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1. Introduction

Parabolic flows for hypersurfaces play an important role in differential geometry. One

fundamental example is the flow by mean curvature (see [18]). In this paper, we consider

flows where the speed is given by some power of the Gaussian curvature. More pre-

cisely, given an integer n>2 and a real number α>0, a 1-parameter family of immersions

F :Mn×[0, T )!Rn+1 is a solution of the α-Gauss curvature flow if, for each t∈[0, T ),

F (Mn, t)=Σt is a complete convex hypersurface in Rn+1 and F ( · , t) satisfies

∂

∂t
F (p, t) =−Kα(p, t)ν(p, t).

Here, K(p, t) and ν(p, t) are the Gauss curvature and the outward-pointing unit normal

vector of Σt at the point F (p, t), respectively.

Theorem 1. Let Σt be a family of closed, strictly convex hypersurfaces in Rn+1

moving with speed −Kαν, where α>1/(n+2). Then, either the hypersurfaces Σt con-

verge to a round sphere after rescaling, or we have α=1/(n+2) and the hypersurfaces

Σt converge to an ellipsoid after rescaling.

Flows by powers of the Gaussian curvature have been studied by many authors,

starting with the seminal paper of Firey [14] in 1974. Tso [21] showed that the flow
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exists up to some maximal time, when the enclosed volume converges to zero. In the

special case α=1/n, Chow [9] proved convergence to a round sphere. Moreover, Chow [10]

obtained interesting Harnack inequalitites for flows, by powers of the Gaussian curvature

(see also [17]). In the affine invariant case α=1/(n+2), Andrews [1] showed that the

flow converges to an ellipsoid. This result can alternatively be derived from a theorem of

Calabi [7], which asserts that the only self-similar solutions for α=1/(n+2) are ellipsoids.

The arguments in [7] and [1] rely crucially on the affine invariance of the equation, and do

not generalize to other exponents. In the special case of surfaces in R3 (n=2), Andrews [2]

proved that flow converges to a sphere when α=1; this was later extended in [4] to the

case n=2 and α∈
[
1
2 , 2
]
. The results in [2] and [4] rely on an application of the maximum

principle to a suitably chosen function of the curvature eigenvalues; these techniques do

not appear to work in higher dimensions. However, it is known that the flow converges

to a self-similar solution for every n>2 and every α>1/(n+2). This was proved by

Andrews [3] for α∈[1/(n+2), 1/n]; by Guan and Ni [16] for α=1; and by Andrews,

Guan, and Ni [5] for all α∈(1/(n+2),∞). One of the key ingredients in these results is

a monotonicity formula for an entropy functional. This monotonicity was discovered by

Firey [14] in the special case α=1.

Thus, the problem can be reduced to the classification of self-similar solutions. In

the affine invariant case α=1/(n+2), the self-similar solutions were already classified

by Calabi [7]. In the special case when α>1 and the hypersurfaces are invariant under

antipodal reflection, it was shown in [5] that the only self-similar solutions are round

spheres. Very recently, the case 1/n6α<1+1/n was solved in [8] as part of K. Choi’s

Ph. D. thesis. In particular, this includes the case α=1 conjectured by Firey [14].

Finally, we note that there is a substantial literature on other fully non-linear para-

bolic flows for hypersurfaces (see e.g. [13], [6], [20]) and for Riemannian metrics (cf. [12]).

In particular, Gerhardt [15] studied convex hypersurfaces moving outward with speed

Kαν, where α<0. Note that, for α<0, one can show using the method of moving planes

that any convex hypersurface satisfying Kα=〈x, ν〉, where α<0, is a round sphere. Us-

ing an a-priori estimate in [11], Gerhardt [15] proved that the flow converges to a round

sphere after rescaling.

We now give an outline of the proof of Theorem 1. In view of the discussion above,

it suffices to classify all closed self-similar solutions to the flow. The self-similar solutions

Σ=F (Mn) satisfy the equation

Kα = 〈F, ν〉. (∗α)

To classify the solutions of (∗α), we distinguish two cases.
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First, suppose that α∈
[
1/(n+2), 12

]
. In this case, we consider the quantity

Z =Kα tr(b)−nα−1

2α
|F |2,

where b denotes the inverse of the second fundamental form. The motivation for the

quantity Z is that Z is constant when α=1/(n+2) and Σ is an ellipsoid. Indeed, if

α=1/(n+2) and Σ={x∈Rn+1 :〈Sx, x〉=1} for some positive definite matrix S with de-

terminant 1, then K1/(n+2)=〈F, ν〉 and

Z =K1/(n+2) tr(b)+|F |2 = tr(S−1).

