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1. Introduction and statement of the results

Let N>2 and Ω⊆RN be a bounded open set such that the Sobolev space H1(Ω) is

compactly embedded in L2(Ω) (for instance Ω Lipschitz). Those sets are called regular

throughout the paper. On such domains, the spectrum of the Laplace operator with

Neumann boundary conditions consists only on eigenvalues that we denote (counting

their multiplicities)

0 =µ0(Ω)6µ1(Ω)6µ2(Ω)6 ...!∞.

For every k>1, we have

µk(Ω) = min
S∈Sk

max
u∈S

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

,

where Sk is the family of all subspaces of dimension k in

H1(Ω)/R := {u∈H1(Ω) :
∫

Ω
u dx= 0}.

If Ω is connected, then µ1(Ω)>0.

In 1954 Szegö proved that among simply connected, 2-dimensional, smooth sets

Ω⊆R2 the ball maximizes µ1 (see [20], [3] and [5])), i.e.(1)

|Ω|µ1(Ω)6 |B|µ1(B).

Dorin Bucur is member of the Institut Universitaire de France. His work is part of the ”Geometry
and Spectral Optimization” GeoSpec, Persyval Lab research programme.

(1) Weinberger noted in [21] that the proof of Szegö gives a stronger result, namely that the disc
minimizes the sum 1/µ1(Ω)+1/µ2(Ω) among 2-dimensional, smooth, simply connected sets of given
area.
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Two years later, Weinberger [21] removed the topological constraint and the dimension

restriction, and he proved that, for every N>2 and Ω⊆RN regular, the following in-

equality holds:

|Ω|2/Nµ1(Ω)6µ∗1,

where µ∗1=|B|2/Nµ1(B).

Maximizing the Neumann eigenvalues under volume constraint is also related to the

celebrated conjecture of Pólya [18] asserting that the principal term of the Weyl law

provides in fact a bound for the eigenvalues. This conjecture reads, in N dimensions,

µk(Ω)6 4π2

(
k

ωN |Ω|)

)2/N
for all k> 1,

where ωN is the volume of the unit ball in RN . The conjecture was proved to hold

only for particular classes of domains, for instance tiling domains in R2 (see [16]). For

general regular domains, the conjecture holds true in the case k=1, as a consequence of

the Szegö–Weinberger inequality, but continues to remain open for arbitrary k. Kröger

found in [15] a series of bounds, which are larger than the conjectured ones. For instance,

if k=2 he proved µ2(Ω)616π/|Ω| for 2-dimensional domains. The value 16π/|Ω| is the

double of the conjectured one. A natural, related, question is to find the geometry of

the domain which maximizes the kth Neumann eigenvalue. This question turns out to

be difficult for k=2 and probably impossible to answer analytically for k>3. We refer to

[2], [1], [6] for numerical approximations of the (presumably) optimal sets for k610, but

there is no proof of the existence of those sets.

We refer the reader to the result of Girouard, Nadirashvili and Polterovich [11],

where the authors prove that in R2 the union of two equal (and disjoint) disks gives a

larger second eigenvalue than any smooth simply connected open set of the same measure.

Moreover, this value is asymptotically attained by two disks with vanishing intersection.

Their proof is based on a combination of topological and analytical arguments and relies

on a folding and rearrangement technique introduced by Nadirashvili in [17], taking

advantage on the use of conformal mappings. This method cannot be adapted to non-

simply-connected sets. The authors left the case of arbitrary (regular) domains of R2 as

an open problem.

Several independent numerical computations [2], [1], [6] in R2 and R3 brought sup-

port in favor of the maximality of the union of the two discs without the simply connect-

edness constraint in R2 and, moreover, lead to a similar conjecture in three dimensions

of the space.

The purpose of this paper is to prove that, in general, the second Neumann eigen-

value attains its maximum on a union of two disjoint, equal balls in the class of arbitrary
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domains of prescribed measure of RN . As a consequence, we prove that the Pólya conjec-

ture for Neumann eigenvalues holds for k=2, without any restriction on the dimension,

geometry or topology of the domains.

Let us denote the scale invariant quantity µ∗2=22/N |B|2/Nµ1(B), where B is any

ball. On the union of two disjoint balls B1 and B2, each of mass 1
2 , we have

µ0(B1∪B2) = 0, µ1(B1∪B2) = 0 and µ2(B1∪B2) =µ∗2.

The main result of the paper is the following.

Theorem 1. Let Ω⊆RN be a regular set. Then

|Ω|2/Nµ2(Ω)6µ∗2.

If equality occurs, then Ω coincides a.e. with the union of two disjoint, equal balls.

As a consequence, we get the following.

Corollary 2. The Pólya conjecture for the Neumann eigenvalues holds for k=2

in any dimension of the space.

In fact, we shall prove a more general result than Theorem 1. Specifically, we shall

prove that the result of Theorem 1 holds true on arbitrary open sets (even non-regular)

and, moreover, on L1∩L∞-densities in RN , provided the classical eigenvalues, seen as

variational quotients, receive a suitable relaxed definition (see [10, Chapter 7] and [7]).

Precisely, let %∈L1(RN , [0, 1]). For every k>1, we define

µ̃k(%) := inf
S∈Lk

max
u∈S

∫
RN %|∇u|2 dx∫
RN %u2 dx

,

where Lk is the family of all subspaces of dimension k in

{u·1{%(x)>0} :u∈C∞c (RN ) and
∫
RN %u dx= 0}. (1)

We have the following.

Theorem 3. Let %∈L1(RN , [0, 1]) be non-identically-zero. Then,

• (k=1, extension of the Szegö–Weinberger inequality)(∫
RN

% dx

)2/N
µ̃1(%)6µ∗1, (2)

with equality if and only if %=1B a.e., for some ball B of RN .

• (k=2) (∫
RN

% dx

)2/N
µ̃2(%)6µ∗2, (3)

with equality if and only if %=1B] +1B∗ a.e., where B] and B∗ are two disjoint (open)

balls of equal measure.
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For k=1, Theorem 3 above is a generalization of the Szegö–Weinberger inequality,

and for k=2 is a generalization of Theorem 1.

We notice the following.

• If Ω is a bounded, open Lipschitz set, then taking %=1Ω, one gets µ̃k(%)=µk(Ω).

