 2, we conclude

that uM≡0. Since M>0 is arbitrary, the proof is finished.

We can now prove Theorem 6.1.

Proof of Theorem 6.1. Notice that, as in the interior case, we may assume that

36n69 by adding superfluous variables and considering a “cylinder” with base Ω. Also,

by Lemma A.3, u∈C2(	Ω∩B1).

Recalling that Ω is a ϑ-deformation of B+

2 with ϑ∈
[
0, 1

100

]
, it suffices to prove that

there exists a dimensional constant C such that

r2−n
ˆ

Ω∩Br
|∇u|2 dx6Crαn‖∇u‖2L2(Ω∩B1) for all r∈ (0, 1), (6.8)

where αn is given by Proposition 6.3. Indeed, given r∈
(
0, 1

4

)
, there exists a dimensional

constant c∈(0, 1) such that Bcr(ren)⊂Ω, and the L∞ estimate from (1.7) applied in this

ball, together with the inclusion Bcr(ren)⊂B2r, give

u(ren)6Cr−n
ˆ
Bcr(ren)

u dx6Cr−n
ˆ

Ω∩B2r

u dx.
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Thus, once (6.8) is proven, it follows from this, the Sobolev inequality, and Proposi-

tion 5.5, that

u(ren)6Cr−n
ˆ

Ω∩B2r

u dx6C

(
r2−n

ˆ
Ω∩B2r

|∇u|2 dx
)1/2

6Crαn/2‖∇u‖L2(Ω∩B1/2) 6C rαn/2‖u‖L1(Ω∩B1)

for all r∈
(
0, 1

4

)
. Applying this estimate to the functions

uy(z) :=u(y+z)

with y∈∂Ω∩B1/2, we deduce that

u(x)6C dist(x, ∂Ω)αn/2‖u‖L1(Ω∩B1) for all x∈Ω∩B1/2.

Combining this growth control with (1.7), it follows by a standard argument that

‖u‖Cβ(	Ω∩B1/2) 6C‖u‖L1(Ω∩B1),

where β :=min
{

1
2αn, α

}
, with α as in (1.7). Hence, we only need to prove (6.8).

We argue by contradiction, similarly to [33], [31]. Assume that there exist a sequence

of radii rk∈(0, 1) and of stable solutions uk with non-linearities fk in domains Ωk, with

uk, fk, and Ωk satisfying the hypotheses of the theorem and such that

r2−n
k

ˆ
Ωk∩Brk

|∇uk|2 dx> krαnk ‖∇uk‖
2
L2(Ωk∩B1) (6.9)

for all k∈N. Then, for r∈(0, 1), we define the non-increasing function

Θ(r) := sup
k

sup
s∈(r,1)

s2−n ´
Ωk∩Bs |∇uk|

2 dx

sαn‖∇uk‖2L2(Ωk∩B1)

,

and note that Θ is finite, since obviously Θ(r)6r2−n−αn<∞ for all r>0. By (6.9) and

since Θ is non-increasing, we have Θ(r)"+∞ as r#0. Also, by the definition of Θ, for

any given m∈N, there exists r̄m∈(1/m, 1) and km such that

Θ(r̄m)>
r̄2−n
m

´
Ωkm∩Br̄m

|∇ukm |2 dx
r̄αnm ‖∇ukm‖2L2(Ωkm∩B1)

>
9

10
Θ

(
1

m

)
>

9

10
Θ(r̄m). (6.10)

Since Θ(1/m)"∞ as m"∞, it follows that r̄m#0.

Consider the sequence of functions

ūm :=
ukm(r̄m ·)

r̄αnm Θ(r̄m) ‖∇ukm‖2L2(Ωkm∩B1)

,
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and denote

Ω̃m :=
1

r̄m
Ωkm .

Then, Ω̃m!Rn+ locally uniformly as m!∞, and for all R∈[1, 1/r̄m) we have

R2−n
ˆ

Ω̃m∩BR
|∇ūm|2 dx=

(Rr̄m)2−n ´
Ωkm∩BRr̄m

|∇ukm |2 dx
r̄αnm Θ(r̄m)‖∇ukm‖2L2(Ωkm∩B1)

6
(Rr̄m)2−n ´

Ωkm∩BRr̄m
|∇ukm |2 dx

(Rr̄m)αnΘ(Rr̄m) ‖∇ukm‖2L2(Ωkm∩B1)

Rαn 6Rαn ,

(6.11)

where we used that Θ(Rr̄m)6Θ(r̄m), since R>1.