Hence, in this case Z is constant, and equals the sum of the squares of the semi-axes of

the ellipsoid.

Suppose now that Σ=F (Mn) is a solution of (∗α) for some α∈
[
1/(n+2), 12

]
. We

show that Z satisfies an inequality of the form

αKαbij∇i∇jZ+(2α−1)bij∇iKα∇jZ > 0.

The strong maximum principle then implies that Z is constant. By examining the case

of equality, we are able to show that either ∇h=0, or α=1/(n+2) and the cubic form

vanishes. This shows that either Σ is a round sphere, or α=1/(n+2) and Σ is an ellipsoid.

Finally, we consider the case α∈
(
1
2 ,∞

)
. As in [8], we consider the quantity

W =Kαλ−11 −
nα−1

2nα
|F |2.

By applying the maximum principle, we can show that any point where W attains its

maximum is umbilical. From this, we deduce that any maximum point of W is also a

maximum point of Z. Applying the strong maximum principle to Z, we are able to show

that Z and W are both constant. This implies that Σ is a round sphere.

2. Preliminaries

We first recall the notation:

• The metric is given by gij=〈Fi, Fj〉, where Fi :=∇iF . Moreover, gij denotes the

inverse of gij , so that gijgjk=δik. Also, we use the notation F i=gijFj .

• We denote by H and hij the mean curvature and second fundamental form, re-

spectively.

• For a strictly convex hypersurface, we denote by bij the inverse of the second

fundamental form hij , so that bijhjk=δik. Moreover, tr(b) will denote the trace of b, i.e.

the reciprocal of the harmonic mean curvature.
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• We denote by L the operator L=αKαbij∇i∇j .
• We denote by Cijk the cubic form

Cijk = 1
2K
−1(n+2)∇khij+ 1

2hjk∇iK
−1/(n+2)+ 1

2hki∇jK
−1/(n+2)+ 1

2hij∇kK
−1/(n+2).

We next derive some basic equations.

Proposition 2. Given a strictly convex smooth solution F :Mn
!Rn+1 of (∗α),

the following equations hold :

∇ibjk =−bjlbkm∇ihlm, (1)

L|F |2 = 2αKαbij(gij−hijKα) = 2αKα tr(b)−2nαK2α, (2)

∇iKα =hij〈F, F j〉, (3)

LKα = 〈F, Fi〉∇iKα+nαKα−αK2αH, (4)

Lhij =−K−α∇iKα∇jKα+αKαbprbqs∇ihrs∇jhpq (5)

+〈F, Fk〉∇khij+hij+(nα−1)hikh
k
jK

α−αKαHhij ,

Lbpq =K−αbprbqs∇rKα∇sKα+αKαbprbqsbijbkm∇rhik∇shjm (6)

+〈F, Fi〉∇ibpq−bpq−(nα−1)gpqKα+αKαHbpq.

Proof. The relation ∇i(bjkhkl)=∇iδjl =0 gives hkl∇ibjk=−bjk∇ihkl. This directly

implies (1). We next compute

∇i∇j |F |2 = 2〈∇iF,∇jF 〉+2〈F,∇i∇jF 〉= 2gij−2hij〈F, ν〉= 2gij−2Kαhij ,

and hence

L|F |2 = 2αKα tr(b)−2nαK2α.

This proves (2).

To derive equation (3), we differentiate (∗α):

∇iKα =hik〈F, F k〉.

If we differentiate this equation again, we obtain

∇i∇jKα = 〈F, F k〉∇ihjk+hij−hikhkj 〈F, ν〉= 〈F, F k〉∇khij+hij−Kαhikh
k
j ,

and hence

LKα = 〈F, F k〉∇kKα+nαKα−αK2αH.
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On the other hand, using (1) we compute

∇i∇jKα =∇i(αKαbpq∇jhpq)

=αKαbpq∇i∇jhpq+α2Kαbrsbpq∇ihrs∇jhpq−αKαbprbqs∇ihrs∇jhpq.