• Let us remove a smooth manifold Γ from Ω, such that H1(Ω\Γ) is compactly

embedded in L2(Ω\Γ). This is for example the case when Ω is Lipschitz and the crack

Γ is itself Lipschitz. Then, for %=1Ω, one has µ̃k(%)>µk(Ω\Γ), since C∞c (RN )|Ω\Γ⊆
H1(Ω\Γ). From this perspective, Theorem 3 covers the inequality proved in Theorem 1

even in this less regular case.

• If the set Ω={%>0} is smooth and there exists α>0 such that %>α1{%>0} (i.e. % is

not degenerating on its support and preserves ellipticity), then µ̃k(%) are the eigenvalues

associated with the well-posed problem

−div(%∇u) =µk%u in Ω,
∂u

∂n
= 0 on ∂Ω.

• If Ω is just a bounded open set, without any smoothness, the spectrum of the

Neumann Laplacian on Ω may be continuous. Theorem 3 still applies to %=1Ω, but

we do not have any spectral interpretation of µ̃k(1Ω). The same occurs if either % is

degenerating loosing ellipticity on its support, and/or if its support is not smooth enough.

Concerning the ideas of the proof, it is worth to recall what happens for the Dirichlet

Laplacian. The Faber–Krahn inequality for the first Dirichlet eigenvalue of the Laplacian

λ1(Ω) asserts that the minimum of |Ω|2/Nλ1(Ω) is attained on balls. A simple argument

analysing the positive and negative parts of a second eigenfunction, leads to the conclu-

sion that the minimum of |Ω|2/Nλ2(Ω) is achieved on a set consisting on two equal and

disjoint balls. We refer to [8] for a detailed description of the history of the result, which

is attributed to Krahn [14], Hong [13] and Szegö [19].

A similar argument for the Neumann Laplacian is not valid. The proof of Theorem 1

(and of Theorem 3) is based on a suitable construction of a set of N test functions

which are simultaneously orthogonal to the constant function and to the first Neumann

eigenfunction on a regular set Ω. The structure of these N functions is inspired by the

functions built by Weinberger, that we briefly describe below (see, for instance, [12] and

[21] for more details).

We denote throughout the paper RΩ the radius of a ball of the same volume as Ω, by

rΩ the radius of a ball of volume 1
2 |Ω|, by BR a ball centered at the origin of radius R, and

by BA,R the ball centered at point A of radius R. We denote by g a non-negative, strictly

increasing solution(2) of the following differential equation on (0, R) (see the paper by

(2) The function g is explicitly given by g(r)=r1−N/2JN/2(kr/R), where k=
√
µ1(BR) is the first

positive zero of r 7!(r1−N/2JN/2(r))′ sometimes denoted pN/2,1 as in [4], and JN/2 is the standard
Bessel function.
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Weinberger [21], or [12, §7.1.2] for details):

g′′(r)+
N−1

r
g′(r)+

(
µ1(BR)−N−1

r2

)
g(r) = 0, g(0) = 0, g′(R) = 0. (4)

Given a point A∈RN and a value R>0, Weinberger introduced the function

gA:RN −!RN ,

x 7−! GR(dA(x))

dA(x)

−→
Ax,

(5)

where GR: [0,∞)!R is defined by

GR(r) := g(r)1[0,R]+g(R)1[R,∞). (6)

By dA(x) we denoted the distance from x to A.

Using Brouwer’s fixed point theorem, Weinberger proved for R=RΩ the existence of

a point A such that the set of functions

x 7−!gA(x)·ei, i= 1, ..., N,

are orthogonal to the constants in L2(Ω). Here, (ei)i are the vectors of an orthonormal

basis. As a consequence, those functions can be taken as tests in the Rayleigh quotient

for µ1(Ω). By summation, this lead to

µ1(Ω)6

∫
Ω

(
G′2RΩ

(dA(x))+(N−1)
G2
RΩ

(dA(x))

d2
A(x)

)
dx∫

Ω

G2
RΩ

(dA(x)) dx

. (7)

The function r 7!GRΩ(r) is strictly increasing on [0, RΩ] (and then constant), while

r 7−!G′2RΩ
(r)+(N−1)

G2
RΩ

r2

is decreasing. Consequently, the right-hand side of (7) is not larger than

µ1(BA,RΩ
) =

∫
BA,RΩ

(
G′2RΩ

(dA(x))+(N−1)
G2
RΩ

(dA(x))

d2
A(x)

)
dx∫

BA,RΩ

G2
RΩ

(dA(x)) dx

. (8)

In order to observe that µ1(Ω)6µ1(BA,RΩ
), one formally has to move, one to one, the

points of Ω\BA,RΩ
toward the points of the BA,RΩ

\Ω, pushing forward the measure



342 d. bucur and a. henrot

A B

M

rΩ

HA HB

HAB

Figure 1. The geometry of the test functions gAB .

1Ω\BA,RΩ
dx to 1BA,RΩ

\Ω dx. Throughout the paper, we call this procedure a mass dis-

placement argument.

In order to prove Theorem 1, we shall use a somehow similar strategy, searching a

set of N suitable test functions. The new difficulty is that the set of functions that we

have to build should be orthogonal to both the constant function and to a first Neumann

eigenfunction on Ω (which is unknown). In the same time, the associated Rayleigh

quotient should not exceed µ∗2.

Given two different points A,B∈RN , we introduce the linear part of the symmetry

operator with respect to the mediator hyperplane HAB of the segment AB:

TAB :RN −!RN ,

v 7−!v−2(
−→
ab·v)

−→
ab,

where
−→
ab=
−−→
AB/‖AB‖. Denoting HA and HB the half-spaces determined by HAB and

containing A and B, respectively, we build the function

gAB :RN −!RN ,

x 7−! 1HA
(x)gA(x)+1HB

(x)TAB(gB(x)).
(9)

The functions gA and gB are the functions of Weinberger introduced in (5), associated

with GrΩ . Roughly speaking, gAB is a suitable gluing along HAB of two Weinberger

functions corresponding to different points.