On the other hand, using (6.10) we have

ˆ
Ω̃m∩B1

|∇ūm|2 dx>
9

10
. (6.12)

Now, similarly to Step 2 in the proof of Proposition 6.3, due to Proposition 5.2 and

Lemma A.1 there exists a function ū such that, up to a subsequence, ūm!ū strongly

in W 1,2
loc (Rn+). In addition, since Ω̃m!Rn+, using again Proposition 5.2 we see that, for

every R>1 and δ∈(0, 1),

ˆ
Ω̃m∩BR∩{xn6δ}

|∇ūm|2 dx

6

(ˆ
Ω̃m∩BR∩{xn6δ}

|∇ūm|2+γ dx

)2/(2+γ)

|Ω̃m∩BR∩{xn6 δ}|2/(2+γ)

6C(R)(δγ/(2+γ)+om(1)),

where om(1)!0 as m!∞. Hence, as m!∞, the mass of |∇ūm|2 near the boundary can

be made arbitrarily small by choosing δ small enough, and combining this information

with the convergence of ūm!ū inW 1,2
loc (Rn+), we deduce that ūm!ū strongly inW 1,2(B+

R)

for all R>1.

Moreover, by Theorem 4.1, we obtain that ū∈S(Rn+), and taking the limit in (6.11)

and (6.12), we obtain

ˆ
B+

1

|∇ū|2 dx> 9

10
and ‖∇ūR‖2L2(B+

1 )
=R2−n

ˆ
B+
R

|∇ū|2 dx6Rαn for all R> 1,

where ūR :=ū(R ·). Moreover, since the trace operator is continuous inW 1,2(B+

R), we have

ū=0 on {xn=0}. The last bound (applied with R replaced by 2R) and Proposition 5.2

give that ū satisfies the hypothesis (6.4) in Proposition 6.3 with α= 1
2αn.
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Therefore, to show that ū satisfies the assumptions Proposition 6.3, with α= 1
2αn, it

only remains to prove that (6.5) holds (with u replaced by ū). This is a consequence of

Lemma 6.2: since Ω̃m/R is a ϑ-deformation of B+

2 , with ϑ=CRr̄m, for all η∈C0,1
c (B+

1 ),

we have

ˆ
(Ω̃m/R)∩B1

(((n−2)η+2x·∇η)η|∇ūm,R|2−2(x·∇ūm,R)∇ūm,R ·∇(η2)) dx

−
ˆ

(Ω̃m/R)∩B1

|x·∇ūm,R|2|∇η|2 dx

6CRr̄m

ˆ
(Ω̃m/R)∩B1

|ūm,R|2 dx,

and hence, by letting m!∞, we deduce that

ˆ
B+

1

(((n−2)η+2x·∇η)η|∇ūR|2−2(x·∇ūR)∇ūR ·∇(η2)−|x·∇ūR|2|∇η|2) dx6 0

for all η∈C0,1
c (B+

1 ). Since this holds for all R>1, this proves that (6.5) holds for every

η∈C0,1
c (Rn+), with u replaced by ū. Thus, it follows by Proposition 6.3 that ū≡0, which

is a contradiction since
´
B+

1
|∇ū|2 dx> 9

10 .

As explained at the beginning of this section, Theorem 1.5 follows immediately from

Theorem 6.1. Thus, it only remains to give the following.

Proof of Corollary 1.6. Since u∈W 1,2
0 (Ω), it follows from (1.3) and a standard ap-

proximation argument that

ˆ
Ω

f(u) dist( · , ∂Ω) dx6C‖∇u‖L2(Ω).

Thus, due to the approximation argument in [20, Theorem 3.2.1 and Corollary 3.2.1],

u can be written as the limit of classical solutions uε∈C2
0 (	Ω) of −∆uε=(1−ε)f(uε) in

Ω, as ε#0. Thus, applying Theorem 1.5 to the functions uε, using Proposition B.1, and

letting ε#0, the result follows.