Using the commutator identity

∇i∇jhpq =∇i∇phjq =∇p∇ihjq+Ripjmh
m
q +Ripqmh

m
j

=∇p∇qhij+(hijhpm−himhjp)hmq +(hiqhpm−himhpq)hmj ,

we deduce that

αKαbpq∇i∇jhpq =αKαbpq∇p∇qhij+αKαHhij−nαKαhimh
m
j

=Lhij+αKαHhij−nαKαhimh
m
j .

Combining the equations above yields

Lhij =−α2Kαbrsbpq∇ihrs∇jhpq+αKαbprbqs∇ihrs∇jhpq

+〈F, F k〉∇khij+hij+(nα−1)hikh
k
jK

α−αKαHhij .

This completes the proof of (5).

Finally, using (1), we obtain

Lbpq =αKαbij∇i(−bprbqs∇jhrs)

= 2αKαbijbpkbrmbqs∇ihkm∇jhrs−bprbqsLhrs.

Applying (5), we conclude that

Lbpq =α2Kαbprbqsbijbkm∇rhij∇shkm+αKαbprbqsbijbkm∇rhik∇shjm

+〈F, F k〉∇kbpq−bpq−(nα−1)gpqKα+αKαHbpq.

Since ∇Kα=αKαbij∇hij , the identity (6) follows.

3. Classification of self-similar solutions: the case α∈
[
1/(n+2), 1

2

]
In this section, we consider the case α∈

[
1/(n+2), 12

]
. We begin with an algebraic lemma.
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Lemma 3. Assume α∈
[
1/(n+2), 12

]
, λ1, ... , λn are positive real numbers (not nec-

essarily arranged in increasing order), and σ1, ... , σn are arbitrary real numbers. Then

Q :=

n∑
i=1

σ2
i +2

n−1∑
i=1

λnλ
−1
i σ2

i

−4αλn

( n∑
i=1

λ−1i σi+

(
(nα−1)λ−1n −α

n∑
i=1

λ−1i

) n∑
i=1

σi

)( n∑
i=1

σi

)

−2α2λn

( n∑
i=1

λ−1i

)( n∑
i=1

σi

)2
+(2nα2+(n−1)α−1)

( n∑
i=1

σi

)2
> 0.

Moreover, if equality holds, then we either have σ1=...=σn=0, or we have α=1/(n+2)

and σ1=...=σn−1= 1
3σn.

Proof. If
∑n
i=1 σi=0, the assertion is trivial. Hence, it suffices to consider the case∑n

i=1 σi 6=0. By scaling, we may assume
∑n
i=1 σi=1. Let us define

τi =

{
σi−α, for i= 1, ..., n−1,

σn−1+(n−1)α, for i=n.

Then
n∑
i=1

τi =

n∑
i=1

σi−1 = 0

and
n∑
i=1

λ−1i τi =

n∑
i=1

λ−1i σi+(nα−1)λ−1n −α
n∑
i=1

λ−1i .

Therefore, the quantity Q satisfies

Q=

n−1∑
i=1

(τi+α)2+(τn+1−(n−1)α)2+2

n−1∑
i=1

λnλ
−1
i (τi+α)2

−4α

n∑
i=1

λnλ
−1
i τi−2α2

n∑
i=1

λnλ
−1
i +2nα2+(n−1)α−1

=

n∑
i=1

τ2i +2α

n−1∑
i=1

τi+2(1−(n−1)α)τn+(n−1)α2+(1−(n−1)α)2

+2

n−1∑
i=1

λnλ
−1
i (τ2i +2ατi+α

2)−4α

n−1∑
i=1

λnλ
−1
i τi−4ατn

−2α2
n−1∑
i=1

λnλ
−1
i −2α2+2nα2+(n−1)α−1

=

n∑
i=1

τ2i +2α

n−1∑
i=1

τi+2(1−(n+1)α)τn+2

n−1∑
i=1

λnλ
−1
i τ2i +(n−1)α((n+2)α−1).



flows by powers of the gaussian curvature 7

Using the identity
∑n
i=1 τi=0, we obtain

Q=

n∑
i=1

τ2i +2(1−(n+2)α)τn+2

n−1∑
i=1

λnλ
−1
i τ2i +(n−1)α((n+2)α−1).

Moreover, the identity
∑n
i=1 τi=0 gives

n∑
i=1

τ2i =

n−1∑
i=1

(
τi+

1

n−1
τn

)2
− 2

n−1
τn

n−1∑
i=1

τi+
n−2

n−1
τ2n =

n−1∑
i=1

(
τi+

1

n−1
τn

)2
+

n

n−1
τ2n.