Our main purpose will be to justify the existence of two points A and B such that

the set of N scalar functions

x 7−!gAB(x)·ei, i= 1, ..., N,
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are simultaneously orthogonal in L2(Ω) to the constant function and to a first eigenfunc-

tion u1 of the Neumann Laplacian on Ω, i.e.∫
Ω

gAB ·ei dx=

∫
Ω

gAB ·eiu1 dx= 0 for all i= 1, ..., N . (10)

The proof of existence of A and B with such properties relies on a topological degree

argument and requires the most of the attention (it is worth mentioning that every result

on maximization for Neumann eigenvalues in the literature relies on a strong topological

argument).

Once the points A and B are found, the proof of Theorem 1 follows in its main lines

the one of Weinberger, being based on the mass displacement argument. In fact, on each

of the half-spaces HA and HB , the restriction of gAB acts like a Weinberger function (5)

associated with a ball of half measure.

Structure of the paper.

• In the next section we prove Theorem 1 for regular sets. We give the detailed

construction of the function gAB , prove the existence of a couple of points A and B

making gAB ·ei suitable as test functions for µ2(Ω), and prove the inequality. The equality

case will be a direct consequence.

• In §3, we give the proof of Theorem 3. We start by proving that the classical Szegö–

Weinberger inequality holds true as well for densities and arbitrary domains. Concerning

the second eigenvalue, we rely on the main ideas introduced in §2 and focus on the new

difficulties raised by the possible absence of a first eigenfunction and by the possible

unboundedness of the support.

Although it would have been more natural to prove first the general case and de-

duce the inequality for regular domains as a consequence, we have chosen to start by

giving a detailed proof of Theorem 1 in the classical framework, as most of readers are

presumably interested in this case. The new difficulties raised by the proof of Theo-

rem 3 are exclusively related to the ill-posedness of the eigenvalue problem in the non-

smooth/degenerate/unbounded setting. The fact that we deal with a density instead of

a geometric domain does not raise any supplementary difficulty, being handled by mass

displacement.

2. Proof of Theorem 1

In this section we prove Theorem 1. Let Ω⊆RN be regular. We split the proof in several

parts.
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The validity of the test functions. Recall that rΩ is the radius of the ball of volume
1
2 |Ω|. A set of eigenfunctions associated with the first non-zero eigenvalue µ1(BrΩ) on

the ball BrΩ are {(g(r)/r)xi :i=1, ..., N}, where g solves the differential equation (4) for

R=rΩ.

Let A and B be two distinct points in RN . We recall the function gAB introduced

in (9):

gAB(x) = 1HA
(x)gA(x)+1HB

(x)gB(x)−2·1HB
(x)
(
gB(x)·

−→
ab
)−→
ab.

The function gAB is well defined, and continuous across HAB . Indeed, it is enough to

observe that, for x0∈∂HA∩∂HB=HAB , we have

gA(x0) =TAB(gB(x0)),

which comes from direct computation.

We notice that, for all x∈RN ,

‖gAB(x)‖6 g(rΩ)

and

‖∇gAB(x)‖6 2N2

(
sup
r>0

GrΩ(r)

r
+sup
r>0

G′rΩ(r)

)
<∞. (11)

As a conclusion, we get gAB∈W 1,∞(RN ,RN ), with a uniform bound on their norm,

independent on A and B. The functions gAB ·ei are therefore admissible as test functions

on Ω.

The use of the test functions. Assume for a moment that we have found two different

points A,B∈RN such that the orthogonality relations (10) hold. Let us show that we

can prove Theorem 1.

For some i∈{1, ..., N}, let us take in the definition of µ2(Ω) the subspace

S= span{u1,g
AB ·ei}.

We can write

µ2(Ω)6

∫
Ω
|∇(gAB ·ei)|2 dx∫
Ω
|gAB ·ei|2 dx

for all i= 1, ..., N .

As a consequence,

µ2(Ω)6

∑N
i=1

∫
Ω
|∇(gAB ·ei)|2 dx∑N

i=1

∫
Ω
|gAB ·ei|2 dx

.
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Decomposing the sums over Ω∩HA and Ω∩HB , we get using (9) (the computation is

similar with the one in Weinberger’s proof, see [12]))

µ2(Ω)6

∫
HA∩Ω

(
G′2rΩ(dA(x))+(N−1)

G2
rΩ(dA(x))

d2
A(x)

)
dx+

∫
HB∩Ω

(
G′2rΩ(dB(x))+(N−1)

G2
rΩ(dB(x))

d2
B(x)

)
dx∫

HA∩Ω

G2
rΩ(dA(x)) dx+

∫
HB∩Ω

G2
rΩ(dB(x)) dx

.

We displace the mass as follows: we split Ω\(BA,rΩ∪BB,rΩ) in two sets ΩA and ΩB , such

that |ΩA|+|Ω∩BA,rΩ |= 1
2 |Ω|. By monotonicity of r 7!GrΩ(r) and of

r 7−!G′2rΩ(r)+(N−1)
G2
rΩ(r)

r2
,

for any couple of points x∈ΩA and y∈BA,rΩ \Ω the following inequalities hold:

G′2rΩ(dA(x))+(N−1)
G2
rΩ(dA(x))

d2
A(x)

d2
A(x)

<

G′2rΩ(dA(y))+(N−1)
G2
rΩ(dA(y))

d2
A(y)

d2
A(y)

,

G2
rΩ(dA(x))>G2

rΩ(dA(y)).

We then formally displace the mass from ΩA to BA,rΩ \Ω, and increase the Rayleigh

quotient. We use the same argument for ΩB and BB,rΩ \Ω, finally getting that∫
HA∩Ω

(
G′2rΩ(dA(x))+(N−1)

G2
rΩ(dA(x))

d2
A(x)

)
dx+

∫
HB∩Ω

(
G′2rΩ(dB(x))+(N−1)

G2
rΩ(dB(x))

d2
B(x)

)
dx∫

HA∩Ω

G2
rΩ(dA(x)) dx+

∫
HB∩Ω

G2
rΩ(dB(x)) dx

6

2

∫
BrΩ

(
G′2rΩ(r)+(N−1)

G2
rΩ

r2

)
dx

2

∫
BrΩ

G2
rΩ(r) dr

=µ1(BrΩ).

Since µ1(BrΩ) is the second eigenvalue of the union of two disjoint balls of mass 1
2 |Ω|,

the inequality in Theorem 1 follows.