7. Estimates for n>10: Proof of Theorem 1.9

In this section, we show how our method also gives sharp information in higher di-

mensions. We first deal with the interior case, and we prove a strengthened version of

Theorem 1.9. Recall the definition of the Morrey space Mp,β(Ω) given in §1.3. Here,

p>1 and β∈(0, n).
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Theorem 7.1. Let u∈C2(B1) be a stable solution of

−∆u= f(u) in B1,

with f :R!R locally Lipschitz, and assume that n>10. Then,

‖u‖M2β/(β−2),β(B1/4)+‖∇u‖M2,β(B1/4) 6C‖u‖L1(B1) for all β ∈ (n−2
√
n−1−2, n),

for some constant C depending only on n and β. In particular, (1.13) holds.

Recall that, in the radially symmetric case,

if u is radial and ∇u∈M2,β(B1/4), then u∈Lp(B1/8) for all p<
2n

β−2
. (7.1)

Indeed, this follows from [11] after cutting-off u outside B1/8 to have compact support

in B1/4.

Thus, Theorem 7.1 together with (7.1) yield the following Lp bound for radial solu-

tions:

‖u‖Lp(B1/8) 6C‖u‖L1(B1) for all p< p̄n :=
2n

n−2
√
n−1−4

. (7.2)

Hence, in the radial case, we recover the Lp estimates established by Capella and the

first author in [10], which are known to be sharp: (7.2) cannot hold for p=p̄n.

Unfortunately, as shown recently by Charro and the first author in [11], the embed-

ding (7.1) is false for non-radial functions,(17) and thus it is not clear whether (7.2) holds

in the non-radial case, too. From ∇u∈M2,β , the best one can say is

u∈M2β/(β−2),β ⊂L2β/(β−2),

as stated in Theorem 7.1.

Proof of Theorem 7.1. We split the proof into two cases.

Case 1. Assume first n>11.

Then, repeating the proof of Lemma 2.1, in Step 2 we can take an exponent a

satisfying

8<a< 2(1+
√
n−1)<n−2. (7.3)

Then, choosing 06ζ61 such that ζ|B1/4
=1, ζ|Rn\B1/2

=0, and |∇ζ|6C, we obtain

ˆ
B1/4

(
(n−2−a)|∇u|2+

(
2a− a

2

4

)
|x·∇u|2|x|−2

)
|x|−a dx6C(n, a)

ˆ
B1/2\B1/4

|∇u|2 dx.

(17) When β∈(2, n) is an integer, this can be easily shown considering functions in Rn depending
only on β Euclidean variables; see [11]. We thus encounter here the same obstruction as in Remark 2.2.
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Since 2a− 1
4a

2<0, the left-hand side above can be bounded from below by(
n−2+a− a

2

4

)ˆ
B1/4

|∇u|2 |x|−a dx,

and because n−2+a− 1
4a

2>0 (due to the choice of a in (7.3)), we deduce that

ˆ
B1/4

|∇u|2 |x|−a dx6C

ˆ
B1/2\B1/4

|∇u|2 dx6C‖u‖2L1(B1),

where the last inequality follows from Proposition 2.5.

Applying this estimate to the functions uy(x):=u(y+x) with y∈
B1/4, it follows that

%−a
ˆ
B%(y)

|∇u|2 dx6
ˆ
B1/4(y)

|∇u(x)|2 |x−y|−a dx6C‖u‖2L1(B1)

for all y∈
B1/4 and %∈
(
0, 1

4

)
. This proves that ∇u∈M2,β(B1/4) for every

β :=n−a>n−2
√
n−1−2.

Now, after cutting-off u outside of B1/8 to have compact support in B1/4, we can

apply [1, Proposition 3.1 and Theorems 3.1 and 3.2] (see also the proof in [11, §4]) and,

since β∈(2, n), we deduce that u∈M2β/(β−2),β(B1/8). This estimate in B1/8 can also

be stated in B1/4, as in Theorem 7.1, after a scaling and covering argument. Taking

p=2β/(β−2), this leads to (1.13).

Case 2. Assume now n=10.

Then, repeating the proof of Lemma 2.1, in Step 2 we take

η= |x|−4
∣∣log |x|

∣∣−δ/2ζ, (7.4)

with δ>0 small. Then, choosing 06ζ61 such that ζ|B1/4
=1, ζ|Rn\B1/2

=0, and |∇ζ|6C,

we obtainˆ
B1/4

δ
∣∣log |x|

∣∣−1−δ |∇u|2 |x|−8 dx

+

ˆ
B1/4

(
2δ
∣∣log |x|

∣∣−1−δ |x·∇u|2 |x|−2− δ
2

4

∣∣log |x|
∣∣−2−δ |x·∇u|2 |x|−2

)
|x|−8 dx

6C(n, δ)

ˆ
B1/2\B1/4

|∇u|2 dx.