Thus,

Q=
n

n−1

(
τn+

n−1

n
(1−(n+2)α)

)2
+

n−1∑
i=1

(
τi+

1

n−1
τn

)2

+2

n−1∑
i=1

λnλ
−1
i τ2i +

n−1

n
(1−2α)((n+2)α−1).

The right-hand side is clearly non-negative. Also, if equality holds, then τ1=...=τn=0

and α=1/(n+2). This proves the lemma.

Theorem 4. Assume α∈
[
1/(n+2), 12

]
and Σ is a strictly convex closed smooth

solution of (∗α). Then, either Σ is a round sphere, or α=1/(n+2) and Σ is an ellipsoid.

Proof. Taking the trace in equation (6) gives

L tr(b) =K−αbprbsp∇rKα∇sKα+αKαbprbspb
ijbkm∇rhik∇shjm

+〈F, Fi〉∇i tr(b)−tr(b)−n(nα−1)Kα+αKαH tr(b).

Using equation (4), we obtain

L(Kα tr(b)) =KαL tr(b)+LKα tr(b)+2αKαbij∇iKα∇j tr(b)

= bprbsp∇rKα∇sKα+αK2αbprbspb
ijbkm∇rhik∇shjm

+〈F, Fi〉∇i(Kα tr(b))+(nα−1)Kα tr(b)−n(nα−1)K2α

+2αKαbij∇iKα∇j tr(b).

Using (2), it follows that the function

Z =Kα tr(b)−nα−1

2α
|F |2 (7)

satisfies

LZ = bprbsp∇rKα∇sKα+αK2αbprbspb
ijbkm∇rhik∇shjm

+〈F, Fi〉∇i(Kα tr(b))+2αKαbij∇iKα∇j tr(b).
(8)
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Using (3), we obtain
1
2∇

i|F |2 = 〈F, F i〉= bij∇jKα,

and hence

∇iZ =Kα∇i tr(b)+tr(b)∇iKα−nα−1

α
bji∇jK

α.

This gives

〈F, Fi〉∇i(Kα tr(b)) = bij∇iKα∇jZ+
nα−1

α
bikbjk∇iK

α∇jKα

and

2αKαbij∇iKα∇j tr(b) = 2αbij∇iKα∇jZ−(2αbij tr(b)−2(nα−1)bikbjk)∇iKα∇jKα.

Substituting these identities into (8) gives

LZ+(2α−1)bij∇iKα∇jZ

= 4αbij∇iKα∇jZ+αK2αbprbspb
ijbkm∇rhik∇shjm

+(−2αbij tr(b)+(2nα+n−1−α−1)bikbjk)∇iKα∇jKα.

(9)

Let us fix an arbitrary point p. We can choose an orthonormal frame so that hij(p)=λiδij .

With this understood, we have

∇iKα =αKα
n∑
j=1

λ−1j ∇ihjj and ∇i tr(b) =−
n∑
j=1

λ−2j ∇ihjj . (10)

Let D denote the set of all triplets (i, j, k) such that i, j and k are pairwise distinct.

Then, by using (9) and (10), we have

α−1K−2α(LZ+(2α−1)bij∇iKα∇jZ)

=
∑
D

λ−2i λ−1j λ−1k (∇ihjk)2+4α
∑
k

λ−1k (∇k logK)(K−α∇kZ)

+
∑
k

∑
i

λ−2k λ−2i (∇khii)2+2
∑
k

∑
i6=k

λ−1k λ−3i (∇khii)2

+
∑
k

λ−1k (−2α2 tr(b)+(2nα2+(n−1)α−1)λ−1k )(∇k logK)2.

(11)

We claim that, for each k, the following holds:∑
i

λ−1k λ−2i (∇khii)2+2
∑
i 6=k

λ−3i (∇khii)2+4α(∇k logK)(K−α∇kZ)

+(−2α2 tr(b)+(2nα2+(n−1)α−1)λ−1k )(∇k logK)2 > 0.

(12)
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Notice that

K−α∇kZ =−
∑
i

λ−2i ∇khii+(α tr(b)−(nα−1)λ−1k )∇k logK.