If equality occurs, then HA∩Ω and HB∩Ω have to be balls of mass 1
2 |Ω|, up to a

set of zero Lebesgue measure. Indeed, if there is mass displacement on a set of positive

measure, the inequality has to be strict. So, if equality occurs, Ω is a.e. identical to the

union of two disjoint balls of mass 1
2 |Ω|.

Remark 4. If, for instance, Ω is Lipschitz and equality occurs, then Ω has to coincide

with the union of the two balls. If we work only with regular sets without further

geometric assumption, it might be possible that one removes from one ball a set of

capacity zero and, from the other ball, a (small) set of positive capacity but of zero

measure (say a piece of a smooth manifold of dimension N−1). The removed set should

be small enough such that the second non-trivial eigenvalue of the slitted ball is not

smaller than the first eigenvalue of the genuine ball. In R2, this situation could occur if

one removes a small segment from a diameter.
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Existence of the family of test functions. In order to complete the proof, it remains

to justify the existence of two points A and B such that the orthogonality relations (10)

hold true. We shall do this below, but we point out from the beginning that the proof

works in an identical way, provided 1Ω is replaced by a measurable function %:RN![0, 1]

with bounded support, and the first eigenfunction u1 is replaced by any measurable

function u such that u1{%=0}=0,
∫
RN %u

2 dx<∞ and
∫
RN %u dx=0.

We give the following.

Lemma 5. Let A 6=B be two points of RN . Then, for all x∈RN ,

gA(x)·
−→
ab>gB(x)·

−→
ab.

Proof. The proof is immediate, by direct comparison.

Lemma 6. Assume that A and B are two points of RN such that∫
Ω

gA(x)·ei dx=

∫
Ω

gB(x)·ei dx for all i= 1, ..., N .

Then, for all v∈RN , we have∫
Ω

gA(x)·v dx=

∫
Ω

gB(x)·v dx

and A=B.

Proof. The first assertion is trivial and the second is a consequence of Lemma 5 for

v=
−→
ab.

In the sequel, we shall use a deformation argument in the framework of the topolog-

ical degree theory (see for instance [9, Theorem 1]), in order to prove the following.

Proposition 7. There exist two different points A and B such that the orthogo-

nality relations (10) hold true.

Proof. By rescaling, we may assume that Ω⊆B1, the ball centered at the origin of

radius equal to 1. Let M>20 be fixed (the value 20 is chosen to be large enough with

respect to the radius of B1). Denote

D= {(X,Y ) :X,Y ∈RN and X =Y }⊆R2N .

We introduce the function

F : [−M,M ]2N \D−!R2N ,
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by

F (A,B) :=

(∫
Ω

gAB ·ei dx,
∫

Ω

gAB ·eiu1 dx

)
.

We want to prove that there exists a couple of points (A,B)∈[−M,M ]2N \D which

make F vanish. So, we assume for contradiction that F does not vanish on its definition

domain. We first observe that there exists δ>0 such that, if (A,B)∈[−M,M ]2N \D and

dR2N ((A,B),D)6 δ,

then F cannot vanish at (A,B). Indeed, assume for contradiction that

(An, Bn)∈ [−M,M ]2N \D

is such that ∫
Ω

gAnBn ·ei dx= 0 for all i= 1, ..., N

and dR2N ((An, Bn),D)!0. Extracting a subsequence, we may assume that

An!A, Bn!A and

−−−→
AnBn
‖AnBn‖

!v∈SN−1.

Then, the a.e.-limit of the sequence of functions (gAnBn ·vn)n, denoted for convenience

gAA ·v, has a constant sign, vanishing only on a zero-measure set. This contradicts∫
Ω

gAnBn ·vn dx= 0.

So, let us denote

V = {(A,B)∈RN×RN : dR2N ((A,B),D)6 δ},

and restrict the function F to [−M,M ]2N \V .

Let BX∗,R be a ball of some radius 0<R61 (the choice is free, but we should have

in mind rΩ), with a center X∗ carefully chosen, that will be specified in the proof. For

simplicity of the notation, we denote this ball B∗.

First deformation. We introduce for t∈[0, 1] the following family of functions

Ft: [−M,M ]2N \V −!R2N ,

by

Ft(A,B) =

(∫
Ω

gAB ·ei dx, (1−t)
∫

Ω

gAB ·eiu1 dx+t

∫
B∗

gAB ·ei dx
)
.
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Clearly, this family is continuous in t, and F0≡F . We shall prove that, for a specific

position of the center X∗ of the ball B∗, for every t∈[0, 1] the function Ft cannot vanish

on ∂([−M,M ]2N \V ).

Assume that, for some (A,B)∈∂([−M,M ]2N \V ) and some t∈(0, 1], we have

Ft(A,B) = 0.

We shall first focus only on the first N coordinates of Ft(A,B), which depend neither on

t nor on B∗. This will give important information on the possible positions of the points

(A,B).

Indeed, we start observing that (A,B) /∈∂V . This is a consequence of the choice of δ

above. It remains that (A,B)∈∂([−M,M ]2N ). In other words, at least one of the points

A or B is at distance at least M from the origin (hence at least M−1 from Ω).

Case 1. Assume the point B is at distance at least M−1 from Ω. Let C be the

cone with vertex B, tangent to the ball B1. If the point A does not belong to the cone

C, then denoting O′ the projection of O on the line AB, we cannot have∫
Ω

gAB ·
−−→
O′O dx= 0,

since the function gAB ·
−−→
O′O has constant sign on Ω. Therefore, A has to belong to the

cone. Moreover, in this situation, the point A has to belong as well to the annulus

BB,M+1\BB,M−1. Indeed, if A does not belong to this annulus, we cannot have∫
Ω

gAB ·
−−→
BO dx= 0,

since, this time, the function gAB ·
−−→
BO has constant sign on Ω (positive if A is between

the ball B1 and B, negative if the ball B1 is between A and B). This means that

A∈C∩(BB,M+1\BB,M−1), which by simple computation leads to A∈B√2.

The main consequence is that the distance from A to O is not larger than
√

2, and

hence, by the construction of the function gAB , its action on the domain Ω is entirely

given by A, since Ω is covered by HA only. In other words, the point B does not

influence the integrals in (10), and gAB=gA on Ω. Moreover, from Lemma 6, we get

that the position of A satisfying Ft(A,B)=0 is uniquely determined, for every B far

away from Ω.