Now, using that
1
4δ

2
∣∣log |x|

∣∣−2−δ
6 2δ

∣∣log |x|
∣∣−1−δ

in B1/4,
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we deduce thatˆ
B1/4

∣∣log |x|
∣∣−1−δ |∇u|2 |x|−8 dx6C(n, δ)

ˆ
B1/2\B1/4

|∇u|2 dx.

Finally, since for every ε>0 we have

|x|−8+ε6C(n, δ, ε)
∣∣log |x|

∣∣−1−δ|x|−8 in B1/4,

we find that ˆ
B1/4

|∇u|2 |x|−a dx6C(n, δ, a)

ˆ
B1/2\B1/4

|∇u|2 dx

for all a:=8−ε<8. The rest of the proof is then analogous to the case n>11.

We now deal with a boundary version of the same theorem. We first consider a

domain Ω that is a ϑ-deformation of B+

2 (see Definition 5.1).

Theorem 7.2. Let Ω⊂Rn be a ϑ-deformation of B+

2 for some ϑ∈
[
0, 1

100

]
, and let

u∈C0(	Ω∩B1)∩C2(Ω∩B1) be a non-negative stable solution of

−∆u= f(u) in Ω∩B1 and u= 0 on ∂Ω∩B1,

with f :R!R locally Lipschitz, non-negative, and non-decreasing. Assume n>10. Then,

‖u‖M2β/(β−2),β(Ω∩B1/2)+‖∇u‖M2,β(Ω∩B1/2) 6C‖u‖L1(Ω∩B1)

for all β∈(n−2
√
n−1−2, n) and for some constant C depending only on n and β.

Proof. Assume n>11; the case n=10 can be handled similarly (as done in the proof

of Theorem 7.1). In this case, we start from Lemma 6.2 and, as in Step 1 in the proof

of Proposition 6.3, we let ψ∈C∞c (B1) be some radial decreasing non-negative cut-off

function with ψ≡1 in B1/2. In Lemma 6.2, we use the test function η(x):=|x|−a/2ψ(x)

with a<n. Then, since the domain %−1(Ω∩B%) is a (c%ϑ)-deformation of B+

2 (for some

dimensional constant c), we deduce thatˆ
Ω∩B%

(
(n−2−a−C%ϑ)|∇u|2+

(
2a− a

2

4

)
(x·∇u)2 |x|−2

)
|x|−a dx

6C(n, a)%−a
ˆ

Ω∩B2%\B%
|∇u|2 dx.

Hence, given a satisfying (7.3), we can take %0 sufficiently small (depending on n and a)

so that n−2+a− 1
4a

2−C%ϑ>0 for all %6%0. This allows us to argue as in the proof of

Theorem 7.1 to getˆ
Ω∩B%0

|∇u|2 |x|−a dx6C

ˆ
Ω∩B1/2

|∇u|2 dx6C‖u‖2L1(Ω∩B1),

by Proposition 5.5. We now conclude as in Theorem 7.1.
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We finally give the following proof.

Proof of Theorem 1.9. The estimate (1.13) follows from Theorem 7.1 by taking p=

2β/(β−2), and using a covering argument. On the other hand, (1.14) follows from

Theorems 7.1 and 7.2, using again a covering argument.

Appendix A. Technical lemmata

The next lemma is a regularity and compactness result for superharmonic functions. For

an integrable function v to be superharmonic, we mean it in the distributional sense. For

all our applications of the lemma, one could further assume that v∈W 1,2(BR) and that

−∆v>0 is meant in the usual W 1,2 weak sense (which, in this case, is equivalent to the

distributional sense), but we do not need this additional hypothesis.

Lemma A.1. Let v∈L1(BR) be superharmonic in a ball BR⊂Rn, and let r∈(0, R).

Then,

(a) The distribution −∆v=|∆v| is a non-negative measure in BR, v∈W 1,1
loc (BR),

ˆ
Br

|∆v|6 C

(R−r)2

ˆ
BR

|v| dx, and

ˆ
Br

|∆v|6 C

R−r

ˆ
BR

|∇v| dx,

where C>0 is a dimensional constant. In addition,

ˆ
Br

|∇v| dx6C(n, r,R)

ˆ
BR

|v| dx

for some constant C(n, r,R) depending only on n, r, and R.