After relabeling indices, we may assume k=n. If we put σi :=λ
−1
i ∇nhii, then the assertion

follows from Lemma 3. This proves (12). Combining (11) and (12), we conclude that

LZ+(2α−1)bij∇iKα∇jZ > 0

at each point p. Therefore, by the strong maximum principle, Z is a constant. Hence, the

left-hand side of (11) is zero. Therefore, ∇ihjk=0 if i, j and k are all distinct. Moreover,

since we have equality in the lemma, we either have λ−1i ∇khii=0 for all i and k, or we

have α=1/(n+2) and λ−1i ∇khii= 1
3λ
−1
k ∇khkk for i 6=k.

In the first case, we conclude that ∇ihjk=0 for all i, j and k, and thus Σ is a round

sphere.

In the second case, we obtain

λ−1i ∇khii =
1

n+2
∇k logK for i 6= k and λ−1k ∇khkk =

3

n+2
∇k logK.

This gives

Cijk = 1
2K
−1/(n+2)∇khij+ 1

2hjk∇iK
−1/(n+2)+ 1

2hki∇jK
−1/(n+2)+ 1

2hij∇kK
−1/(n+2) = 0

for all i, j and k. Since the cubic form Cijk vanishes everywhere, the surface is an ellipsoid

by the Berwald–Pick theorem (see e.g. [19, Theorem 4.5]). This proves the theorem.

4. Classification of self-similar solutions: the case α∈
(
1
2
,∞

)
We now turn to the case α∈

(
1
2 ,∞

)
. In the following, we denote by λ16...6λn the eigen-

values of the second fundamental form, arranged in increasing order. Each eigenvalue

defines a Lipschitz continuous function on M .

Lemma 5. Suppose that ϕ is a smooth function such that λ1>ϕ everywhere and

λ1=ϕ at p̄. Let µ denote the multiplicity of the smallest curvature eigenvalue at p̄, so

that λ1=...=λµ<λµ+16...6λn. Then, at p̄, ∇ihkl=∇iϕδkl for 16k, l6µ. Moreover,

∇i∇iϕ6∇i∇ih11−2
∑
l>µ

(λl−λ1)−1(∇ih1l)2.

at p̄.
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Proof. Fix an index i, and let γ(s) be the geodesic satisfying γ(0)=p̄ and γ′(0)=ei.

Moreover, let v(s) be a vector field along γ such that v(0)∈span{e1, ... , eµ} and v′(0)∈
span{eµ+1, ... , en}. Then, the function s 7!h(v(s), v(s))−ϕ(γ(s))|v(s)|2 has a local min-

imum at s=0. This gives

0 =
d

ds
(h(v(s), v(s))−ϕ(γ(s))|v(s)|2)

∣∣∣∣
s=0

=∇ih(v(0), v(0))+2h(v(0), v′(0))−∇iϕ|v(0)|2−2〈v(0), v′(0)〉

=∇ih(v(0), v(0))−∇iϕ|v(0)|2.

Since v(0)∈span{e1, ... , eµ} is arbitrary, it follows that ∇ihkl=∇iϕδkl for 16k, l6µ at

the point p̄.

We next consider the second derivative. To that end, we choose v(0)=e1,

v′(0) =−
∑
l>µ

(λl−λ1)−1∇ih1lel,

and v′′(0)=0. Since the function s 7!h(v(s), v(s))−ϕ(γ(s))|v(s)|2 has a local minimum

at s=0, we obtain

06
d2

ds2
(h(v(s), v(s))−ϕ(γ(s))|v(s)|2)

∣∣∣
s=0

=∇i∇ih(v(0), v(0))+4∇ih(v(0), v′(0))+2h(v′(0), v′(0))

−∇i∇iϕ|v(0)|2−4∇iϕ〈v(0), v′(0)〉−2ϕ|v′(0)|2

=∇i∇ih11−4
∑
l>µ

(λl−λ1)−1(∇ih1l)2+2
∑
l>µ

λl(λl−λ1)−2(∇ih1l)2

−∇i∇iϕ−2
∑
l>µ

λ1(λl−λ1)−2(∇ih1l)2

=∇i∇ih11−2
∑
l>µ

(λl−λ1)−2(∇ih1l)2−∇i∇iϕ.

This proves the assertion.

Theorem 6. Assume α∈
(
1
2 ,∞

)
and Σ is a strictly convex closed smooth solution

of (∗α). Then Σ is a round sphere.