For B far away and A fixed as above, let us look now to the linear form

v
L7−!
∫

Ω

gAB ·vu1 dx.
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This form is not identically vanishing, otherwise for the couple (A,B) the function F

vanishes. Consequently, the kernel of this form is an hyperplane, denoted K. Let ξ∈SN−1

be orthogonal to K such that
∫

Ω
gA ·ξu1 dx>0. We choose the center of the ball X∗ to

be given by A+3
√

2ξ. With this choice, the ball B∗ does not intersect B1 and is fully

covered by HA (recall that M>20). Consequently,

v 7−!
∫
B∗

GR(dA(x))

dA(x)

−→
Ax·v dx

has the same kernel K and has the same sign as L. In other words, for every t∈[0, 1],

v 7−! (1−t)
∫

Ω

gAB ·vu1 dx+t

∫
B∗

GR(dA(x))

dA(x)

−→
Ax·v dx

vanishes only for v∈K.

At least one of the vectors e1, ..., eN does not belong to K. Consequently, among

the N terms

(1−t)
∫

Ω

gAB ·eiu1 dx+t

∫
B∗

GR(dA(x))

dA(x)

−→
Ax·ei dx, i= 1, ..., N ,

at least one is not vanishing. The conclusion is that, for every t∈[0, 1], the function Ft

cannot vanish on ∂([−M,M ]2N \V ).

Case 2. Assume the point A is at distance at least M−1 from Ω. In this case,

only the point B acts on Ω, as in the previous case, and B∈B√2. The only thing which

differs, is the expression of the function Ft, which becomes

Ft(A,B) =

(∫
Ω

gB ·ei−2
(
gB ·
−→
ab
)(−→
ab·ei

)
dx,

(1−t)
∫

Ω

gB ·eiu1−2
(
gB ·
−→
ab
)(−→
ab·ei

)
u1 dx+t

∫
B∗

gB ·ei−2
(
gB ·
−→
ab
)(−→
ab·ei)

))
.

In other words, we have

Ft(A,B) =

(∫
Ω

gB ·TAB(ei) dx, (1−t)
∫

Ω

gB ·TAB(ei)u1 dx+t

∫
B∗

gB ·TAB(ei)

)
.

Again, as in case 1, if Ft(A,B)=0, then B has to coincide with the same point A, in the

preceding case.

For the point X∗ introduced in case 1, we cannot have, for all ei,

(1−t)
∫

Ω

gB ·TAB(ei)u1 dx+t

∫
B∗

gB ·TAB(ei) = 0,

since the range of TAB is of dimension N .

At that stage, we have proved that the topological degrees of F0 and F1 coincide:

d(F0, [−M,M ]2N \V, 0)=d(F1, [−M,M ]2N \V, 0). We are now going to consider a second

continuous deformation which will further simplify the functional.
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Second deformation. Let B] be the ball obtained by symmetry of B∗ with respect

to the origin. We define the continuous deformation G: [0, 1]×R2N
!R2N by

Gt(A,B) =

(
(1−t)

∫
Ω

gAB ·ei dx+t

∫
B]

gAB ·ei dx,
∫
B∗

gAB ·ei dx
)
.

Similarly to case 1, we do not vary the last N coordinates of Gt, which are of the same

nature as the first N coordinates of Ft. Consequently, if Gt(A,B)=0 for some t and one

of the point (A,B)∈∂([−M,M ]2N \V ), then the other one has to be the center of B∗,

which is the only point which satisfies
∫
B∗ g

AB ·v dx=0 for all v. Note that we possibly

decrease the value δ in the computation of V , such that V is also suitable for B∗. Taking

a unit vector v parallel with the line X∗O, one can notice that

(1−t)
∫

Ω

gX∗ ·v dx+t

∫
B]

gX∗ ·v dx

cannot vanish, since both integrals have the same sign.

As G0=F1, we can glue the two continuous deformations and notice that they do not

vanish on ∂([−M,M ]2N \V ), so in view of [9, Theorem 1] they have the same topological

degree:

d(F, [−M,M ]2N \V, 0) = d(F1, [−M,M ]2N \V, 0) = d(G1, [−M,M ]2N \V, 0).

We shall compute in the sequel the topological degree of G1 and we shall prove that

it equals 2. As a consequence, F has at least one zero, so we conclude the proof.

Computation of the topological degree of G1 at zero. There are two steps.

Step 1. The zeros of the function G1. We may assume, without loosing generality,

that the center of B∗ is X∗=(3
√

2, 0, ..., 0) and the center of B] is X]=(−3
√

2, 0, ..., 0).

We claim that the only zeros of the function G1 are the couples (X∗, X]) and (X],X∗).

Assume that A and B are such that G1(A,B)=0. Then,∫
B]

gAB ·v dx=

∫
B∗

gAB ·v dx= 0 for all v∈RN .

Assume for contradiction that X∗ /∈AB. Denoting by X ′ the projection of X∗ on the

line AB, and taking v=
−−−→
X ′X∗, one has∫

B∗
gAB ·v dx 6= 0,
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as a consequence of the structure of the function gAB and the symmetry of the ball.

Indeed, the function gAB ·v is odd with respect to the hyperplane containing the line AB

and orthogonal to v, and has constant sign on each half-space defined by this hyperplane.

As this hyperplane does not cut the ball into two half-balls, the integral
∫
B∗ g

AB ·v dx
cannot vanish. Consequently, X∗∈AB, and similarly X]∈AB.

Let xA and xB be the abscissas of the points A and B, and let xM= 1
2 (xA+xB) be

the abscissa of the midpoint M . We discuss with respect to the possible values of xM .

• If xM∈[−3
√

2+R, 3
√

2−R], then each ball is completely contained in one of the

two half-spaces, consequently, using the uniqueness given by Lemma 6, we get that the

two points have to coincide with the two centres of the balls.

• Let us prove that it is not possible that xM∈(− inf,−3
√

2+R)∪(3
√

2−R,∞).

Indeed, in that case, the two balls would be in the same half-space, and the uniqueness

result of Lemma 6 would imply that the same point A or B should be the center of each

ball.