Assume now that vk∈L1(BR), k=1, 2, ... , is a sequence of superharmonic functions

with supk ‖vk‖L1(BR)<∞. Then,

(b1) Up to a subsequence, vk!v strongly in W 1,1(Br) to some superharmonic func-

tion v.

(b2) In addition, if for some γ>0 we have supk ‖vk‖W 1,2+γ(Br)<∞, then vk!v

strongly in W 1,2(Br).

Proof. (a) By assumption, we know that

〈−∆v, ξ〉=
ˆ
BR

v(−∆ξ) dx> 0 for all non-negative ξ ∈C∞c (BR). (A.1)

Let 0<r<%<R and choose a non-negative function χ∈C∞c (BR) with χ≡1 in B%. Now,

for all η∈C∞c (B%), using (A.1) with the test functions ‖η‖C0χ±η>0 in BR, we deduce

that

±〈−∆v, η〉6 ‖η‖C0 ‖v‖L1(BR) ‖∆χ‖C0 6C‖η‖C0 .
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Thus, −∆v is a non-negative measure in B%, for all %<R.

Let us now take %= 1
2 (r+R), and consider χ as before satisfying

|∇χ|6 C

R−r
and |D2χ|6 C

(R−r)2
.

Then, since −∆v>0, we have

ˆ
Br

|∆v|6−
ˆ
BR

∆v χ=−
ˆ
BR

v∆χdx6
C

(R−r)2
‖v‖L1(BR). (A.2)

To prove that v∈W 1,1
loc (BR), we define on Rn the measure µ:=χ (−∆v), and we

consider the fundamental solution Φ=Φ(x) of the Laplacian in Rn—that is,

Φ(x) =

{
c log |x|, if n= 2,

cn|x|2−n, if n> 3.

Define the L1
loc(Rn) function ṽ :=Φ∗µ. Since Φ∈W 1,1

loc (Rn), it is easy to check (using

the definition of weak derivatives) that ṽ∈W 1,1(BR) and ∇ṽ=∇Φ∗µ. Furthermore, from

(A.2) (with r replaced by %), one easily deduces that

‖ṽ‖W 1,1(B%) 6C‖v‖L1(BR), (A.3)

where the constant C depends only on n, r, and R (recall that %= 1
2 (r+R)).

On the other hand, using (A.3), we see that w:=v−ṽ satisfies

‖w‖L1(B%) 6 ‖v‖L1(B%)+‖ṽ‖L1(B%) 6C‖v‖L1(BR)

and

∆w= 0 in B%.

By standard interior estimates for harmonic functions, this leads to

‖w‖C2(
Br) 6C‖w‖L1(B%) 6C‖v‖L1(BR).

In particular, recalling (A.3), we have shown that v∈W 1,1(Br) and

‖v‖W 1,1(Br) 6C‖v‖L1(BR).

Finally, exactly as in (A.2), we have

ˆ
Br

|∆v|6−
ˆ
BR

∆v χ=

ˆ
BR

∇v ·∇χdx6 C

R−r
‖∇v‖L1(BR),



246 x. cabré, x. ros-oton, a. figalli and j. serra

finishing the proof of (a).

(b1) Let now vk be a bounded sequence in L1(BR). Define µk, ṽk, and wk as we

did in the proof of (a), but with v replaced by vk. Note that the operators µ 7!Φ∗µ and

µ 7!∇Φ∗µ are compact from the space of measures (with finite mass and support in BR)

to L1(Br). This is proved in a very elementary way in [5, Corollary 4.28], when these

operators are considered from L1(Rn) to L1(Br), but the same exact proof works for

measures.

Thus, up to a subsequence, ṽk converges in W 1,1(Br). Since wk=vk−ṽk are har-

monic and uniformly bounded in L1(B%), up to a subsequence also wk converges in

W 1,1(Br). Therefore, we deduce that a subsequence of vk converges in W 1,1(Br), which

proves (b1).

(b2) If, in addition, we have supk ‖vk‖W 1,2+γ(Br)<∞, using Hölder inequality we

obtain

‖∇(vk−v)‖L2(Br) 6 ‖∇(vk−v)‖γ/2(1+γ)
L1(Br) ‖∇(vk−v)‖(2+γ)/2(1+γ)

L2+γ(Br)

6C‖vk−v‖γ/2(1+γ)
W 1,1(Br)! 0,

which shows that vk!v strongly in W 1,2(Br).