Proof. Let us consider the function

W =Kαλ−11 −
nα−1

2nα
|F |2. (13)
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Let us consider an arbitrary point p̄ where W attains its maximum. As above, we denote

by µ the multiplicity of the smallest eigenvalue of the second fundamental form. Let us

define a smooth function ϕ such that

W (p̄) =Kαϕ−1−nα−1

2nα
|F |2.

Since W attains its maximum at p̄, we have λ1>ϕ everywhere and λ1=ϕ at p̄. Therefore,

we may apply the previous lemma. Hence, at the point p̄, we have ∇ihkl=∇iϕδkl for

16k, l6µ. Moreover,

∇k∇kϕ6∇k∇kh11−2
∑
l>µ

(λl−λ1)−1(∇kh1l)2

at p̄. We multiply both sides by αKαλ−1k and sum over k. This gives

Lϕ6Lh11−2αKα
∑
k

∑
l>µ

λ−1k (λl−λ1)−1(∇kh1l)2.

By (5), we have

Lhij =−K−α∇iKα∇jKα+αKαbprbqs∇ihrs∇jhpq

+〈F, Fk〉∇khij+hij+(nα−1)hikh
k
jK

α−αKαHhij .

Thus,

Lϕ6−2αKα
∑
k

∑
l>µ

λ−1k (λl−λ1)−1(∇kh1l)2−K−α(∇1K
α)2+αKα

∑
k,l

λ−1k λ−1l (∇kh1l)2

+
∑
k

〈F, Fk〉∇kh11+λ1+(nα−1)λ21K
α−αKαHλ1.

Using the estimate

−2αKα
∑
k

∑
l>µ

λ−1k (λl−λ1)−1(∇kh1l)2+αKα
∑
k,l

λ−1k λ−1l (∇kh1l)2

=−αKα
∑
k

∑
l>µ

λ−1k (2(λl−λ1)−1−λ−1l )(∇kh1l)2+αKα
∑
k

λ−1k λ−11 (∇kh11)2

6−αKα
∑
l>µ

λ−11 (2(λl−λ1)−1−λ−1l )(∇1h1l)
2+αKα

∑
k

λ−1k λ−11 (∇kh11)2

=−2αKα
∑
k>µ

λ−11 ((λk−λ1)−1−λ−1k )(∇kh11)2+αKαλ−21 (∇1h11)2,
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we obtain

Lϕ6−2αKαλ−11

∑
k>µ

((λk−λ1)−1−λ−1k )(∇kh11)2+αKαλ−21 (∇1h11)2−K−α(∇1K
α)2

+
∑
k

〈F, Fk〉∇kh11+λ1+(nα−1)λ21K
α−αKαHλ1.

Since ∇kϕ=∇kh11, it follows that

L(ϕ−1)> 2αKαλ−31

∑
k

λ−1k (∇kh11)2

+2αKαλ−31

∑
k>µ

((λk−λ1)−1−λ−1k )(∇kh11)2

−αKαλ−41 (∇1h11)2+K−αλ−21 (∇1K
α)2

+
∑
k

〈F, Fk〉∇k(λ−11 )−λ−11 −(nα−1)Kα+αKαHλ−11

= 2αKαλ−31

∑
k>µ

(λk−λ1)−1(∇kh11)2

+αKαλ−41 (∇1h11)2+K−αλ−21 (∇1K
α)2

+
∑
k

〈F, Fk〉∇k(λ−11 )−λ−11 −(nα−1)Kα+αKαHλ−11 .

This gives

L(Kαϕ−1) =KαL(ϕ−1)+ϕ−1L(Kα)+2αKα
∑
k

λ−1k ∇kK
α∇k(ϕ−1)

> 2α
∑
k

λ−1k ∇kK
α∇k(Kαϕ−1)−2αλ−11

∑
k

λ−1k (∇kKα)2

+2αK2αλ−31

∑
k>µ

(λk−λ1)−1(∇kh11)2

+αK2αλ−41 (∇1h11)2+λ−21 (∇1K
α)2

+
∑
k

〈F, Fk〉∇k(Kαϕ−1)+(nα−1)Kαλ−11 −(nα−1)K2α.