• At last if xM∈[−3
√

2−R,−3
√

2+R]∪[3
√

2−R, 3
√

2+R], one of the two balls is

completely contained in the half-space HA or HB which fixes its center at A or B. Taking

now v=
−−→
AB, and since the other ball is between A and B, we see that the function

gAB ·
−−→
AB has a constant sign on this ball which prevents the integral to be zero and make

this case impossible.

Thus, we are always in the first case: this gives the conclusion.

Step 2. Computation of the sign of the Jacobian of G1 at its zeros. The partial

derivatives of the function G1, as function of A and B, can be computed explicitly.

We have the following general formula. Let h: [0,∞)!R∗+ be of class C1 and BO,R

be the ball centered at O of radius R. For every i=1, ..., N , we denote

fO,Ri (A) =

∫
BO,R

h(dA(Y ))(yi−xi) dy,

where A=(xi)i and Y =(yi)i. Then, we compute the derivatives at the center of the ball

A=O:

∂fO,Ri

∂xj

∣∣∣∣
A=O

=

∫
BO,R

(
h′(dO(Y ))

(xj−yj)(yi−xi)
dO(Y )

+h(dO(Y ))(−δij)
)
dy.

For i 6=j, we get

∂fO,Ri

∂xj
(O) = 0.
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For i=j, we get

∂fO,Ri

∂xi

∣∣∣∣
A=O

=−
∫
BO,R

h′(dO(Y ))
(yi−xi)2

dO(Y )
+h(dO(Y )) dy

=−
∫
BO,R

∂

∂yi
[h(dO(Y ))(yi−xi)] dy

=−
∫
∂BR

h(dO(Y ))(yi−xi)ni dσY

=−Rh(R)

∫
∂BO,R

n2
i dσY

=−Rh(R)P (B(0, R))

N

=−ωNRNh(R).

In a similar manner, for a fixed point A=(xAi ), and for variable points B=(xi)i, we

consider the generic function

fA,O,Ri (B) =

∫
BO,R

h(dB(Y ))
(xi−xAi )

(−−→
AB ·
−−→
BY

)
‖AB‖2

dy,

We assume that A and O are both on the first axis, so that
−→
AO=βe1, for some β∈R∗.

Denoting Oε=(xO1 +ε, xO2 , ..., x
O
N ), we have

∂fA,O,R1

∂x1

∣∣∣∣
B=O

=
d

dε

(∫
BO,R

h(dOε
(Y ))

(β+ε)((β+ε)e1 ·
−−→
OεY )

(β+ε)2
dy

)∣∣∣∣
ε=0

=−R
N

∫
∂BO,R

h(dO(Y )) dσY .

For i>2, we have
−→
AOε=

−→
AO+εei and, plugging in the definition of f1, we get

∂fA,O,R1

∂xi

∣∣∣∣
B=O

=

∫
BO,R

h′(dO(Y ))
(−yi)
dO(Y )

(y1−xO1 ) dy+

∫
BO,R

h(dO(Y ))
yi
β
dy= 0.

In order to compute (∂fA,O,R2 /∂x1)|B=O, we consider the perturbation

Oε = (xO1 +ε, xO2 , ..., x
O
N ),

and notice that

fA,O,R2 (Oε) = 0.

In order to compute (∂fA,O,R2 /∂x2)|B=O, we consider the perturbation

Oε = (xO1 , x
O
2 +ε, ..., xON ),
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and notice that

fA,O,R2 (Oε) =

∫
BO,R

h(dOε(Y ))
ε(β(y1−xO1 )+ε(y2−ε))

β2+ε2
,

and

∂fA,O,R2

∂x2

∣∣∣∣
B=O

=

∫
BO,R

h′(dO(Y ))
−y2

dO(Y )
·0 dy+

∫
BO,R

h(dO(Y ))
y1−xO1
β

dy= 0.

In order to compute (∂fA,O,R2 /∂xi)|B=O, i>3, we consider the perturbation

−−→
AOε =βe1+εei,

and notice that

fA,O,R2 (Oε) = 0.

For the computation of the Jacobian of G1 at the points (X], X∗) and (X∗, X]), we recall

that

G1(A,B) =

(∫
B]

gAB ·ei dx,
∫
B∗

gAB ·ei dx
)
, i= 1, ..., N.

Around the zero (X], X∗), the expression of G1 is

(∫
B]

gA ·ei dx,
∫
B∗

gB ·ei dx−2gB ·
−−→
AB

−−→
AB ·ei
‖AB‖2

)
, i= 1, ..., N,

or, in terms of our notation,

G1(A,B) = (fX
],R

i (A), fA,X
∗,R

i (B)), i= 1, ..., N,

with h(r)=GR(r)/r. Then, the Jacobian matrix at (X], X∗) is diagonal, with all elements

on the diagonal equal to −ωNRNh(R), except the one on position (N+1, N+1), which

equals ωNR
Nh(R). Its determinant equals

−(ωNR
Nh(R))2N ,

which is a negative number.

The same value is obtained at the point (X∗, X]), as the sign of β does not influence

the value of the derivatives.

As conclusion, the topological degree of F at zero is equal to 2, which leads to the

existence of (at least) two solutions of F (A,B)=0 in [−M,M ]2N \V .
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3. Proof of Theorem 3

In this section we shall prove Theorem 3. We start with the following observation. In (1),

one can replace C∞c (RN ) with W 1,∞(RN ). Indeed, for a function u∈W 1,∞(RN ) such

that
∫
RN %u dx=0, both terms

∫
RN %u

2 dx and
∫
RN %|∇u|2 dx are well defined. Moreover,

there exists a sequence of functions ϕn∈C∞c (RN ) such that∫
RN

%ϕn dx= 0 and lim
n!∞

∫
RN

%(|∇ϕn−∇u|2+|ϕn−u|2) dx= 0.

The construction is standard by cut-off and convolution, one has to be careful only to

the orthogonality on %. Let ϕ∈C∞c (RN , [0, 1]) be such that ϕ=1 on B1 and ϕ=0 on

RN \B2. We introduce, for every δ>0, ϕδ(x):=ϕ(δx) and the constant cδ such that∫
RN

%ϕδ(u−cδ) dx= 0.