We now discuss a result about the composition of Lipschitz functions with C2 func-

tions. This result is far from being sharp in terms of the assumptions, but it suffices for

our purposes. For its proof (as well as for other results proved in this paper) we shall

need the coarea formula, which we recall here for the convenience of the reader (we refer

to [27, Theorem 18.8] for a proof).

Lemma A.2. Let Ω⊂Rn be an open set, and let u: Ω!R be a Lipschitz function.

Then, for every function g: Ω!R such that g−∈L1(Ω), the integral of g over {u=t} is

well defined in (−∞,+∞] for a.e. t∈R and

ˆ
Ω

g |∇u| dx=

ˆ
R

(ˆ
{u=t}

g dHn−1

)
dt.

We recall that, given a locally Lipschitz function f , we defined

f ′−(t) := lim inf
h!0

f(t+h)−f(t)

h
.

Lemma A.3. Let Ω⊂Rn be a bounded open set and let u∈C2(Ω)∩C0(	Ω) solve

−∆u=f(u) in Ω, where f :R!R is locally Lipschitz. Then, the following holds:

(i) Inside the region {∇u 6=0}, the function f ′(u) is well defined, and it coincides

a.e. with f ′−(u).
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(ii) u∈W 3,p
loc (Ω) for every p<∞, and

−∆∇u= f ′(u)∇u= f ′−(u)∇u

in the weak sense and also a.e. in Ω.

(iii) If ∂Ω∩B1 is of class C3 and u|∂Ω∩B1
=0, then u∈(W 3,p

loc ∩C2)(	Ω∩B1) for every

p<∞.

Proof. The first point is a simple application of the coarea formula. Indeed, if we

set M :=‖u‖L∞(Ω), given any Borel set E⊂{∇u 6=0}, we can apply Lemma A.2 with

g=
1E
|∇u|

f ′−(u)

(in fact we apply the lemma to both g+ and g−, the positive and negative parts of g,

obtaining finite quantities for both
´

Ω
g±|∇u| dx since f ′−(u)∈L∞(Ω)) to get

ˆ
E

f ′−(u) dx=

ˆ M

−M
f ′−(t)gE(t) dt, with gE(t) :=

ˆ
{u=t}∩E

1

|∇u|
dHn−1. (A.4)

Then, since

ˆ
R
gE(t) dt6

ˆ
R

(ˆ
{u=t}∩{|∇u|6=0}

1

|∇u|
dHn−1

)
dt= |Ω∩{∇u 6= 0}|<∞,

it follows that the function gE belongs to L1(R). Thus, as f ′−(t) belongs to L∞([−M,M ]),

this proves that the right-hand side in (A.4) is independent of the specific representative

chosen for f ′, and therefore so is the left-hand side. Since E is arbitrary and f ′−(t)=f ′(t)

a.e., (i) follows.

To prove (ii), we first notice that, since f(u) is Lipschitz inside Ω (because both

u and f are so), it follows that f(u)∈W 1,p and by interior elliptic regularity (see for

instance [25, Chapter 9]) that u∈W 3,p
loc (Ω) for every p<∞. This means that ∇u∈W 2,p,

and therefore it suffices to show that the identities in (ii) hold a.e. (because then they

automatically hold in the weak sense).

Now, in the region {∇u=0}, we have

f ′(u)∇u= f ′−(u)∇u= 0 and ∆∇u= 0 a.e.

(see, e.g., [37, Theorem 1.56]), so the result is true there.

On the other hand, in the region {∇u 6=0}, for h>0 and 16i6n, let

δhi w :=
w( ·+hei)−w

h
.
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Since −∆u=f(u) in Ω, given Ω′⊂⊂Ω, for h>0 sufficiently small we have

−∆δhi u= δhi (f(u)) inside Ω′. (A.5)

Thus, if we define by Df⊂R the set of differentiability points of f , we see that

δhi [f(u)]! f(u)∂iu= f−(u)∂iu for all x∈Ω′ such that u(x)∈Df

as h!0. On the other hand, if we set N :=R\Df , since N has measure zero (because f

is differentiable a.e., being Lipschitz) it follows from Lemma A.2 applied with

g=
1

|∇u|
1Ω′∩{∇u 6=0} 1N �u

that ˆ
Ω′∩{∇u6=0}

1N (u(x)) dx=

ˆ
R

1N (t)

(ˆ
{u=t}∩Ω′∩{∇u6=0}

1

|∇u|
dHn−1

)
dt= 0,

which proves that u(x) 6∈N for a.e. x∈Ω′∩{∇u 6=0}.
Hence, we have shown that δhi [f(u)]!f ′(u)∂iu for a.e. x∈Ω′∩{∇u 6=0} (and so also

in Lp for any p<∞, by dominated convergence). Letting h!0 in (A.5), we deduce

that −∆∇u=f ′(u)∇u a.e. in Ω′, since we already checked the equality a.e. in {∇u=0}.
Recalling that Ω′⊂⊂Ω is arbitrary, this proves (ii).