By assumption, the function

Kαϕ−1−nα−1

2nα
|F |2

is constant. Consequently,

∇k(Kαϕ−1) =
nα−1

2nα
∇k|F |2,
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and

0 =L
(
Kαϕ−1−nα−1

2nα
|F |2

)
>
nα−1

n

∑
k

λ−1k ∇kK
α∇k|F |2−2αλ−11

∑
k

λ−1k (∇kKα)2

+2αK2αλ−31

∑
k>µ

(λk−λ1)−1(∇kh11)2

+αK2αλ−41 (∇1h11)2+λ−21 (∇1K
α)2

+
nα−1

2nα

∑
k

〈F, Fk〉∇k|F |2+(nα−1)Kα

(
λ−11 −

1

n
tr(b)

)
.

Recall that
1
2∇k|F |

2 = 〈F, Fk〉=λ−1k ∇kK
α

by (3). Moreover, using the identity ∇kϕ=∇kh11, we obtain

0 =∇k(Kαϕ−1)−nα−1

2nα
∇k|F |2 =

(
λ−11 −

nα−1

nα
λ−1k

)
∇kKα−Kαλ−21 ∇kh11

at p̄. Note that, if 26l6µ, then ∇kh1l=0 for all k. Putting k=1 gives ∇lh11=0 and

∇lK=0 for 26l6µ. Putting these facts together, we obtain

0>
2(nα−1)

n

∑
k

λ−2k (∇kKα)2−2αλ−11

∑
k

λ−1k (∇kKα)2

+2αλ1
∑
k>µ

(λk−λ1)−1
(
λ−11 −

nα−1

nα
λ−1k

)2
(∇kKα)2

+
1

n2α
λ−21 (∇1K

α)2+λ−21 (∇1K
α)2

+
nα−1

nα

∑
k

λ−2k (∇kKα)2+(nα−1)Kα

(
λ−11 −

1

n
tr(b)

)
.

Using the identities

2(nα−1)

n
λ−2k −2αλ−11 λ−1k +2αλ1(λk−λ1)−1

(
λ−11 −

nα−1

nα
λ−1k

)2
+
nα−1

nα
λ−2k

=

(
nα−1

nα
+

2

n
+

2

n2α
λ1(λk−λ1)−1

)
λ−2k

and
2(nα−1)

n
λ−21 −2αλ−21 +

1

n2α
λ−21 +λ−21 +

nα−1

nα
λ−21 =

n−1

n2α
(2nα−1)λ−21 ,



14 s. brendle, k. choi and p. daskalopoulos

the previous inequality can be rewritten as follows:

0>
∑
k>µ

(
nα−1

nα
+

2

n
+

2

n2α
λ1(λk−λ1)−1

)
λ−2k (∇kKα)2

+
n−1

n2α
(2nα−1)λ−21 (∇1K

α)2+(nα−1)Kα

(
λ−11 −

1

n
tr(b)

)
.

Since α>1/n, it follows that p̄ is an umbilical point. As p̄ is an umbilical point and α> 1
2 ,

there exists a neighborhood U of p̄ with the property that

α−1K−2α(LZ−(2α+1)bij∇iKα∇jZ)

=
∑
D

λ−2i λ−1j λ−1k (∇ihjk)2

+
∑
k

∑
i

λ−2k λ−2i (∇khii)2+2
∑
k

∑
i 6=k

λ−1k λ−3i (∇khii)2

+
∑
k

λ−1k (−2α2 tr(b)+(2nα2+(n−1)α−1)λ−1k )(∇k logK)2 > 0

at each point in U . (Indeed, if n>3, the last inequality follows immediately from the

fact that (n−1)α−1>0. For n=2 the last inequality follows from a straightforward

calculation.)

Now, since p̄ is an umbilical point, we have Z(p)6nW (p)6nW (p̄)=Z(p̄) for each

point p∈U . Thus, Z attains a local maximum at p̄. By the strong maximum principle,

Z(p)=Z(p̄) for all points p∈U . This implies that W (p)=W (p̄) for all points p∈U . Thus,

the set of all points where W attains its maximum is open. Consequently, W is constant.

This implies that Σ is umbilical, and hence a round sphere.

5. Proof of Theorem 1

Suppose that we have any strictly convex solution to the flow with speed −Kαν, where

α∈[1/(n+2),∞). It is known that the flow converges to a soliton after rescaling; for

α>1/(n+2), this follows from [5, Theorem 6.2], while for α=1/(n+2) this follows from

results in [3, §9]. By Theorems 4 and 6, either the limit is a round sphere, or α=1/(n+2)

and the limit is an ellipsoid.
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