We observe that

cδ

∫
RN

%ϕδ dx=

∫
RN

%ϕδu dx,

and for δ!0 we get cδ!0. This is a consequence of

lim
δ!0

∫
RN

%(|∇(ϕδu)−∇u|2+|ϕδu−u|2) dx= 0.

Now, for fixed δ>0, we consider a convolution kernel (ξε)ε and a constant cδ,ε such that∫
RN

%ξε∗(ϕδ(u−cδ,ε)) dx= 0.

On the one hand

cδ,ε

∫
RN

%ξε∗ϕδ dx=

∫
RN

%ξε∗(ϕδu) dx,

and hence, for ε!0, we get cδ,ε!cδ. On the other hand,

lim
ε!0

∫
RN

%(|∇(ξε∗(ϕδu))−∇(ϕδu)|2+|ξε∗(ϕδu)−ϕδu|2) dx= 0,

which concludes the proof, by a diagonal argument.

The case k=1 (extension of the Szegö–Weinberger result). Since inequality (2) that

we want to prove is scale invariant, we may assume that
∫
RN % dx=1. Let r1 be the radius

of the ball of volume equal to 1.

If % has bounded support, the proof follows step by step the geometric case. The

existence of a point A such that∫
RN

%gA(x)·ei dx= 0 for all i= 1, ..., N (12)
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is done using the same fixed point argument used by Weinberger (see [12, Lemma 6.2.2]).

The function G=Gr1 , which enters in the definition of gA above, is associated to r1.

Then, the proof follows step by step, the final argument being the displacement of

the mass of % towards 1Br1
.

If % has unbounded support, the existence of a point A satisfying (12) can be done

by approximation. Note that, for every i, the function gA(x)·ei belongs to W 1,∞(RN ).

Let Rn!∞ and consider a point An satisfying the orthogonality relations (12) for the

density %1BRn
(which has bounded support) and for the g-functions defined with r1. If,

for a subsequence, (An)n remains bounded, then by compactness we find a limit A such

that An!A. It can be easily observed that the orthogonality relations (12) pass to the

limit, since ‖gAn
·ei‖∞6G(r1). Hence, A satisfies (12) for %.

Assume for contradiction that dO(An)!∞. We fix a radius 	R such that∫
B
	R

% dx=
2

3
.

For n large enough such that rn>	R, we denote

vn =
1∥∥−−→AnO
∥∥−−→AnO.

By the choice of An, we have ∫
BRn

gAn
·vn dx= 0,

which gets in contradiction with

lim
n!∞

∫
B
	R

gAn
·vn dx=

2

3
G(r1) and

∫
BRn\B	R

|gAn
·vn| dx6

1

3
G(r1).

Hence, (An)n remains bounded and we can build the functions of (12). The proof ends

using a mass displacement argument, pushing forward the measure % dx on 1Br1
dx.

The case k=2. Assume that
∫
RN % dx=1 and that µ̃2(%)>µ∗2. Let us denote by r1/2

the radius of the ball of volume 1
2 .

There are two difficulties. Along with the fact that the support of % may be un-

bounded, there is a new difficulty: there is not necessarily existence of an eigenfunction

associated with µ̃1(%), by eigenfunction understanding a function for which the infi-

mum is attained in the definition of µ̃1(%). The orthogonality on the first eigenfunction,

both in L2 and H1, was an important point of the proof in the geometric case. In-

deed, in the Rayleigh quotient estimating the second eigenfunction, the scalar product∫
RN %∇u1∇gi dx was not present, being equal to zero.



356 d. bucur and a. henrot

Let us fix ε>0 and consider u1∈W 1,∞(RN ) such that
∫
RN %u1 dx=0,

∫
RN %u

2
1 dx=1

and

µ̃1(%)6
∫
RN

%|∇u1|2 dx< µ̃1(%)+ε. (13)

Let us prove the existence of two points A 6=B (one of them being possibly at infinite

distance from the origin) such that∫
RN

%gAB ·ei dx=

∫
RN

%gAB ·eiu1 dx= 0 for all i= 1, ..., N . (14)

Above, we abuse the notation gAB even if one of the points A and B is formally at

infinite distance from the origin. The exact meaning is given below.

Let Rn!∞. We apply step by step the method of §2 to the functions

1BRn
% and 1BRn

%u1,

and find a couple of points (An, Bn) such that∫
BRn

%gAnBn ·ei dx=

∫
BRn

%gAnBn ·eiu1 dx= 0 for all i= 1, ..., N . (15)

If both sequences (An)n and (Bn)n stay bounded, we may assume (up to extracting a

subsequence) that An!A and Bn!B. If A 6=B, then all equalities in (15) pass to the

limit to (14). If A=B, then, taking a further subsequence such that

−−−→
AnBn
‖AnBn‖

!v∈SN−1,

we would get in the limit that ∫
RN

%gAA ·v dx= 0,

where gAA is the pointwise limit of the sequence gAnBn . This is not possible, since gAA ·v
is a negative function.

If (An)n stays bounded, and dO(Bn)!∞, we may assume that An!A and obtain

that the limit of gAnBn equals gA :=gA∞. Then, the functions (gA ·ei)i satisfy (14). A

similar assertion holds if Bn!B, dO(An)!∞ and

−−−→
AnBn
‖AnBn‖

!v∈SN−1,

in which case the limit is described by

gB ·ei−2gB ·v(v·ei) :=g∞B ·ei, i= 1, ..., N
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satisfy the orthogonality relations (14).

We now prove that both sequences (An)n and (Bn)n cannot go unbounded simulta-

neously, since the orthogonality on constants (in relations (15)) would be contradicted.

Indeed, denote by On the projection of O on the line AnBn. Fix 	R large enough such

that ∫
B
	R

% dx=
3

4
.

We may assume (possibly exchanging the notation and extracting further subsequences)

that ‖AnOn‖6‖BnOn‖.
If, for an infinite number of indices, we have

ÔnOAn6
π

4
,

then, taking vn=
−−→
OnO/‖OnO‖, we get

lim inf
n!∞

∫
B
	R

%gAnBn ·vn dx>
1√
2

3

4
G(r1/2)>

1

2
G(r1/2),

contradicting the hypotheses (15), as it is not possible that
∫
BRn

%gAnBn ·vn dx=0.