Finally, (iii) follows by elliptic regularity up to the boundary (see for instance [25,

Chapter 9] or [26, §9.2]).

We conclude this section with a general abstract lemma due to Simon [34] (see also

[18, Lemma 3.1]).

Lemma A.4. Let β∈R and C0>0. Let σ :B![0,+∞] be a non-negative function

defined on the class B of open balls B⊂Rn and satisfying the following subadditivity

property :

if B⊂
N⋃
j=1

Bj then σ(B)6
N∑
j=1

σ(Bj).

Assume also that σ(B1)<∞.

Then, there exists δ>0, depending only on n and β, such that, if

rβσ(Br/4(y))6 δrβσ(Br(y))+C0 whenever Br(y)⊂B1,

then

σ(B1/2)6CC0,

where C depends only on n and β.
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Appendix B. A universal bound on the L1 norm

In this section we recall a classical and simple a-priori estimate on the L1 norm of

solutions, when f grows at infinity faster than a linear function with slope given by the

first eigenvalue of the Laplacian.

Proposition B.1. Let Ω⊂Rn be a bounded domain of class C1, and let us assume

that u∈C0(	Ω)∩C2(Ω) solves{
−∆u = f(u) in Ω⊂Rn,

u= 0 on ∂Ω,

for some f :R![0,+∞) satisfying

f(t)>At−B for all t> 0, with A>λ1 and B> 0, (B.1)

where λ1=λ1(Ω)>0 is the first eigenvalue of the Laplacian in Ω, with Dirichlet homoge-

neous boundary condition.

Then, there exists a constant C, depending only on A, B, and Ω, such that

‖u‖L1(Ω) 6C.

Proof. First of all we note that, since f>0, then u>0 inside Ω, by the maximum

principle.

Let Φ1>0 be the first Dirichlet eigenfunction of the Laplacian in Ω, so that

−∆Φ1 =λ1Φ1 in Ω and Φ1 = 0 on ∂Ω.

Then,

λ1

ˆ
Ω

uΦ1 dx=−
ˆ

Ω

u∆Φ1 dx=−
ˆ

Ω

∆uΦ1 dx=

ˆ
Ω

f(u) Φ1 dx. (B.2)

Due to assumption (B.1), we have

ˆ
Ω

f(u) Φ1 dx>A

ˆ
Ω

uΦ1 dx−B
ˆ

Ω

Φ1 dx,

that combined with (B.2) gives

(A−λ1)

ˆ
Ω

uΦ1 dx6B

ˆ
Ω

Φ1 dx.

Note that, using (B.2) again, this implies that

ˆ
Ω

f(u)Φ1 dx=λ1

ˆ
Ω

uΦ1 dx6λ1
B

A−λ1

ˆ
Ω

Φ1 dx.
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This proves that ˆ
Ω

f(u) Φ1 dx6C, (B.3)

for some constant C depending only on A, B, and Ω.

Consider now φ:Ω!R the solution of{
−∆φ= 1 in Ω,

φ= 0 on ∂Ω.

We claim that

06φ6C Φ1 in Ω, (B.4)

with C depending only on Ω. Indeed, the non-negativity of φ follows from the maximum

principle, while the second inequality follows from the boundary Harnack principle in [2,

Lemma 3.12],(18) after rescaling.

Thus, using (B.3) and (B.4), we get

ˆ
Ω

u dx=−
ˆ

Ω

u∆φdx=

ˆ
Ω

f(u)φdx6C

ˆ
Ω

f(u) Φ1 dx6C,

as desired.
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Pg. Llúıs Companys 23
ES-08010 Barcelona
Spain

and

Universitat Politècnica de Catalunya
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Gran Via de les Corts Catalanes 585
ES-08007 Barcelona
Spain
xavier.ros-oton@math.uzh.ch

Alessio Figalli
ETH Zürich
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