If for an infinite number of indices we have

ÔnOAn>
π

4
⇐⇒ ÔAnOn6

π

4
,

we take vn=
−−−→
AnBn/‖AnBn‖ and arrive to the same conclusion.

We finally conclude with the validity of (14). By abuse of notation, we continue to

denote the set of such functions (gAB ·ei)i, even though one of the points is at ∞ (i.e.

the functions gA∞ ·ei=gA ·ei and g∞B ·ei=gB ·ei−2gB ·v(v·ei)). Let us denote by G
the set of (gi)

N
i=1 such that there exist A and B so that

gi =
gAB ·ei

(
∫
RN %(gAB ·ei)2 dx)1/2

,

and ∫
RN

%gAB ·ei dx= 0 for all i= 1, ..., N .

The family G is not empty, and moreover there exist at least one package of N functions

(gi)i such that
∫
RN %giu1=0, as we have proved above. We have, in particular,∫

RN

%g2
i dx= 1 for all i= 1, ..., N .
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We observe that the set G is sequentially compact, as, if (gAnBn ·ei)i∈G, at least one of

the sequences (An)n or (Bn)n has to stay bounded.

We split the discussion in two cases.

Case 1. Assume that there exists some function u1∈W 1,∞(RN ) such that∫
RN

%u1 dx= 0,

∫
RN

%u2
1 dx= 1

and

µ̃1(%) =

∫
RN

%|∇u1|2 dx. (16)

Since we get ∫
RN

%gi dx=

∫
RN

%giu1 dx=

∫
RN

%∇gi∇u1 dx= 0,

the proof follows step by step the geometric case, by the mass displacement argument.

Case 2. Assume that there does not exists a function u1∈W 1,∞(RN ) such that

(16) holds. In this case, u1 will satisfy only inequality (13). We introduce the following

numbers independent on the choice of u1:

m : = inf

{∫
RN %|∇gk|2 dx∫
RN %|gk|2 dx

: k= 1, ..., N and (gi)i ∈G
}
,

M : = sup

{∫
RN %|∇gk|2 dx∫
RN %|gk|2 dx

: k= 1, ..., N and (gi)i ∈G
}
.

The values m and M are attained as a consequence of the same compactness argument

described above. Therefore, we have the strict inequality

µ̃1(%)<m.

We give the following.

Lemma 8. There exists C>0 such that, for all ε∈
(
0, 1

2 (m−µ̃1(%))
)

and, for every

(gi)i∈G satisfying
∫
RN %giu1 dx=0, we have

µ̃2(%)6
∫
RN

%|∇gi|2 dx+Cε for all i= 1, ..., N . (17)

Proof. Assume that the set of functions (gi)i satisfies (14). We write, for some

i∈{1, ..., N},

µ̃1(%)6

∫
RN %|∇u1+t∇gi|2 dx∫

RN %|u1+tgi|2 dx
=

∫
RN %|∇u1+t∇gi|2 dx

1+t2
for all t∈R.
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Direct computations and the knowledge of
∫
RN %|∇u1|2 dx6µ̃1(%)+ε, give

06 ε+2t

∫
RN

%∇u1∇gi dx+t2
(∫

RN

%|∇gi|2 dx−µ̃1(%)

)
for all t∈R.

For

t=−
∫
RN %∇u1∇gi dx∫

RN %|∇gi|2 dx−µ̃1(%)
,

we get

06 ε−
(
∫
RN %∇u1∇gi dx)2∫

RN %|∇gi|2 dx−µ̃1(%)
,

or (∫
RN

%∇u1∇gi dx
)2

6 ε

(∫
RN

%|∇gi|2 dx−µ̃1(%)

)
6 ε(M−µ̃1(%)), (18)

where the uniform bound on the gradient of gi has been obtained at (11). This inequality

gives a control of the scalar product
∫
RN %∇u1∇gi dx by

√
ε.

By definition, we have

µ̃2(%)6 sup
t∈R

∫
RN %|∇u1+t∇gi|2 dx

1+t2
.

For t!±∞, the right-hand side converges to the same value
∫
RN %|∇gi|2 dx. If this is the

supremum, the lemma is proved. Otherwise, we search the values of t which are critical

for the right-hand side above. Performing the derivative in t, those critical values have

to satisfy

−t2
(∫

RN

%∇u1∇gi dx
)

+t

(∫
RN

%|∇gi|2 dx−
∫
RN

%|∇u1|2 dx
)

+

∫
RN

%∇u1∇gi dx= 0.

If
∫
RN %∇u1∇gi dx=0, then the only critical point is t=0 and, in this case, this corre-

sponds to a minimum for the Rayleigh quotient, the maximum being achieved for t!±∞.

If
∫
RN %∇u1∇gi dx 6=0, then the two real roots t1 and t2 satisfy

t1t2 =−1 and t1+t2 =

∫
RN %|∇gi|2 dx−

∫
RN %|∇u1|2 dx∫

RN %∇u1∇gi dx
.

In particular, the second equality leads to

|t1+t2|>
m−(µ̃1(%)+ε)∣∣∫
RN %∇u1∇gi dx

∣∣ > 1

2

m−µ̃1(%)∣∣∫
RN %∇u1∇gi dx

∣∣ > m−µ̃1(%)

2
√
ε(M−µ̃1(%))

.

We conclude that, for some constant C, independent on ε, we have (possibly switching

the indices)

|t1|6C
√
ε and |t2|>

1

C

√
ε.
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Evaluating the Rayleigh quotient in t1 and t2, and taking into account that ε is small

and µ̃2(%)>22/N |B|2/Nµ1(B)−|B|2/Nµ1(B), we observe that the maximum is attained

in t2, which leads to

µ̃2(%)6
∫
RN

%|∇gi|2 dx+C2|B|2/Nµ1(B)ε+2Cε
√
ε(M−µ̃1(%)),

concluding the proof of the lemma.

Going back to the proof of Theorem 3, we can use inequalities (17) as in the geometric

case (see the subsection “The use of test functions”), to obtain

µ̃2(%)6µ∗2+Cε.

Making ε!0, the inequality is proved.

If equality occurs, then the mass displacement should involve only a set of zero

measure, otherwise the inequality is strict, independent on ε.
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